

Phidgets: Easy Development of Physical Interfaces
through Physical Widgets

Saul Greenberg and Chester Fitchett
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

Tel: +1 403 220 608
E-mail: saul@cpsc.ucalgary.ca

ABSTRACT
Physical widgets or phidgets are to physical user interfaces
what widgets are to graphical user interfaces. Similar to
widgets, phidgets abstract and package input and output
devices: they hide implementation and construction details,
they expose functionality through a well-defined API, and
they have an (optional) on-screen interactive interface for
displaying and controlling device state. Unlike widgets,
phidgets also require: a connection manager to track how
devices appear on-line; a way to link a software phidget
with its physical counterpart; and a simulation mode to
allow the programmer to develop, debug and test a physical
interface even when no physical device is present. Our
evaluation shows that everyday programmers using
phidgets can rapidly develop physical interfaces.

INTRODUCTION
In the last decade, various movements embraced human-
computer interface designs that include physical user
interfaces augmented by computing power. These include
ubiquitous computing and calm technology [15], pervasive
computing [1], tangible user interfaces [7], information
appliances [12] and context-aware computing [3].
Researchers in these areas have demonstrated many simple
but exciting examples of physical user interfaces. Ishii and
his Tangible Media group developed several elegant
ambient fixtures to communicate information at the
periphery of human perception. These include pinwheels
that rotate under program control [2], bottles that play
sounds when they are opened [8], touch counters that track
and display the use of physical objects [16], and water
lamps that project water ripples onto a surface [2]. Heiner,
Hudson and Tanaka built the information percolator, where
air bubbles rising through tubes of water (controlled
through the release of air) creates a scrolling display [6].
Greenberg and Kuzuoka [4] illustrated how devices can
serve as digital but physical surrogates of remote people:

they can present the remote person’s status, serve as a
communication channel, and react appropriately to
people’s implicit and explicit actions. Kaminsky et. al. [9]
detailed how Microsoft Actimates could display
notifications, indicate numeric values, and respond to user
actions. Finally, many media artists have created artistic
interactive installations where a combination of
computational and physical devices respond to how people
move within a space e.g., see SIGGRAPH Art Galleries–
www.siggraph.org/artdesign/gallery/gallery.html.
While an exciting new area, everyday programmers still
face considerable hurdles if they wish to create even simple
physical user interfaces. Perhaps the biggest—but we
believe easily solved—obstacle is the sheer difficulty of
developing and combining physical devices and interfacing
them to conventional programming languages. Several
specific problems are listed below.
1. Even simple devices made out of cheap and readily

available electrical components (switches, sensors,
solenoids, motors) are hard to build unless one has a
background in hobby electronics, circuit design or
electrical engineering. Sadly, most computer scientists
and human computer interaction specialists lack this
know-how.

2. Commercially available devices may have no published
application-programming interface (API). As a result,
an outsider cannot program them unless the device is
‘hacked’ or reverse-engineered. Examples include
Microsoft’s Actimates hacked by Kaminsky, Dourish
and Edwards [9]; Fujitsu’s email notification figurine
hacked by Greenberg and Kuzuoka [4], and Lego
Mindstorms RCX documentation by Knudsen [10].

3. Alternatively, commercial devices designed for
particular application settings typically have a
configuration and/or API at a level of abstraction that is
not well suited for building the kinds physical devices
we want. For example, the X10 protocol developed for
controlling ‘Smart Home’ and security appliances is too
high-level and limited for general device development
(but see [5]). At the other extreme, we have
programmable logic controllers for constructing control
devices used in manufacturing: these are abstracted at a
very low level, where designers may require extensive

Cite as:
Greenberg. S. and Fitchett, C. Phidgets: Easy development
of physical interfaces through physical widgets. Proceedings
of the ACM UIST 2001 Symposium on User Interface
Software and Technology, November 11-14, Orlando,
Florida. ACM Press. www.cpsc.ucalgary.ca/grouplab/papers/

©Association for Computing Machinery, Inc (ACM).
Permission to make digital/hard copy of all or part of this material without fee is granted provided that copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication and its date appear, and notice is given that copyright is by permission of the Association
for Computing Machinery, Inc (ACM). To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

training and have to do difficult programming to do
even the simplest things.

4. Some construction kits are oriented to quite different
markets e.g., the Behaviour Construction Kit [14] and
Lego Mindstorms target children and educational uses,
while most MIDI-based kits target performers (but see
www.midivid.com for MIDI-based robotics).

5. Developers may not have these devices readily
available at early stages of their programming effort,
perhaps due to expense, shipping delays, cost factors,
etc. While a program can be written without a device,
they are difficult to test and debug.

MOTIVATION: OUR FRUSTRATING 1st EXPERIENCES
Our own first experiences echoed these problems. We were
designing a reactive media space environment illustrated in
Figure 1 [4]. It was built around several simple
interoperating devices: proximity sensors, servo motors,
light sensors, as well as switched cameras, microphones,
speakers, and small video displays. While our focus was on
media space design [4], we found ourselves immersed in a
quagmire of tediousness: selecting and purchasing
electrical components and hobby kits, circuit board design,
microprocessor programming, wire protocol development,
and so on. Fortunately for us computer scientists, visiting
collaborator Hideaki Kuzuoka was proficient in
hardware/microprocessor work and assumed this burden.
Still, we expended considerable time (months) developing
and debugging these devices and their related low-level
software. Although successful as a stand-alone project [4],
the tale ended poorly: after Kuzuoka left, the software and
the devices themselves became almost impossible to
maintain or extend, where the devices visible in Figure 1

devolved into a disassembled mess. The problem was that
we had built a working prototype, but had not really
considered how individual devices and its software could
be maintained, modified and reused in different ways.
Our experiences are echoed in the many discussions we
have had since with other researchers and artists who have
developed physical user interfaces around physical devices.
Most commented that they either had to invest considerable
time learning basic electronics, microprocessor
programming and device-building, or that they had to bring
in specialists e.g., electrical engineers or knowledgeable
hobbyists. No common devices were easily obtainable, nor
were there any high-level development platforms:
consequently, people either developed ‘one-off’ devices, or
evolved some limited form of reusable hardware/software
modules for in-house use.

RESEARCH AGENDA: THE PHIDGET CONCEPT
As a consequence of these problems, we made a concerted
effort to think about how we could package physical
devices and their software for easy development of
physical user interfaces. Our goals were to create devices:
• simple enough so that developers can concentrate on the

overall use, modification and recombination of devices
into a physical user interface instead of low-level device
construction and implementation;

• easy enough for the average programmer to program
and extend.

Our approach was to develop physical widgets, or phidgets,
which are almost direct analogs to how graphical user
interface (GUI) widgets are packaged and ‘dropped into’
software applications1. Our primary belief is:
 … just as widgets make GUIs easy to develop, so could

phidgets make the new generation of physical user
interfaces easy to develop.

As we will see, a phidget comprises a device, a software
architecture for communication and connection
management, a well-defined software API for device
programming, a simulation capability, and an optional on-
screen component for interacting with the device.

Why GUI Widgets are so successful
GUI widgets have greatly simplified the programmer’s
development of interactive software. They abstract and
package well-designed standard and non-standard input
and output controls. They hide often-difficult
implementation details, while exposing functionality
through a well-defined API. Through relatively simple
programming, they can be interconnected so they can work
in concert with one another. As a toolkit set, widgets give
the programmer a good repertoire of graphical components
that can be used to assemble an interface [11]. The result is

1In contrast to Phicons [14] which are input instruments, phidgets
are programmable components representing physical devices.

Figure 1. The Active Hydra [from 4]

Rotating figurine
servo motor

Tippable figurine
light sensors

Proximity detector
ultrasonic sensor

Hydra unit
video, camera,
speakers, microphone

Micro-controller

Digital in
connector

Analog
connectors

Figure 4: GlabInterfaceKit and a host of sensors,
switches, LEDs and solenoids that can be connected to it.

Micro-controller

Digital in
connector

Analog
connectors

Analog sensors:
light, force,
heat…

Digital in:
various
switches

Figure 2: GlabServo and its motors

Servos

Micro-
controller Digital out

connector

Digital out-
solenoids,
LEDs

that programmers
using widgets can
concentrate on GUI
interface design rather
than low-level
graphical
programming.

Phidget requirements
As with conventional
GUI widgets, the
important idea of a phidget
is that it presents the programmer with an easily used entity
that can be inserted into an application. Both provide an
abstracted and well-defined interface: widgets to a
graphical interactive entity, phidgets to a physical entity.
Both hide details of how the entity is implemented.
Unlike widgets, phidgets have a few more requirements.
1. Connection manager. Whereas GUI widgets are always

available to the application at run time, physical devices
may appear and disappear. For example, during run
time a device may come on-line or go off-line, or it may
have intermittent connectivity (especially if it is
wireless). The job of a connection manager is to
monitor and communicate with attached devices, to
inform the application program about the appearance
and disappearance of particular devices, and to give the
programmer a ‘handle’ to devices as they appear.

2. Identification. There must be a way to link a software
phidget with its physical counterpart. While not a
problem when there are only a few well-known devices
attached to a single computer, device identification can
become an issue when several devices of the same type
(but perhaps with different end uses) are attached to the
computer, or where the types and numbers of devices
are not known ahead of time. A clear identification
scheme is required.

3. Simulation mode. For software development purposes,
the same phidget code should work in a simulation
mode. That is, the software designer should be able to
program, debug and test the system even if the actual
physical device that comprises part of the phidget is
absent. This could include an extended API to set the
simulation characteristics of the device, and a graphical
representation that allows a person to see and optionally
interact with the device state.

WHAT WE BUILT
We designed and built a
software and hardware
architecture, and have
completed several types of
phidgets that support the
features listed above.

Example phidgets
Phidgets we have completed are listed below. Phidget
names are prefixed with ‘Glab’, an abbreviation of our
Grouplab research laboratory name.
• GlabServo lets a programmer control a device

containing several servo motors. The position of each
motor can be set programmatically (Figure 2);

• GlabPowerBar resembles a standard 120-volt power
bar with several outlets. The programmer can
programmatically and rapidly turn individual outlets on
and off (see Figure 3);

• GlabInterfaceKit is a general-purpose ‘construction’
kit, where one can plug in a combination of off-the-
shelf switches, LEDs, solenoids, sensors and so on
(Figure 4). Specifically, a programmer can control up to
8 digital output devices (e.g., LEDs or solenoids), can
retrieve the state of up to 8 digital input devices (e.g.,
various types of switches); and can inspect the state of
various analog sensors that can be connected to it (e.g.,
heat, force and light sensors.

Other earlier phidgets we built include motion detectors,
proximity sensors, and animated figurines. Several are
being updated to our current architecture, and we have
many other new phidgets in progress.

Figure 3: GlabPowerBar. Note the USB connection and the circuit board just visible inside

Software and hardware architecture
Our phidgets abstract out into the following architectural
units, illustrated in Figure 5. We will use the GlabServo
phidget to illustrate particular details.
The Physical Device is the packaged physical unit given to
the physical designer, who may then use it in whatever way
she wishes to create a physical interface that would be
given to the end user (Figure 5, left side). The physical
device includes the primitive input and output device
components (sensors, motors, switches, etc), a circuit board
with micro-controller, and a communications layer. For
example, the primitive device components of our
GlabServo are the actual Servo motors, while for the
GlabInterfaceKit it would be the various sensors and
switches that can be plugged into it. Most our phidgets are
built around a circuit board using a CY7C63000 USB
micro-controller from Cypress Semiconductor to control
the on-board electronics. Our communication layer is based
upon the USB communication standard, and it is the USB
micro-controller’s responsibility to handle the
communication protocol with the host computer2. Finally,
device packaging depends on the device, as illustrated in
Figures 2-4 The GlabServo is delivered as a small circuit
board (~1.5 cm2) as illustrated in Figure 2, and device
designers can optionally attach one or two servo motors to
it. In contrast the GlabPowerBar is packaged as a full-size
power bar (we actually adapt a commercial one) with the
electronics hidden inside (Figure 3).
The Wire Protocol is the communication protocol between
the physical device and the host computer (we use MS
Windows 2000). It is not visible to end programmers. As
mentioned, our current phidget set communicates using
standard USB protocol, where we wrote low-level software
for both the micro-controller and Windows 2000 to set up
and manage basic communication. When our physical
devices are plugged in, Windows sees them as USB
devices. Atop this protocol, every device knows and can
transmit its phidget type (e.g., a GlabServo transmits the
string “GlabServo”), and an identification number that is
unique for a phidget instance of that type (see Point 2 in
requirements). Each device also transmits information
specific to its type e.g., particular events that indicate the
device state. Similarly, the host computer can transmit
device-specific requests. For example, a host can tell the
GlabServo device to set the position of one of its motors to
a particular angle.
The PhidgetManager is a COM3 object. It includes an
event-based API available to end-programmers for

2 Other communication standards are possible. We
previously built phidgets atop the 16F84 micro-controller from
Microchip Inc. which connected to the RS-232 serial port. We
are now experimenting with wireless protocols.

3 COM objects are Microsoft’s standard way of packaging,
distributing and including software modules. They have a well-

connection management (see point 1 in requirements). Its
major API elements include:

Properties:
Count as Integer
Item (Index as Integer)

Events:
OnAttach (Phidget as IGlabPhidget)
OnDetach (Phidget as IGlabPhidget)

Programmers use this API to discover all attached devices.
Specifically, the OnAttach and OnDetach events are
automatically generated whenever a physical device is
connected or disconnected to or from the computer. These
events return a reference to an IGlabPhidget interface
that the programmer can use to identify the device (see
below). For example, if an end user plugged in a
GlabServo, the OnAttach event would automatically fire
and return a reference that the programmer can use to
discover that it is a GlabServo. Alternatively, the
programmer can find out how many phidgets are currently
attached via the Count property, and enumerate through
them via the Item(Index) property.
Internally, the PhidgetManager is implemented as a layer of
abstraction built atop the USB communications layer
(Figure 5, right side). It monitors USB devices on the
system to see if they are phidgets: if they are, it creates a
phidget-specific COM object (Figure 5, right side), and
passes back an IGlabPhidget interface to this object
through the OnAttach event. Behind the scenes, the
Phidget Manager also serves as a transport layer: it
mediates all communications between all upper layers and
the USB layer. This is not visible to the programmer.
Phidget-specific COM objects are created by the Phidget
Manager whenever a device is seen (Figure 5, right side).
These object correspond directly to physical devices e.g., a
GlabServo physical device corresponds to a GlabServo

defined binary interface (seen as an API) so they can be
accessed from a variety of programming languages.

Communication
layer Communication layer wire protocol

Microcontroller-
based
circuit board

Primitive
device components

Phidget Manager

Phidget-specific
COM object

ActiveX
control

Physical interface

Physical designer

 Software interface

 Programmer

End user

Figure 5. Phidget Architecture

The Physical Device Computer software

COM object, a GlabPowerBar device to a GlabPowerBar
object, and so on. Internally, all phidget-specific COM
objects communicate to its matching physical device
through the PhidgetManager.
Because these objects have to be created at run time when a
device is plugged in, there are two interfaces (or APIs) to
this object: the generic IGlabPhidget interface, and the
specialized phidget-specific interface, as described below.
IGlabPhidget interface is a required interface provided by
all phidget-specific COM objects. Through this generic
API, end-programmers can identify basic properties of any
phidget-specific COM object returned by the Phidget
Manager whenever a device is seen.

Properties:
DeviceType As String
IsAttached As Boolean
SerialNumber As Long

Through this IGlabPhidget interface, the programmer
can discover what kind of device it references (and thus
assign it to an interface specific to the object, as described
shortly), its serial number, and whether the physical device
is still attached. For example, the programmer could test if
an attached device is of the DeviceType “GlabServo”,
optionally check its SerialNumber to discriminate
between multiple instances of attached GlabServos, and
then assign this object to its more specialized GlabServo
phidget interface (see below).
The phidget-specific interface is a superset of
IGlabPhidget in that it also exposes an API specialized to
the particular phidget-specific COM object. For example,
the GlabServo COM object API also includes properties
and events to handle its various motors:

Properties:
MotorPosition(Index) as Integer
NumMotors as Integer

Events:
OnPositionChanged (Index as Integer
 Position as Integer)

Thus the programmer can find out how many motors are
available using the NumMotors property, can set a
particular motor’s position through the
MotorPosition(Index) property, and will receive
the OnPositionChanged event whenever a motor is
repositioned. Of course, other phidget-specific COM
objects will have their own device-specific API.
Essentially, specialized interfaces such as these allow a
programmer to directly control the device and get feedback
of its state.
Phidget ActiveX Controls4 wrap our various phidget-
specific COM objects to give each of them an on-screen
interface and a simulation capability (Figure 5, right).

4 ActiveX controls correspond to graphical widgets, and are

Microsoft’s standard way of packaging widgets by wrapping
them as specialized COM objects containing a visual region that
can be displayed on-screen.

Programmers have the choice of using either these visible
ActiveX controls with simulation capability or its simpler
phidget-specific COM counterpart as appropriate.
Unlike the phidget-specific COM object, the control
provides a visual interface to the device, where it displays
its real or simulated state as well as the optional means for
an end user to interact with its on-screen representation.
Programmers can easily drop its visual representation into
an interface builder (e.g., Visual Basic). Each control can
optionally operate in a simulated mode when there is no
actual physical device connected to it (see Point 3 in
requirements). In this case, the software mimics the
device’s behavior. Finally, the control includes extensions
to the phidget-specific API for managing these new
features.
For example, the GlabServo ActiveX Control is illustrated
in Figure 6, where we see two graphical motors. Users can
interactively rotate the motors to new positions by dragging
the motor platter, which will also reposition the actual
motors if the device is attached. Some examples of its
extended API include:

Properties:
BackColor as OLE_COLOR
FillColor as OLE_COLOR
Enabled as Boolean
SimulateWhenDetached as Boolean

Here we see a few properties for setting the colors in the
control (BackColor and FillColor), whether the control is
interactive (Enabled), and whether the control should
simulate a physical device if one is not attached
(SimulateWhenDetached).
While the above may sound complex, this architecture is
surprisingly easy to use in practice. The next section
illustrates this by example.

Example Program
The Visual Basic (VB) program in Figure 7 and shown
running in Figure 6 illustrates the complete source for a toy
application that controls two servo motors. The
programmer used VB’s interface builder to develop the
interface. He dropped in a GlabServo ActiveX control and
three conventional widgets: a label for displaying a text
message and two sliders set to return values between 0 and
180. This takes seconds to do. In this example, the label
provides textual feedback on whether the GlabServo is
being simulated or if the device is actually connected. The
individual sliders are used to position the motors.
In the code, we see how the programmer sets the motor
positions and the simulation option in the Form_Load
initialization routine. We also see how he connects and
disconnects to a physical servo device using the OnAttach
and OnDetach event handlers. Because the end user can
also set a motor’s position by directly rotating its image of
the motor platter, the programmer must update the slider’s
position when notified by the OnPositionChanged event
handler that the motor position is changed. The exectuable

Private WithEvents PM As GlabPhidgetManager ‘The phidget manager

Private Sub Form_Load() ‘Initialization
 Set PM = New GlabPhidgetManager ‘Start the phidget manager
 Servo.SimulateWhenDetached = True ‘Simulate Servo if needed
 Servo.MotorPosition(1) = 45 ‘Position motor1 to 45 degrees
 Servo.MotorPosition(2) = 90 ‘and motor2 to 90 degree
 label.Caption = "Simulated: no device attached" ’On-screen feedback
End Sub

‘Event handler: Connect to the servo device when it is attached (or plugged in).
Private Sub PM_OnAttach(ByVal Phidget As GLABPHIDGET.IGlabPhidget)
 If Phidget.DeviceType = "GLAB Servo" Then ‘A servo device has appeared
 Set Servo.ServoPhidget = Phidget ‘We link it to the servo phidget
 label.Caption = Phidget.DeviceType & " attached" ’On-screen feedback
 End If
End Sub

‘Event handler: When the Servo phidget is disconnected, it automatically continues to simulate it.
Private Sub PM_OnDetach(ByVal Phidget As GLABPHIDGET.IGlabPhidget)
 If Phidget.DeviceType = "GLAB Servo" Then
 Set Servo.ServoPhidget = Nothing
 label.Caption = "Simulated: no device attached" ’On-screen feedback
 End If
End Sub

‘Event handler: The servo generates an event every time its position is changed.
‘We use this to reset the position of the sliders
Private Sub Servo_OnPositionChange(Index As Integer,Position As Integer)
 Slider(Index).Value = Position
End Sub

‘Event handler: As the user moves a slider, rotate the corresponding servo to the position indicated
Private Sub Slider_Scroll(Index As Integer)
 Servo.MotorPosition(Index) = Slider(Index).Value

End Sub
Figure 7. A complete Visual Basic program for interacting with two servo motors

Figure 6. A screen snapshot of
the example program

program works in both simulated
and non-simulated mode. If no
servo is plugged in, its behavior
is simulated on screen and the
end user can still interact with it.
As soon as a GlabServo device is
plugged in, the physical motors
will automatically rotate to the
current simulated motor settings.
Our other phidgets are
programmed just as easily. For
example a GlabPowerbar phidget
would be detected the same way,
and a particular outlet could be
turned on by a line of code
resembling:
PB.OutletState(2)=True. A GlabInterfaceKit is
slightly more complex as it has both input and output
values. Typically, changes to input values (such as those
generated by sensors) are returned via an event. For
example, this event handler would detect and print out
changes to values generated by a light sensor:
'Report a sensor’s value whenever it changes
Private Sub PS_OnSensorChange(_
 Index As Integer, SensorValue As Integer)
 Print "Sensor: " & Index & ":" & SensorValue
End Sub
Other example programs of only modest complexity can let
people replicate previous device-based interfaces. Natalie
Jeremijenko’s pioneering dangling string—an 8 foot
plastic string that vibrates to indicate the amount of local
Ethernet traffic [15]—is easily recreated using the
GlabServo with a program similar to the one illustrated in
Figure 7: the ‘hard’ part is the non-phidget code for
retrieving Ethernet traffic readings. Dahley, Wisneski, and
Ishii’s Pinwheels [2]—a motorized toy fan used to
broadcast events— can be quickly built atop the
GlabPowerBar (to control motors that spin the pinwheels).
Similarly, Heiner, Hudson and Tanaka’s information
percolator—water-filled tubes that can display patterns as
bubbles [6]—can be built using the GlabPowerBar to
rapidly switch the aerator pumps on and off: this is similar
to how their original version was built.

Architecture extensions
We can enrich the kinds of applications we build by
including one more software component into our
architecture: a notification server [13, 4]. Our version of
the notification server implements a shared dictionary. Any
distributed process can publish key/value pairs into this
dictionary. Similarly, any process can subscribe via pattern
matching to particular keys: by doing so, they are
automatically informed of changes to these key/value pairs
via events [4]. It then becomes very simple to program
groupware based on physical devices. For example, an
application can capture a person’s presence using a well-
positioned GlabProximitySensor and publish that into the
shared dictionary. Other applications can subscribe to this
information and use it to activate other physical devices.
For example, the application can use a GlabServo to rotate
a figurine as shown in Figure 1, or turn a lamp on and off
[5] with the GlabPowerBar. Our example programs for
controlling and interconnecting these devices are
surprisingly short and easy to code. Similarly, we could
create context-aware widgets similar to [3] by combining.
abstracting and publishing contextual readings from
various phidgets into the shared dictionary; other
applications can then use these values to monitor and react
to contextual changes.

Finally, while the current architecture only handles USB, it
is not limited to it. Because the Phidget Manager abstracts
the communication layer for all phidgets, this is the only
architectural component that would have to be extended to
support other communication links, such as X10, Ethernet,
RF, or even Bluetooth.

EVALUATION
As mentioned earlier, our goals behind phidgets are to
provide programmers with physical devices that are:
• simple enough so that developers can concentrate on

the overall use, modification and recombination of
devices into a physical user interface instead of low-
level device construction and implementation;

• easy enough for the average programmer to program
and extend.

To evaluate if our phidgets design achieved these goals, we
gave the phidgets hardware and software to computer
science undergraduates taking a second course in Human
Computer Interaction. Students had no prior experience
building physical devices. All 16 students were given the
exercise paraphrased below, worth 10% of their final
grade.

A Computer Science professor has designed a variety of
phidgets that he plans to demonstrate at a conference. To
make this demonstration more interesting, he would like
to show how these phidgets could be used in practice.
Consequently, he wants you to design an imaginative
‘out of the box’ interface using these phidgets. The
interface you create may be practical, artistic, or fun. It
could be geared towards office workers, people at home,
children, or whomever you wish.

We had no formal evaluation metric except to see what
students designed and whether they found it difficult to
program with phidgets.

Overall results
All students successfully completed the projects. Student
reported spending modest time doing their project, ranging
from a few hours to a few days. All reported that most of
their effort was spent in physical construction, that is, of
building an interaction device or display around the
phidgets (see examples below). In comparison, they
reported relatively little time working on the software, and
that software development was easy. Only a few students
using the GlabInterfaceKit had to do some trivial
electronics, where they soldered their chosen sensors or
switches to connectors.
Students demonstrated their projects to the course
instructor, the teaching assistant, to each other, and to
several HCI graduate students. All participants were
impressed by the high quality of the work and the creativity
shown: demonstrations were frequently accompanied by
positive exclamations (‘wow’, ‘that is so cool’, etc.) and by
clapping. To illustrate what students were able to do, a few
example projects are described below. These were not
necessarily the best projects, but were chosen because they
can be well illustrated in a print and in the video figure.

Illustrated examples
Flower in Bloom (Susannah McPhail) is a floral
arrangement made out of artificial flowers The central large
flower can bloom under program control from a continuum
ranging from closed to fully bloomed (Figure 8). At its
heart is a servo motor which controls a guideline that
retracts the flower while pulling the leaves around it.
Power Dimmer / Power Lamp (Brant LeClercq). Brant
wanted the ability to vary the voltage supplied to outlets,
but the GlabPowerBar did not provide this. Instead, he built
a ‘Power Dimmer’: by screwing two servo motors into two
off-the-shelf rotary dimmer switches, he could rotate them
under program control to vary the amount of power going

closed partially bloomed fully bloomed

Figure 8: Flower in Bloom

Figure 9a: Power dimmer Figure 9b: Power lamp

Servo
motors

Outlets

Fan

Rotating
shade Dimmers

Figure 10. The Waterfall harp

Figure 11: Phidget Eyes: closed, open & lit, fully open

a) cradle b)cradle & phone c) missed calls dial
Figure 12. Missed Calls

to two attached 120 volt outlets (Figure 9a). He then
created a Power Lamp: he plugged in a fan (cannibalized
from an old PC), and mounted it beneath a children’s lamp
containing a rotating light-shade (Figure 9b). By rotating
the servos, he could adjust the intensity of the light and the
fan speed, which in turn affected the rotation of the lamp
shade.
Waterfall Harp (Olive Au). Olive began with a commercial
appliance: it circulated water (via a small pump) to make a

continuous waterfall, and had a light in its base to backlight
the water. She added three light sensors (connected to a
GlabInterfaceKit), and used clay to funnel water so that
each sensor had a water rivulet beneath it (Figure 10). She
then programmed the backend software so that a particular
musical chord would play whenever a particular light
sensor was blocked for a small time duration. The effect
was to produce a ‘waterfall harp’: as people ‘strummed’ the
water by moving their fingers through the rivulets (thus
blocking the sensors), musical chords corresponding to
each rivulet would play.
Phidget Eyes (Debbie Mazurek) is constructed out of ping-
pong balls, fake eyelashes, string and glue (Figure 11). The
eyes can open and close in any position (controlled by a
servo motor), and its pupils can also light up (controlled by
two LEDs connected to an interface kit).
Missed Calls (Raul Nemes). Raul wanted a device that
could tell him how many calls he missed on his cell phone
when he did not carry it with him. He made a cardboard
cradle for his cell phone, which contained a force sensor
connected to a GlabInterfaceKit (Figure 12a+b). By
monitoring the readings from this sensor, his software

program could detect when the phone was placed in or out
of the cradle, and when the phone vibrated as it rang. His
software displayed the phone status in two ways: as an icon
on a Windows 2000 task bar, and as a physical cardboard
dial where the dial position was controlled by a servo
motor (Figure 12c). The dial showed whether the phone
was in the cradle or not, and how many times a call had
come in without being answered. When a person took the
phone off the cradle, it would automatically reset itself.

Other examples
Several other project example are included below, but are
not illustrated with figures due to lack of space. The first
two rely on the information published in the shared
dictionary to track the on-line status of remote people.
Water lamp (Euan Forrester) projects patterns of light
onto a ceiling to show the on-line status of up to four
people. Light projects through a water tray, where 4 servo
motors in different corners selectively disturbs the water.
The rate of disturbance depends on online activity values of
particular people. This appliance is somewhat similar to
[2].
Bird in a birdcage (Shane Bill) is a cage containing a bird
that would wiggle whenever a remote person tried to
contact the bird’s owner. Placing a cloth over the birdcage
would set its owner’s on-line status in the shared dictionary
to ‘away’. The bird was controlled by a servo, and a light
sensor detected sudden darkness.
Weather-woman (Martin Fuhrer) contains two cardboard
vertical gauges that indicate temperature and humidity
information for any major city (automatically extracted
from existing internet services). Each gauge uses a servo
motor to manually lift and lower a string holding a nail,
which points to the correct position on the gauge. Software
includes the ability to calibrate this physical gauge.
Bubbler (David Miller) uses two cleverly combined servo
motors to dip a children’s bubble stick into a vat of bubble
fluid, and then rotates the stick to position it in front of a
fan connected to a GlabPowerBar. Bubbles then come out
Nerf Emailer (Carmen Neustaedter). Whenever email
arrives, a cardboard letterbox positioned on a desk rotates
to face the user’s monitor: a round mail disk (made out of
soft sponge) then shoots out of the letterbox opening, hits
the monitor, and falls into the user’s lap. One servo motor
rotates the letterbox, while another pulls the trigger of a
children’s Nerf gun hidden inside the box.

Evaluation Summary
What should be clear from the creativity and scope of these
projects is that our two goals behind our phidget design
were met. We see in these examples that students did
concentrate on the overall interface design instead of low-
level electronic device construction, and that they were
able to program, combine and extend our fairly simple
phidgets in quite imaginative ways. All this re-enforces our

previously stated belief: just as widgets make GUIs easy to
develop, so could phidgets make the new generation of
physical interfaces easy to develop.

RELATED WORK
In the introduction, we listed a few examples of physical
user interfaces, yet most are built using custom one-off
devices and software. While the idea of wrapping physical
devices to make them easy to program and replicate is an
obvious one, what is surprising to us is that we have not
been able to find any systematic work on phidget design.
There are isolated instances of devices that could be
characterized as phidgets. For example, the commercial
Winnov Videum video camera and board
(www.winnov.com) includes an SDK that wraps access to
the physical camera as an easy to program device.
Similarly, Kaminsky et. al.’s hacked version of Microsoft’s
Actimates repackages it as a graphical entity with a well-
defined API [9].
A variety of circuit boards have been developed to allow
programmers to work with hardware e.g., TINI (Tiny
Internet Interface–www.ibutton.com) and HandyBoard
(www.handyboard.com). The Handy Board, for example,
lets people experiment with robotics and embedded control
applications. It is a hand-held, battery-powered micro
controller that came out of MIT laboratories. Through it, a
programmer can control a variety of raw devices e.g., 9
digital inputs, 7 analog inputs, IR output and indicators, an
LCD screen, a piezo beeper, 4 DC motor outputs, and so
on. While resembling some of our physical devices, the
Handy Board is not a phidget. Its target is personal and
educational robotics projects. Typically, its programmers
develop a program that can be downloaded to the micro-
processor, after which the board runs autonomously. That
is, it does not behave as a phidget because the right side of
the phidget architecture in Figure 5 is missing. However,
we suspect that the Handy Board (or some version of it)
could be fashioned into a supercharged equivalent to the
GlabInterfaceKit device: this should be straightforward
when a USB version of a Handy Board becomes available.
The Context Toolkit [3] leverages the notion of a widget to
create context widgets. Context widgets gather contextual
information from several sources, then abstracts and makes
this information available to the programmer. One source
of contextual information may come from actual physical
devices (which they call generators). However, these are
internally defined and not really exposed as part of the API.
For example, their Activity widget API contains attributes
giving location, timestamp, and an abstracted activity level,
as well as a callback whenever activity changes [3]. Its
actual generator is based on a microphone, but could have
been implemented with other information generators, such
as infrared sensors, video image analysis, etc. A context
widget may also contain several generators, and it may
combine and abstract the information collected from these
generators. However, the context toolkit does not facilitate

building these generators. In comparison, our phidgets are
at this generator level, and could (at least in principle) be
used to simplify how actual devices are incorporated within
a context widget.
In essence, some previous work is at a lower level of
abstraction than ours (e.g., the Handy Board), and some of
it is at a higher level (e.g., the context widgets). We also
recognize that several ideas found in our phidgets appear
scattered in various products. The difference is that we
evangelize the phidget concept as a way to empower
average programmers to build physical user interfaces, and
that we contribute a systematic description of a phidget
architecture and its design rationale.

CONCLUSIONS
Our main message is that packaging devices as physical
widgets or phidgets greatly simplifies programming these
devices, which in turn allows designers to concentrate on
how physical user interfaces can be crafted vs. low-level
implementation details. Of course, this is not a
revolutionary idea: we suspect that existing practitioners
have already packaged their own devices for internal reuse.
We are surprised, however, that there has been no real push
to publish, standardize and even to commercialize devices
as phidgets. Yet there is a real need for this: almost all the
people we have talked to who developed systems based on
physical devices—researchers, developers, artists—had to
start from scratch.
There is much left to do. We need to evolve a de facto
standard phidget set. This already exists for GUI toolkits;
for example, virtually all sets include various buttons, list
boxes, menus, text boxes and so on. However, it is unclear
what phidgets would be included in a standard phidget set.
Likely candidates include the ones we built and those
suggested by devices included in other physical user
interfaces, but there are likely many more. As with GUI
widgets, this phidget set must provide the programmer with
conceptual building blocks that are not only individually
useful, but can be assembled in a way that lets the designer
build a rich physical interface. Critical mass is also a huge
issue: phidgets have to be mass produced, widely available,
and cost-effective if they are to be adopted by the
programming community.
Software and hardware availability. Phidget software is
available from www.cpsc.ucalgary.ca/grouplab/. We are
still deciding on how we will distribute hardware and
schematics (e.g., commercialization, licensing or freeware).
Contact the authors for further information.
Acknowledgements. Our creative students from our
undergraduate course graciously allowed their projects to
be included as examples of what could be done with
phidgets. Michael Boyle contributed greatly to our
discussions about the phidget architecture. We thank our
collaborator Hideaki Kuzuoka (University Tsukuba) who
started all this going. The Microsoft Research
Collaboration and Multimedia Group, the National

Sciences and Engineering Research Council of Canada,
and the Alberta Software Engineering Research
Consortium partially funded this work.

REFERENCES
1. Ark. W. and Selker, T. A look at human interaction

with pervasive computers. IBM Systems Journal 38(4),
1999.

2. Dahley, A., Wisneski, C. and Ishii, H. Water Lamp and
Pinwheels: Ambient projection of digital information
into architectural space. Summary of CHI ’98, 269-270,
1998.

3. Dey, A. K., Salber, D., and Abowd, G. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-
Computer Interaction, Vol 16, 2001.

4. Greenberg, S. and Kuzuoka, H. Using digital but
physical surrogates to mediate awareness,
communication and privacy in media spaces. Personal
Technologies 4(1), January, Elsevier.. 2000.

5. Gruen, D., Rohall, S., Petigara, N. and Lam, D. “In your
space” displays for casual awareness. Demonstration at
ACM CSCW, 2000.

6. Heiner, J., Hudson, S. and Tanaka, K. The Information
Percolator: Ambient information display in a decorative
object. Proc. ACM UIST, 141-148, 1999.

7. Ishii, H. and Ullmer, B. Tangible bits: Towards
seamless interfaces between people, bits and atoms.
Proc. ACM CHI’97, 234-241, 1997.

8. Ishii, H., Mazalek, A., Lee, J. Bottles as a minimal
interface to access digital information. Extended
Abstracts of ACM CHI, 2001.

9. Kaminsky, M., Dourish, P., Edwards, K. LaMarca, A.,
Salisbury, M. and Smith, I. SWEETPEA: Software
tools for programmable embodied agents. Proc. ACM
CHI, 144-151, 1999.

10. Knudsen, J. (1999) The Unofficial Guide to LEGO
Mindstorms Robots. O’Reilly Press.

11. Myers, B. State of the art in user interface software
tools. In Baecker, R., Grudin, J. Buxton, W. and
Greenberg, S. Reading in Human Computer
Interaction: Towards the Year 2000. Morgan
Kaufmann, 1995.

12. Norman, D.A. The Invisible Computer. MIT Press,
1998.

13. Patterson, J., Day, M. and Kucan, J. Notification servers
for synchronous groupware. Proc. ACM CSCW, 122-
129, 1996.

14. Resnick, M. Behavior construction kits.
Communications of the ACM 36(7), 64-71.

15. Weiser, M. and Brown, J. Designing calm technology.
Powergrid Journal, v1.01, July, 1996.

16. Yarin, P., and Ishii, H., TouchCounters: Designing
interactive electronic labels for physical containers.
Proc. ACM CHI '99, 362-369, 1999.

