
Programming for Multiple Touches and Multiple Users:
A Toolkit for the DiamondTouch Hardware

Roberto Arturo Diaz-Marino, Edward Tse, and Saul Greenberg

Department of Computer Science, University of Calgary
Calgary Alberta CANADA T2N 1N4

Tel: 1-403-220-6087
E-mail: saul@cpsc.ucalgary.ca

ABSTRACT
The MERL DiamondTouch is an input device that detects
multiple simultaneous touches by multiple people on a
surface. While MERL has produced an SDK for this
surface, many lines of complicated code must be written to
produce even the most basic applications. Consequently,
we have created a DiamondTouch extension within our
Single Display Groupware Toolkit that considerably
simplifies how a programmer captures events from the
DiamondTouch. We demonstrate how it works by outlining
a multi-user, multi-touch drawing application.

KEYWORDS: input devices, single display groupware.

INTRODUCTION
Many new input devices are now available that
considerably expand interface design possibilities. The
problem is that, from the programmer’s perspective, it is
still fairly hard to exploit these devices. The programmer
often has to delve into the morass of input drivers, or they
have to use a low-level SDK that returns inputs in an
unwieldy form. While this makes programming such
devices possible for the talented and the motivated, we
believe that this extra work inhibits average programmers
from rapidly prototyping novel applications. Consequently,
one of our research goals is to simplify how input devices
present themselves to the programmer. Specifically, we
present SDKs and input devices in forms that:
• are in familiar programming languages / environments
• match how people conceptually think about these devices
• make simple tasks achievable with a few lines of code
• minimize housekeeping and other non-essential tasks that

have little to do with interacting with these devices.

In this demonstration, we focus on the MERL
DiamondTouch Hardware [2] that detects multiple
simultaneous touches by multiple people. Each user sits on
a receiver (a thin pad). An array of antennas embedded in
the surface detects a user’s capacitive touch and its
location. These touches are reported to a programmer via a
basic SDK We have created a toolkit that wraps the

DiamondTouch SDK and adds extra capabilities to it,
considerably simplifying how people program multi-user /
multi-touch applications. This toolkit is embedded within
our SDGToolkit [3], a more general toolkit that handles
assorted multiple input devices. We demonstrate how this
works by highlighting the structure of our toolkit and by
outlining a simple drawing program. These and other
examples are shown in action in a companion video [1].

HIGHLIGHTS OF THE TOOLKIT
The toolkit – available for download – is packaged as a
.NET component, making it trivial to include in a standard
Windows application. Programmers use several classes
provided by our toolkit, briefly described below.

DTManager is the object that encapsulates the capabilities
of the DiamondTouch surface and organizes the multi-
touch input on a per-user basis. Its properties include:
• MaximumUsers: the maximum number of people the

DiamondTouch hardware can support.
• RelativeTo: a window or control such that events

occurring outside of its bounds are ignored.
• Mode: the choice of modes give progressively more

information about the user’s input i.e., whether it
emulates a mouse, interprets multiple touches as
bounding boxes, or produces x and y vectors containing
the raw signal data of a user’s multi-touch contacts.

• TouchThreshold: the minimum signal strength required
from a touch before an event is fired.

• User: a collection of DtUser objects with information
about each user and their recent actions (see below).

The DTManager also raises input events, to which people
can easily attach callback handlers. All events identify the
user that generated them as well as data that defines the
event characteristics (i.e., coordinates of touch events). We
deliberately modeled these events to resemble mouse
down/move/up events, because these are already a familiar
programming paradigm. Events include:
• TouchDown: when a user first touches the surface.
• TouchUp: when a user breaks contact with the surface.
• TouchMaxMove: when a the user moves their peak point

of contact with the surface.
• TouchBoxMove: when the bounding region surrounding

a user’s multiple touches moves.

Diaz-Marino, R.A., Tse, E, and Greenberg, S. (2003)
Programming for Multiple Touches and Multiple Users: A
Toolkit for the DiamondTouch Hardware. Demonstration in
Companion Proceedings of ACM UIST’03 User Interface
Software & Technology.

• TouchSignal: a data object containing signal strength
vectors across the x and y axis of the surface.

• Tap: when a user taps the surface.
• DoubleTap: when a user double-taps the surface.

DTUser is an object containing properties associated with
each user of the DiamondTouch surface. The DTManager
instantiates and maintains these objects automatically in its
User collection property. Properties include
• ID: a unique number associated with that user.
• Color: a unique color to associate with this user.
• LastBox / LastEvent / LastMax / LastTap /
LastSignal: data about the last event of a particular
type generated by the user.

• Touching: true if the user is currently touching the
surface.

DEMONSTRATION: SQUIGGLEDRAW
We will use SquiggleDraw, a multi-user/multi-touch
sketching application, to demonstrate the simplicity of
programming with our toolkit (Figure 1). SquiggleDraw
has two interesting aspects.
• A person adjusts line thickness on the fly. One draws by

changing the bounding region of the drawing with two
fingers. One draws thin lines by holding their thumb and
forefinger close together, and progressively thicker lines
by spreading their fingers apart.

• Up to four people can draw simultaneously, with each
person’s lines appearing in a different color.

We created SquiggleDraw from scratch in about ten
minutes through the following steps. First, using the Visual
Studio .Net form designer, the programmer drops a
dtManager component object onto the window. Second,
the programmer registers a callback through form filling
that responds to the dtManager’s touchBoxMove event.
As mentioned, this gives the id of the particular user who
did the action, and a bounding box that surrounds their
multiple touches. Third, the programmer implements the
TouchBoxMove callback (11 lines of code). This callback
draws a line segment from the center of the previous

bounding box (obtained by looking up the LastBox
property in the appropriate DTUser object) to the center
of the current bounding box, in the color of the current user
(also obtained from the DTUser object). The line thickness
is calculated proportional to the bounding box size so that
fairly coarse user actions are handled smoothly. Third, the
programmer adds a callback to the doubleTap event to
clear the drawing (one line). Finally, the programmer adds
a few other lines to initialize variables, set line appearance
properties, and so on. In contrast, we estimate a
knowledgeable person building SquiggleDraw with the
MERL SDK would require 15-20x this effort as measured
by programming time and lines of code.

CONCLUSION
This paper only touches upon the capabilities of the toolkit
and the kinds of applications people can build with it. We
have created more complex applications; the companion
video illustrates a picture-matching game. People tap cards
to turn the image over, and use gestures (such as finger-
brushing) to enlarge and shrink the photo.

We are now adding graphical feedback. The programmer
can request that cursors appear when a person touches the
table, or that a bounding box is drawn around one person’s
multiple touch area. We are also extending the toolkit to
include Smart Technology’s DViT multi-touch surface.

Toolkit availability: www.cs.ucalgary.ca/grouplab/software/

Acknowledgements: Thanks to Kathy Ryall and Joe
Marks at MERL for donating the DiamondTouch.

REFERENCES
1. Diaz-Marino, R., Tse, E. and Greenberg, S.

DiamondTouch Toolkit: The Video. June.
www.cs.ucalgary.ca/grouplab/papers/2003.html, 2003.

2. Dietz, P.H., Leigh, D.L., DiamondTouch: A Multi-User
Touch Technology. ACM UIST. 219-226, 2001.

3. Tse, E. and Greenberg, S. Rapidly Prototyping Single
Display Groupware through the SDGToolkit. Report
2003-721-24, University of Calgary, Canada. 2003.

Figure 1: Two people using SquiggleDraw. Line thickness is regulated by bounding box surrounding a user’s multiple touches

G
ro

u
p

la
b

 D
ia

m
o

n
d

T
o

u
ch

™
 T

o
o

lk
it

G
ro

u
p

La
b

D

ia
m

o
n

d
T
o

u
ch

™
T
o

o
lk

it
si

m
pl

ifi
es

 p
ro

gr
am

m
in

g
M

ER
L’

s
D

ia
m

on
dT

ou
ch

 T
ab

le
to

p
D

ev
ic

e.

i
l

S
q

u
ig

g
le

D
ra

w
de

m
on

st
ra

te
s

ho
w

 a
 m

ul
ti
-u

se
r

m
ul

ti
-t

ou
ch

pr

og
ra

m
 c

an
 b

e
w

ri
tt

en
 in

 j
us

t
15

 li
ne

s
of

 c
od

e.

pr
iv

at
e

vo
id

 d
tM

an
ag

er
_T

ou
ch

Bo
xM

ov
e(

 T
ou

ch
Ev

en
tA

rg
s

e
)

{
G

ra
ph

ic
s

g
=

th
is

.C
re

at
eG

ra
ph

ic
s(

);
if

(e
.U

se
r.L

as
tD

ow
n.

Ti
m

es
ta

m
p

<
e.

U
se

r.L
as

tB
ox

.T
im

es
ta

m
p)

 {

//
Li

ne
 th

ic
kn

es
s

de
pe

nd
s

on
 th

e
w

id
th

 o
f t

he
 b

ou
nd

in
g

bo
x

pe
n.

W
id

th
 =

 (n
ew

bo
x.

W
id

th
 +

 n
ew

bo
x.

H
ei

gh
t)

/ 1
0;

if
(p

en
.W

id
th

 <
 2

) p
en

.W
id

th
 =

 2
;

//
D

ra
w

a
lin

e
at

th
e

ap
pr

op
ria

te
th

ic
kn

es
s

fro
m

th
e

la
st

po
in

tt
o

th
e

cu
rr

en
tp

oi
nt

O
nl
y

4
lin

es
 d

ea
l
di
re

ct
ly
 w

it
h

th
e

in
pu

t
fr

om
 t

he
 D

ia
m
on

dT
ou

ch
 D

ev
ic
e

(h
ig

hl
ig

ht
ed

 in
 b

ol
d)

.
Th

e
re

st
 is

 s
ta

nd
ar

d
dr

aw
in

g
gr

ap
hi

cs

//C
re

at
e

a
pe

n
Pe

n
pe

n
=

ne
w

 P
en

(C
ol

or
.B

la
ck

, 1
);

pe
n.

St
ar

tC
ap

 =
 L

in
eC

ap
.R

ou
nd

;
pe

n.
En

dC
ap

 =

Li
ne

C
ap

.R
ou

nd
;

pe
n.

C
ol

or
 =

 e
.U

se
r.C

ol
or

;

//T
he

 la
st

 a
nd

 c
ur

re
nt

 b
ou

nd
in

g
bo

xe
s

R
ec

ta
ng

le
la

st
bo

x
=

e
U

se
rL

as
tB

ox
B

ox
;

//
D

ra
w

 a
 li

ne
 a

t t
he

 a
pp

ro
pr

ia
te

 th
ic

kn
es

s
fro

m
 th

e
la

st
 p

oi
nt

 to
 th

e
cu

rr
en

t p
oi

nt
P

oi
nt

 la
st

pt
 =

 n
ew

 P
oi

nt
(la

st
bo

x.
X

+
(la

st
bo

x.
W

id
th

 /
2)

, l
as

tb
ox

.Y
 +

 (l
as

tb
ox

.H
ei

gh
t /

 2
));

Po
in

t n
ew

pt
 =

 n
ew

 P
oi

nt
(n

ew
bo

x.
X

+
(n

ew
bo

x.
W

id
th

 /
2)

, n
ew

bo
x.

Y
 +

 (n
ew

bo
x.

H
ei

gh
t /

 2
));

g.
D

ra
w

Li
ne

(p
en

, l
as

tp
t,

ne
w

pt
);

}
}

1

R
ec

ta
ng

le
 la

st
bo

x
 e

.U
se

r.L
as

tB
ox

.B
ox

;
R

ec
ta

ng
le

 n
ew

bo
x

=
e.

Bo
x;

D
ow

nl
oa

d
th

e
to

ol
ki

t
at

:
gr

ou
pl

ab
.c

ps
c.

uc
al

ga
ry

.c
a/

saul
Text Box
This poster accompanied the demonstration.

