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ABSTRACT 
In this thesis, I propose methods for repurposing existing hardware and software to enable designers to 

create live interactive prototypes for smart interactive objects without the need to write code or create custom 

circuitry. The advent of ubiquitous computing brought the promise of interactive artifacts that in-

tegrate into our everyday lives. While this has led to a myriad of “smart objects”, the problem is that 

it is difficult for interaction designers to devise interactive behaviours for such objects. For exam-

ple, how might an interaction designer prototype behaviours for a smart speaker? How can they go 

beyond voice responses and, for instance, animate lights to show that the speaker is listening, or 

searching for an answer on the web? Designers today face three challenges: (1) needing multiple 

expertise of designing behaviour, form, circuitry, and programming the functionality; (2) lacking 

software tools to author fine-tuned dynamic behaviours; and (3) needing closer-to-product repre-

sentations to physically manipulate the prototype. 

I overcome this gap through a method and two interactive systems. I propose a design metaphor: 

Soul–Body Prototyping, which suggests leveraging off-the-shelf mobile phones and watches to create 

smart object prototypes. By enclosing the mobile device (“soul”) into a physical enclosure 

(“body”), the designer can exploit the mobile device’s rich sensing, outputs, and internet connec-

tivity. I then operationalize Soul–Body Prototyping through two proof-of-concept prototyping tools. 

Pineal features trigger-action behaviours which automatically generate 3D models for physical 

forms. These forms fit a mobile device and expose the necessary inputs and outputs. Astral is a tool 

where designers can mirror a portion of the desktop’s screen onto a mobile device, and create map-

pings that convert live mobile sensor data into mouse or keyboard events. Thus, the mobile device 

remote controls (and repurposes) familiar desktop applications for dynamic behaviour prototyping. 

Overall, my work contributes an alternative way to prototype smart interactive objects, which in-

forms the design of future prototyping tools. Moreover, I investigate fundamental questions such 

as the meaning of interactive behaviour, as well as evaluation methods for prototyping tools and 

toolkits in HCI research.
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 INTRODUCTION 

“The only true voyage of discovery… is not to go to new places, but to 

see through different eyes” —Marcel Proust 

In this thesis, I1 propose methods for repurposing existing hardware and 

software to enable designers to create live interactive prototypes for smart 

interactive objects without having to write code or create custom circuitry.  

While there is a sharp increase in the amount of technologies availa-

ble today given the presence of smart objects such as digital assistant 

speakers, and smart lights, interaction designers’ practices have not 

kept up with these new technologies. In particular, interaction de-

signers are missing methods and tools that can enable them to create 

prototypes to learn, discover, and realize ideas while considering the 

many variables involved in how people interact with technology. 

 
1 While my thesis is highly collaborative in my co-authored publications, I use the pronoun 

“I” as (1) I am the primary researcher leading and conducting the majority of this work, 

and (2) this collective body of work is being described and integrated within my own re-

search agenda. 
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Some of these variables range from devising the inputs and outputs, 

to contextualizing the actions within the physical form of the object, 

to considering animations that can provide appropriate feedback for 

a user’s actions. These variables and many more come together with 

the goal of providing a delightful user experience while ensuring usa-

bility. As will be described in this thesis, there is a need for new tools 

and methods for interaction designers that can keep up with the in-

creasing demands of designing smart interactive objects. By smart in-

teractive objects, I refer to computationally powered, consumer-level 

physical objects, such as digital assistant speakers, smart lights, other 

appliances or even toys.  

In general terms, my thesis contributes to- and is scoped within- the 

field of Human–Computer Interaction (HCI), a sub-discipline of 

computer science strongly influenced by design given its multi-disci-

plinary approach. The research I carry out in this thesis, contextual-

ized in Figure 1.1, is situated at the intersection of different subareas 

within the field of HCI. The areas of ubiquitous computing (ubicomp) 

and tangible user interfaces explore how computers and technology in-

tegrate into our everyday lives to support activity beyond the confines 

of a single screen, which provides the perspective and theme behind 

my work.  In my research, I create prototyping tools, new systems that 

provide building blocks to help the design and authoring of new inter-

active prototypes. In addition, my thesis borrows concepts from the 

branch of HCI of mobile sensing and output techniques, which provide 

a suite of approaches to realize the new prototyping tools and meth-

ods which can help create new technology. 
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To enable interaction designers to create these new prototypes, it is 

first necessary to understand the gap between: the research vision 

proposed in Human–Computer Interaction (§1.1), and the challenges 

faced by interaction designers (§1.2). The careful consideration of 

these two realities will aid in the understanding of why smart interac-

tive objects (e.g., digital assistant speakers, smart lights) might often 

fail to meet end-users’ expectations, and why it is likely that interac-

tion design is not yet formally incorporated in the creation process of 

smart objects. Thus, through the examination of the current state of 

the interaction design workflow, I propose my thesis statement as a 

solution to the design challenges in §1.2, as specified through a design 

paradigm (Soul–Body Prototyping) and two systems (Pineal and As-

tral) (§1.3).  To guide the execution of this thesis, I devise a series of 

research questions that I outline in §1.4 and that guide my entire 

 
Figure 1.1 Scope of Research Presented in This Thesis 
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work, as well as a set of secondary questions which establish the nec-

essary foundation to understand and conduct the work presented in 

this dissertation. Finally, I discuss this thesis’ organization in §1.5. 

1.1 MOTIVATION: THE VISION OF SEAMLESS IN-
TERACTIONS WITH TECHNOLOGY 

The field of ubiquitous computing stems from the vision that com-

puters, and technology at large, will embed themselves into the fabric 

of everyday life (Weiser, 1990), where people interact with technol-

ogy without realizing it. However, this embedding seems to be rela-

tive. For example, consider a person living in an urban setting who 

uses an elevator on a regular basis. This person might use it without 

noticing that there was an interactive exchange taking place with a 

computer, from the button presses, to the process of reaching the 

destination. For a technology to truly become invisible it means that 

it either is familiar enough to the point that the user has reached some 

form of mastery, or that the technology is “well designed”, meaning 

that it facilitates the person’s goals and people can make sense of 

their actions. It is possible to go beyond the purely functional focus, 

and think about the experience that the object creates. 

According to Norman (2013), interaction designers focus on ensuring 

that people can understand the technology that they operate, so they 

can know what can be done, what is happening and what just occurred 

when an action takes place. Cooper et al. (2014) distinguishes the fo-

cus on form from a graphic or industrial designer, with an interaction 

designer’s role in designing the interactive behaviour of an object to 

ultimately create a seamless user experience. As electronic compo-
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nents become cheaper, new smart interactive objects, including ap-

pliances such as a smart lightbulb and a digital assistant speaker are 

becoming more common-place. These types of devices feature inter-

net connectivity, and different means of interaction, such as light an-

imations, sounds, buttons, or even touch-enabled displays. People to-

gether with different technologies can become integrated into an eco-

system, or an ecology (Nardi & O’Day, 1999), where the interactive 

objects are interconnected and support people’s activities. The focus 

on many devices coming together has multiple flavours within the 

ubiquitous computing literature. Different explorations include com-

puters assessing people’s activity through sensing (Schilit et al., 

1994), using that information to have technology react (Cooperstock 

et al., 1997), while taking into account people’s location and social 

expectations (Greenberg, 2001). Indeed, examining a plethora of de-

vices of different shapes and sizes with a wide range of functionality 

coming together shifts the focus of design towards human activity ra-

ther than dealing with a single device. The focus on human activity 

can be beneficial, as it helps reflect on how technologies can be reac-

tive or proactive, and how interactions can take place in the fore-

ground or background, so that technology can meet some of the social 

expectations (Ju & Leifer, 2008).  

I argue, however, that people’s operations with a single device are 

equally important, as they are often used individually to accomplish 

a particular task. Many of people’s activities are mediated through 

interactions with a single device at a time. Thus, there is a need to 

carefully consider and refine how people interact with an individual 

object to create a seamless exchange. This way, people can come to 

understand what is possible to do with a smart object, as well as the 
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effect of their actions, all while having an experience that is free of 

pauses and hesitation, and even having one of delight. 

One example of a non-seamless smart object interaction is a conver-

sation with a smart speaker today (e.g., Google Home, Amazon 

Echo). Besides the expected delays and challenges associated with 

speech input, there are few ways for people to understand what is 

happening with the smart speaker. While the speaker may show some 

lights flashing or a delayed voice feedback, there is no way for the end-

user to know if the speaker is listening to a question, or looking for 

answers on the internet, if there is an error, or what the confidence of 

the digital assistant is when providing an answer to the question. 

Here, an interaction designer can explore many aspects of how the 

exchange with the smart speaker takes place, such as showing an os-

cillating light that maps to the voice to show the response, animating 

the lights in a certain way to show that the speaker is listening, or 

looking for an answer, using colours to denote errors or low confi-

dence, etc. The question then becomes how a designer can devise 

these types of rich interactions to help create a seamless and pleasur-

able experience with the smart object. 

1.2 PROBLEM: THE GAPS WHEN DESIGNING A 
SINGLE SMART OBJECT 

As mentioned, ubiquitous computing research tends to focus on hu-

man activity and how many devices can come together to support that 

activity. This does not mean that the design of the experience is com-

promised, rather it is secondary: the focus on what people are doing, 

and how they transition from one task to the next are augmented by 
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user experience elements. Indeed, one might still see ubiquitous com-

puting work that considers aspects of animation and visuals, while 

also offering interesting mechanisms for interaction, as shown for in-

stance in Proxemic Interaction work (Marquardt et al., 2011; Ledo et 

al., 2014). Similarly, single smart objects and their designs are also 

seen in HCI conferences, such as the Ripple Thermostat (van Ooster-

hout et al., 2018), which focuses on creating an emotional user expe-

rience through force feedback and shape change. Still, it is necessary 

to first be able to design a single device interaction, and design it well, 

if we are to scale design to multiple devices working in concert. More-

over, many of the ideas presented in ubiquitous computing take a long 

time to be adopted, if at all, and it could largely be attributed to the 

lack of tools to create or simulate these experiences in the short term. 

As I discuss in Chapter 4, prototyping tools face cycles in which re-

search and development increases, only to have new technologies ar-

rive and clear some of the efforts as authoring ability becomes com-

mon-place again. However, the increases in standardization in the 

last decade have also led to additional barriers, as it is difficult to cre-

ate prototypes that break away from the new standards.  

The questions then become: how to bring focus to these experiential 

elements, and how to further include interaction designers, who are 

trained in creating rich user experiences. Interaction design provides 

vocabulary and methods to devise how people interact with technol-

ogy, and outlines interactive behaviours a means for people to under-

stand their actions and communication with interactive systems. For 

example, some behaviours might encompass suggesting how some-

one might interact with an artifact via: affordances and signifiers (e.g., 
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a ‘button’ suggests something can be pressed), mappings (e.g., vol-

ume increasing or decreasing as one turns a knob in a given direction), 

or providing appropriate feedback (e.g.,  showing the current temper-

ature setting on a thermostat), etc. (Norman, 2013). Many of these 

aspects break down into what Saffer (2013) calls microinteractions, 

which he claims are ways to show an object has been designed with 

care.  

As I will fully describe in Chapter 2, designers typically engage in the 

process of prototyping, where they iteratively generate various differ-

ent solutions to one or more aspects to the problem, and in the pro-

cess learn and discover a final solution. However, the gap to interac-

tion designers participating in the design of interactive smart objects 

comes down to three main challenges, described below and further 

discussed in Chapter 6. 

 CHALLENGE 1: NEED FOR MULTIPLE  

SPECIALIZATIONS 

Prototyping enables exploring what is possible, as well as discovering 

new aspects to the solution. Yet, the design of interactive behaviour 

often depends on a physical form and base functionality being pre-

sent. Realizing these prototypes for smart objects requires that inter-

action designers can to some extent generate: (1) the object’s physical 

form, which provides the object its meaning, while also exposing the 

appropriate controls (inputs and outputs); and (2) the object’s func-

tionality, which requires programming, as well as creating the custom 

circuitry that connects the different sensors and outputs.  Thus, the 

designer needs to consider many variables at once, each of which can 

be time consuming, featuring a variety of specialized challenges, and 
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overall are tailored towards experts in different areas. For example, a 

smart object prototype might require a designer to: generate physical 

forms either through some material or CAD software; create elec-

tronic circuitry that can be embedded into the form, which entails 

finding the appropriate components and soldering them in place; and 

then program and debug the prototype, all while guessing whether 

the bugs are a result of software issues or problems with assembling 

the electronic circuit itself (Booth et al., 2016). Because the prototyp-

ing process is about time-bound individual explorations, relying on 

different specialists would hinder the prototyping process by remov-

ing the designers’ ability to discover and fine-tune elements by trial 

and error.  

 CHALLENGE 2. LACK OF TOOL SUPPORT 

Most existing prototyping tools (e.g., InVision, Adobe XD) and re-

sources for interaction design focus on building applications for desk-

top computing or basic mobile applications. Thus, a lot of the tools 

and techniques assume the traditional WIMP (Windows, Icon, Menu 

and Pointers) paradigm, which emphasizes a flow of interactions 

based on states and transitions (e.g., “when a button is pressed, 

switch to the next screen”). As will be discussed in Chapter 3, such 

actions represent only a small fraction of interactive behaviours, and 

the nuanced communication one can have with an interactive system. 

Additionally, smart objects have a variety of ways in which people can 

interact with them, as they can often be physically held and manipu-

lated, or rely on different sensors to interpret human actions (e.g., 

buttons, accelerometer, microphone). As a result, interaction design 

for smart objects can differ considerably from interaction design for 
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desktop computers. Because existing design tools do not readily lend 

themselves to designing rich and nuanced interactive behaviours, de-

signers end up resorting to other applications to approximate some of 

their ideas. For example, a designer might work with a video editor to 

create an animation, and communicate the result with many descrip-

tions for a developer (Maudet et al., 2017). Thus, having a broader 

range of tools would enable designers to create the appropriate rep-

resentation depending on what kind of prototype they want to 

achieve. 

 CHALLENGE 3. NEED FOR CLOSE-TO-PRODUCT 

REPRESENTATIONS 

While an interaction designer’s explorations will vary in terms of res-

olution2 (e.g., paper sketches versus an interactive prototype) across 

the process, holding a physical representation can greatly help con-

textualize the interactions with the physical object. For example, a 

small action such as viewing a paper sketch of a mobile interface in a 

phone screen already helps a designer understand aspects such as 

scaling issues when fitting many elements on a screen as shown by de 

Sá et al. (2008). Given that smart objects are each unique in shape, 

holding the physical object and testing the different buttons or sensor 

reactions can create a dramatically different experience compared to 

a two-dimensional prototype. Common low-cost and “fast” ap-

proaches such as paper sketches, storyboards, or click-through 

 
2 The HCI literature often uses the word “fidelity” broadly to refer to both stage of the de-

sign and level of sophistication. As it will be explained later, Houde and Hill (1997) and 

many sources in design theory define fidelity as the stage in the design process, from “reso-
lution”, which refers to the prototype’s degree of sophistication. 
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slideshows cannot achieve the small subtleties of the interaction 

when prototyping, or reflect a responsive experience. This is where 

Myers et al. (2008) distinguish that a majority of behaviours cannot 

be represented as simple state transitions which can be sketched or 

storyboarded. In the end, the design of the experience is directly tied 

to the designer creating the experience and making the necessary 

changes until the object “feels right”. Löwgren and Stolterman 

(2007) refer to this ability as a development of a designers’ judge-

ment. Yet to arrive at a better judgement, it is important for designers 

to create a physical prototype that they can physically hold, manipu-

late, and change, where they can learn within the creation process. 

The creation process needs to be more malleable. 

Given these challenges, the overarching research question that I iden-

tify and investigate in this thesis is:  

How might we devise a means for designers to author interactive 

behaviours for smart interactive objects?  

1.3 THESIS STATEMENT 
To address the three challenges presented in the previous section, I 

propose methods for repurposing existing technologies to work as 

base platforms for designing interactive behaviours. I posit using mo-

bile devices in place of custom electronics, and leveraging existing 

desktop applications to author the design of interactive behaviours. 

Mobile devices are common-place and contain a large number of sen-

sors and outputs: high resolution touchscreens, speakers, micro-

phones, cameras, accelerometers, gyroscopes, magnetometers, etc. 

Additionally, they have built-in batteries and the ability to connect to 
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the internet. Consequently, designers can place mobile devices that 

drive the computation and act as the “soul” of the smart object, while 

a fabricated enclosure can provide the object with a form, or “body”, 

designers then should be able to leverage or repurpose familiar desk-

top tools to author prototypes, either through augmenting and auto-

mating existing tools (e.g., aiding in the 3D modeling process) or by 

remapping the mobile sensor values in ways that can be recognized 

by the existing applications (e.g., streaming a desktop video and ma-

nipulating a video timeline as a phone moves). Based on the above 

points, my thesis statement is that: 

We can repurpose existing hardware, such as mobile phones and 

watches, and software to enable designers to create live interactive 

prototypes for smart interactive objects without requiring code or 

custom circuitry.  

Given my thesis statement, this leads to the following research points 

that guide my work: 

1. Paradigm. I explore how designers can use mobile devices 

and their built-in sensors and outputs in place of electronics 

to author interactive smart object prototypes (realized via a 

design metaphor: Soul–Body Prototyping) 

2. Tools. I create proof-of-concept prototyping tools that build 

on top of existing desktop applications to: 

a. Create physical prototypes that enclose the mobile device 

in an appropriate form given interactive behaviour speci-

fications (realized via a system, Pineal) 
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b. Repurpose familiar desktop tools to author rich interac-

tive behaviours that are driven by the user’s interactions 

(realized via a system, Astral) 

1.4 RESEARCH QUESTIONS 
Given the research points in the previous section, I propose one pos-

sible solution to enable designers to overcome the challenges of (1) 

needing multiple expertise, (2) lacking tool support, and (3) requiring 

close-to-product representations outlined in §1.2. Through a proto-

typing paradigm and two interactive systems, I provide methods in 

which designers can work with readily available technologies and 

 
Figure 1.2 Visual Summary of Thesis Statement 
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bring them into a new context.  For example, a designer might create 

a prototype for a smart speaker (Figure 1.2) by placing a smart watch 

inside a mug, with the screen facing a lid that has a light diffuser, and 

may use tools to author the form for the lid containing the watch, as 

well as the watch’s behaviours. The watch can then sense the speech 

input via the microphone, or leverage the accelerometer to detect 

when people hold the mug, and flash a variety of animations. This 

approach proposes one way to answer the overarching research ques-

tion in my work: 

How might we devise means for designers to author interac-

tive behaviours for smart interactive objects?  

To realize the three research points within my thesis statement, I 

guide my work through three key research questions, summarized 

and contextualized within the smart speaker example in Figure 1.2.  

 RQ1. HOW MIGHT DESIGNERS REPURPOSE  

MOBILE DEVICES TO PROTOTYPE SMART  

INTERACTIVE OBJECTS? 

To repurpose mobile devices as tools for smart object design, I pro-

pose Soul–Body Prototyping, a design metaphor in which the mobile 

device (the ‘soul’) is placed inside a physical form (‘the body’), which 

features the prototype’s inputs and outputs and meaning. The para-

digm enumerates the different sensors and outputs provided by mo-

bile devices, and describe how they might be repurposed to create 

new kinds of inputs and outputs. Together with examples of how the 

sensing and outputs can be repurposed, it is possible for designers to 

appreciate what kinds of physical prototypes are possible, and how 
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they might be devised. The added mobile device also provides a way 

for designers to imagine and even invent new kinds of interesting 

smart objects. Answering this research question will address the first 

point in my thesis statement (Figure 1.2-1). 

 RQ2. HOW MIGHT DESIGNERS AUTHOR FORMS 

AROUND MOBILE DEVICES TO MAKE THEM 

LOOK AND FEEL LIKE SMART OBJECTS? 

To generate physical forms in which the designer can incorporate the 

mobile device, I created Pineal. Pineal is a prototyping tool that can 

generate 3D printed physical objects that house mobile devices and 

expose the necessary inputs and outputs, informed by the Soul–Body 

Prototyping Paradigm (RQ1). Designers can import a pre-built 3D 

model, and use visual programming to author behaviours that run on 

the mobile device and also serve as instructions to modify the 3D 

model to fit a mobile device and use the appropriate inputs and out-

puts. This tool addresses point 2A of my thesis statement, as shown 

in Figure 1.2-2A. 

 RQ3. HOW MIGHT DESIGNERS LEVERAGE  

EXISTING FAMILIAR SOFTWARE TOOLS TO  

AUTHOR INTERACTIVE BEHAVIOURS 

FOR SMART OBJECTS? 

I lastly explore how designers can create nuanced interactive behav-

iours through a prototyping tool called Astral. Astral allows designers 

to use existing desktop tools and repurpose them for mobile device 

interactive behaviour design. It creates a closed-loop of interaction in 

which a portion of a desktop display is mirrored onto the mobile 
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phone screen, and ranges of sensors are converted into mouse and 

keyboard events through interactive visualizations. Through Astral it 

is possible to use familiar desktop tools and encompass both the abil-

ity to trigger actions, as well as the ability to create interaction-driven 

animations, that is, animations that operate as a function of the inter-

action as opposed to simply a function of time. This last goal realizes 

point 2B of my thesis statement (Figure 1.2-2B). 

 RESEARCH QUESTION FOUNDATIONS 

As I carried out my dissertation research, I found key points of 

knowledge to be missing within the field which were necessary to bet-

ter understand the research at hand. As a result, the research ques-

tions are informed by, and sit upon integrating multiple theories in 

different fields beyond HCI, such as design research and interaction 

design. In particular, the following secondary questions arose: 

Who Are Interaction Designers?  

Research in HCI often uses a broad term to talk about designers, 

which does not necessarily reflect a specific design discipline. In par-

ticular, using the term “designer” in HCI often leads to a level of 

vagueness which allows researchers to stretch the definition. Zim-

merman et al. (2007) have pointed out the need to distinguish inter-

action designers from software developers. As a result, it is necessary 

to best understand who interaction designers are, what their skillset 

is, and how they work if we are to design technologies to support 

them and their practice. 
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What is Interactive Behaviour? 

The term “interactive behaviour” is often used to describe what inter-

action designers do (Cooper et al., 2014). While the term is effective 

at differentiating itself from form (i.e., physical form or layout of an 

interface), there is no definition of what is meant by interactive be-

haviour, therefore creating a fundamental ambiguity. While behav-

iour could refer to what an object does, there are many subtleties to 

behaviours that could be further clarified integrating different theo-

ries of input. 

How Do We, or Should We, Evaluate Prototyping Tools? 

Hewett et al., (1992) define Human–Computer Interaction as a “dis-

cipline concerned with the design, evaluation and implementation of inter-

active computing systems for human use”. Indeed, Kaye (2007) states 

that knowledge creation requires some form of validation.  As a re-

sult, HCI research often points to evaluation as a necessary compo-

nent (Greenberg and Buxton, 2008), typically in the form of user 

studies, especially in the form of usability. However, the contribution 

of HCI systems research and evaluation in HCI research is often a 

controversial topic in the community given the variety of methods 

available to execute the research and the different perspectives com-

ing to play. Having a solid foundation on evaluation methodologies 

helps strengthen the research creation process in two ways. First, it 

provides a framework in which one can assess the extent of the work 

done, and second, it provides a reference point of questions to con-

sider when carrying out research even from the early stages. 
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Consequently, while these questions may seem secondary to the re-

search I am carrying out, they are fundamental stepping stones to de-

vise paradigms and tools to help interaction designers in the creation 

of smart objects.  

1.5 THESIS ORGANIZATION 
My thesis is structured in three main parts across ten chapters includ-

ing this introduction, visually summarized in Figure 1.3. 

 PART 1: PROTOTYPING INTERACTIVE BEHAVIOUR 

The first part of the thesis focuses on the theory of Interactive Be-

haviours behind my work. The conceptual foundations in this part 

provide a base which defines (1) the target audience (interaction de-

signers), (2) what interactive behaviours are, and (3) the contribution 

and role of evaluation of prototyping tools.  

Chapter 2 explores and integrates different sources in HCI Research, 

Design Research, and Interaction Design Practitioner works and sur-

veys. This integration helps define who interaction designers are, and 

what activities they carry out, which is something that often remains 

unclear in HCI literature. Chapter 3 provides a descriptive frame-

work of interactive behaviour, in which I bring together different ap-

proaches to create a working definition of behaviour in the context of 

interaction design. Chapter 4 narrows down on prototyping ap-

proaches for interactive behaviour and shows the landscape of tech-

niques and tools followed by practitioners today. These approaches 

and tools help to: understand the limitations of current tools, and sit-

uate my work within the landscape of tools that offer different de-

grees of prototyping interactivity. I further demonstrate that a lot of 
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the expressiveness and fine-tuning of interactive behaviour is 

achieved through coding which is often beyond the expertise of de-

signers. Then, I provide a taxonomy of prototyping tools in HCI and 

industry and show the different approaches and their processes. The 

question that arises from examining these tools is their research con-

tribution and their evaluation, which provides further inquiry on the 

contribution of my tools. This is a larger challenge in Human–Com-

puter Interaction research, as prototyping tools fall into the category 

of HCI toolkits, which do not have well-established methods to eval-

uate the work. Chapter 5 contextualizes the role and contribution of 

toolkits in HCI research, and analyzes the different evaluation meth-

ods through a survey of 68 representative papers. These results help 

further shape the meaning of evaluation in HCI systems research 

while also providing a set of methods that ultimately defined my own 

research approach in this thesis. 

 PART 2: SOUL–BODY PROTOTYPING 

The second part of my thesis, Soul–Body Prototyping, focuses on the 

primary conceptual contribution of my work. Chapter 6 outlines 

Soul–Body Prototyping as a metaphor and paradigm for designers. In 

it, I suggest designers can create smart object prototypes by using mo-

bile devices in place of custom electronics and placing them into 

forms that provide the prototype with meaning and physical inputs 

and outputs. I provide a design space of Soul–Body Prototyping 

which looks at ways to repurpose different mobile sensors and out-

puts. Chapter 7 demonstrates Soul–Body Prototyping as a feasible 

and expressive paradigm by featuring and analyzing undergraduate 

HCI student projects. I discuss a selection of five early explorations 
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with undergraduate students in a five-week assignment, as well as a 

full Soul–Body research system, WatchPen, which represents a case 

study of a 3-month undergrad research project I supervised. 

 PART 3: SYSTEMS 

The third part of the thesis focuses on Systems and is built upon the 

knowledge outlined in the previous part. It operationalizes Soul–

Body Prototyping into software tools designers can use. Chapter 8 

shows Pineal, which supports designers in creating physical proto-

types with basic behaviours through a 3D modeling tool and a visual 

programming environment. Chapter 9 shows Astral, a prototyping 

tool which focuses on the creation of interactive behaviours for mo-

bile devices and smart objects using existing familiar desktop tools. 

Lastly, Chapter 10 presents overall conclusions for my works, inte-

grating the resulting research contributions from previous chapters 

and providing reflections on what this work means for existing prac-

tices. Here, I also discuss possible future directions for the continua-

tion of this work.  
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Figure 1.3 Thesis overview showing this dissertation’s chapters and parts. 
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 BACKGROUND 

“Santayana taught us that those who do not know history are con-

demned to repeat it. That surely is true in design as in anything else, 

but in design there is a corollary: those who do know history are privi-

leged to repeat it at a profit.” —Ralph Caplan 

Since I propose methods for repurposing existing hardware and software to 

enable designers to prototype interactive behaviours for smart interactive 

objects, it is important to answer three foundational questions that 

bound this thesis: who interaction designers are; what interactive be-

haviours are; and how to assess the value of prototyping tools for in-

teractive behaviour. In particular, this chapter has the added value of 

being an integration of different sources in what might seem as simi-

lar, yet are disconnected areas, including Design Research, Human–

Computer Interaction, Interaction Design, and User Experience De-

sign. Thus, this integration provides base definitions, as well as an 

added understanding and structure to the role of interaction design-

ers in designing interactive behaviours. To answer the three founda-

tional questions, I structure this review as follows: 
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Interaction Designers (§2.1). One discipline that tends to be under-

defined and sometimes misinterpreted in HCI is interaction designer. 

In particular, what needs further explanation is the kind of back-

ground an interaction designer has, how they think, and what their 

role is. To provide a holistic understanding of interaction design, I 

begin by defining and scoping what is meant by design (§2.1.1), user 

experience design (§2.1.2), and then narrow down into interaction 

design (§2.1.3). The thought process of interaction designers is simi-

lar to other design disciplines (§2.1.4), but what changes is their role 

in the product development process (§2.1.5), and specifically how 

their ideas come together in the design phase (§2.1.6). Knowing these 

elements helps better understand the target audience of this thesis. 

Prototyping (§2.2). Given that designers work through prototyping, 

understanding prototyping in the context of interaction design is a 

fundamental building block for this thesis. Interaction designers ex-

plore their ideas through prototypes. I explain what prototyping is 

(§2.2.1), why designers do it (§2.2.2) and what it might serve in the 

product design process (§2.2.3). I discuss how the literature inter-

prets what types of questions prototypes can examine (§2.2.4) and 

frame interaction design prototypes into what I call Exploratory Pro-

totyping (§2.2.5). Framing prototyping as exploratory prototyping 

puts together the different variables that prototypes might investigate 

and teases out interactive behaviour from that. 

2.1 INTERACTION DESIGN 
This section answers the first foundational question posed in this the-

sis of who interaction designers are. I discuss the background pertain-

ing to interaction designers, and connect different sources to provide 
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an understanding of the target audience for the systems and tools of-

fered in this thesis. This definition requires narrowing down from the 

definition of Design (§2.1.1), to the more specific User Experience 

Design (§2.1.2), from which Interaction Design is a sub-discipline 

(§2.1.3). Once interaction design is defined, it is possible to discuss 

who interaction designers are (§2.1.4), and explain how designers are 

trained to think about problems generally (§2.1.5) before introducing 

the design process in larger product development as carried out in 

interaction design practice (§2.1.6).  

 WHAT IS DESIGN? 

Before delving into the specifics of interaction design, I first explain 

what I mean by design. Design can refer to an individual instance 

(e.g., discussing a design with a client) or as a process (e.g., designing 

a chair). In the context of my thesis, I refer to design as a process.  

The Oxford Dictionary defines design as the “purpose, planning, or 

intention that exists or is thought to exist behind an action, fact, or mate-

rial object”. Dix et al. (2003) describe design as “achieving goals within 

constraints”, which articulates that design has a specific purpose, a 

set of constraints (e.g., time, budget, materials), and trade-offs. 

Caplan (1982) states that “design is a process for making things right. 

For shaping what people need”, which brings a key point – in achieving 

the specified purpose, design ultimately will reach people and has the 

potential to impact their lives. Hartmann (2009) articulates that de-

sign has three core characteristics: (1) it is a process and has a struc-

ture, (2) it is not manufacturing or software development, and (3) it 

has clients and end-users. 
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Thus, I define design as: 

Design is the structured, and informed process by which things (actions or 

objects), that ultimately reach an audience, are intentionally made under 

specific constraints. The design process is informed through probes called 

prototypes, which examine one or more aspects of the implementation, in 

varying fidelities and resolutions, to ultimately create a refined solution. 

 USER EXPERIENCE DESIGN 

One discipline of design which has emerged in the last few decades, 

especially manufacturing and technologies become more common-

place, is the area of user experience design. Norman (2013) describes 

experience design as “the practice of designing products, processes, ser-

vices, events, and environments with a focus placed on the quality and en-

joyment of the total experience”. Cooper et al. (2014) claim that all 

realms of design influence people’s experiences by “carefully manip-

ulating the variables intrinsic to the medium at hand” (pp. xxii). To 

show how different design disciplines craft experiences, they use dif-

ferent examples, such as: a graphic designer creating an experience 

through a poster by manipulating fonts, photos and illustrations; an 

industrial designer creating an experience through a chair by combin-

ing different materials and construction techniques; and an interior 

designer creating an experience for a space by using layout, lighting 

and materials.   

Cooper et al. (2014) further refine the context of user experience de-

sign to the creation of digital products, which aligns with definitions 

by Norman (2013) and Moggridge (2007). Within user experience 

design, Cooper et al. (2014) promote three overlapping concerns: 

 
Figure 2.1 User Experience Design as an 
overlap of content, form and behaviour. 
(Adapted from Cooper et al. (2014)). 



 DAVID LEDO, 2020  |  29 

 

form (done by graphic and industrial designers), content (done by 

information architects, copywriters, animators, and sound design-

ers), and behaviours (done by interaction designers), illustrated in 

Figure 2.1. The particular nuancing of these three concerns, as it will 

be described later, is important, as it helps separate the elements of 

layout and form from the elements of behaviour. 

 INTERACTION DESIGN 

Cooper et al.’s (2014) depiction of user experience design portrays 

interaction design as a piece of the larger puzzle, which they attribute 

with the creation of “interactive behaviour”. Löwgren and Stolterman 

(2007) define interaction design as “the process that is arranged within 

existing resource constraints to create, shape, and decide all use-oriented 

qualities (structural, functional, ethical, and aesthetic) of a digital arti-

fact” (pp. 5). The Interaction Design Association (IxDA)1 scopes the 

designed technology as computers, mobile devices, appliances and 

beyond. Moreover, Norman (2013) frames interaction design as how 

people interact with technology, where “the goal is to enhance people’s 

understanding of what can be done, what is happening and what has just 

occurred. Interaction design draws upon principles of psychology, design, 

art, and emotion to ensure a positive, enjoyable experience” (pp. 5).  

 WHO ARE INTERACTION DESIGNERS? 

Given the multidisciplinary nature of interaction design, it does not 

yet have a well-defined home discipline compared to other forms of 

 
1  https://ixda.org/ixda-global/about-history/  – accessed December 21, 2018. 

https://ixda.org/ixda-global/about-history/
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design such as architecture and graphic or industrial design. The dis-

cipline from where a practitioner comes from can shape their overall 

approach, as the formal training provides practitioners with: (1) tools 

and foundational theories (Stolterman, 2008), (2) methods and pro-

cesses to approach problems (Cross, 1982), and (3) ways of knowing 

(Cross, 1982). An online survey by Pratt and Nunes (2012), illus-

trated in Figure 2.2, asked respondents about their formal back-

ground in user experience design, which showed that over 68% of de-

signers are not formally trained in specialized technical disciplines 

(e.g., computer science). Other surveys (Subtraction.com 2015, Ux-

tools.co 2017 and 2018), as well as prior studies in the HCI commu-

nity, such as Myers et al. (2008) and Maudet et al. (2017) also discuss 

what tools interaction designers use, as well as their expertise, which 

corroborate this information and will be further described in Chapter 

4, §4.2. Different design disciplines (e.g., graphic and industrial de-

sign) all have similar foundations as part of their training, though the 

specific activities carried out may vary. This training provides design-

ers with a way of thinking different from those taught in other disci-

plines (e.g., computational thinking2). 

 HOW DESIGNERS THINK 

“Designers in action are commonly described as being intuitive or sensitive 

to a situation. Sometimes the process is even seen as badly structured, sub-

jective, or fuzzy. This same process can, however, also be seen as a highly 

 
2 By “computational thinking”, I refer to the way of thinking taught in areas such as com-

puter science, by which problems are decomposed into abstractions with the goal of auto-

mation (Wing, 2008).  

 
Figure 2.2 Survey results adapted from 
Pratt and Nunes (2012). Participants were 
asked: What is the professional background 
that led to your UX position? 
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rigorous and disciplined way to act if seen from a designerly point of view” 

(Stolterman, 2008). 

Design problems are often described as “wicked problems” (Bu-

chanan, 1992). According to Rittel and Webber (1973), wicked prob-

lems: have no definitive formulation and requires developing an ex-

haustive list of potential solutions; have no clear stopping rule, with 

multiple right and wrong answers; and have changing requirements 

that makes them hard to test. As a result, design problems require a 

way of thinking that can support dealing with these wicked problems. 

Cross (2011) explains how designers think based on multiple inter-

views, research experiments and observations, described next. 

The Design Thinking Process 

The problem is actively re-formulated. Designers define the prob-

lem that needs to be solved, which may be different from the problem 

given: “Goals are set at high level, with clear objectives and direct terms… 

It is this simple clarity which might make other people conclude that the 

goal is simply impossible” (Cross, 2011, pp. 73). Perhaps Cross is point-

ing out that designers acknowledge that the current challenge is a 

wicked problem, and as a result making goals high level helps them 

see the big picture. 

There are periods of intense activity followed by reflective con-

templation. Cross (2011) discusses that designers will engage in de-

sign activities in an almost obsessive fashion, and then completely 

slow down to reflect on what took place. 

Solution strategies are devised abruptly. Cross (2011) states that a 

strategy to solve the problem “is achieved by means of sudden insight 
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which comes when relaxing after deep immersion in the problem, and the 

solution details then cascade from the concept” (pp. 74). Designers create 

new patterns that then further re-formulate the problem while sug-

gesting directions for a solution – problem and solution co-evolve.  

Methods are non-systematic and done in parallel. Cross (2011) 

stipulates that design activity continues at many levels simultane-

ously, in which drawing acts as a primary thinking tool providing dif-

ferent views and different levels of detail. Designers also frequently 

build models and mock-ups. 

Strategic Aspects of Design Thinking 

Cross (2011) describes three strategic aspects of design thinking:  

Approaching problems as ‘broad systems’. Cross means that de-

signers think about the bigger picture and how the different pieces 

relate to each other. He exemplifies this by describing how designers 

might think of a car in terms of the different parts that make it go, 

while engineers might focus on designing and perfecting a specific 

part, such as a clutch. This view is important, as it shows that design-

ers are thinking about the big picture, but also the relationships be-

tween the different elements. 

Framing the problem in a personal way. Cross discusses how de-

signers will frame problems based on the requirements of a situation, 

but the solution will be strongly influenced by their personal motiva-

tion (e.g., altruistic vision of pleasing potential end-users). 

Designing from First Principles. Cross explains that designers con-

stantly identify and inform their design through first principles. In 
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Human–Computer Interaction literature, there is a similar concept, 

known as design guidelines, which are descriptions that “provide di-

rections for designers or highlight factors that should be considered when 

designing interactive systems” (Wiberg and Stolterman, 2014, pp. 533). 

Wiberg and Stolterman (ibid) add that the goal of design guidelines is 

to specify and formulate factors that a design needs to consider. 

Thus, designers come with their existing knowledge, but also con-

tinue to learn by doing – essentially experiential learning (Kolb, 1984), 

and further inform decisions from other sources, including general 

research, user research, evaluation results, etc. Cross (2011) adds 

that designers use first principles implicit or explicitly in their de-

signs. Indeed, given that designers frame problems in personal ways 

and each have different experiences, they might be implicitly lever-

aging these views as first principles throughout the process. Alterna-

tively, designers might learn from different sources, such as user re-

search, or in their own experimentations, what the successes and fail-

ures of each solution might be. 

 
Figure 2.3 Design strategies of creative designers as described by Cross (2011). Dia-
gram adapted from Cross (2011, pp.78) 
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These thinking processes and strategies, summarized in Figure 2.3, 

help understand how designers approach situations, and how they fit 

within the larger design process. The thinking process shows how de-

signers need to somehow explore ideas to let these problems and so-

lutions co-evolve. Within the design process, designers have a dedi-

cated phase where they actively take on this exploration. 

 THE DESIGN PROCESS: HOW INTERACTION  

DESIGNERS WORK 

When discussing the design process, the literature can refer to two 

different workflows: the product development process as a whole, or 

the design phase within that process. 

The Product Development Process 

The larger product development process encompasses different 

phases such as user research, design, implementation, and evalua-

tion. The product development process varies across organizations  

and literature. In fact, Dubberly3, a software design consultancy com-

pany has compiled a document with over one hundred different mod-

els of the product development process across companies, institu-

tions and academic publications, and it shows how different organi-

zations have different expectations as to what activities an interaction 

designer might tackle (e.g., user research). Figure 2.4 shows some 

different example instantiations of the process, all of which involve 

designers generating ideas and creating prototypes within a “design 

phase”, the focus of this dissertation. 

 
3 http://www.dubberly.com/articles/how-do-you-design.html – accessed March, 2019 

http://www.dubberly.com/articles/how-do-you-design.html
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Figure 2.4 Different examples of the design process, as explained by Dix et al. (2004), Cooper et al. (2014), Greenberg (1996) 
and Gibbons (2016). Diagrams adapted from the respective sources. 
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The Design Phase 

The second way in which the literature may refer to the design phase 

itself within the process, which consists of the activities that unfold 

from the designer generating ideas to arriving at a potential solution 

under certain constraints (e.g., time, budget, particular idiosyncrasies 

of the goal). These artifacts are later implemented by someone else 

(e.g., software developers) and the process is often referred to as de-

sign handoff. Cross (2011) describes a process followed by experi-

enced designers from an experiment, which included the following 

steps: (1) quantifying the problem, (2) generating concepts, (3) refin-

ing concepts, (4) selecting a concept, (5) designing, and (6) present-

ing. These steps resonate with other discussions of the design pro-

cess, including Buxton (2007), Laseau (1982) and Pugh (1991). 

Buxton (2007) explains design has two main facets – getting the right 

design and getting the design right (explained in Figure 2.5). The first 

step of the process, is to thus generate a multitude of ideas which to 

find a viable solution. As the process of idea generation moves for-

ward, ideas may evolve in different ways. Rosenman and Gero (1989) 

suggest that design ideas might result from combination (taking fea-

tures from existing designs), mutation (modifying elements of exist-

ing designs), analogy (making associations outside the current do-

main), or first principles (see Section 2.5). Cross (1997), in empirical 

studies, corroborates these approaches, and adds the concept of emer-

gence – where ideas evolve by recognizing emergent behaviours in 

structure or function. What is particularly interesting about emer-

gence is the implication of evolution of ideas, as well as how the four 

 
Figure 2.5 Getting the design right vs. get-
ting the right design, paraphrased from 
Greenberg et al. (2011) 
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previous elements of combination, mutation, analogy and first prin-

ciples might come together. The result is that ideas do not exist in iso-

lation, they inform each other. Frank Chimero, a professional interac-

tion designer, describes his process in a similar fashion: 

“The bad ideas have been documented and captured in some way, 

which turns them into a resource that can be mined in the process. 

New and better ideas will certainly come as well, but mixing the 

two speaks to the cumulative nature of improvising and the special 

sort of presence it requires. Ideas build on top of one another, and 

to do so well, one must be in the moment, actively poking at the 

current situation to use its opportunities as material for construc-

tion.” (Chimero, 2012, pp. 40) 

Looking at emergence as a descriptive model of creative design helps 

understand how the design process might arrive at a potential solu-

tion to the problem. Laseau (1980) describes design as a process of 

elaboration and reduction, diagrammed in Figure 2.6. Greenberg et 

al. (2011) describe Laseau’s process as generating solutions, while 

also deciding which of those ideas are worth pursuing and further de-

veloping those solutions. Pugh (1991) further describes the design 

process as a funnel, shown in Figure 2.7, where cycles of elaboration 

 
Figure 2.6 Laseau’s view (1982) of the design process as elaboration and reduction. 
Diagram based on illustration by Greenberg et al. (2011). 
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and reduction converge towards a final solution, until a single con-

cept, which as a result of the convergence has been refined and devel-

oped, is selected. Thus, because ideas inform each other, and in the 

thinking process (see §2.1.5) the problem and solution are co-evolv-

ing, the design process naturally evolves towards discovering more 

fine-grained details of what will become the resulting solution. 

In this process, interaction designers create prototypes, which Lim et 

al. (2008) describe as manifestations of ideas, which get developed in 

different resolutions (degrees of sophistication) depending on the type 

of knowledge the designer is trying to obtain from each. 

 SUMMARY 

Design is the structured process by which things are intentionally 

made under specific constraints. User Experience Design focuses on 

the quality of the overall experience. According to Cooper et al. 

(2014), User Experience Design is constrained to digital artifacts, 

where it is the result of the intersection of form, content and interac-

tive behaviour – the latter which is the focus of interaction designers.  

 
Figure 2.7 Pugh’s description of the design process as a funnel (1990) with multiple cy-
cles of elaboration and reduction that converge towards a solution. Diagram based on 
illustration by Greenberg et al. (2012). 
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Interaction designers have a wide variety of different backgrounds 

given its multi-disciplinary nature. However, only a few interaction 

designers are specialized in fields of technology (e.g., information 

technology or computer science). Given that design problems are of-

ten “wicked problems”, designers are trained with unique ways of 

thinking, and strategies. Designers follow a non-systematic approach, 

where they generate multiple ideas, and where the definition of the 

problem and solution co-evolve. 

The product development process often has a dedicated design phase 

where interaction designers explore and devise solutions to problems: 

they explore multiple ideas, which might come from different places 

and inform each other, and are externalized and manifested in differ-

ent degrees of sophistication. The different explorations inform each 

other, meaning that they do not exist in isolation, rather the solutions 

emerge from the different idea manifestations. These manifestations 

are called prototypes.  

2.2 PROTOTYPING: HOW DESIGNERS EXPLORE 
IDEAS 

Different design disciplines have particular ways of exploring, navi-

gating and evolving through ideas. Architects might draft blueprints, 

put together maquettes, create three-dimensional CAD4 models; in-

dustrial designers might create visual renderings or make physical 

models out of foam which are sanded down; and graphic designers 

may print out early versions of their visual arrangements. All of these 

 
4 CAD stands for Computer-Aided Design 
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are different forms of externalization, where the physical manifesta-

tions make it so the “world can speak back to [the designer]” (Schön, 

1987). When describing interaction designers, Lindell (2014) states 

that interaction designers have a feel for how a design might be real-

ized, which is “obtained by transforming design into technology” (pp. 

617). Lindell adds that interaction designers create realistic represen-

tations in a quick and at times chaotic manner. These manifestations 

of ideas are all different kinds of prototypes. I next describe what pro-

totyping is (§2.2.1), why designers prototype (§2.2.2), the aim of pro-

totypes (§2.2.3), and how it is possible to deconstruct those aims as 

structure, behaviour and usage (§2.2.4).  

 WHAT IS PROTOTYPING? 

To a lay person, prototyping might mean “a first or preliminary version 

of a device or vehicle from which other forms are developed” 5, but proto-

typing is much more than a single preliminary version. A more suita-

ble definition for prototyping is Lim et al.’s (2008) take: “prototypes 

are a tangible attempt to view a design’s future impact so that we can pre-

dict and evaluate certain effects before we unleash it on the world” (pp. 8). 

Beyond Schön’s view that design is a reflective practice – a conver-

sation with the situation (1987), Lindell (2014) argues that design, 

through its externalization, is a form of craftmanship: “patient and not 

tempted to do quick fixes” (pp. 617). Lindell further cites Sennet’s view 

of crafting (2009), where problems are identified in the making pro-

cess and solutions are identified simultaneously: a relationship be-

tween hand and mind. 

 
5 https://en.oxforddictionaries.com/definition/prototype – accessed January 2019 

 
Figure 2.8 Buxton’s (2007) distinction be-
tween sketching and prototyping. While 
ideas in design indeed naturally evolve 
from exploration to specificity, the design 
literature still largely refers to all of these 
techniques as prototyping. Figure repro-
duced from Buxton (2007). 

https://en.oxforddictionaries.com/definition/prototype
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 WHY DO DESIGNERS PROTOTYPE? 

Because prototypes are different forms of externalizations, they can 

serve different roles in the design process. The next subsections dis-

cuss how prototypes can be used for exploration, specification and 

communication, as well as evaluation. 

Prototyping as Exploration 

Because Human-Computer Interaction and Interaction Design draw 

from multiple disciplines, including design, software development, 

and engineering, prototyping has different interpretations. To rem-

edy this, Buxton (2007) distinguishes between prototypes and 

sketches to illustrate different roles, as shown in Figure 2.8. Buxton 

creates a distinction where sketches are exploratory and prototypes 

are meant to specify. Yet, much of the design literature, including 

Goel and Pirolli (1992), Logan and Smithers (1992), Lim et al. (2008) 

and Cross (2011), advocate for prototyping as a means to design 

thinking in the same way that Buxton discusses sketching: prototypes 

are “tools for traversing a design space where all possible design alterna-

tives and their rationale can be explored” (Lim et al., 2008, pp. 2) as 

opposed to means to “identify and satisfy requirements” (ibid, pp. 2).  

Logan and Smithers (1992) warn against seeing prototypes as mere 

parametric descriptions, or seeing them as means to generate descrip-

tions, as this view can lead to two flawed assumptions: (1) prototypes 

have little or no link between each other, and (2) solutions can be 

achieved through search. Instead, it is not through the prototypes 

themselves, but through the exploration activity itself that gives de-

signers such an understanding, as it suggests the breadth of possible 

solutions, and conveys whether the solution might be feasible given 
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the current constraints. Lim et al. (2008) add that the strength of a 

prototype lies in the fact that it is incomplete: “it is the incompleteness 

that makes it possible to examine an idea’s qualities without being a copy 

of the final design… [it] structures the designer’s traversal of the design 

space by allowing decisions along certain dimensions” (pp. 7). 

The reason why prototypes shift towards something that appears 

more like a specification can be explained by the design funnel of 

§2.1.6 – ideas evolve and inform each other, which leads to more set 

decisions. The types of manifestation might shift over-time, and 

likely take on higher resolutions. However, level of sophistication may 

not always correlate to the stage of the design process (Houde and 

Hill, 1997).  

Prototyping as Specification and Communication 

Prototyping can be seen as a means of communication between de-

signers, developers and stakeholders (Sharp et al., 2015). Floyd 

(1984) explains that unlike traditional manufacturing, software sys-

tems have often unspecified and often changing requirements, and 

prototyping is a means of discussion to explore and define the re-

quirements. Moreover, prototyping can support rapid feedback cy-

cles between designers and clients, communicate new ideas to devel-

opers and answer unanswered questions (Gerber and Caroll, 2012). 

Thus, the prototypes become a shared instrument that designers can 

leverage to devise solutions (Bødker and Grønbæk, 1991). Indeed, 

Bertelsen (2000), as well as Leiva (2018), describe prototypes as 

boundary objects (Star and Griesemer, 1989) between communities of 

practice, as designers can ground conversation between different 

groups of people (developers, clients, users, etc.). As the design cycle 
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progresses, the communication might also become more a form of 

specification, where designers can clarify their intent with develop-

ers. In fact, studies of the communication between designers and de-

velopers show that designers will go as far as resorting to high-end 

video editing tools, such as Adobe AfterEffects, to describe nuanced 

animations, transitions and interactions to developers, which are then 

supplemented with explanations (Maudet et al., 2017). 

Prototyping as Means of Evaluation 

Prototyping is also described as a means of evaluation. By creating 

early versions of the system (e.g., using paper), it is possible to con-

duct usability inspection and evaluation methods to more rapidly it-

erate between versions of the system (Nielsen, 1993). Lim et al. 

(2008) argue that this view, while more traditional in earlier Human-

Computer Interaction approaches, tends to favour standardized 

graphical user interfaces, and is only one narrow way of looking at 

prototyping. Furthermore, the usability inspection of a paper proto-

type may not be as viable in a post-WIMP (Windows, Icons, Menus 

and Pointers) approach given that state transitions and the like are 

more difficult to convey, thus requiring higher resolution solutions. 

What these different views on prototyping show thus far is that pro-

totyping is primarily a means of exploration through making, where 

designers can discover an answer to a question. As questions get an-

swered, the solution takes shape which can additionally be used for 

communication as well as evaluations. Such questions become more 

concrete as a result of the cumulative knowledge from the prior pro-

totyping activity. 
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 WHAT DO PROTOTYPES PROTOTYPE? 

While the last section describes the different uses and benefits of pro-

totyping, this section shows how prototypes answer specific ques-

tions. Indeed, Lim et al. (2008) describe prototypes as filters – a way 

to view the problem and explore the answer to a question. 

Given multiple sources from a variety of disciplines (e.g., engineer-

ing, computer science), prototyping has different interpretations as 

to what questions they might answer. However, many of these dis-

cuss elements outside of design (e.g., technical implementation). 

Gero (1990) described prototypes as parametric descriptions that de-

fine function, structure, expected behaviour, and actual behaviour of an 

object.  Lichter et al. (1994), on the other hand, described prototyping 

from the point of view of software development: a presentation proto-

type is used to convince potential clients that a problem can be solved; 

a prototype proper shows functional elements to clarify the problem at 

hand; breadboards examine implementation details to help software 

specification; while a pilot system illustrates how the software works 

and enables early experimental testing. Houde and Hill (1997) posit 

prototyping in terms of what they might be trying to articulate when 

creating software applications, a prototype might prototype: imple-

mentation, examining how to solve a software problem; role, investi-

gating how a system might be used in the real world; and look and feel, 

referring to the visual and behavioural elements within the system. 

Houde and Hill argue that these prototyping angles are not mutually 

exclusive, and that a prototype might investigate the answers to these 

questions in different levels. Houde and Hill also distinguish between 
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fidelity (stage within the design process) versus resolution (level of so-

phistication of the prototype), as it is not always the case that the level 

of sophistication only increases as the design process moves forward.  

Lim, Stolterman and Tenenberg (2008) propose a similar and more 

nuanced view of prototyping to Houde and Hill, though much more 

focused on broader aspects design (e.g., industrial design), especially 

designing physical form. Lim et al. provide a framework for thinking 

about prototyping in terms of an anatomy composed of filters and 

manifestations. Prototypes as filters focuses on what aspect in partic-

ular the prototype is trying to explore, which can include: appearance 

(physical properties such as size, colour, shape, etc.), data (infor-

mation architecture, such as the number of labels, content organiza-

tion), functionality (system functions and user needs), interactivity 

(behaviours in terms of input, output, feedback, and information), 

and spatial structure (how components are combined, such as the spa-

tial arrangement of the interface). As manifestations (i.e., as arti-

facts), prototypes might have variable materials (medium), resolution 

(level of sophistication), and scope (range of what is covered). 

 EXPLORATORY PROTOTYPING IN  

INTERACTION DESIGN 

Because the views on what prototypes might target are so broad, I am 

taking the relevant points of what prototypes aim to achieve when it 

comes to exploration in interaction design. Given interaction design-

ers’ training (see §2.1.4), they are not concerned with the specific de-

tails of how a system or artifact might eventually be implemented 

(i.e., examining functionality and actual implementation details). The 

key takeaway is that this subsection contextualizes the focus of this 

 
Figure 2.9 Schematic of this thesis’ explor-
atory prototyping in the context of interac-
tion design. Given existing research on 
what prototypes prototype, I argue that ex-
ploratory prototyping has the components of 
Structure, Behaviour and Usage. Struc-
ture is the basis (form or layout) which the 
person interacts with. Behaviour is what 
the system does before, during or after the 
interaction. Usage refers to a person’s abil-
ity to try out the behaviours given the pro-
vided structure. 
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thesis, namely the exploration of interactive behaviour (defined in 

Chapter 3), as we need to better understand: what do interaction de-

signers need to consider to explore ideas in interaction design? Note 

that this is not an exhaustive categorization. All these elements are 

interconnected in some way – a prototype’s structure defines the pos-

sible behaviours, and possibilities of trying it out. As a result, to test 

the behaviours, there needs to be some form of underlying structure 

(e.g., an interface mock-up) of some resolution or fidelity from which 

the behaviour can be the basis. This is summarized in Figure 2.9. 

Given that this outline of exploratory behaviour builds on what pro-

totypes prototype in different areas of design, computer science, and 

engineering, Figure 2.10 shows how all of these elements are inte-

grated. Note that in particular, implementation details are not in 

scope of idea exploration. 

Structure: The What 

Physical Form. The most basic forms to work with in interaction de-

sign would be to assume one is working with existing types of devices, 

such as a desktop or laptop computers, or some type of mobile device. 

Forms can become more complex, especially when considering an ap-

pliance such as a radio. The form itself also provides users with the 

structure of the input and output. For example, a radio may have 

knobs and sliders that the user can manipulate as inputs, and the 

speakers may change volume and react accordingly. The placement 

and arrangement of the controls matters as well.  

Visuals and Layouts. When working with digital screens, users are 

dealing with a digital counterpart to the form. The structure is de-

fined by the layout of the interface and the types of controls provided 

 
Figure 2.10 Exploratory prototyping in the 
context of prior work discussing what proto-
types might prototype. Note that in the con-
text of interaction design, reflecting system-
level implementation is not in the scope of 
the prototyping practice. 
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to the user. What makes the visual and layout more complex is that 

the contents are dynamic – they can change any time. 

It is also worth mentioning that the structural elements of form and 

layout are very similar, though form is more related to physical ar-

rangement of controls, while layout is more related to the digital ar-

rangement of the different controls. An artifact may feature both 

structural elements, such as a radio with a digital display. 

Behaviour: The How 

The structural elements outline “what people interact with”, 

whereas behavioural elements look at “how people interact with the 

what”. Thus, interactive behaviour is ultimately about how the inputs 

become outputs, all which tie back to the structure of the device/ar-

tifact/software. Interactive behaviour will be explained further in 

depth in Chapter 3. 

Usage: First-Hand Experience with the Concept 

To get a sense of how the behaviours work, the designer needs to en-

vision them in action, and perhaps even try them out. A prototype 

might also be created to explore how it might be used. The evaluative 

approach to prototyping looks at giving a prototype to users that they 

can test, but from an exploratory perspective, designers can execute 

ideas that they can try out and foster self-reflection to arrive at new first 

principles. The most basic form of usage requires little behavioural el-

ements, as it is fostered by imagination. For example, Jeff Hawkins 

(Moggridge, 2007) carried a block of wood as a stand-in for the Palm 

Pilot, and would pretend to use it throughout the day to understand 

how it might work (e.g., for scheduling, setting reminders during 
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meetings). However, as one needs to understand more complex be-

haviours that are less tied to usability, such as how a system provides 

feedback, or other experiential elements such as what happens at a 

system-level as a result of continuous actions (e.g., how a display 

might show feedback of interaction with a slider), it is necessary to 

have a more fleshed out interactive behaviour within the prototype. 

 SUMMARY 

In the design process, designers create prototypes as a way to mani-

fest their ideas and explore an individual question. These manifesta-

tions take different forms, are made in different resolutions (degrees 

of sophistication) and at different fidelities (how early/late the design 

process). While prototyping theory has been explored in many differ-

ent areas aside from design, including engineering and computer sci-

ence, prior work presents different ways in which prototyping can be 

used, including exploration, communication/specification and evalu-

ation. Within these types of prototyping, the activity itself may an-

swer different questions such as the appearance, how it works, etc. I 

argue that for exploratory prototyping in interaction design, proto-

types might answer questions of structure (i.e., the visual layout and 

the physical form), behaviour (how inputs become outputs) and us-

age (ability to get first-hand experience with the concept). In the con-

text of Human–Computer Interaction, there is a better understanding 

of prototyping form and visual layouts, and how to inspect a system’s 

usability. However, the concept of interactive behaviour still remains 

vague, which is further explored in the next chapter. 



 

 

 

 

 

 

 

 BEGININGS OF A DESCRIPTIVE 

FRAMEWORK OF INTERACTIVE 

BEHAVIOUR 

Indeed, to propose methods for interaction designers to prototype interac-

tive behaviours for smart interactive objects entails an understanding of 

what is meant by interactive behaviour. The concept of interactive 

behaviour, while seemingly simple on the surface, is actually quite a 

complex conversation – perhaps one that merits extensive explora-

tion, as it may be no different to bigger discussions in the research 

community, such as the meaning of interaction (Hornbæk and Ou-

lasvirta, 2017) or the meaning of interactivity (Janlert and Stolterman, 

2017). Look and feel of an interface are often grouped together as if 

they were a single unit. Myers et al. (2008), however, realized that 

not everything was about the layout of a user interface in software, 

which prompted further investigation on the subject. The solution 
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was to separate “look” from “feel” to get to a closer grasp of interac-

tive behaviour. Still, to prototype interactive behaviours, it is neces-

sary to define what interactive behaviours are.  

The previous chapter introduced interactive behaviour as a part of 

exploratory prototyping in interaction design and how it is dependent 

of the underlying structure of a system or artifact (i.e., the physical 

form or visual layout) and enables people to have first-hand experi-

ence with the system or artifact. In this chapter, I bring together dif-

ferent theories of HCI to help define interactive behaviour and un-

derstand how researchers might describe these kinds of behaviours. 

Understanding what behaviour means is a fundamental step in HCI 

research if we are to design the next generation of tools to generate 

interactivity beyond code. It is especially important if ‘behaviour’ 

continues to be broadly used, and oversimplified in research discus-

sions. To address these needs, I explain why interactive behaviours 

are not simply synonymous with the “feel” of an interface (§3.1), de-

fine interactive behaviour (§3.2) and navigate through different fun-

damental theories that explain how inputs and outputs come together 

to create dynamic and responsive experiences (§3.3), which provide 

insight on the small nuances when designing these types of behaviour. 

Together, these points provide the beginning towards creating a de-

scriptive framework to define interactive behaviour (§3.4). 

3.1 THE PROBLEM WITH THE WORD FEEL 
Interactive behaviour is often described as “feel”, which leads to 

many loose interpretations and challenges within the field – it is not 

a term that can be easily operated on. Indeed, the elements of inter-
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activity are often lumped together with visual elements when discuss-

ing prototypes in terms of “look and feel”, such as Houde and Hill’s 

view on prototyping (1997). However, this is not in discredit to them, 

as at the time desktop interfaces had reached a high degree of stand-

ardization, given the prevalence of the WIMP (Windows, Icons, 

Menus and Pointers) paradigm and different user interface widgets 

(e.g., evolved versions of the ones in the Xerox Star (Johnson et al., 

1989)). Myers et al. (2008), investigated how designers author behav-

iours and tried separating “look” from “feel”, by defining feel as “… 

anything that an application does… what you cannot draw… anything 

that required [authoring] using [a] timeline or scripting” (pp. 1). The 

word “feel” is easily open to misinterpretation because it can refer to 

many non-interactive elements associated with it: a system might feel 

smooth, a system might feel familiar, a system might feel unrespon-

sive, a system might feel dated, a system might feel modern or old, 

etc. and many of these feelings can be evoked exclusively via aesthetic 

choices. For example, the visual style choices in video games such as 

using pixelated artworks can make a game look and feel “retro”, 

while an artifact might also have tactile qualities such as material and 

texture (e.g., feeling soft, fuzzy, plastic or metallic), which again refer 

to a different kind of feel. Indeed, these aspects are important, and  

will affect the overall user experience, but are distracting from what 

prior work has tried to describe if the description lacks precision: de-

signing interactions with a system or artifact beyond the structural 

elements of physical form and visual layout. 
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3.2 INTERACTIVE BEHAVIOUR, DEFINED 
Given a system or artifact’s layout, the interactive behaviour is what 

allows a person to actively engage and interact with the system or ar-

tifact. Thus, from a design perspective, interactive behaviour can be 

defined as follows: 

Interactive behaviour is how a designer defines a series of hu-

man-provided inputs to become a series of human-perceiva-

ble outputs. 

When people interact with a system, they perform (implicit or ex-

plicit) actions which are interpreted as one or more inputs (captured 

by sensors such as buttons, microphone, camera, accelerometers, 

touch screens; input devices such as mice or keyboards; or contextual 

elements such as time). The system responds to these inputs via out-

puts, which may be conveyed via visual displays, sound, tactile and 

haptic feedback, etc. 

Having this definition helps us narrow the scope into a definition that 

is operationalizable by designers. Moreover, it takes the focus away 

from the end-user in terms of how they might perform the actions or 

how they might interpret them, and makes them fully about what a 

system or artifact can do with its ability to receive information from 

the world (inputs), interpret it (via computation or mappings), and 

respond (output). 

For example, consider a light switch which is attached to a ceiling 

light. From a people-centric perspective, a person performs the ac-

tion of flipping the switch which in turn makes the lights go on. From 

a design perspective (and under the current definition) the switch has 
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the ability to sense two values, which are interpreted and mapped into 

two possible values (on or off), and the response involves switching 

the current state. If the light switch is more complex, such as having 

a dimmer, or a colour slider, the interpretation and mapping also in-

creases in complexity, leading to a wider variety of possible, and per-

haps dynamic, responses. 

Moreover, this definition of interactive behaviour fits Beaudouin-

Lafon’s (2004) evaluation metrics for interaction models of descrip-

tive, evaluative, and generative power. 

Descriptive Power. It can describe and fit within existing interaction 

paradigms from interaction with desktop computers to interaction 

with smart objects. The light switch example shows how indeed, the 

definition can describe many variants of interactivity, a variety of in-

puts (e.g., a simple switch versus sliders or even a mobile applica-

tion), and outputs (e.g., on/off state, brightness and colour).  

Evaluative Power. Designers can use this definition to assess interac-

tive systems, and they can confirm or deny whether their intention 

was met. If the designer defines a slider value to dim lights, they can 

assess via first-hand experience whether the lights change brightness 

as the action is performed. 

Generative Power. This definition of interactive behaviour can be 

used by designers to generate new designs. In fact, the systems and 

concepts built with this thesis from Chapter 6 onwards are examples 

of how this definition can generate new designs.  
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3.3 A DESCRIPTIVE FRAMEWORK OF  
INTERACTIVE BEHAVIOUR  

To create a framework means to provide a conceptual contribution in 

HCI. Rogers (2004) describes the role of theory in HCI as providing 

different types of knowledge. Rogers (ibid) states that theories can be: 

(1) informative (provides useful research findings), (2) predictive (can 

model user behaviour), (3) prescriptive (provides advice for design or 

evaluation), (4) descriptive (provides rich descriptions), analytic 

(identifies problems), (5) formative (provides concepts to discuss de-

signs), and (6) generative (provides constructs that can foster a variety 

of solutions). I bring together different components of existing HCI 

theories to describe interactive behaviour, which provides interaction 

designers and other HCI researchers with a unified vocabulary. In 

particular, this framework contributes:  

1. Descriptive elements, as it outlines many components to in-

teractive behaviour, 

2. Formative elements, as it brings terms and vocabulary used in 

foundational HCI theories of input, and to a lesser degree, 

3. Generative elements, as designers could use the vocabulary 

provided and generate different kinds of ideas for interactive 

behaviours 

While the notion of interactive behaviour is not explicitly talked about 

in Human–Computer Interaction, there are fundamental theories ex-

amining models of interaction, as well as models of input, which can 

help in defining what interactive behaviour means. Current work 
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shows that behaviours (1) are a relationship between inputs and out-

puts, (2) they have dependencies from those inputs and outputs as 

well as a state, and (3) they are heavily influenced by programming 

paradigms given that they are always the result of some degree of pro-

gramming.  

 BEHAVIOURS ARE RELATIONSHIPS  

BETWEEN INPUTS AND OUTPUTS 

In Human–Computer Interaction, behaviour is typically described as 

a relationship between the user and one or more objects on screen (or 

an object of interest beyond the screen). Thus far, the considerations 

of behaviour discussed have focused primarily on the input, without 

making much mention to the contents of the screen. In Human–Com-

puter Interaction, the concept of direct manipulation, as defined by 

Shneiderman (1983), became a way to understand that computers 

could be more than a console one types into – they were capable of 

rendering objects one could directly operate upon. The direct manip-

ulation paradigm has continuous representation of objects of interest, 

to which one can apply “physical” actions (e.g., clicking and drag-

ging), allowing rapid and reversible operations that could be reflected 

on these objects of interest. Maloney and Smith (1995) argued for in-

terfaces to be live and direct, active and reactive, in what they called 

morphic user interfaces. Morphic interfaces were supported under 

four implementation techniques: structural reification1, layout reifi-

cation, ubiquitous animation, and live editing. Many of the standard 

 
1 Reification refers to making abstract things more concrete. Oxford Dictionary. 

https://en.oxforddictionaries.com/definition/reify February, 2019 

https://en.oxforddictionaries.com/definition/reify
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interactions afforded by devices and operating systems today follow 

this direct manipulation paradigm. Instrumental interaction, as de-

scribed by Beaudouin-Lafon (2000) provides a means to incorporate 

the different elements present on the screen which are defined as do-

main objects (potential objects of interest). Instrumental interaction 

considers interaction instruments (e.g., a scrollbar or any UI widget) as 

mediators in the process of converting a user action (moving the 

mouse to the scrollbar) into a command (scroll) that can appropriately 

affect the object of interest (a textbox). Note that this framework was 

built under the assumption of direct manipulation, and some of its 

articulation becomes more difficult to interpret as one shifts to other 

platforms such as smart objects. Still, the notion of objects of interest 

as being entities beyond the screen remains – perhaps in the form of 

an LED, a sound, etc. 

 BEHAVIOURS HAVE DEPENDENCIES 

Pioneering work in Human-Computer Interaction examined differ-

ent types of input devices. While the primary context was desktop 

computing, it also spanned different kinds of everyday devices and 

appliances. The 1980s and 1990s show different taxonomies aimed at 

understanding input devices and from that understanding be able to 

derive interaction techniques (defined by Foley and van Dam (1990) 

as “a way of using a physical input/output device to perform a generic task 

in a human-computer dialogue”).  

Which behaviour is active depends on system-level global and local 

states. Buxton (1990) proposed a three-state model of graphical input 

(Figure 3.1), which describes the actions of a cursor based on what 

the input device does as a means to: (1) appropriately match devices 

 
Figure 3.1 Buxton’s (1990) three-state model 
of graphical input showing the three states: (0) 
out of range, (1) tracking, and (2) dragging. It 
also shows example inputs of mouse, sty-
lus/pen, and touch and how they might transi-
tion between each state. Figure based on Bux-
ton (1990). 
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to input techniques, and (2) compare different devices or techniques 

to each other. As such, a mouse has the states “tracking” and “drag-

ging” (depending on whether the button is being pressed). A pen has 

an additional state which is when the stylus is “out of range”, and 

touch events are either “out of range” or “dragging”. Thus, different 

quasimodes (or user-maintained modes (Raskin, 2000)) are transacted 

depending on the current selection. Buxton (1983) lists: pointing, 

tracking, selecting, dragging, rubber banding, menu pulling, charac-

ter recognition, and inking as examples. Note that this model de-

scribed the interfaces at the time and takes the cursor-based interac-

tion as the main assumption while categorizing different kinds of de-

vices. It does not discuss what kind of sensing they provide or how 

that sensing is mapped to a particular output.  

Traditional computing systems, as well as systems that rely on pre-

serving some degree of familiarity of such desktop-like systems, rely 

on global states. For example, a drawing tool, even on a multi-touch 

tablet device, typically has a global mode it ties to, which defines the 

current drawing tool. As new inputs become available, it is possible 

to look at input in a local manner. For example, in Local Tools 

(Bederson et al., 1996) and Constructible Interaction (Walny, 2016), 

tools are objects that can be dragged and acted upon individually. 

Walny (2016) demonstrates that through visibility and locality it is 

possible to have multiple objects that perform specialized operations 

and could work across different collaborative settings. Once the input 

moves away from the single cursor, global modes can be somewhat 

relaxed in favour of states that affect only what the user is interacting 

with. Collaborative tools, where multiple people are entering inputs, 

or tools that, for instance, leverage bimanual interaction or multiple 
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inputs, operate best with local states. Localizing states makes it so 

that an input can be deconstructed and mapped to modify specific 

parameters of the outputs, as done in systems such as ICon (Dragi-

cevic & Fekete, 2004). The reason for this is that the task is no longer 

tied to a single point of interaction which forbids the existence of oth-

ers. That said, there can be a global state or mode (e.g., whether one 

can move objects on a screen versus only view them) which guide the 

actions of all inputs and outputs. 

Inputs and outputs have properties/parameters. Mackinlay, Card and 

Robertson (1990) brought another taxonomy that captured discrete 

and continuous properties sensed within input devices (as informed 

by existing toolkits to date): devices can sense position or force in an 

absolute or relative fashion, and inputs can be linear or rotary. Mackin-

lay et al. represent input devices as a six-tuple of: manipulation oper-

ator, input domain, state of the device, resolution function, output 

domain and specific device properties. The taxonomy describes de-

vices as both physical (e.g., mouse) or virtual (e.g., cursor). The out-

put domain set of one device can be composed into the input domain 

set of another, referred to as a connection. An example of this connec-

tion is a radio in which the rotation of a station knob affects a physical 

slider showing the current station. Figure 3.2 shows an example by 

Mackinlay et al. (1990) of a radio and how the inputs can affect each 

other.  In particular to this example, the selection of AM or FM, and 

the station slider value are combined into a single value that repre-

sents the current station. 
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Inputs are mapped into outputs. Hinckley et al. (2014) put together 

some of these ideas in terms of how input devices behave. In particu-

lar some of their added relevant properties pertaining to how the in-

puts can turn into outputs include: 

− Property sensed. Absolute or relative values sensed by the input 

device (e.g., change in position sensed by a mouse). 

− Transfer function. The device and operating system apply a 

mathematical function to the system to scale the data and “pro-

vide smooth, efficient, and intuitive operation” (pp. 8). Design-

ers create appropriate mappings when matching the physical prop-

erties of the device into a potential output (e.g., converting a joy-

stick’s sensed force to the velocity of a cursor’s movement). 

− Number of dimensions. Devices measure linear and angular val-

ues as determined by the sensors. 

− State. Providing the meaning of what the system should do when 

provided with a new value (e.g., pointing a cursor). 

Input and output parameters can be combined and abstracted, im-

plicit or explicit. Another framework that helps contextualize inter-

active behaviour is Implicit Interaction (Ju and Leifer, 2008). Implicit 

interaction posits that systems can have a varying degree of initiative 

(reactive or proactive), and that the actions from a system can require 

different levels of attentional demand (take place in the foreground or 

the background). Other frameworks continued to build on the idea of 

implicitness, such as Proxemic Interaction (Ballendat et al., 2010). 

An important element within the work in proxemics is the idea of dif-

 
Figure 3.2 Mackinlay et al. (1990) taxonomy 
as exemplified on a radio. Image based on 
Buxton (2013). 
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ferent spatial relationships (identity, distance, orientation, move-

ment) can dynamically affect the contents of different devices and 

their interfaces within an artifact ecology. Considering newer forms 

of interaction, including touch, mobile interactions, etc. leads to the 

realization that interaction with systems is no longer tied to a single 

input at a time with perhaps a few modifiers (e.g., mouse and key-

board) but that multiple inputs are affecting the contents on a device 

regularly (e.g., multitouch, added sensors on a phone), which makes 

the case for interactive behaviours considering different sources of 

input, as well as the relationships between those inputs. For example, 

in the one-handed mobile device interaction technique “tilt-to-zoom” 

(Song et al., 2011), one can simultaneously tilt back-and-forth to 

zoom in or out, as well as pan the finger across the screen to navigate 

a map in different cardinal directions. Visuals respond to these two 

dimensions independently. 

 PROGRAMMING CONSTRUCTS OF BEHAVIOUR 

Mackinlay et al. (1990) discussed the influence of their current 

toolkits in their taxonomy. This is no surprise given that the interac-

tive systems people use are shaped by the language used (exemplified 

in the next chapter). Object Oriented Programming and the emer-

gence of user interface builders popularized the idea of events, which 

provide information when the system detects a specified change (e.g., 

updated values within an input device’s parameters, a key press, cur-

sor entering a selection, etc.). High level tools, such as Expression 

Blend, have adopted this paradigm, and is referred to as “triggers”. 

Triggers can act as a way to modify the current state. 
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Time is an input, but not always the most appropriate abstraction. 

All interactions always take place over time, and there is no question 

about the importance of time as an abstraction in many areas such as 

animation. Time might be an appropriate abstraction when animating 

a reaction (e.g., a screen transition when pressing a button). How-

ever, time as an abstraction becomes less useful when displaying in-

formation from a particular input (e.g., mouse moving). The reason 

for this is that there might be a large number of time units (e.g., ticks 

or steps) in which values do not change, thus, a common abstraction 

is to talk about isolated events pertaining to the particular object (e.g., 

mouse move events, button clicked). The consequence has been to 

favour triggers. Indeed, triggers are appropriate to “schedule” reac-

tions which are animated as time – Hartmann (2009) calls these re-

sponses “one-shot animations” to indicate how they take place only 

when the trigger takes place.  

Many programming approaches dynamically map input values to vis-

ual elements. For example, when applying a “pinch to zoom”, a com-

mon interaction in touch surfaces, the distance between touch points 

dynamically adjusts the size of the object of interest. Hartmann 

(2009) refers to these as “user-in-the-loop” behaviours, as “continu-

ous user input drives the behaviour” (pp. 31). Yet these types of map-

pings, or animations as a function of input parameters, are not yet 

applied in higher-level prototyping tools. Another type of behaviour 

which is not talked about and is out of the scope of this thesis is cu-

mulative behaviours, such as when drawing on a canvas with a brush 

tool. In the case of the brush tool, the points drawn are accumulations 

of a series of inputs which belong to the same cognitive operation, 

which is known as chunking (Buxton, 1986). 
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 SUMMARY 

I defined interactive behaviour as how a designer defines a series of in-

puts to become a series of outputs. This definition helps scope the views 

on behaviour, as it shifts the focus to how the system responds to sen-

sors, input devices or contextual elements (e.g., time) to act in a pro-

active or reactive manner. I then integrated paradigms from Human–

Computer Interaction to outline that: (1) behaviours are a relation-

ship between inputs and outputs; (2) they have dependencies from 

those inputs and outputs, global and local states, and parameters; and 

(3) they are heavily influenced by programming paradigms given that 

they are always the result of some degree of programming.  

Overall, the foundations of interactive behaviour lead to particular 

considerations that need to be satisfied to facilitate its prototyping: 

1. Understanding that there is a state that influences the active be-

haviour, which is optional to a system, 

2. Thinking of input and output as abstractions with parameters that 

can be used for mapping (e.g., a slider’s value, a light’s bright-

ness), and 

3. Thinking of outputs as animated transitions (pressing a button 

and having the screen show an animation), cumulative operations 

(drawing with a brush tool on a desktop application), as well as 

interaction-driven animations (moving a slider and seeing a col-

our change dynamically as the mouse is being moved). 
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3.4 DISCUSSION 
This chapter provides a set of perspectives to consider when design-

ing interactive behaviour which provide the beginnings of a concep-

tual framework. I believe there are four elements that would be nec-

essary to fully develop a viable framework. At the current state: it (1) 

encompasses prior knowledge from different input and output theo-

ries in HCI, (2) it depicts the nuances of interactive behaviour and 

why it is not a simple state transition, and (3) it helps people think 

about interaction problems differently. While these three points suf-

fice in the context and scope of this thesis, I next outline what would 

be needed for this framework to be complete. 

3.4.1. HARD DIMENSIONS AND INTERDEPENDENCE  

The current pointers show generalizations that can be made about in-

teractive behaviour, their role as a relationship between an input and 

outputs, their dependencies, and some of their origins. The next step 

is to define a distinct set of variables, and show how they interplay 

between each other. This would also shift the current framework 

from a description towards a more generative stage. In particular, I 

think there is also value in showing how an input goes through a series 

of transformations from the moment the user applies a single action, 

until the system shows an output. 

3.4.2. VALIDATION: USING THE FRAMEWORK TO DE-

SCRIBE PRIOR SYSTEMS 

The current framework shows how past theories come together, but 

it does not show how they can be used in context to describe prior 

systems. One could take a set of interaction techniques, systems, and 
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commercial tools, and show that the framework generalizes to encap-

sulate a variety of interactive behaviours. In the current state, the cur-

rent early framework can be used to discuss the interactions, but does 

not fully frame them.  

3.4.3. FIT OF CURRENT METHODS 

The last limitation of the framework is that it is not yet seen in the 

context of how prototyping tools deal with interactive behaviour de-

sign. I believe that one could examine the current approaches for cre-

ating interactive behaviours, as well as the prior prototyping tools, 

both which are discussed in the next chapter, and contextualize the 

extent to which the framework satisfies these components. 

Overall, these three steps of creating more well-defined categoriza-

tions of behaviours, describing prior systems, and fitting the frame-

work in the context of prototyping tools, would provide means for re-

searchers and practitioners to describe and evaluate existing plat-

forms, as well as generate new ones.  

3.5 CONCLUSION 
Overall, this chapter provides a key working definition for interactive 

behaviour which is founded on the way a system interprets a user ac-

tion. By looking at different theories and taxonomies of inputs, it was 

possible to devise additional characteristics of interactive behaviour 

which shape and describe most interactive systems today. The next 

natural question is then how to prototype interactive behaviour, 

which points to the tools and techniques designers use today, as well 

as the existing gaps in this knowledge.  
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 PROTOTYPING INTERACTIVE 

BEHAVIOUR, RELATED WORK 

Now that the definition of interactive behaviour has been scoped, this 

chapter describes how designers create prototypes in interaction de-

sign. First, I outline some common prototyping activities to provide 

a sense of existing practices, where I highlight their common resolu-

tion and fidelity, as well as the extent to which they achieve prototyp-

ing structure, behaviour and usage (§4.1). Moreover, I then elaborate 

on the challenges interaction designers face, and how the most com-

mon commercial tools do not address these challenges (§4.2). I argue 

that the current commercial tools are limiting the types of prototypes 

designers can achieve given (1) the focus on static structure and neg-

ligence of prototyping interactive behaviour, and (2) the tendency to 

oversimplify the notions of behaviour. I conclude this section with a 

review of existing software tools in industry and academia beyond the 

common tools, and providing an overall taxonomy (§4.3) outlining 

different authoring paradigms that can help inspire the next genera-

tion of tools for prototyping interactive behaviour. 
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4.1 COMMON PROTOTYPING ACTIVITIES 
Interaction designers follow a variety of prototyping activities which 

lead to different types of discoveries. The next subsections outline 

examples of different design activities and the type of knowledge that 

they might yield. As discussed by Houde and Hill (1997) and Lim et 

al. (2008), these prototyping approaches have varying resolutions (de-

grees of sophistication) and can take place in different stages of the 

design process, not necessarily tied to a specific fidelity (how early or 

late in the design process). However, what makes these activities dif-

ferent is that they: (1) prompt and yield different kinds of questions 

and answers; and (2) require varying degrees of effort and time com-

mitment. Thus, designers use their judgement to decide what is an 

appropriate manifestation at the time. Typically, there is the associa-

tion that fidelity and resolution are directly proportional. For exam-

ple, designers sketch ideas on paper at an early stage, then progress 

to higher levels of sophistications. However, this is not always the 

case. For instance, a late stage of design may require ideas on paper 

again if a change needs to happen, or a designer may jump right away 

into an expert tool and produce a high-resolution solution that ex-

plores one small aspect of the user experience. 

 SKETCHING 

Sketching is an activity that is common in all areas of design, often 

described as the core activity. By creating quick drawings, designers 

can rapidly (i.e., in a matter of minutes) generate new ideas and have 

them documented. Thus, it is a technique where a designer can man-

ifest and externalize an idea in a low resolution. Sketches may have 

 
Figure 4.1 Example of quick sketches for a 
single idea: “how might two phones share a 
file by using their built-in sensors?” In this 
case, the sketch shows bumping two devices 
together to share files. While each sketch 
shows the same idea, they have different 
levels of visual detail, none of which took 
more than two minutes to complete. 
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varying degrees of depth, which can be expressed by the level of vis-

ual detail, or through additional descriptions (e.g., secondary screens, 

drawings to depict the interaction). Buxton (2007) explains how the 

resolution of the sketch should depend on how developed the idea is. 

Baskinger and Bardel (2013) define this as a spectrum from thinking 

to describing. Stolterman (2008) compiles many authors describing 

sketches, and concludes that “Sketching is a disciplined way of explor-

ing the relationships between diverse design ideas, between a whole and de-

tails, between form and function, between appearance and materials… a 

rational designer works on many alternative designs in parallel in an iter-

ative way, while going back and forth between the whole and the details” 

(Stolterman, 2008 pp. 61). Figure 4.1 shows an example of sketches 

for exploring a design idea. 

Sketching is not limited to a drawing on paper. Some forms of sketch-

ing may include adapting different paper cut-outs to present an inter-

face. For example, in PICTIVE (Muller, 1991), designers and users 

can use post-it notes, paper, pens and highlighters to dynamically 

draw an interface. The prototyping session can be video recoded to 

show a history of the flow of the interface in the process. Alterna-

tively, designers can create physical models using materials such as 

foam core and carve out areas for paper sketches to appear. For ex-

ample, Greenberg et al. (2011) show how one can draw a smartwatch 

and arm on a foam core board, and cut out the screen. One can then 

place strips of paper with different interface sketches to see what the 

interface might look like in context. Alternatively, Frishberg (2006) 

proposes “junk prototyping”, in which one can combine different sup-

plies and materials together with repurposed recycled objects (e.g., 

using a bottle cap as a knob), as a means to create physical mockups 



70 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK 

 

of interactive objects. These types of practices have been widely 

adopted in a variety of HCI and design related communities, includ-

ing participants at conferences such as ACM TEI1 (Tangible, Em-

bodied and Embedded Interactions), and Sketching in Hardware2. 

Some of these approaches are further extended to have implementa-

tion elements to them, described in §4.3.9 and §4.3.10. 

 WIREFRAMES / STORYBOARDS 

Wireframing refers to visual representations of the different screens 

or states of an interactive system. These often specify the different 

interface elements (e.g., widgets such as buttons), their locations and 

may also describe what happens when an action is executed (e.g., 

clicking on the hamburger menu in Figure 4.2-left). Wireframes can 

be arranged in a linear sequence, as a sequential storyboard to show a 

“visual story of a user experience unfolding over time” (Greenberg et al., 

2011, pp. 151). The visual representations can stop being linear and 

become state transition diagrams (Greenberg et al., 2011), and even-

tually become branching storyboards describing the entire usage of 

the application. User flow refers to the ability of a wireframe to be 

tested with people and allowing designers to follow through task de-

scriptions. Wireframes play two main roles: (1) outlining the layout 

of an application; and (2) defining the user flow (how a user might go 

from one screen to another following particular tasks). With 

wireframes, it becomes possible to carry out tests of the design with 

 
1 https://tei.acm.org/ – Accessed August 2020 
2 http://sketching-in-hardware.com/ – Accessed August 2020 

 
Figure 4.2 Example of a wireframe. The 
image on the left shows the view of a profile, 
while the view on the right shows what hap-
pens when a user clicks on the top left ham-
burger menu. 

https://tei.acm.org/
http://sketching-in-hardware.com/
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users to evaluate its usability, and also provide developers with spec-

ification of what the user interface should look like as well as what the 

transitions might be. While nowadays wireframes are primarily done 

digitally through tools such as Balsamiq or Adobe XD, they can also 

be created using paper, sticky notes or foam core. Using paper and 

the like allows for early testing and more flexibility to make changes, 

while the digital counterpart may work better for specification pur-

poses (e.g., outlining the layout and content to developers). 

 WIZARD OF OZ 

In some cases, it is possible to examine how an experience might play 

out in a close-to-reality setting even if it is difficult to explore. The 

Wizard of Oz Technique, first proposed by Kelley (1983), is one way 

of doing so. Buxton (2007) defines the Wizard of Oz technique as 

“making a working system, where the person using it is unaware that some 

or all of the system’s functions are actually being performed by a human 

operator, hidden somewhere ‘behind the scene’” (pp. 240). Buxton de-

scribes that the focus is not on the fidelity of the implementation, it is 

the “fidelity of the experience” (pp. 239). As long as the system can 

appear to be real, it is possible to test different scenarios of how the 

interaction might play out, and then decide the opportunities and 

shortcomings to create a more finished design. A good example of 

Wizard of Oz is an experiment by Gould et al. (1983) at IBM: creating 

a listening typewriter. The authors used a simulated environment: a 

typist was located in another room, listening and typing to a partici-

pant dictating to what the participant thought was a regular computer 

(see Figure 4.3). As a result, it was possible to test whether a speech 
 

Figure 4.3 Wizard of Oz. Adapted from 
Gould et al. (1983).  
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interface for typing would be a sensible idea long before speech recog-

nition algorithms reached such level of sophistication, thus creating 

a more seamless experience. Gould et al. were able to test different 

aspects of the listening typewriter, including people’s composition 

time and their preference to this novel approach.  

Wizard of Oz excels in the case of testing an envisioned interactive 

system early on, even if the final implementation might currently be 

impossible. One challenge, however, is that the human operator (the 

Wizard) has to constantly be aware of what the participant expects as 

a behaviour, and realizing the command (or providing cues that the 

command is invalid). As a result, it is difficult, if not impossible, to 

provide live feedback, or create complex dynamic interactions (e.g., 

simulating a mouse hover state, while still performing other opera-

tions). For example, Walny et al. (2012) show how even showing dif-

ferent states on a screen can be a challenge: “to the study participant, 

the prototype appears fully functioning, though slow to respond” (pp. 

2870), and “it was difficult for the wizard to be fully consistent across 

participants and sometimes even within a participant. In addition to the 

cognitive load and stress on the wizard to make quick, consistent decisions, 

the [technology] we used to recognize touch was not 100% reliable” (pp. 

2787). Yet, they still managed to devise and elicit an interaction vo-

cabulary for exploring data visualizations with pen and touch (i.e., 

post-WIMP interactions), with a level of flexibility of interpretation 

that might not be possible in a full, robust prototype. 

 VIDEO PROTOTYPING 

In 1988, Mackay (1988) formalized many of the lessons of the Wizard 

of Oz technique into Video Prototyping. Video prototypes make it so 
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that designers can illustrate interactive and non-interactive demon-

strations of software that has not yet been designed. Greenberg et al. 

(2012) show examples of how video prototypes can be created at a 

low cost in little time by filming or photographing paper sketches. 

Thus, video prototypes can work at different fidelities, at the cost of 

viewers not being able to fully experience what it is like to interact 

with it first-hand. 

 PROGRAMMED INTERACTIVE PROTOTYPES 

In graphic design, designers often deliberately select design concepts 

and complete them as a way to further explore and understand prob-

lems and potential solutions (Danis and Boies, 2000). Interaction de-

sign is no different, and there are instances in which it is necessary to 

implement a programmed system (or at least a partially functional 

one) to get a fuller sense of the experience. Lindell (2014) argues that 

like paper and pencil, code is a malleable material that can be used to 

explore solutions. Lindell’s study shows how some designers de-

scribe programming as a means to test their way forward, and that 

sometimes it feels akin to sketching – and a fundamental tool when 

an idea is difficult to portray on paper. This view is similar to Myers 

et al. (2008) where interactive behaviours are reflected as features 

difficult to describe on paper and would require at least some form of 

programming or scripting. 

Buxton (2007) suggests that the value of developed systems, or 

“rapid prototypes”, is that they afford exploring a class of interaction 

while providing direct personal experiences, though often limited to 

lab settings. The programmed prototype can be tried out and in rele-

vant cases further fine-tuned until a behaviour feels right. Lindell 
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(2014) adds that this practice is particularly important if realizing a 

new interaction technique, where the programming is treated in an 

exploratory fashion rather than a descriptive manner. Indeed, inter-

action designers who are technologically savvy can rely on many tools 

to solve the problem, and take an opportunistic approach (Brandt et 

al., 2008), where they combine multiple programming languages and 

software tools to realize novel interactive technologies. 

While seeing a realistic system might seem like the ideal solution, 

there are a few challenges to consider. From a technical standpoint, 

programming can be time consuming and require a lot of resources. 

Moreover, interaction designers are not often literate in program-

ming, which can create more difficulties in the process or simply be 

inaccessible. This might be why Brandt et al. indicate that opportun-

istic programming primarily relies on high-level tools with fast itera-

tion and impermanent code (2008). Finally, Buxton (2007) warns 

against their “seductive” qualities, both from an experience stand-

point, as well as due to the investment in the system’s creation, which 

can obscure a critical approach. Later sections of this chapter will dis-

cuss means to address the technical challenges, and encourage more 

explorations – a way to potentially address the challenge of seduction. 

 HOW DO THESE APPROACHES PROTOTYPE 

STRUCTURE, BEHAVIOUR AND USAGE? 

All of these different prototyping activities yield different benefits. 

Sketches, given the facility to quickly create them, are a fundamental 

tool for ideation and for capturing quick thoughts, which is why it is 

practiced from the onset of the design. Wireframes are a solid way to 

show specification of the interface – the overall layout and some of 
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the basic interactions (e.g., what happens when a button is pressed). 

Some systems (e.g., InVision, Adobe XD) also often provide addi-

tional features to create animations. Wizard of Oz, video prototyping 

and interactive programmed prototypes are less common given that 

they can be time consuming to create, and might even require addi-

tional expertise (e.g., ability to edit videos or to program). Wizard of 

Oz enables simulation and provides some understanding of how a sys-

tem might communicate with a person, whereas video prototypes 

provide a third-person envisioning of the interaction. Programmed 

prototypes are of the highest resolution and require the most effort to 

create3. Yet, from the perspective of behaviour (creating animated 

transitions and showing in-the-loop behaviours) as well as the per-

spective of usage (the ability to try them out), programmed proto-

types provide the most coverage. Also note that if a prototype has a 

particular physical form, such as a smart object or appliance, then not 

many of these approaches cover the experience of interacting with 

the physical object. Indeed, if a fully interactive programmed proto-

type has to take place for a smart object, the physical form, or a close 

representation of it, would likely need to be present as well. Figure 

4.4 summarizes how these approaches contrast to each other from 

my own perspective as broad generalizations. This directly informs 

 
3 Note that in spite of their complexity, a coded prototype can be vastly easier to produce 

than a commercial system, as prototypes focus on exploring and conveying a concept. 

Thus, these prototypes do not often focus on efficiency, error management, robustness, 

appropriateness of the programming language, of platform compatibility. 
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the goal of my work of complementing these practices to enable in-

teraction designers to prototype interactive behaviours earlier on and 

illustrates the current gap on each approach. 

4.2 HOW DO DESIGNERS PROTOTYPE INTERAC-
TIVE BEHAVIOUR TODAY? OR DO THEY? 

Myers et al. (2008) studied how interaction designers devised inter-

active behaviours, and found that it was a result of discovery by ex-

ploration. Looking back at the different prototyping approaches from 

the last section, it would seem like the only suitable approach to try 

out dynamic behaviour is via programmed interactive prototypes. In-

terestingly, calls for making prototyping tools that can support a va-

riety of behaviours beyond one-shot animations and that can target 

more types of devices (e.g., appliances) date back to 1995 (Tscheligi 

et al., 1995). 

Typically, the discussion of interactive behaviour, as explained by 

Cooper et al. (2014), Saffer (2013), and current prototyping tools 

such as InVision and Adobe XD, is centred in the following views: 

1. Interactive Behaviour as Screen Transitions. Interactive 

behaviour can be thought of as elements of an application’s 

flow4, such as navigating between different screens of the in-

terface, or incorporating user interface widgets and describing 

their effects. 

 
4 Grigoreanu et al. (2008) define flow as a diagrammatic representation to show the struc-

ture of the application conveying the flow of data, an analogous term to wireframing. 
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2. Interactive Behaviour as Animations. Interactive behav-

iour can be described as animations and animated transitions 

that take place in the user interface. These animations can 

happen as a result of a trigger, or to communicate the current 

state of an application (e.g., a loading screen). 

These two behaviour classifications are important, as they cover a 

representative portion of the user interfaces today and the authoring 

necessary for interaction designers. However, this is only a small 

 
Figure 4.4  Contrasting different prototyping approaches and the extent to which they 
prototype structure, behaviour and usage elements of an interactive system or artifact. 
Note how interactive programmed prototypes are of the highest fidelity and resolution. 
yet they also provide the most coverage for what the system might be like.  
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piece of what interactive behaviour can mean, and with the increased 

standardization in user interfaces (e.g., Apple Design Do’s and 

Don’ts5), designers are only leveraging a limited amount of their skill-

set. This becomes even more problematic not only when trying to 

create applications that move away from the standard, but as new in-

terface paradigms arrive, such as smart objects and head mounted 

displays. 

 FORMATIVE INTERVIEWS: CHALLENGES  

AND NEEDS 

There are a few studies in Human–Computer Interaction that discuss 

interaction designers and the challenges they face when authoring in-

teractive behaviour.  

Exploration and Realization. Myers et al. (2008) found key insights 

with regards to interactive behaviour design: (1) behaviours are more 

difficult to design than creating the visual layout; (2) behaviours were 

complex and diverse beyond what a system could provide as built-in 

behaviours/widgets; and (3) behaviours emerge through exploration 

and fine-tuning (they required iteration). Moreover, designers re-

flected that interactions needed to be created with details in mind, 

citing comments such as: “there are many factors that can influence be-

haviour” (pp. 180), and “there’s no such thing as low-fidelity6 interac-

tion, it has to be right” (pp. 180). Grigoreanu et al. (2008) corroborate 

 
5 https://developer.apple.com/design/tips/  – accessed February 2019 
6 As per the earlier discussion of fidelity vs. resolution, the designer here likely was refer-

ring to resolution. 

https://developer.apple.com/design/tips/
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these results by investigating interaction designers’ needs, where the 

needs rated most important ones were “flow” and “feel”. 

Communication. The communicative aspect is another challenge in 

the design of interactive behaviour. Both Myers et al. (2008) and 

Maudet et al. (2017) share how ultimately developers have to realize 

the designers’ solutions, and the better they can describe it, the more 

accurate the implementation. Maudet et al. (2017) show how design-

ers will go as far as to create fully animated videos to show how a spe-

cific animation or interaction should take place. Video only shows one 

part of the interaction: the output.   

Impossibility. Maudet et al. (2017) show that designers can some-

times generate solutions that cannot be implemented by developers, 

especially when it comes to custom interactions. Holmquist (2005) 

posits how given that interaction designers work primarily with soft-

ware, it should be possible to create representations that can behave 

close to the product, as “it can be put into situations that approach those 

of real use” (pp. 51). Thus, the issue of impossibility might be a direct 

consequence of the tools designers use today. 

 THE (COMMERCIAL) TOOLS  

DESIGNERS USE TODAY 

Given the background of interaction designers and what studies share 

about their practices, reaching a programmed interactive prototype 

could address some of the challenges in terms of opening current ex-

ploration constraints, allowing for accurate communication, and 

leading to plausible designs. Yet, this vision is challenged by the need 
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for specialization in programming high level behaviours while also do-

ing so in a timely manner. Interaction designers today use a variety of 

tools to prototype interactive systems. Three online surveys provide 

a landscape of the current state-of-the-art prototyping tools: Myers 

et al. (2008), Subtraction.com (2015), and UXTools.co (Palmer, 

2018). Figure 4.5 shows the results of these surveys. These results 

reveal a series of insights, discussed next. 

Scarcity of Traditional Programming. Aside from a portion of de-

signers doing a variable amount of web development (which can 

range from HTML and CSS mockups, to Javascript development, to 

full front-end development), there is no mention of other forms of 

traditional programming (e.g., C#, java, python, etc.). 

Departure from Authoring + Programming Tools. Related to the last 

point, it seems there has been a departure from hybrid authoring and 

programming environments such as Flash, Visual Studio and Expres-

sion Blend. These tools allow high-level authoring through pre-built 

widgets (Visual Studio and Blend), free-form drawing and animation 

support (Flash and Blend), as well as custom scripting (Flash via Ac-

tionScript, Blend and Visual Studio via C#). Perhaps these tools are 

 
Figure 4.5 Tools interaction designers use today as described by Myers (2008), Subtraction.com (2015) and UXTools.co (2018). Re-
sults reproduced from the respective sources. 
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no longer used due to lack of support (e.g., Flash becoming less prom-

inent on the web), or the emergence of new and more common oper-

ating systems (e.g., iOS and Android as opposed to Microsoft-spe-

cific alternatives). 

Focus on Wireframing/Flow. With the exception of AfterEffects and 

HTML, all the tools in the surveys by Subtraction.com (2015) and 

UXTools.co (Palmer, 2018) are primarily for wireframing. A few of 

these tools support some degree of one-shot animations and a few 

pre-defined triggers (e.g., tap, double tap, scroll) to add further inter-

activity elements. Thus, it becomes difficult to create personalized 

triggers or interactions that deviate from the basic list. 

High Standardization. The last aspect common to these prototyping 

tools of today is the high amount of standardization. It is only possible 

to author wireframes with the look and feel of standardized web and 

mobile interfaces, with little room to go beyond or outside of these 

boundaries. While it is one way of addressing the problem of impos-

sibility, this limits the kinds of experiences designers can create. My-

ers et al. (2008) unveiled over 100 behaviours designers wanted to 

create that they were not able to under conventional tools, and yet 

current tools only support wireframing for standard applications con-

strained to very simple one-shot animations. 

Software Tools Shape How People Think, And What Is Possible 

There is a risk of easily dismissing exploration of different prototyp-

ing tools in interaction design, given the large number of tools present 

today. Yet, these tools can play a fundamental role in the envisioning 

and outlining of current software tools and the tools of tomorrow. 

There is a direct benefit to exploring the creation of prototyping tools 
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– especially if addressing elements of design not explored before or 

explored in a limited way (e.g., interactive behaviours), or exploring 

alternative ways of solving problems. Tools can support a designer’s 

thinking process, as well as aid them in producing an artifact (Stolter-

man et al., 2009) – the goal can thus range from “playing” with ideas, 

to creating artifacts, including the interplay of both. Still, design tools 

“will influence what activities the designer sees as important” (pp. 10). 

Dalsgaard (2017) explains that tools have an impact on designer prac-

tice, as they can shape: perception of the situation, conception of hy-

potheses, types of externalization, knowledge through action, and 

possible mediations with other people. Indeed, this is because these 

types of tools can be seen as a vocabulary and a language (Greenberg, 

2007) that provides different paths of least resistance (Myers et al., 

2000). Indeed, different authoring approaches can provide different 

mental models, thus the exploration of authoring tools for interaction 

design can help in finding new types of interaction to support, and 

different ways of thinking that can best fit each person. 

4.3 BEHAVIOUR PROTOTYPING TOOLS IN  
RESEARCH AND INDUSTRY 

Research in Human–Computer Interaction together with different 

commercial tools in the past and today span across different kinds of 

approaches which provide a foundation for this thesis. Often-times 

prototyping environments face a trade-off between generalizability 

and flexibility with complexity and usability, and tools will cater to-

wards different degrees of expertise or learning. Note that all of these 

approaches involve some degree of programming (i.e., breaking down 

a problem into a set of logical steps), though not all involve coding 
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(i.e., programming by writing code). This is an important distinction, 

as tools will often claim not requiring people to program, while they 

really mean they devised a programming abstraction alternative to 

code. The next sections describe some models for prototyping inter-

activity, which are not mutually exclusive and often influence each 

other. The next chapter will dive more in-depth into toolkits and their 

overall role in research as well as in the evolution of tools and systems 

of the future. 

 TRADITIONAL CODING 

Traditional coding is the most expressive and flexible way to author 

interactive systems. This makes sense as it is the basis to all software 

and hardware applications. While not always accessible to designers, 

researchers as well as companies have devised different levels of ab-

straction to facilitate the design of interactive systems. For example, 

toolkits such as Arduino7, Phidgets (Greenberg & Fitchett, 2001) and 

.NET Gadgeteer (Villar et al., 2013) provide programming support 

to interface with different hardware components. Arduino does this 

via a setup and loop model, where two main functions allow providing 

linear instructions to individual components, or checking their cur-

rent values. The latter two platforms provide more abstractions in 

both software (through an object–oriented and event-driven ap-

proach) as well as hardware (via custom components that can be con-

nected to the computer, such as sliders, joysticks, etc.). 

 
7 Arduino: http://arduino.cc – accessed February, 2019. 

http://arduino.cc/
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User interface builders (e.g., Visual Studio, Blend) are one way to allow 

layout design using predefined and sometimes custom-made widgets. 

These widgets (e.g., buttons, checkboxes, sliders) can later be ac-

cessed in code, and subscribe to events (e.g., click, pointer8 pressed, 

pointer enter, pointer leave) to provide different behaviours. These 

interface builders are often constrained to a particular platform, 

though systems such as Gummy (Meskens et al., 2008) and Gummy 

Live (Meskens et al., 2009) examine models to make the interface 

building generalize across different platforms. In fact, Gummy Live 

 
8 Pointer often refers to different input devices such as mouse, pen, or touch.  

 
Figure 4.6 Event model vs. interaction machine. Beaudouin-Lafon (2004) exemplifies 
the contrast between (a) event-driven programming and (b) an interaction machine to 
implement a rubber-band selection. A rubber-band selection consists of allowing the user 
to draw a free-form area and select the contents inside of it (e.g., shapes, text, images). 
Figure recreated from Beaudouin-Lafon (2004). 
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(Meskens et al., 2009) allows dynamic rendering of the user interface 

on the target device (e.g., phone) as it is being drawn on the main 

computer. 

While interface builders are powerful in providing the presentation of 

the interface, Beaudouin-Lafon (2004) contests that they provide 

basic interaction, but do not support direct manipulation techniques 

(e.g., rubber-band selection). Beaudouin-Lafon adds that to create 

these interactions, developers are forced to “resort to tricks such as 

global variables and unsafe narrowing to share state between chunks” (pp. 

20), resulting in “brittle code that is hard to debug and hard to maintain” 

(pp. 20). In this discussion, Beaudouin-Lafon shows how even pro-

gramming is already far-away from supporting the design of interac-

tive systems, exemplified in Figure 4.6. 

 VISUAL PROGRAMMING 

One way to abstract programming into a way that is more accessible 

is via visual programming. There are two primary ways that visual 

programming has been carried out in the past: node-link diagrams and 

blocks. 

The idea behind node-link diagrams is to treat programs as a flow of 

data which gets converted until reaching an output, where authors 

can visually inspect how the inputs are being transformed. Ko et al. 

(2004) describe “data flow” as an abstract approach that remains hu-

man-centric. Max/MSP9, shown in Figure 4.7 A and B, is an author-

ing software for interactive sounds and graphics (originally created 

 
9 https://cycling74.com/products/max/  – accessed February, 2019 

https://cycling74.com/products/max/
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for music, but later extended to support other areas such as custom 

electronics and video). One interesting feature of Max/MSP is the 

inclusion of custom widgets (e.g., piano keys) to make more sense of 

the flow of data. Nintendo Labo’s Toy-Con Garage10 takes a similar 

approach (albeit more simplified) to support the creation of “inven-

tions” using the Nintendo Switch controllers and their sensors/out-

puts to author interactive behaviours, such as making a controller vi-

brate on a physical shake action. Trigger-Action Circuits (Anderson 

et al., 2017) also leverages node-link diagrams to automatically gen-

erate multiple circuit diagram alternatives, with assembly instruc-

tions and firmware code. Node-link diagrams have the advantage of 

supporting one-off experiences, with three noticeable drawbacks. 

First, the data-flow model emphasizes either discrete one-shot ac-

tions (e.g., when a piano key is pressed, play a sound) or input trans-

formations that may not be immediately obvious (e.g., making an in-

put, such as the sound average frequency, affect the colour settings 

of a video feed). Second, there is a strong reliance on prebuilt black 

boxes that define what effect they will apply to the input. The last 

problem is scale, as writing complex programs will lead to cluttered 

screens with many scattered nodes and links that appear messy and 

have very low readability.  

A more recent approach to visual programming is the use of visual 

blocks, which improve readability and usability via a linear structure. 

With the development of Scratch (Maloney et al., 2010), shown in 

Figure 4.7 C, different kinds of programming constructs (commands, 

 
10 https://labo.nintendo.com/invent/ – accessed February, 2019 

https://labo.nintendo.com/invent/
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functions, triggers and control) have a structure with visual notches 

and exposed parameters. Scratch has been adapted into different con-

texts, including Microsoft MakeCode11 which can leverage the 

scratch platform to operate electronics platforms including Arduino 

and Microbit12. 

 
11 https://www.microsoft.com/en-us/makecode – accessed February, 2019 

12 https://microbit.org/ – accessed February, 2019 

 
Figure 4.7 Examples of visual programming approaches. (A) and (B) show node-link 
diagrams Max/MSP, where (A) performs audio mappings, while (B) modifies a video 
feed. (C) Shows Scratch, a block-based language. (A) and (B) taken from https://cy-
cling74.com/products/max/, while (C) is taken from https://www.aace.org/review/pre-
pare-for-fun-scratch-3-0-is-coming/  

https://www.microsoft.com/en-us/makecode
https://microbit.org/
https://cycling74.com/products/max/
https://cycling74.com/products/max/
https://www.aace.org/review/prepare-for-fun-scratch-3-0-is-coming/
https://www.aace.org/review/prepare-for-fun-scratch-3-0-is-coming/
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 SCREEN TRANSITIONS 

A natural software parallel to wire-framing includes the family of sys-

tems which feature screen transitions and some degree of custom 

functionality. HyperCard by Apple Computer shows abstractions of 

text, graphics, multi-media objects (e.g., sounds and video), as well 

as user interface widgets into “cards” which could be interconnected 

and linked (Nielsen et al., 1991). Objects could be drawn on screen 

similar to a traditional graphical user interface builder, and scripts 

could link the functionality from one card to the next. These cards13 

would become integrated within the larger HyperCard program. 

Goodman (1988) describes the target audience (which he calls “de-

velopers”) as computer consultants that create information tools for 

their clients (e.g., a kiosk), teachers writing simulations for other stu-

dents, etc. Thus, the goal was for the system to be accessible to a more 

casual set of users who could create different kinds of interactive mul-

timedia presentations. Nielsen et al. (1991) describe how HyperCard 

could be used for prototyping graphical user interfaces. In later years, 

this would be a process taken by presentation tools such as Microsoft 

PowerPoint and Apple Keynote, as demonstrated by Greenberg et al. 

(2012). 

The challenge with using presentation software for prototyping is 

that it worked as a re-appropriation for tools that were not designed 

for that purpose. This changed with systems such as SILK (Landay, 

 
13 While documentation of HyperCard is scarce, online resources offer an introduc-

tory video (https://www.youtube.com/watch?v=EMFscTOazS0) and a collection 

of cards (https://archive.org/details/hypercardstacks) – accessed February, 2019 

https://www.youtube.com/watch?v=EMFscTOazS0
https://archive.org/details/hypercardstacks
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1996), DENIM (Lin et al., 2000) and DEMAIS (Bailey et al., 2001) 

which leverage sketching as a way to draw interfaces and create con-

nections between widgets and screens. In particular, DEMAIS em-

phasized visibility and discoverability through a visual language that 

summarized the different transitions and effects. Subsequently, 

d.tools (Hartmann et al., 2006), shown in Figure 4.8, enabled novel 

applications in the area of physical computing that could be proto-

typed through the use of state machine diagrams14. These diagrams 

made it so designers could connect different states and transition 

from one to another through input triggers (e.g., switching between 

images on an LCD display using accelerometer values). While these 

transitions were discrete, it was possible to connect the system to a 

 
14 State transitions are talked about in two ways in Human–Computer Interaction litera-

ture. One is screen transitions, where one input (e.g., button click) switches the screen to 

another point. The other is Buxton’s description of input (1990), where the state transition 

refers to the global state (sometimes referred to as mode) of the system based on input. 

 
Figure 4.8 The d.tools interface (annotated). Image reproduced and modified from 
Hartmann (2009). 
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Java backend and code continuous transitions (which Hartmann et al. 

describe as opportunities to collaborate with developers). Many of 

the commercial prototyping tools today, such as Adobe XD, In-

Vision, Figma, Framer, etc. follow the state transition pattern, 

though are limited to web or standard mobile interfaces. 

 TIMELINE 

Another common approach to designing behaviour emerged from an-

imation and video editing – the use of the timeline. Graphical repre-

sentations of time for animation date back to the late 1960’s, referred 

to as “Picture-Driven Animation” (Baecker, 1969). In particular, 

Adobe Flash (formerly Macromedia Flash) brought forward three 

main features. The first was the concept of motion tweens, where ani-

mators could create a transition for an object across two keyframes 

(e.g., changing size, position or colour), and the system would auto-

matically interpolate between them in a linear fashion, creating 

smooth animated transitions (see Figure 4.9). These tweens could be 

further customized through easing functions with different mathe-

matical operations (Penner, 2002). The second innovation was the 

introduction of Actionscript in which it became possible to write code 

and logic and associate it to a particular keyframe. The last innovation 

was the ability to group drawings in a scene into self-contained objects 

(e.g., movie clips), which meant that even if the animation was 

paused, the objects could – via scripting – change between different 

animations. This means that for example, a platforming game could 

feature a character object that displays motion animations and moves 

around when an arrow key is being pressed. Thus, one could create 

interactive environments since different scene objects could behave 
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independently from each other without being bound to the main time-

line. Blend adopted some of the ideas of the Flash timeline, where a 

group of objects are encapsulated into “storyboards” and the story-

board can be connected to a trigger (e.g., play storyboard when click-

ing a button) without the need to write any code. 

 PROGRAMMING BY EXAMPLE 

Programming by Example, also known as Programming by Demon-

stration, is a common approach to create programming environ-

ments. Halbert (1984) defines programming by example as taking a 

user perspective – “the statements in [their] program are the same as the 

commands [they] would normally give the system” (pp. 4) and the pro-

gram “is written by remembering what the user does”. As a result, the 

collection of demonstrated cases (both positive and negative exam-

ples) define what should happen. One early example of programming 

by example is Topaz (Myers, 1998), which uses the command pattern 

 
Figure 4.9 How motion tweening works. The animator draws the first frame, and ap-
plies transformations to the last frame (e.g., changing fill, size and orientation). The 
system automatically interpolates between the two frames to create a continuous anima-
tion. 
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to record scripts. Myers (1986) recognized a main limitation of the 

demonstration approach in its ability to generalize, as the “user pro-

vides no guidance about the structure of the program so each new example 

can radically change the program. The programmer often knows… which 

values are variables and which are constants, or where the conditionals 

should go, but there is no way to directly convey this information to these 

systems” (pp. 64). Consequently, systems opt to only use program-

ming by example in a partial manner, or resort to other constraints 

(e.g., pattern matching) which might limit what the program can do.  

In 1994, Click Team’s Klik and Play15 applied a mix of demonstration 

and questions to enable people to create games. A character could be 

manipulated to teach it a motion pattern it should pursue, and run-

ning the game would prompt questions as events took place (e.g., 

“person and enemy have collided”, or “user pressed the spacebar”) and 

provide a set of possible predefined commands (e.g., “subtract a life”, 

“make character jump”).  

Demonstrations are an effective way to distinguish discrete patterns 

in individual sensor data. In A CAPella (Dey et al., 2004), one could 

design context-aware applications by demonstrations based on dis-

crete data from multiple sensors, a camera and microphone. With Ex-

emplar (Hartmann et al., 2007), a designer could take an individual 

sensor with discrete or continuous data (e.g., an accelerometer) and 

match a pattern (e.g., shaking) or a threshold crossing (e.g., accelera-

tion in X > 5) to define a discrete action. The viewing of sensor data 

 
15 Information about Klik and Play is scarce, but a video demonstration can be found in 

https://youtu.be/LUTpumYboDs – accessed February 2019.  

https://youtu.be/LUTpumYboDs
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took place in real time. Similarly, Sauron (Savage et al., 2013) lever-

aged a camera inside a 3D print to identify actions on physical widgets 

(e.g., moving a joystick).  Note that these tools stop at the recognition 

stage and offload the interactivity design to other software – d.Tools 

in the case of Exemplar, and OSC sockets in the case of Sauron. 

Programming by example has also led to the recording of macros as a 

way to creating custom interactions. For example, D-Macs (Meskens 

et al., 2010) leveraged demonstration atop of a GUI designer to create 

multi-device interfaces, allowing the recording of screens and actions 

on a desktop and then replaying the actions on the mobile interfaces. 

Similarly, Sugilite (Li et al., 2017) allows creating complex multi-

modal actions on mobile interfaces. 

Overall, programming by demonstration provides a means to create 

commands via direct manipulation, and it excels at capturing poten-

tial triggers to create a one-shot response. 

 KEYFRAMING 

A few systems have taken the programming by demonstration ap-

proach in combination with the motion tweens provided in systems 

such as Adobe Flash. Monet (Li & Landay, 2005) allowed designers 

to manipulate objects and define the point of input, allowing the au-

thoring of different interactions such as sliding a mouse across a dial 

or scaling an object using the mouse cursor. Similarly, different object 

animations could also be linked between each other. In Monet it is 

possible to create different interactive behaviours for custom widgets 

and mouse-based interactions, such as a scroll bar, drag and drop, etc. 

Systems such as Kitty (Habib et al., 2014), and Expresso (Krosnick 
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et al., 2018) apply these concepts in different contexts. In particular, 

Expresso allows creating responsive web designs that will change as 

a window is resized, thus one can map the position of visual objects 

to the size of the current browser window.  

 STAGE METAPHOR 

Finzer and Gould (1993) created a programming environment made 

for non-programmers to create education software based on the met-

aphor of theatre: “only things that can be seen can be manipulated” (pp. 

1). In that sense, the environment had performers, stages, and inter-

acted via cues to each other. Adobe Director (formerly Macromedia) 

leveraged this stage metaphor and provided additional scripting via 

Lingo. Given Director’s built-in 3D engine and ability to support 

more complex programming, toolkits such as DART (MacIntyre et 

al., 2004) could support authoring Augmented Reality applications. 

YoYo Games’ Game Maker contextualizes these principles into 

game design, where people can create characters that have a set of 

visuals (i.e., sprites) and attach behaviours to them based on events 

(e.g., when the screen refreshes, when a key is pressed) via scripts or 

node-link visual programs. Note that all these approaches require 

some degree of coding even if in the background. 

 STEP BY STEP WIZARDS 

Perhaps one way to eliminate the programming gap is to make the 

task less about programming and more about configuration. One can 

create a system that forces (1) following steps in a (2) particular order 

to accomplish a goal, where (3) different parameters can be set. This 



 DAVID LEDO, 2020  |  95 

 

is often referred to as the Wizard Pattern16, inspired by software in-

stallation “wizards”. PYGMALION (Smith, 1975) is perhaps the 

first system to do this, emphasizing “doing rather than telling” (pp. 

68). Several systems support this paradigm in different degrees. 

IFTTT17 allows connecting multiple web services (e.g., “turn on the 

lights when the pizza delivery arrives”) via pre-built trigger-action con-

nections. Midas (Savage et al., 2012) provided customization of ca-

pacitive sensors to re-route touch events which could be interpreted 

by custom microcontrollers as well as mobile devices. In Midas, de-

signers lay out touch sensitive areas on a mobile device image to cre-

ate a fabrication-ready circuit, and map those touch-points to pre-rec-

orded actions or as WebSocket events that can be picked up by other 

applications. PaperPulse (Ramakers et al., 2014) similarly supported 

creating interactive paper-based circuits, where the software first 

provided a widget builder which then allowed recording of custom 

trigger-action events. Similarly, RetroFab (Ramakers et al., 2015) 

made appliances smart by adding custom electronic components 

which could then have actions recorded to define the behaviours and 

provide controls from a mobile application.  

 WIZARD OF OZ AND VIDEO PROTOTYPING TOOLS 

Some tools have looked to support Wizard of Oz and video prototyp-

ing practices. In particular, de Sá et al. (2008) show how one can use 

 
16 Nick Babich (2017) – Wizard Design Pattern https://uxplanet.org/wizard-design-pat-

tern-8c86e14f2a38 – accessed February, 2019. 

17 IFTTT https://ifttt.com/ – accessed February, 2019. 

https://uxplanet.org/wizard-design-pattern-8c86e14f2a38
https://uxplanet.org/wizard-design-pattern-8c86e14f2a38
https://ifttt.com/
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photos of sketched or rendered wireframes on mobile devices to sim-

ulate an interactive system. It is worth noting how de Sá et al. reveal 

how seeing the sketches in context detected usability issues early on, 

but more importantly, seeing the interface on the target screen made 

people realize early on when controls were inadequate, or sizing (e.g., 

amount of text) was an issue. ProtoAR (Nebeling et al., 2018) allows 

designers to place overlays (e.g., sketches) atop clay models captured 

with a mobile camera, thus allowing prototyping of Augmented Real-

ity applications. Montage by Leiva and Beaudouin-Lafon (2018) uses 

(1) a user camera capturing a scene with a context containing a green 

screen, (2) a wizard camera directed at a paper prototype, and (3) a 

tablet canvas which places the paper prototype atop the green screen 

using a chroma-key technique. Through this, they can record video 

and use a timeline to change the contents of the interface. What is 

interesting about these Wizard of Oz tools is in their adoption of some 

of the aforementioned approaches (e.g., the timeline in Montage). 

While some these tools do support live rendering, they remain as sim-

ulations which do not allow testing of the overall experience. 

 SMOKE AND MIRRORS AND SCREEN POKING 

Buxton (2007) describes an alternative way of achieving high fidelity 

experiences, which he labels “smoke-and-mirrors” technologies. In-

stead of relying on a human operator as in Wizard of Oz, designers 

realize an interactive sketch of a concept through “clever use of tech-

nologies and techniques” (pp. 245). Buxton exemplifies this approach 

through Fitzmaurice’s work on Chameleon (1993). Chameleon sim-

ulates a mobile device that is spatially aware, and was realized 

through the following setup shown in Figure 4.10: the end-user holds 

 
Figure 4.10 Setup for Chameleon by Fitz-
maurice (1993). Setup shows how a porta-
ble TV augmented with a button and posi-
tion sensors is rendering the video-streamed 
images from a camera pointed at a monitor 
which runs the software applications for 
mobile spatial navigations. Image based on 
Fitzmaurice (1993). 
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a handheld portable TV with a small motion capture device attached 

to the back; the sensors are connected to a computer running a three-

dimensional map application rendered on a display; and a video cam-

era reflects the visuals of the display on the handheld TV. From the 

end-user’s perspective, they were holding a mobile device able to 

sense spatial interactions at a time in which palmtop computers (and 

further with such graphics capabilities) were not readily available. 

While Fitzmaurice et al. show a hardware workaround to simulate 

highly capable mobile interactions, the software still required imple-

mentation on a desktop computer. 

The last example is a very sophisticated prototype, which is not a nec-

essary requirement for smoke and mirror prototypes. A simple, yet 

still powerful approach, is to repurpose the mouse and keyboard 

events within an application in an interesting way, a technique which 

Hartmann (2009) calls “screen poking”. An example of this is Legan-

chuk’s Doorstates (Buxton, 1997), where a physical door was used as 

a means to communicate accessibility in video conferencing by repur-

posing a mouse mounted by the door. Hudson and Mankoff (2006) 

created BOXES, a hardware platform to create physical prototypes 

out of cardboard, which then connected to an application, Thumb-

tacks, to assign mouse and keyboard events or recordings to control 

familiar applications, to create simple hardware prototypes that could 

behave in more sophisticated ways (e.g., tapping a piece of cardboard 

would play music by clicking on the media player’s play button). Ma-

key Makey18 created a similar platform, albeit more simplified, where 

 
18 Makey Makey https://makeymakey.com/ –  accessed February, 2019. 

https://makeymakey.com/
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one could connect alligator clips to a custom board and the board au-

tomatically maps those events to mouse and arrow keys or mouse but-

ton events. Hartmann (2009) also created functions to support 

screen poking within d.Tools, where he describes that the limitation 

of screen poking is that it is “unaware of the internal state of the con-

trolled application” (pp. 87). Thus, while it is possible to use any ap-

plication, designers need to consider some degree of setup of the 

computer application, and recognize that there may not always be full 

control of the external application. 

4.4 SUMMARY AND CONCLUSION 
After discussing different prototyping activities carried out by design-

ers (e.g., sketching, wireframing), it becomes clear that designers can 

only truly explore behaviours and physically try them out by creating 

interactive programmed prototypes. Thus, I identify a gap in current 

practices and in the commonly used commercial tools. Prior systems 

tackle some of these elements, which directly inform my work in 

providing means to author nuanced interactive behaviours for smart 

interactive objects. Seeing the existing gap, and noting the added 

complexities of smart object prototyping, later discussed in Chapter 

6, this collective work informed the rationale that led to the research 

contributions to be described in Parts 2 and 3 of this dissertation.  

The background described in Chapters 2, 3 and 4, provides a context 

on the skills and expectations of interaction designers, along with 

their common practices. Different tools were depicted to show au-

thoring approaches which can be complemented with alternative so-

lutions to: (1) support exploration and behaviour authoring, (2) allow 

the creation of smart objects, and (3) foster new ways of thinking 
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about how design tools can support designers in the creation process. 

Moreover, another element that will provide further reflection and 

insight is in having an understanding of the work done in HCI toolkits 

and more importantly how these authoring systems are evaluated. 

Understanding evaluation methods in advance will help shape the de-

sign of prototyping tools, as it enables thinking about what aspects to 

support and how to communicate them, the topic of the next chapter. 

 





 

 

 

 

 

 

 

 EVALUATING TOOLKIT 

SYSTEMS 

This chapter describes evaluation methods used in HCI toolkit re-

search1. At first glance, this chapter might appear secondary to the 

dissertation’s technical goals of producing toolkits2/prototyping 

tools for interaction designers. Yet, toolkit evaluation – and the deci-

sions made around it – are central to any academic discussion of 

toolkit design.  Many challenges accompany toolkit evaluation (§5.1), 

and there is no consensus on whether it should be done, and if so, 

how. The research portrayed in this chapter is an attempt to appraise 

 
1 Portions of this chapter have been published in:  

Ledo, D*., Houben, S.*, Vermeulen, J.*, Marquardt, N., Oehlberg, L., & Greenberg, S. 

(2018). Evaluation Strategies for HCI Toolkit Research. Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems, 1–17. doi: 10.1145/3173574.3173610 

* Authors contributed equally to the work. 

Data and other materials can be found at: https://github.com/davidledo/toolkit-evaluation. 
2 Prototyping tools in the context of interactive behaviour design fall into the definition of 

toolkits (§5.2). I argue that these prototyping tools are a subclass of toolkits, and their 

building blocks operate as programming tools that do not require writing code.  

https://doi.org/10.1145/3173574.3173610
https://github.com/davidledo/toolkit-evaluation
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and critically discuss (§5.2) the role of evaluation in toolkit research, 

which in turn lays the foundation for why particular decisions were 

made in evaluating the tools described in this dissertation.  

Based on an analysis of 68 representative toolkit papers (§5.3), this 

chapter contributes an overview and in-depth discussion of evalua-

tion methods for toolkits in HCI research. The survey resulted in four 

types of evaluation strategies: (1) demonstration (§5.4), (2) usage 

(§5.5), (3) technical benchmarks (§5.6), and (4) heuristics (§5.7).  I pre-

sent these four evaluation types, and opine on the value and limita-

tions associated with each strategy. This meta-review synthesis is 

based on a sample of representative toolkit papers. Further, I link in-

terpretations to both our own experiences as toolkit authors, and ear-

lier work by other toolkit researchers (§5.8). Researchers can use this 

synthesis of methods to consider and select appropriate evaluation 

techniques for their toolkit research. 

5.1 THE CHALLENGE OF TOOLKIT EVALUATION 
Within HCI, Greenberg (2007) defined toolkits as a way to encapsu-

late interface design concepts for programmers, including widget 

sets, interface builders, and development environments. Such 

toolkits are used by designers and developers to create interactive ap-

plications. Thus, they are generative platforms designed to create 

new artifacts, while simplifying the authoring process and enabling 

creative exploration.   

While toolkits in HCI research are widespread, researchers experi-

ence toolkit papers as being hard to publish (Nebeling, 2017) for var-

ious reasons. For example, toolkits are sometimes considered as 
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merely engineering, as opposed to research, when in reality some in-

teractive systems are ‘sketches’ using code as a medium to explore 

research contributions, whereas others embody their contributions in 

the code itself (Fogarty, 2017). Sometimes, toolkit researchers are 

asked for a particular evaluation method without consideration of 

whether such an evaluation is necessary or appropriate to the partic-

ular toolkit contribution. Consequently, acceptance of toolkits as a 

research contribution remains a challenge and a topic of much recur-

rent discussion, such as Bernstein et. al (2011), Fogarty (2017), 

Greenberg (2007), Marquardt et. al (2017), Myers et. al (2000) and 

Olsen (2007). In line with other areas of HCI (Greenberg, 2007; Ol-

sen, 2007), we should expect HCI toolkit research to use appropriate 

evaluation methods to best match the particular research problem un-

der consideration, as discussed by Greenberg and Buxton (2008), 

Hudson and Mankoff (2014), and Preece and Rombach (1994). How-

ever, while research to date has used different evaluation methods, 

there is little overall reflection on what methods are used to evaluate 

toolkits, when these are appropriate, and how the methods achieve this 

through different techniques.   

The last two decades have seen an increase in HCI toolkit papers 

(Marquardt et al., 2017). These papers typically employ a range of 

evaluation methods, often borrowing and combining techniques from 

software engineering, design, and usability evaluation. From this cor-

pus, it is possible to derive what evaluation methods are useful, when 

they are appropriate and how they are performed.   
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5.2 WHAT IS A TOOLKIT? 
Within HCI literature, the term ‘toolkit’ is widely used to describe 

various types of software, hardware, design and conceptual frame-

works. Toolkit research falls into a category of constructive research, 

which Oulasvirta and Hornbæk (2016) define as “producing under-

standing about the construction of an interactive artefact for some purpose 

in human use of computing” (pp. 4958). They specify that constructive 

research is driven by the absence of a (full) known solution or re-

sources to implement and deploy that solution.  

As constructive research, toolkits examine new conceptual, design or 

technical solutions to unsolved problems. To clarify this chapter’s re-

view’s scope, I next define and summarize what is meant by “toolkit” 

and “toolkit evaluation”, and why HCI researchers build toolkits. 

 DEFINING A TOOLKIT 

I extend Greenberg’s original definition (2007) to define toolkits as 

generative platforms designed to create new interactive artifacts, provide 

easy access to complex algorithms, enable fast prototyping of software and 

hardware interfaces, and/or enable creative exploration of design spaces. 

Hence, toolkits present users with a programming or configuration 

environment consisting of many defined permutable building blocks, 

structures, or primitives, with a sequencing of logical or design flow 

affording a path of least resistance. Toolkits may include automation 

(e.g., recognizing and saving gestures (Marquardt et al., 2011a)) or 

monitoring real-time data (e.g., visualization tools (Marquardt et al., 

2011b)) to provide developers with information about their own pro-

cess and results. 



 DAVID LEDO, 2020  |  105 

 

 WHY DO HCI RESEARCHERS BUILD TOOLKITS? 

Before discussing toolkit evaluation, we elaborate on what they con-

tribute to HCI research. Wobbrock and Kientz position toolkits as ar-

tifact contributions, where “new knowledge is embedded in and mani-

fested by artifacts and the supporting materials that describe them” (pp. 

40). Discussions by Myers et. al (2000), Olsen (2007) and Greenberg 

(2007) on the value of HCI toolkits can be summarized into five goals: 

G1. Reducing Authoring Time and Complexity. Toolkits make it eas-

ier for users to author new interactive systems by encapsulating con-

cepts to simplify expertise (Greenberg, 2007; Olsen, 2007). 

G2. Creating Paths of Least Resistance. Toolkits define rules or path-

ways for users to create new solutions, leading them to right solutions 

and away from wrong ones (Myers et al., 2000). 

G3. Empowering New Audiences. Given that toolkits reduce the ef-

fort to build new interactive solutions, they can enable new audiences 

to author these solutions.  For example, Olsen (2007) discusses how 

interface builders opened interface design to artists and designers. 

 
Figure 5.1 Code and contribution as described by Fogarty (2017). Figure illustrates how system contributions are described within HCI 
research: stand-alone novel technical contribution; a combination of novel and known techniques to achieve novel functionality; using 
known techniques to achieve novel functionality; or achieving known functionality with novel techniques. Figured adapted from 
(Fogarty, 2017). 



106 EVALUATING TOOLKIT SYSTEMS 

 

G4. Integrating with Current Practices and Infrastructures. 

Toolkits can align their ideas to existing infrastructure and standards, 

enabling power in combination (Olsen, 2007) and highlighting the 

value of infrastructure research for HCI (Edwards et al., 2010). For 

example, D3 (Bostock et al., 2011) integrated with popular existing 

standards, which arguably contributed significantly to its uptake.  

G5. Enabling Replication and Creative Exploration. Toolkits allow 

for replication of ideas that explore a concept (Greenberg, 2007), 

which collectively can create a new suite of tools that work together 

to enable scale and create “larger [and] more powerful solutions than 

ever before” (Olsen, 2007; pp. 252). 

Toolkits serve different roles in terms of their research contribution. 

Fogarty (2017), as illustrated in Figure 5.1, examines where the nov-

elty of a system lies. He suggests that in contrast to an individual tech-

nical contribution, a toolkit is a collection of techniques that can 

achieve a particular functionality, where the functionality is the goal 

(the “what”) and the technique collection describes “how” it is 

achieved. The techniques and functionality can stand as a research 

contribution in three ways: (1) a toolkit achieves a novel functionality 

via novel techniques, (2) a toolkit achieves novel functionality 

through known techniques (e.g., through combination of known ap-

proaches), or (3) a toolkit achieves known functionality through novel 

techniques (e.g., using more optimized algorithms). Greenberg 

(2007), focuses more on toolkits as a mean of promoting replication 

by applying Gaines’ (1991) BRETAM model to forecast information 

sciences (Figure 5.2). The model discusses different stages of the 
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adoption of technology, in which ideas are born through major break-

throughs, which are then replicated. Overtime, the concepts reach 

empiricism which are formalized into theories. These theories are 

then accepted and used to predict experiences until those theories are 

assimilated and used without question. Greenberg’s replication is not 

constrained to recreating a system to achieve the same result. Instead, 

it is about being able to explore different facets of an idea, such as the 

application scenarios, or different variations, to reach a richer a richer 

understanding of the research vision. Under this vision, toolkits are 

instrumental in supporting more researchers to explore these differ-

ent application areas. 

Marquardt et. al (2017) see promise in toolkits as a research method-

ology within HCI. First, toolkits embody a generative means to real-

ize theoretical frameworks (e.g., Rogers (2004) and Wiberg and 

Stolterman (2014)). For instance, the Proximity Toolkit (Marquardt 

 
Figure 5.2 Gaines’ (1991) BRETAM model of forecasting information sciences as described by Greenberg (2007). Within it, toolkits 
foster replication to aid design exploration (Adapted from Greenberg (2007)). 
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et al., 2011) encapsulated the conceptual building blocks proposed in 

Proxemic Interaction (Ballendat et al., 2010), which then fostered 

more focused research applications in multiple areas, including de-

vising design patterns (Marquardt et al., 2012), advertising (Wang et 

al., 2012), body-centric interaction (Chen et al., 2012), awareness of 

shoulder-surfing in public displays (Brudy et al., 2014), remote con-

trols (Ledo et al., 2015), etc. Besides applying the Ballendat et al.’s 

(2010) framework for proxemic interaction, these research endeav-

ours helped further explore what is possible in the research domain 

while removing much of the programming complexity (e.g., tracking 

people and devices in 3D space, calculating physical relationships be-

tween people and devices). Second, methodologies in design research 

(e.g., (Cross, 1999), (Hevner et al., 2004), (Zimmerman, 2007)) sug-

gest that the design of artifacts provide researchers with an under-

standing of the solution space, while the artifact, in this case, the 

toolkit, is an embodiment of the knowledge. With toolkits, research-

ers can experiment creating different prototypes, and in that process 

can gain a better understanding of: (1) the design space, given that in 

the creation process, the building blocks can be immediately recon-

figured to generate new solutions, thus further expanding the under-

standing of the design space; and (2) the paths of least resistance to sup-

port the authoring practice, as the toolkit creation process implies 

adapting the authoring process to support different solutions and ap-

proaches in a generalizable way. Under this view, the toolkit can also 

act as a means of exploration, as researchers can devise new ways of 

authoring technologies to generate multiple solutions. Thus, the cre-

ation of a toolkit can be considered a malleable process that is in-

formed by an understanding of the target audience, a set of sketched 
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ideas, and the continued realization of individual prototypes while 

considering how the authoring approach might generalize to other 

variations or scenarios. 

 EVALUATING TOOLKITS 

A common concern among HCI toolkit and system researchers is the 

difficulty in publishing (Nebeling, 2017). This might be due to the ex-

pectations and prevalence of evaluation methods (e.g., user studies), 

regardless of whether the methods are necessary or appropriate to the 

toolkit’s contribution. Part of the problem is a lack of clear methods 

(Nebeling, 2017) or a clear definition of ‘evaluation’ within a toolkit 

context. My stance in this dissertation is that the evaluation of a 

toolkit must stem from the toolkit designer’s claims. Evaluation is a 

means to follow through with the proposed claims of the innovation. 

Toolkit designers should thus ask themselves: “what do we get out of 

the evaluation?”  

Toolkits are typically different from systems that perform one task 

(e.g., a system, algorithm, or an interaction technique) as they pro-

vide generative, open-ended authoring within a solution space. 

Toolkit users can create different solutions by reusing, combining 

and adapting the building blocks provided by the toolkit. Conse-

quently, the trade-off to such generative power is the large space that 

remains under explored. Evaluation methods that only examine a 

small subset of the toolkit may not demonstrate the research contri-

bution, nor do they necessarily determine a toolkit’s success. As sum-

marized by Olsen (2007) in his reflective paper on evaluating systems 
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research: “simple metrics can produce simplistic progress that is not nec-

essarily meaningful.” The central question is thus: what is an evalua-

tion? And, how do we reflect and evaluate such complex toolkit research? 

5.3 METHODOLOGY 
This chapter elucidates evaluation practices observed in modern 

toolkit research within the HCI community. To build up an in-depth 

understanding of contemporary evaluation practices, this chapter re-

port the results of a meta-review based on an analysis of a representa-

tive set of toolkit papers.  

 DATASET 

To collect a representative set of HCI toolkit papers, my co-authors 

and I gathered 68 papers matching the following inclusion criteria. 

Publication Venue and Date, Keywords: the initial selection con-

sisted of 58 toolkit papers that were published since 2000 at the major 

ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp, TEI, Mo-

bileHCI). We included papers containing keywords: toolkit, design 

tool, prototyping tool, framework, API. All 58 papers comply with our 

proposed toolkit definition. 

Exemplary Papers. We then identified 10 additional papers published 

elsewhere, based on exemplary impact (e.g., citations, uptake) such 

as D3 (Bostock et al., 2011), Piccolo/Jazz (Bederson et al., 2004), and 

the Context Toolkit (Salber et al., 1999).  The total dataset includes 

68 papers (Table 5.1). While other toolkit papers exist, our dataset 

serves as a representative sample from which we could (1) gather in-

sight and (2) initiate meaningful discussion about evaluation.  
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 ANALYSIS AND RESULTS 

The dataset was analyzed via several steps. I conducted open-coding 

(Charmaz, 2014) on a subset of our sample, describing the evaluation 

methods used in each publication. Next, my co-authors and I collec-

tively identified an initial set of evaluation methods and their varia-

tions as used across papers. At this point, my co-authors and I per-

formed focused coding (Charmaz, 2014) on the entire sample. We 

continued to apply the codes to the rest of the sample, iteratively re-

fining and revisiting the coding schema.  After coding all papers in 

our sample, we created categories (Charmaz, 2014) to derive the 

overarching evaluation strategies used by toolkit researchers, thus ar-

riving at the four evaluation strategies that we identify as (1) demon-

stration, (2) usage, (3) technical evaluation, and (4) heuristic evaluation. 

Table 5.1 summarizes the analysis, showing the count of evaluation 

strategies seen in the current sample. Note that this frequency count 

is not necessarily indicative of a strategy’s overall appropriateness or 

success, as it only reflects the methods that researchers have applied 

to date from our specific sample.  

 
Table 5.1. Overview of all toolkits in the sample. Types: (1) Demonstration, (2) Usage, (3) Technical Performance and (4) Heuristics. 
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The following sections step through the four evaluation types, sum-

marized in Table 5.2. For each type, I will discuss their value and the 

specific techniques used. I then reflect on challenges for that type, 

followed by opportunities to reflect on the evaluation: opinions are 

based on our insights gained from data analysis, my and my co-au-

thors’ experiences and/or opinions offered by other researchers. The 

result is a set of techniques that researchers can use, on their own or 

in combination, to assess claims made about their toolkits. 

5.4 TYPE 1: DEMONSTRATIONS 
The now famous “mother of all demos” by Douglas Engelbart (1968) 

established how demonstrating new technology can be a powerful 

way of communicating, clarifying and showcasing new ideas and con-

cepts. The transferability of an idea to neighbouring problem spaces 

is often shown by demonstrating application examples (Oulasvirta & 

Hornbaek, 2016). In our sample, 66 out of 68 papers used demonstra-

tions of what the toolkit can do, either as the only method (19/68) or 

in combination with other methods (47/68). Demonstrations show 

 
Table 5.2. A summary of the four evaluation strategies. 
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what the toolkit might support, as well as how users might work with it. 

This ranges from showing new concepts (e.g., Phidgets (Greenberg 

& Fitchett, 2001), Context Toolkit (Salber et al., 1999)), to focused 

case studies (e.g., iStuff (Ballagas et al., 2003), SoD Toolkit (Seyed 

et al., 2015)) to design space explorations (e.g., WatchConnect (Hou-

ben & Marquardt, 2015), the Proximity Toolkit (Marquardt et al., 

2011) and Pineal (Ledo et al., 2017)). 

 WHY USE DEMONSTRATIONS? 

The goal of a demonstration is to use examples and scenarios to clar-

ify how the toolkit’s capabilities enable the claimed applications. A 

demonstration is an existence proof showing that it is feasible to use 

and combine the toolkit’s components into examples that exhibit the 

toolkit’s purpose and design principles. These examples can illus-

trate different aspects of the toolkit, such as using the basic building 

blocks, demonstrating the workflows, or discussing the included 

tools. Since toolkits are a ‘language’ to simplify the creation of new 

interactive systems (Greenberg, 2007), demonstrations describe and 

show how toolkits enable paths of least resistance for authoring.   

In its most basic form, a demonstration consists of examples explor-

ing the expressiveness of the toolkit by showing a range of different 

applications. More systematic approaches include explorations of the 

threshold, ceiling or design space supported by the toolkit. The threshold 

is the user’s ability to get started using the toolkit, while ceiling refers 

to how much can be achieved using the toolkit (Myers et al., 2000). 

While demonstrations may not show the full ‘height’ of the ceiling, 

they are an indicator of the toolkit’s achievable complexity and po-

tential solution space. The principles and goals of the toolkit can also 
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be demonstrated through a design space exploration which enumer-

ates design possibilities (Wiberg & Stolterman, 2014) and gives ex-

amples from different points in that space. 

Sometimes, a prototype toolkit may not be mature enough (e.g., due 

to bugs, incomplete parts) to afford other evaluation methods (e.g., a 

user study). In such a case, demonstrations are a way to illustrate and 

highlight the research concepts rather than the particular implemen-

tation. Indeed, toolkit authors should be transparent and explain that 

they are demonstrating concepts of the toolkit itself, and that the cur-

rent version of the toolkit is not sufficiently robust for external usage. 

 EVALUATION TECHNIQUES AS USED IN DEMON-

STRATIONS 

Our sample reveals several techniques to demonstrate a toolkit. 

These techniques are not mutually exclusive and can be combined in 

different ways. The simplest unit of measurement for demonstration 

is an individual instance. While multiple instances can be described 

separately, researchers may carefully select instances as collections to 

either explore the toolkit’s depth (case studies) or its generative 

breadth (design spaces). Toolkit authors may also go beyond describing 

the features of instances, by showing the detailed ‘how to’ steps in-

volved in the instance authoring process. 

 INDIVIDUAL INSTANCES 

1. Novel Examples. Demonstration of a toolkit can be done by show-

ing the implementation of novel applications, systems or interaction 

techniques. The Context Toolkit (Salber et al., 1999) is a classic case 

of how example applications are used to demonstrate the underlying 
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concepts of context-awareness (Schilit et al., 1994). A more recent ex-

ample is WorldKit (Xiao et al., 2013), which demonstrates projec-

tion-based touch interfaces on everyday surfaces in four different en-

vironments. Similarly, in DiamondSpin (Shen et al., 2004), the au-

thors explore the capabilities of their multi-touch table toolkit by 

showing five different tabletop designs. Peripheral Displays Toolkit 

(Matthews et al., 2004) uses three applications to demonstrate ways 

to enable new peripheral displays. Finally, Sauron (Savage et al., 

2013) describes three prototypes to demonstrate the toolkit’s inter-

active features for physical prototypes. What is important is that 

these examples detail how the features, design principles, and build-

ing blocks enable new applications. 

2. Replicated Examples. Toolkits often facilitate authoring of systems 

that were previously considered difficult to build. Recreating prior 

applications, systems or interaction techniques shows how the toolkit 

supports and encapsulates prior ideas into a broader solution space. 

For instance, Prefuse (Heer et al., 2005) states that they “reimple-

mented existing visualizations and crafted novel designs to test the expres-

siveness, effectiveness, and scalability of the toolkit”. In d.tools (Hart-

mann et al., 2006), the authors recreated a classic iPod interface, 

while the TouchID Toolkit (Marquardt et al., 2011) recreated prior 

work from external sources (e.g., Rock and Rails (Wigdor et al., 

2011)) in bimanual interaction. Similarly, SwingStates (Appert & 

Beaudouin-Lafon, 2006) and Prefab (Dixon & Fogarty, 2010) illus-

trate the expressiveness and power of their toolkit by recreating in-

teraction techniques in the research literature (e.g., Bubble Cursor 

(Grossman & Balakrishan, 2005), CrossY (Apitz & Guimbretière, 
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2004)).  These examples demonstrate how toolkits reduce complex-

ity, effort and development time for recreating applications. Further-

more, replication can demonstrate how the toolkit generalizes across 

a variety of examples. 

 COLLECTIONS 

3. Case Studies. Because toolkits often support complex applications, 

case studies (typically concurrent research projects) can help explore 

and elaborate the toolkit in greater depth. Five of our 68 papers in-

cluded case studies to reveal what their toolkit can do. The iStuff 

toolkit (Ballagas et al., 2003) presents case studies of other research 

projects that use the toolkit. Similarly, the SoD toolkit (Seyed et al., 

2015) describes its use in complex case studies: an oil and gas explo-

ration application and an emergency response system.  Prefuse (Heer 

et al., 2005) reports on the design of Vizster, a custom visualization 

tool for social media data. Although case studies are less common 

than examples, they convincingly demonstrate the toolkit’s applica-

tion within large, complex scenarios as opposed to small, self-con-

tained example applications. 

4. Exploration of a Design Space. A design space exploration exem-

plifies the breadth of applications supported by the toolkit by fitting 

it into a broader research theme. Design spaces often consist of di-

mensions with properties (categorical or spectrum variables (Wiberg 

& Stolterman, 2014)) that examples can align to. A toolkit author can 

create a collection of examples that each examine different points in 

the design space. For example, WatchConnect (Houben & Mar-

quardt, 2015) describes a design space of how the toolkit supports in-

teraction across a watch prototype and a second screen. By providing 
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five examples, including both replicated and novel techniques, the au-

thors satisfy the smartwatch + second screen design space by exam-

ple. The Proximity Toolkit (Marquart et al., 2011) similarly describes 

the design dimensions of proxemic interaction (Ballendat et al., 2010) 

(e.g., distance, orientation, identity) and demonstrates through ex-

amples how the toolkit enables new proxemic-aware applications. 

Pineal (Ledo et al., 2017) explores different ways of using and repur-

posing mobile sensors and outputs to author smart objects, using a 

combination of novel examples and replication. Finally, DART 

(MacIntyre et al., 2004) is an example of a toolkit supporting the ex-

ploration of a design space through a range of ‘behaviors’ and exam-

ples. A design space exploration is thus a systematic way of trying to 

map out possible design boundaries. Although exploring the full de-

sign space is often impossible, examples demonstrate the breadth of 

designs enabled by the toolkit.  

 GOING BEYOND DESCRIPTIONS 

5. ‘How To’ Scenarios. Toolkit papers can demonstrate a step-by-

step breakdown of how a user creates a specific application.  Scenar-

ios break down tasks into individual steps that demonstrate the work-

flow, showing the results of each step. We found three ways  in which 

toolkit authors describe scenarios. One way is to dedicate a section to 

describe how one example is authored (e.g., RetroFab (Ramakers et 

al., 2015), Pineal (Ledo et al., 2016)). Second, a scenario can be used 

throughout the paper to show how different parts of an example come 

together (e.g., the Proximity Toolkit (Marquardt et al., 2011)). Demo 

scenarios, as in VoodooSketch (Block et al., 2008) and Circuitstack 
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(Wang et al., 2016) are common ways to explain how users might ex-

perience a toolkit’s path of least resistance. Third, authors might in-

clude code samples. For instance, Prefuse (Heer et al., 2004) and 

Weave (Chi et al., 2015) use code snippets explaining how certain de-

sign principles or building blocks are supported directly in code.  

 CHALLENGES 

Using demonstrations to ‘evaluate’ a toolkit poses several challenges. 

First is its rationale: although novel demonstrations built atop the 

toolkit illustrate toolkit expressiveness, it is sometimes unclear who 

would use such applications and why. Second, while creating demon-

strations can describe ‘what if’ scenarios, the demonstration itself 

may not show that the toolkit can indeed be used by people other than 

the toolkit’s authors. Such lack of external validation may pose issues 

depending on the claims made in the paper.  Third, example applica-

tions often aim to implement aspects of a potential future today; how-

ever, the target audience might not yet exist or simply be unclear. 

Speculating on the intended audience creates the risk of an elastic user 

(Cooper, 2004), where the definition of the target audience is 

stretched to accommodate implementation decisions and toolkit de-

sign. Finally, many toolkit systems, such as Marquardt et. al’s Prox-

imity Toolkit (2011), PaperPulse by Ramakers et. al (2015), and Ea-

glesense by Wu et. al (2017), work with specialized or custom-built 

hardware. In creating these arrangements, the authors might alienate 

the potential audience, as some end-users would not be able to recre-

ate these complicated technical setups (e.g., acquiring the appropri-

ate equipment, creating the necessary spatial arrangements). Moreo-

ver, these specialized hardware systems might become deprecated. 
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 REFLECTION AND OPPORTUNITIES 

Provide Rationale for Toolkit Design and Examples. Within every piece 

of technology lie assumptions, principles and experiences that guide 

the design of that technology. Many of these assumptions can come 

across as arbitrary when designing toolkits. However, toolkit authors 

often rely on their experience even if they do not explicitly mention 

it. Discussing the understanding of the challenges, perhaps informed 

by earlier studies or experiences with other tools or toolkits, can help 

address why different decisions were made. Nebeling et al.’s XD 

toolkit suite, as used in several publications (jQMultiTouch (2012), 

XDBrowser (2014), XDKinect (2016)), is a compelling example of 

how to do this. They constructed several toolkits to structurally and 

systematically explore the large design space of cross-device compu-

ting. They clearly motivated the design and development of each 

toolkit by earlier experiences in designing toolkits and systems. More 

generally, research by design (Hevner et al., 2004) helps explore con-

crete implementations of ideas. 

First-Hand Experience. Toolkit authors often have experience creat-

ing applications that the toolkit will support, and thus are genuinely 

familiar with the development challenges and steps that need simpli-

fying. This experience leads to autobiographical design (Neustaedter 

& Sengers, 2012) informing the toolkit design process. In Phidgets 

(Greenberg & Fitchett, 2001), the authors discuss their frustrations 

in authoring hardware-based applications, which informed their de-

sign and implementation. A toolkit may also leverage experiences 

with building similar toolkits. The design of D3 (Bostock et al., 2011) 
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evolved from the authors’ earlier experiences in creating visualiza-

tion toolkits (e.g., Prefuse (Heer et al., 2005), ProtoVis (Bostock & 

Heer, 2009)).  

Prior Work. Challenges identified in previous research can help moti-

vate the design of toolkits. For instance, the Context Toolkit (Salber 

et al., 1999) describes challenges in authoring context-aware applica-

tions based on prior work (e.g., new types of sensing from multiple 

distributed sources).  

Formative Studies. Authors can perform formative studies to under-

stand their intended target audience. For instance, in d.tools (Hart-

mann et al., 2006), the authors conducted interviews at product de-

sign companies. Understanding current practices can help address 

challenges with the design of the toolkit.  

Discuss Boundaries and Underlying Assumptions. Despite including a 

‘limitations’ section, toolkit authors often do not discuss aspects of 

the toolkit that do not work well. Critically discussing what does not 

work or the tasks complicated by the toolkit might help steer away 

from a ‘sales pitch’. 

5.5 TYPE 2: USAGE 
While demonstrations answer the question of ‘what can be built with 

the toolkit’, evaluating usage helps verify ‘who can use the toolkit’ under 

certain circumstances, i.e., which tasks or activities can a target user 

group perform and which ones still remain challenging? To evaluate 

if and how a user group can actually use the tool, it is important to 

investigate how that user group uses and appropriates the toolkit. Our 

sample shows that more than half of the papers (35/68) include usage 
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studies. Only one toolkit paper uses a usage study as the only evalua-

tion method (Houben et al., 2016). Usage studies are often combined 

with demonstrations (33/68) or technical evaluations (9/68).  

 WHY EVALUATE USAGE? 

The defining feature of usage evaluations is the involvement of exter-

nal users working with the toolkit.  Much of usage evaluation is in-

formed by traditional user studies (as described by e.g., Dumas and 

Redish (1999), Lazar et. al (2017) and Nielsen (1994)), and can help 

verify whether the toolkit is: (1) conceptually clear, (2) easy to use, or 

(3) valuable to the audience. 

Given the prevalence of usability studies in HCI, many toolkit papers 

examine the toolkit’s usability — i.e., how easy it is to use the toolkit. 

Common measures are users’ opinions, preferences, completion 

time, the number of steps (e.g., lines of code), or number of mistakes. 

In addition, given that toolkits often propose new workflows, or ena-

ble creation of new kinds of artifacts, it is important to know if it will 

be useful to the target audience. In looking for utility, researchers in-

quire into the audiences’ interest or outcomes. One way to assess util-

ity is to look at the output of the toolkit. This consists of investigating 

the artifacts that the users authored with the toolkit. Lastly, a usage 

evaluation might look to understand use of the toolkit: how a user ap-

propriates a toolkit, how it is used over time, and what kind of work-

flows are developed. The processes together with the end results can 

point towards paths of least resistance, some of which may differ from 

the ones the toolkit authors’ initially intended. 
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 EVALUATION TECHNIQUES AS USED IN USAGE 

STUDIES 

Given the involvement of external people in usage evaluations, toolkit 

authors can perform a variety of evaluations with users, each yielding 

different kinds of insights. Our data revealed five ways to conduct usage 

studies and two additional complementary techniques for eliciting user 

feedback. The first four techniques refer to controlled lab experi-

ments, where participants are given consistent tasks that can yield ac-

curate measures, such as completion time. The fifth technique is 

somewhat more aligned with ‘in the wild’ studies, which can provide 

more realism as suggested by McGrath (1995) and Rogers and Mar-

shall (2017). The last two techniques are complementary methods to 

elicit user feedback.  

 WAYS TO CONDUCT USAGE STUDIES 

1. Usability Study. When toolkits claim that they facilitate a process, 

authors may choose to carry out a usability study. This can help iden-

tify issues with the toolkit, using measures of participants’ perfor-

mance (e.g., time, accuracy), and further qualitative feedback. Partic-

ipants are typically given programming tasks that exploit various as-

pects of the toolkit. These programming tasks tend to be close-ended, 

though some may include a small degree of open-endedness (e.g., 

Hartmann et. al (2007)). To increase control, some tasks may incor-

porate pre-written skeleton code (e.g., (Nebeling et al., 2014)). Usa-

bility studies can examine various aspects of toolkits. For example, 

Papier-Mâché (Klemmer et al., 2004) shows an evaluation of the 

toolkit’s API usability, which revealed inconsistency in the naming of 
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software components and aspects of the toolkit that lacked documen-

tation. Hartmann et al. coined the term “first-use study” (2006) in 

which participants are exposed to a toolkit for the first time and as-

signed different tasks. In d.tools (Hartmann et al., 2006), the study 

aimed at determining the threshold (Myers et al., 2000) of the system, 

while in Exemplar (Hartmann et al., 2007) the aim was on determin-

ing the successes and shortcomings of the tool. The study in Exem-

plar (Hartmann et al., 2007) combined close-ended tasks with a more 

open-ended task. Some papers report modifying the toolkit to address 

issues identified in a usability study, such as Papier-Mâché (Klemmer 

et al., 2004) and DENIM (Lin et al., 2000), which Greenberg and 

Buxton (2008) suggest should be the main goal of usability studies.  

2. A/B Comparisons. One way to suggest improvement over existing 

work is to compare the new toolkit to a baseline. Baselines include not 

having a toolkit, or working with a different toolkit. In MAUI (Hill & 

Gutwin, 2004), the authors compare different platforms to measure 

what they defined as effort: number of classes, total lines of code, lines 

written for feedthrough and development time. By comparing it to 

GroupKit (a prior toolkit that supports a similar task (Roseman & 

Greenberg, 1996)), and Java (no toolkit), the authors can show the 

degree of improvement from the current state-of-the-art. A/B com-

parisons could test for variations within the toolkit. Lin and Landay 

in Damask (2008) compared a full version of their prototyping tool to 

one without the key features (patterns and layers) to determine the 

improvement and preference. Finally, both Paperbox (Wiethoff et al., 

2013) and XDStudio (Nebeling et al., 2014) compare different con-

figurations of their toolkit. 
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3. Walkthrough Demonstrations. A walkthrough demonstration con-

sists of showing the toolkit to a potential user and gathering their 

overall impressions. Unlike cognitive walkthroughs (Polson et al., 

1992), walkthrough demonstrations are not about the user working 

directly with the tool to identify usability problems. In a walkthrough 

demonstration, the experimenter has full control and explains the 

workflow to participants, together with examples and even limita-

tions. This approach is particularly suitable when toolkit creators 

want to get feedback on the utility of their toolkit, as it removes the 

focus from using the toolkit (as one might find in a usability study) 

and shifts it towards the value of having the toolkit. While the 

walkthrough technique has not been explored extensively, RetroFab 

(Ramakers et al., 2016) is an example of this approach. This tech-

nique can be useful to gather feedback on the idea rather than the spe-

cific toolkit implementation, and might serve for toolkits that are not 

ready for usability testing or deployment. 

4. Observation. Direct observation helps inform how users ap-

proached the toolkit to solve problems ranging from closed tasks re-

quiring a specific solution to a given problem, to open tasks where 

participants formulate the problem and use the toolkit to create their 

own solution. While our analyzed papers rarely presented any in-

depth discussion of participants’ processes or workflows, they did 

provide examples of the toolkit’s use. HapticTouch (Ledo et al., 

2012) tested participants’ ability to transfer concepts about haptics, 

which were provided at varying levels of abstraction, into an interac-

tive application: its authors assessed the paths of least resistance the 

toolkit afforded to solve both open and close-ended tasks. Our analy-

sis also saw observational studies used within short-term (Let Your 
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Body Move Toolkit (Pfeiffer e.t al, 2016)) and long-term (C4 (Kirton 

et al., 2016), and Intuino (Wakita & Anezaki, 2010)) workshop set-

tings involving multiple participants. For example, Pfeiffer et al. 

(2016) asked participants to brainstorm ideas and create Wizard-of-

Oz prototypes using the toolkit. Their video analysis discusses the 

applications created, as well as in-depth details of how their creations 

were made. In C4 Kirton et. al (2013), participants attended 3-week 

workshops, with some staying further for a 4-week artist residency: 

observation informed its creators on how design decisions held up in 

the implementation.  

5. Take-Home Studies. Some external validity (McGrath, 1995) can 

be acquired by conducting experiments outside lab settings. While it 

is difficult to deploy a toolkit before it has gained broader acceptance, 

researchers can provide their toolkit to “early adopter” participants. 

Participants receive the toolkit (and all necessary components and 

documentation) to create any applications of their liking within a 

given timeframe (e.g., a week). Phidgets (Greenberg & Fitchett, 

2001), jQMultiTouch (Nebeling et al., 2012) and the Proximity 

Toolkit (Marquardt et al., 2011) are iconic examples where students 

in an advanced HCI class were given access to the toolkits and neces-

sary hardware components to create interesting examples as a 

prompt. They all demonstrate how students could easily work with 

the proposed constructs, where they focused on design aspects of the 

assignment versus low-level coding. 

 WAYS TO ELICIT USER FEEDBACK 

6. Likert Scale Questionnaires. Likert scales provide a non-paramet-

ric value pertaining to a question. The questions can later be analyzed 
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either through non-parametric tests or by examining the median val-

ues. In toolkit research, while often acting as validation of claims 

(e.g., ease of use), Likert scales can formalize the results to clarify a 

hypothesis. For instance, in Exemplar (Hartmann et al., 2007), the 

authors were unsure as to whether the system empowered both ex-

perts and non-experts, as the performance between these two can dif-

fer considerably. By using Likert scale questionnaires, participant re-

sponses confirmed that both experts and non-experts felt empow-

ered, thus validating their hypothesis.  Other examples like Damask 

(Lin & Landay, 2008), d.tools (Hartmann et al., 2006), Paperbox 

(Wiethoff et al., 2013) and Panelrama (Yang & Wigdor, 2014) use 

Likert scales to quantify user feedback on their system. This feedback 

often complements other usability results. 

7. Open-Ended Interviews. In our sample, 12 papers ask participants 

about their experiences or challenges performing their tasks, which 

provided the authors with insight in terms of processes, successes 

and shortcomings of the toolkit (e.g., Prefuse (Heer et al., 2005), 

Physikit (Houben et al., 2015) and PanelRama (Yang & Wigdor, 

2014)). Interview questions can start from a script, but are open in 

that they allow further inquiry as opportunities arise, such as pursu-

ing interesting and/or unclear responses. Quoting participants gives 

life and adds strength to findings (e.g., Weave (Chi & Yang, 2015), 

DENIM (Lin et al., 2000), Midas (Savage et al., 2013)). Interviews 

can also expose how users perceive toolkit features, and can contex-

tualize other usage data.  
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 CHALLENGES 

Evaluating the toolkit’s implementation through usability tests could 

distract from the conceptual ideas as well as the opportunities facili-

tated by the toolkit. Olsen (2007) warns against falling into “the usa-

bility trap”, as the three underlying assumptions for usability evalua-

tion – walk up and use, standardized tasks, and problem scalability – 

are rarely met for systems research. Additionally, toolkits in HCI re-

search are still prototypes. It is difficult for a small team to create a 

toolkit with the quality of a commercial product (fatal flaw fallacy (Ol-

sen, 2007)). Controlled experiments measuring usability are limited 

in scope and evaluate a very small subset of what the toolkit can ac-

complish, making it difficult to generalize usage results. Further-

more, selected experimental tasks might favour elements that the 

toolkit can accomplish. In achieving control of the tasks, researchers 

may optimize for these tasks, or only create what a usability test can 

measure (Olsen, 2007).  

While observations of people using the toolkit provide information 

about use, they may not assess how the toolkit fares in the real world. 

McGrath (1995) discusses this as the trade-off between realism, pre-

cision and control. Even in “take home” studies, realism is compro-

mised: participants are given all necessary components, instruction, 

access to resources (e.g., documentation, direct access to the toolkit 

creators). This creates an idealistic scenario not necessarily present 

in real-world adoption (Ledo et al., 2017). Furthermore, it is difficult 

to identify appropriate participants for usage evaluations, especially 

as toolkits propose new ways to solve a problem. Specialized target 
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audiences may not even exist yet (Nebeling, 2017). Given the aca-

demic context, it is often easiest to find student populations. Students 

(e.g., computer science students) are often used as a stand-in for the 

target audience (e.g., developers), assuming that if students can use 

the toolkit then professionals might too. However, results may not 

always transfer to the intended target audience. Toolkits often re-

quire extensive use before becoming familiar. Thus, a premature 

evaluation can set up the toolkit for an unfair comparison. 

Another challenge in evaluating usage is that a toolkit system may fa-

cilitate unfamiliar ways to solve a problem, which may fundamentally 

change how an end-user programs or solves a particular problem. For 

example, if a toolkit primarily provides an API that wraps certain 

functionality, a proficient programmer might quickly be able to adopt 

it and work with it. In contrast, a programming by example approach 

would change how a programmer solves the problem: instead of writ-

ing code the programmer has to manipulate virtual objects visually, 

and define positive and negative examples. Moreover, end-users may 

have months or years of training in their current tools and ecosys-

tems, which may shape their existing practices and expectations, thus 

affecting how they receive the new toolkit. In this type of case, a usage 

study is more about understanding whether end-users can quickly 

adopt an alternative way of thinking, or to examine whether they can 

create new algorithms given the new toolkit’s approach. 

One last challenge of usage studies is the conceptual threshold. 

Toolkit systems sometimes encapsulate research concepts (e.g., 

Proxemic Interaction) which may not be familiar to potential study 

participants. As a result, it may not be possible to discern whether 
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issues or limitations of a participant’s prototype are due to technical 

gaps or conceptual gaps (i.e., participants do not create a particular 

type of scenario because they do not understand the concept). 

 REFLECTION AND OPPORTUNITIES 

Bringing Utility into the Picture. A central challenges of usability eval-

uation is its focus on toolkit usability vs. utility (Greenberg & Buxton, 

2008): while a toolkit may be usable, it may not be useful. Similarly, 

a toolkit may have sufficient utility to make users satisfied in spite of 

usability issues being present. Walkthroughs and interviews can help 

here, where questions about utility can be raised and responses ex-

plored in depth.  

Selecting Tasks and Measures Carefully. While more control, more 

measures and more quantifiable results seemingly provide rigour, we 

argue that rigour is only of value if truly representative tasks and ap-

propriate measures are used. Rigour should come from a careful se-

lection of the method, technique, and means of executing the tech-

nique. Publications should clearly articulate why the chosen tasks and 

measures support the claims made in the paper (Greenberg & Bux-

ton, 2008). 

Recognizing the Consequences of Audience Choice. Toolkit authors 

should critically reflect and understand the implications of their 

choice of audience to study. As mentioned, the audience can be a 

close approximation or a starting point, but authors need to articulate 

such implications and limitations. 
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5.6 TYPE 3: TECHNICAL PERFORMANCE 
While demonstrations and usage studies evaluate what a toolkit can 

do and who might use that toolkit, researchers can evaluate the tech-

nical performance of the toolkit to find out how well it works. From 

our sample of 68 toolkit papers, about one third of the papers (18/68) 

include technical performance studies. Technical studies are comple-

mentary to demonstration and usage evaluations, as they convey ad-

ditional information on the technical capabilities of the toolkit. 

 WHY ANALYZE THE TECHNICAL PERFORMANCE?  

The goal of studying technical performance is to benchmark, quantify 

or analyze the toolkit or its components to verify or validate the per-

formance. Technical performance can be measured in terms of effi-

ciency (e.g., speed of the algorithm, throughput of a network proto-

col), precision (e.g., accuracy of an algorithm, fault tolerance), or 

comparison against prior techniques. Overall, the purpose is, thus, to 

measure some form of system performance. These measures show 

whether it meets basic usage standards (threshold), or if there are im-

provements over the state-of-the-art. Technical benchmarks can 

push the boundaries of the toolkit to show when it no longer works as 

expected. Authors sometimes turn to software engineering metrics 

(e.g., lines of code, number of classes) to show improvement over ex-

isting practices. 

 TECHNIQUES AS USED IN  

TECHNICAL PERFORMANCE  

The Software Engineering community has a rich set of tools to eval-

uate the performance of systems (Blackburn et al., 2006). Our dataset 
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showed that toolkit authors examine a wide variety of benchmarks 

such as: website loading time (D3 by Bostock et. al (2011)), spatial res-

olution (OpenCapSense by Grosse-Puppendahl et. al (2013)), framer-

ate (KinectArms by Genest et. al (2013) and C4 by Kirton et. al 

(2013)), GPU usage (C4 by Kirton et. al (2013)), memory allocation 

(e.g., Protovis by Bostock and Heer (2009) and C4 by Kirton et. al 

(2013)), load time (Protovis by Bostock and Heer (2009)), lines of 

source code (Swingstates by Appert and Beaudouin-Lafon (2006) and 

Context Toolkit by Salber et. al (1999)),  and the size of the binary 

(Swingstates by Appert and Beaudouin-Lafon (2006)). Performance 

metrics should be tied to the claims of the paper, and the needs that 

must be satisfied for the toolkit to be operational or go beyond the 

state-of-the-art.  

1. Benchmarking Against Thresholds. For certain types of applica-

tions, systems and algorithms, there are known, tested or desirable 

thresholds that serve as baseline to verify that a system meets a com-

monly accepted standard of use (e.g., accuracy, latency). For in-

stance, 30 fps is often used for real-time tracking systems (New-

combe et al., 2011). Both KinectArms (Genest et al., 2013) and Ea-

gleSense (Wu et al., 2017) present new tracking systems bench-

marked at this 30 fps rate. Thresholds can be derived empirically, 

technically or from experience using the tools.  

2. Benchmarking Against State-of-the-Art. Benchmarking often 

looks for improvements over existing state-of-the-art solutions. This 

comparison approach is often similar to algorithm contributions in 

HCI, such as the $1 Gesture Recognizer (Wobbrock & Wilson, 

2007), where a toolkit’s capabilities are compared against well-
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known baselines, or the best algorithm for that purpose. For instance, 

in OpenCapSense (Grosse-Puppendahl et al., 2013), the authors 

compared the toolkit’s capacitive sensing performance to the earlier 

CapToolKit (Wimmer et al., 2007). While not a toolkit (and thus not 

part of our dataset), the $1 Gesture Recognizer (Wobbrock & Wilson, 

2007) is an excellent example of benchmarking against the state-of-

the-art: the benchmarks showed that it was considerably close to the 

state-of-the-art, yet much simpler to implement (about 100 lines of 

code). D3 (Bostock et al., 2011) compared page load time to a prior 

toolkit and to Adobe Flash. Page load time was deemed important 

given their use-case: rendering visualizations created with the toolkit 

on the web. 

 CHALLENGES 

Technical benchmarks often complement demonstrations or usage 

studies. Measuring technical benchmarks in isolation may highlight 

some human aspects of using a toolkit (e.g., frame rate, latency), but 

do not account for what it is like to use the toolkit. For instance, rep-

resentative examples may still be difficult to program, even if requir-

ing few lines of code. Similarly, a paper may not always (explicitly) 

clarify the benchmark’s importance (e.g., 30 fps in EagleSense (Wu 

et al., 2017)). Another challenge is that benchmark testing relies on 

comparisons to an existing baseline. If performance specifications 

have not already been published, authors must access state-of-the-art 

systems to perform the comparisons. Given the prototypical nature 

of HCI toolkits and the fast-moving targets of technology (Myers et al., 

2000), many pre-existing baselines may already be deprecated or re-
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quire extensive reimplementation by the toolkit authors. Alterna-

tively, a baseline may not exist, as the technical challenge may not 

have been solved before (Olsen, 2007). Research HCI toolkit devel-

oped by a single person or a small team may be far from optimized. 

Thus, sub-optimal performance does not signify how the system 

could fare. For instance, early versions of GroupKit (Roseman & 

Greenberg, 1996) had slow network performance and suffered from 

multiple race conditions, as the authors were placing their efforts 

elsewhere. Yet, these bottlenecks were not fundamental to the toolkit 

– many research concepts were still explored and realized working 

with GroupKit, such as GroupWeb (Greenberg & Roseman, 1996), 

and TeamRooms (Roseman & Greenberg, 1996b).  

 REFLECTION AND OPPORTUNITIES 

Contextualize and State Technical Limitations. HCI toolkit researchers 

often have quite different goals from commercial toolkit developers. 

For example, researchers may want to show how interaction concepts 

can be packaged within an easy-to-program toolkit (e.g., its API), 

where the underlying – and perhaps quite limited – infrastructure 

only serves as proof of concept. Significant limitations should be 

stated and contextualized to explain why they do not (or do) matter. 

Risky Hypothesis Testing. Toolkit authors should openly discuss the 

rationale behind the tests performed and whether the tests are a form 

of stress testing. Similar to some of Greenberg and Buxton’s argu-

ments (2008), perhaps the best approach is to actively attempt to 

break the toolkit’s proposed technical claims (e.g., EagleSense’s abil-

ity to accurately track up to four people in real-time (Wu et al., 2017)) 

to truly understand the toolkit’s technical boundaries. One way to 
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test these boundaries is to stress-test the system’s scalability for a 

chosen metric. 

Open Source and Open Access. As toolkit researchers, we can facilitate 

comparison and replication by making our work available to help fu-

ture researchers, as done by toolkits such as D3 (Bostock et al., 2011), 

the Proximity Toolkit (Marquardt et al., 2011), Midas (Savage et al., 

2012). Ideally, this goes beyond the academic publication or the 

toolkit source code and documentation, but also includes the bench-

marking data so that others can run the tests (e.g., on different com-

puters or as baselines for future studies). 

Discuss Implicit Baselines. While a toolkit paper may assume standard 

metrics to determine that a system works (e.g., 24 fps, or few lines of 

code to accomplish a task), it may help to mention why this metric is 

relevant. Thus, less familiar readers can better understand the per-

formance implications. 

5.7 TYPE 4: HEURISTICS 
Heuristics in HCI are typically associated with Nielsen et al.’s (e.g., 

Molich and Nielsen (1990), Nielsen (1993)) discount method to in-

formally assess interface usability. Given the challenges of toolkit 

evaluation, toolkit researchers have devised toolkit-centric heuristics 

(guidelines) to assess the end-result of a toolkit, such as Blackwell et. 

al’s Cognitive Dimensions of Notations (2000) and Olsen’s discus-

sion on evaluating interactive systems research (2007). The toolkit is 

then inspected against these heuristics, which in turn serves to inform 

strengths, weaknesses, and reflection of the toolkit’s potential value. 
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The heuristics have been extracted from tried and accepted ap-

proaches to toolkit design and have been used by others. In the da-

taset, Blackwell et. al’s heuristics (2000) are used in Protovis (Bos-

tock et al., 2009) and Exemplar (Hartmann et al., 2007), whereas Ol-

sen’s heuristics are used in WatchConnect (Houben & Marquardt, 

2015), Intelligibility Toolkit (Lim & Dey, 2010), D-Macs (Meskens, 

et al., 2010), Gummy (Meskens et al., 2008), XDKinect (Nebeling et 

al., 2014), and Society of Devices Toolkit (Seyed et al., 2015). In our 

sample, heuristics always complemented other methods. 

 WHY USE HEURISTICS? 

Heuristics are used as a discount method that does not require human 

participants to gather insight, while still exposing aspects of utility. 

Olsen’s ideas of expressive leverage and expressive match (Olsen, 2007) 

resonate with Greenberg’s view of toolkits as a language that facili-

tates creation (2007), or Myers’ themes of successful systems helping 

where needed and creating paths of least resistance (2000). Heuristics 

are based on tried success (Olsen, 2007) or theories (e.g., cognitive 

dimensions (Blackwell et al., 2000)). 

Blackwell et. al’s (2000) Cognitive Dimensions of Notation (CDN) 

was initially offered as a set of discussion points that designers could 

also use as heuristics to verify system usability. Their primary goal 

was to create a vocabulary for experts to make early judgements when 

designing, and to articulate decisions later. The authors describe it as 

a synthesis of several sources that can partially address elements of 

the interface design process. CDN also included a questionnaire ap-

proach (Blackwell & Green, 2001) to guide and structure user feed-

back sessions. 
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Olsen’s heuristics (2007) aimed to bring the focus of toolkit evalua-

tion back to what he saw as the value of UI systems research, which 

corresponds to our aforementioned reasons why HCI researchers 

build toolkits. Olsen provided terminology and means to support 

common claims made in toolkit papers. Interestingly, Olsen states 

that given a set of claims, one can demonstrate how the toolkit sup-

ports them, which may explain why our data shows prevalent combi-

nations of Type 4 evaluations together with Type 1 (demonstrations). 

Following a comprehensive list of heuristics can help identify areas 

not addressed by the toolkit. Some heuristics might be more crucial 

(e.g., problem not previously solved (Olsen,2007)). Conversely, some 

may not be relevant for the proposed toolkit (e.g., secondary notations 

(Blackwell et al., 2000)). Heuristics can and should be omitted when 

appropriate (Molich & Nielsen, 1990). 

 EVALUATION TECHNIQUES FOR HEURISTICS 

I identified three ways to carry out a heuristic evaluation: checklists, 

discussion, and as a basis for usage studies. 

1. Heuristic Checklists. The checklist approach consists of selecting 

a heuristic evaluation approach and going through individual heuris-

tics one at a time. In doing so, authors can reflect on whether the 

toolkit satisfies the heuristic or not, and the extent of meeting it. For 

instance, Hartmann et al. (2007) followed Blackwell and Green’s 

CDN through a questionnaire (2001). In evaluating each item, they 

found that many the limitations of the system were due to the inability 

to show many sensor visualizations at once. Similarly, Meskens et al. 
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(2010) follow Olsen’s heuristics to determine which elements of the 

interface are lacking (e.g., ability to generalize and reuse). 

2. Discussion / Reflections based on Heuristics. In contrast to the 

checklist approach, Olsen’s heuristics (2007) are also used as reflec-

tion points in the discussion of a toolkit paper. This reflection allows 

the authors to better understand the limitations and whether there 

are issues in the toolkit that are not addressed. Both Gummy (Mes-

kens et al., 2008) and WatchConnect (Houben & Marquardt, 2015) 

are examples of this approach, where authors reflect on shortcomings 

(and ways to address them) as well as compare their toolkits to the 

state of the art.  

3. Basing Usage Studies on Heuristics. Heuristics can help determine 

what is useful to evaluate. XDKinect (Nebeling et al., 2014) tailored 

their usage study to some of Olsen’s guidelines (2007), such as re-

ducing solution viscosity and ease of combination. 

 CHALLENGES 

A danger of heuristic evaluations is falling into self-fulfilling prophe-

cies, where authors stretch definitions of the heuristics to justify their 

claims. Alternatively, authors might choose to only focus on: (1) heu-

ristics that their toolkit addresses; or (2) how the toolkit addresses 

them without acknowledging the negative aspects or compromises 

(e.g., increasing flexibility at the expense of expressive match). Some-

times the heuristics are not relevant to a particular toolkit. For exam-

ple, CDN (Blackwell et al., 2000) covers a breadth of applications, 

where some heuristics only apply to one group (e.g., visual program-

ming environments). Omitting heuristics without clear rationale 
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could lead readers to believe that the authors are cherry picking heu-

ristics. Heuristic evaluations are often carried out by the authors, who 

may have an implicit bias. While heuristic evaluation in HCI suggests 

that external evaluators add value to the process (Molich & Nielsen, 

1990; Nielsen, 1993), it proves difficult for toolkits given that external 

evaluators would need to be competent in the toolkit domain and un-

derstand the associated design and research concepts. None of the 

surveyed papers used external evaluators.  

 REFLECTION AND OPPORTUNITIES 

Using Heuristics as Design Guidelines. Heuristics can serve comple-

mentary purposes: they can inform design as well as help evaluate de-

signs. Thus, toolkit authors can conceptually consider how to support 

aspects of creation early on through best practices (e.g., API practices 

(Stylos et al., 2008)). As examples, the Intelligibility Toolkit (Lim & 

Dey, 2010) and HapticTouch (Ledo et al., 2012) both discuss heuris-

tics inspiring some of their design goals.  

Using Heuristics to Inform Techniques from Prior Types. Given the vo-

cabulary provided by heuristics, authors can consider how demon-

strations or usage studies might stem from the heuristics themselves. 

For example, toolkit authors could choose to evaluate the expressive 

match (Olsen, 2007) within one part of the toolkit, which could be 

executed through a usage study (e.g., A/B comparison, observation). 

Olsen (2007) suggests that one way researchers might evaluate ex-

pressive match is to perform a “design flaw test”, where participants 

are asked to remedy a flaw using a design with “good expressive 

match” and a baseline deficient design with “bad expressive match”. 
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As an example, Olsen uses colour selection within a drawing applica-

tion, where a researcher might compare using a mouse-based colour 

picker to manually entering hexadecimal code values into a textbox.  

Transparency. Toolkit authors can disambiguate cherry picking ver-

sus ignoring irrelevant heuristics by articulating why a heuristic is or 

is not considered. This will increase transparency and possibly ex-

pose gaps in the evaluation. 

5.8 DISCUSSION 
The meta-review in this chapter reveals 4 strategies to evaluate toolkits: 

(1) demonstrations (what a toolkit can do), (2) usage (who can use the 

toolkit and how), (3) technical evaluations (how well a toolkit performs), 

and (4) heuristics (to what extent the toolkit meets standard guidelines). 

My co-authors and I wanted to get a more detailed sense of the data, 

which prompted us to re-code the papers considering and interpreting 

the types of contribution. We performed two passes to the data to en-

sure consistency. Figure 5.3 summarizes the entirety of the data ana-

lyzed, including the distribution of the individual evaluation tech-

niques. The next section offers several opinions, formed from: the 

building experiences of myself and my collaborators; the meta-review 

analysis; and the writings of other toolkit researchers. 

 RETHINKING EVALUATION 

Rather than considering some methods as better than others, we be-

lieve that it is more important to use methods that best match the 

claims of the toolkit paper, and what that evaluation method might 

yield. One way to determine this might be for authors to ask them-

selves: if the evaluation technique were to be removed, what is the impact 
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to the paper? In answering that question, authors might realize the es-

sential methods, and which ones are secondary or even unnecessary. 

Evaluation by Demonstration? 

One central observation in our review is that demonstrations are by 

far the most common way to communicate the functionality of the 

toolkit. Demonstrations vary in complexity, ranging from small ex-

amples to complex interaction techniques and systems. 19 toolkit pa-

pers used demonstration as the only way to communicate or evaluate 

the toolkit’s capabilities. Novel and replicated examples are quite 

common due to their easy implementation and description. However, 

further analysis showed that it is rare to find more systematic explo-

rations of the capabilities of toolkits through case studies concurrent 

to the time of publication, or design space explorations. Moreover, 

many toolkit papers combine examples with code snippets and how-

to scenarios to help the reader understand what the toolkit supports. 

While demonstrations are often not considered a formal evaluation, 

they show evidence through “research by design” (Hevner et al., 

2004) and are highly effective in communicating the principles, con-

cepts and underlying ideas of the toolkit. In fact, using the toolkit to 

create prototypes can lead to refinements in the toolkit itself, as was 

done in SATIN (Hong & Landay, 2000). When linked back to the 

five goals of toolkit research, demonstrations provide the most com-

plete and compelling evidence for achieving the goals of designing the 

toolkit. The wide adoption of evaluation by demonstration indicates 

that such well explored examples can be a measure of success for the 

underlying concepts and ideas of a specific toolkit implementation. 
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Usability Studies (Still) Considered Harmful Some of the Time 

Half of all toolkit papers in our sample conducted usage studies. 

These include compelling examples examining how people work with 

a toolkit; how a toolkit is used and appropriated in a realistic environ-

ment; or how toolkits enable creativity and exploration. Although us-

age studies play a fundamental role in establishing who can use a 

toolkit, our analysis shows that many authors still fall into the ‘usabil-

ity trap’ (Olsen, 2007). Despite Greenberg and Buxton’s warning 

that usability studies can be ‘harmful’ if not applied to the right prob-

lem (2008), many papers in our sample performed usability studies 

to evaluate complex toolkits. Such studies may employ artificial tasks, 

small sample sizes, and non-representative user groups to evaluate a  

small subset of solution paths offered by the toolkit. While still yield-

ing results, these are limited to that specific task, and rarely general-

ize to the entire toolkit capabilities, development paths, broader au-

dience that would use the toolkit, and the context around toolkit 

learning and use. 

Echoing prior work discussing that usability studies are not always 

required for toolkit research, including Hudson & Mankoff (2014) as 

well as Olsen (2007), we believe narrow usability studies as currently 

done by most toolkit authors at best play only a minor role establish-

ing or evaluating the novelty or significance of the toolkit and its un-

derlying ideas. If done narrowly, they should at least be combined 

with other techniques: all but one paper in our sample also included 

demonstrations or technical evaluations. Even so, we consider this a 

widespread application of a weak mixed method approach, where re-

searchers may make – perhaps unwarranted – generalized usability   
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Figure 5.3. Summary of the entire dataset for toolkit evaluation. Each row represents the different toolkit goals and their (interpreted) 
method distributions, while the last row shows the entire data distribution. 
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claims across the entire toolkit. Careless usability evaluations can be 

costly, as they may evaluate the wrong possible futures and lead to 

false conclusions (Salovaara et al., 2017). Usability studies can evalu-

ate some parts of the toolkit, but they must be designed and con-

ducted with care.  

Successful Evaluation versus Successful Toolkit 

In our dataset, we observed a diverse range of toolkits that address 

various sub-fields within the HCI community, where there is no indi-

cation that the success of the toolkit was necessarily tied to the suc-

cess of the evaluation. Some of these toolkits have had enormous im-

pact within the research community. For example, the Context 

Toolkit (Salber et al., 1999) has had a transformative effect on re-

search within the space of context awareness, as evident from the 

1326 citations.  Other toolkits have moved on to become successful 

outside of the research community. For instance, D3 (Bostock et al., 

2011) has been widely adopted for web-based interactive visualiza-

tions. Their paper already suggested that the evaluation may not be 

indicative of success: “while we can quantify performance, accessibility 

is far more difficult to measure. The true test of D3’s design will be in user 

adoption” (Bostock et al., 2011). Success can also lie in enabling new 

research agendas. The Proximity Toolkit (Marquardt et al., 2011) op-

erationalized proxemic interaction concepts into concrete building 

blocks and techniques. Many downloaded the toolkit for research or 

to learn how to build proxemic-aware applications.  

Non-Coding Toolkits 

It is possible to filter out the dataset to only account for toolkits in 

which end-users do not have to write code. Through visual inspection 
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of this very limited dataset (Figure 5.4), there are 2 speculations that 

can be made. First, how-to-scenarios (10/14 papers) might be an ef-

fective strategy to communicate the tool to readers. Non-program-

ming toolkits often provide a user interface that guides the end-user 

towards generating different solutions. In a user interface, the paths 

of least resistance are more clearly delineated than in code, since a vis-

ual interface can force specific ordering of operations. In that sense, 

the tools can more explicitly limit the flexibility in favour of a higher 

expressive match with more potentially predictable outcomes. Sec-

ond, there appears to be a high ratio of usage evaluations (8/14). 

There might be two possible explanations for this high ratio. Non-

programming toolkits typically have an explicit audience (e.g., inter-

action designers), which might instigate reviewers’ expectations for 

usage studies. On the other hand, non-programming toolkits typically 

leverage known technical details into a new functionality and work-

flow. Given that the research community tends to favour technical 

novelty (Fogarty, 2017), non-programming toolkits likely have no 

choice but to include usage studies to satisfy expectations in peer-re-

view. Prototyping tools have idiosyncrasies that make evaluation par-

ticularly tricky, as discussed next. 

 
Figure 5.4. Distribution of evaluation strategies for non-coding toolkits. Highest value on the chart is 14 papers. 
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Meta-Development 

Unlike a traditional system implementation, a prototyping tool needs 

to create more than one possible interactive solution. This means that 

a researcher cannot simply go from a sketch to a prototype. Instead, 

the researcher must build a general-enough approach that can gener-

ate a desired prototype. By general-enough, I mean that the tool has 

to generate the desired prototype while: (1) accommodating alternate 

versions, and (2) integrating the authoring process of that prototype 

into the desired path of least resistance. If the researcher incrementally 

updates the tool to increase the vocabulary and the number of possi-

ble outcomes, the entire tool needs to evolve as well. Alternatively, 

the researcher would need to know all the building blocks ahead of 

time, and then build the tool. The second approach is more difficult, 

given that the understanding of the problem space, the vocabulary, 

and the target prototypes are often part of a reflection and evolution 

that takes place while the tool is being built. 

Existing Scaffolding 

When creating a traditional programming toolkit, researchers can 

rely on an existing platform (in this case, the programming language) 

to act as the existing scaffolding for future end-users. This means that 

if, for instance, a toolkit is built extending JavaScript, then: (1) the 

rules and syntax of the language are pre-existing and well-defined, (2) 

re-ordering of operations would lead to an error, and (3) there is in-

stant power in combination (Olsen, 2007), as other web-based 

toolkits can be integrated. In contrast, a novel tool requires (1) creat-

ing specific rules from scratch, (2) ordering of operations should be 

explicitly defined and may or may not immediately scale, and (3) 
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power in combination is constrained to how the tool can leverage ex-

ternal resources beyond the application itself.  

One way of enabling this power in combination is by having the tool 

only address a portion of the process. For instance, Sauron (Savage 

et al., 2013) converts inputs captured by a camera into a range of ex-

plicit values which are sent as socket data to external applications. As 

a result, custom applications (or applications using a similar protocol) 

can retrieve this data to create interactive prototypes, often requiring 

end-users to write code. Alternatively, the tool can explicitly use 

other applications to provide additional functionality. For example, 

Retrofab (Ramakers et al., 2016) was programmed using the Mesh-

mixer API to communicate with Meshmixer (an external 3d model-

ling application) so that the tool could appropriate 3d modelling func-

tionality. Tools can also leverage the operating system, as done by 

PreFab (Dixon & Fogarty, 2010), where the system reverse-engi-

neers the operating system screen to overlay new outputs, and pro-

vide new input transformations by manipulating the operating sys-

tem’s mouse events. Lastly, a tool may simply be self-contained, 

meaning that all of the functionality resides within that application. 

An example includes Sketch-n-Sketch (Hempel & Chugh, 2016), 

which allows programmatic generation of SVGs. While Sketch-n-

Sketch relies on external libraries, its functionality remains self-con-

tained to that application. 

When considering these strategies to achieve power in combination, 

it becomes clear that there are additional challenges for evaluation. 

Interface elements need to all support the paths of least resistance, 

and the design and testing of the interface must account for many 
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combinations of user input, which may be harder to fix given the 

meta-development approach. If the prototyping tool leverages an ex-

ternal program, it has to adapt the external tool’s path of least re-

sistance, to the one of the prototyping tool. This might limit the pos-

sible user actions, or the types of actions that can truly be tested. 

Lastly, if a tool requires designers to write code to generate outputs 

(e.g., as done in systems that send encoded network messages), then 

there are fewer claims that can be made about the building blocks and 

ways of thinking afforded by that tool. 

End-User Practice 

While it is true that many times systems are designed to support a 

particular practice, it is also the case that tools shape what is possible 

and provides a way of thinking for that practice, a thought echoed by 

Greenberg (2007) and Myers et. al (2000). This means that over 

time, practices can become exclusively about what the current tools 

can support. As a result, a new tool will often conflict with the exist-

ing approach, either because that element of the practice is not com-

mon at the time, or because it offers an alternative, unfamiliar way to 

solve a problem. Comparisons, in that case, would be unfair, as end-

users have had extensive time learning existing tools, compared to an 

immediate exposure to a new prototyping tool. 

The Need for HCI Infrastructure Research 

This chapter argues that toolkits have profoundly influenced HCI re-

search and will continue to do so in the future. Going back to the pi-

oneering work of Engelbart (1968), Sutherland (1980), or Weiser 

(1991), we observe how invention through building interactive sys-
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tems, architectures and frameworks enabled early researchers to ex-

plore completely new spaces. Since then, there has been an enormous 

growth in toolkits exploring technical realizations of concepts, tech-

niques and systems in many emerging areas within the field (e.g., 

physical computing, tangible interfaces, augmented reality, ubicomp) 

and demonstrating new possible futures.  

HCI systems and toolkit research serves to further develop and real-

ize high-level interaction concepts (e.g., proxemic interactions (Mar-

quardt et al., 2011)). Consequently, toolkits make these conceptual 

ideas very concrete, and enable further conversations and follow-up 

research. For instance, the Context Toolkit (Salber et al., 2000) was 

a very successful toolkit that moved research in context-aware com-

puting (Want et al., 1994) forward by enabling developers to rapidly 

prototype context-aware applications. The toolkit provided a compo-

nent-based architecture separating context inference from the appli-

cations that used context information and allowing developers to re-

spond to context changes in an event-driven way. By making these 

ideas (and their realization in software) very concrete, the Context 

Toolkit also fueled criticism from researchers who argued that a com-

putational representation of context, as encapsulated in the toolkit, 

did not capture the complexity of how people behave in the real 

world. Greenberg (2001) argued that many contextual situations are 

not stable, discernable, or predictable, and argued for context-aware 

applications to explain the inferred context and how they respond to 

it (what Bellotti & Edwards refer to as “intelligibility” (2001)). Inter-

estingly, these discussions led to development and integration of 

these ideas in future systems and toolkits, such as the Situations 
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Framework (Dey & Newberger, 2009) and the Intelligibility Toolkit 

(Lim & Dey, 2010). 

5.9 LIMITATIONS 
My co-authors and I make no pretense that our overview of evalua-

tion strategies for toolkits is complete. First, to ensure that our meta-

review focused on forms of evaluation that are relevant to currently 

accepted standards, we limited our sample to recently published 

toolkit papers. Thus, we may have missed forms of evaluation used 

in past toolkit research. Second, many research projects make multi-

ple contributions not captured in a single paper. Our analysis only re-

flects what is described in that single paper. For some of the toolkits 

in our meta-review, additional evaluations were described in later 

publications (e.g., Prefab (Dixon & Fogarty, 2010)). Finally, my co-

authors and I have all built and designed toolkits. While our reflection 

on toolkit evaluation strategies is likely strengthened by our first-

hand experience, it may also have introduced bias.  

5.10 APPLYING EVALUATION STRATEGIES: WHY 
THE REPORTED DISSERTATION RESEARCH 
IS NOT YET READY FOR USER STUDIES 

The results of this work indeed show that one can combine a variety 

of methodologies to evaluate research concepts. Moreover, under-

standing the evaluation practices can also help in becoming better at 

designing interactive systems in the context of HCI research. In par-

ticular, as discussed in §5.8, demonstrations cover a variety of aspects 

of showing the expressiveness, ceiling, and approach when working 

with a tool. Demonstrations perhaps remain as either the single most 
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used evaluation method in systems research, or that dominates when 

used with other methods for triangulation. This is because ultimately, 

a system or artifact is in itself a manifestation of the research idea and 

has its own merit as a contribution. However, demonstrations have 

two downsides. The first is that it can easily act as a “sales pitch”, 

meaning that it highlights only the positive elements of a system. This 

is why it is key for researchers to take a critical stance towards the 

work they create, and spend time in the discussion really showing the 

limitations and what is not possible with the system. This is where, 

incorporating elements of the heuristics can aid in the authors’ criti-

cal thinking, as there are clear prompts one can reflect upon, such as 

looking at the trade-off between ease-of-use, flexibility, and complex-

ity. The second downside is that demonstrations stay in a hypothet-

ical, almost utopic, state, where the usage scenario is bounded by the 

researchers’ points of views and assumptions. Thus, understanding 

use and strategies is critical: even the best demonstrations can fail be-

cause the intended audience is unable to exploit the system effec-

tively. Instead, potential users may develop strategies which go far 

beyond what a demonstration anticipated when outlined. These strat-

egies in the end exemplify a set of reappropriations, which can 

prompt further reflection on the value provided by a system. 

In my experience, usage evaluations tend to work best at later stages 

of development, when the majority of usability issues have been ad-

dressed and the conversations can focus on the research concepts ra-

ther than the tool use. Given the scaling necessary to go from a pro-

totype that shows concepts to a functional system that can be used, 



 DAVID LEDO, 2020  |  151 

 

as well as the high interdependence between multiple platforms, eval-

uating the systems in this dissertation with users in this thesis is par-

ticularly challenging, and in the current state would not yield mean-

ingful results. Exploring and documenting people’s usage strategies 

are key points for future work. 

While user studies are beyond the scope of the thesis’ prototyping 

tools, my work has looked to carefully consider designers and their 

practices, and I use demonstrations to envision what is possible in a 

hypothetical future of designing interactive behaviours for smart ob-

jects. I augment these demonstrations with other methods to add a 

critical reflection on the implications of these technologies. These 

methods are summarized in Figure 5.5. As a result, the tools that I 

will discuss in Part 3 of the thesis: Pineal (Chapter 8) and Astral 

(Chapter 9), primarily rely on a demonstration approach. While these 

are early tools to assess performance, I discuss some of their perfor-

mance elements, but most importantly, I try to take a critical stance, 

often leveraging some of the Olsen’s heuristics (2007), to question 

the extent to which the two systems work. Consequently, while my 

work lacks the traditional end-user evaluations through some form of 

 
Figure 5.5. Evaluation strategies as used in this dissertation. 
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usage, I employ a variety of methods to ensure the systems can envi-

sion the future while still highlighting some of the caveats and com-

promises from these approaches. 

5.11 CONCLUSION 
Research toolkits have fundamentally influenced and shaped the way 

interactive technology is built, and will continue to do so. Despite the 

impact and success of toolkits, evaluating them remains a challenge.  

In this thesis, I consider the strengths and weaknesses of the various 

evaluation methods as discussed above when deciding how to evalu-

ate the prototyping tools discussed in subsequent chapters. In partic-

ular, I considered the claims I make with each prototype, and whether 

a particular evaluation method would help substantiate those claims. 

 



 

 

 

 

PART 2  
SOUL–BODY 
PROTOTYPING 

 





 

 

 

 

 

 

 

 SOUL–BODY PROTOTYPING 

This thesis proposes repurposing existing hardware (i.e., mobile phones 

and watches) and software to enable designers to create live interactive pro-

totypes for smart interactive objects without coding or creating custom cir-

cuitry. This chapter1 examines a way to circumvent the need for elec-

tronics and programming via what I refer to as the Soul–Body Proto-

typing Paradigm. This paradigm is a metaphor that suggests placing 

mobile devices inside of fabricated enclosures to create new smart ob-

ject prototypes. The mobile device (“the soul”), with its sensors and 

outputs, acts as a centralized means to power the prototype and pro-

vide the functionality, while the enclosure (“the body”) provides the 

 
1 Portions of this chapter published in: 

Ledo, D., Anderson, F., Schmidt, R., Oehlberg, L., Greenberg, S., & Grossman, 

T. (2017). Pineal: Bringing Passive Objects to Life with Embedded Mobile De-

vices. Proceedings of the 2017 CHI Conference on Human Factors in Computing Sys-
tems, 2583–2593. doi: 10.1145/3025453.3025652 

https://doi.org/10.1145/3025453.3025652
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object with meaning both from a visual standpoint, as well as by fea-

turing the means of interaction (e.g., buttons). Specifically, this chap-

ter seeks to answer the first research question posed in Chapter 1: 

RQ1. How might designers repurpose mobile devices to proto-

type smart interactive objects? 

The foundation of Soul–Body Prototyping acts as a starting point to 

then create prototyping tools that enable the authoring of interactive 

behaviours. I begin this chapter by distilling the designer challenges 

learned from the first two chapters (§4.1). To address these chal-

lenges, I derive a design rationale with key points that drive this dis-

sertation research (§4.2), which then are operationalized through 

Soul–Body Prototyping (§4.3). I present the design space of Soul–

Body Prototyping, showcasing the different dimensions for input and 

output, power and connectivity, and lastly, how to modify inputs and 

outputs (§4.4). I show how existing work also follows some of the 

principles outlined in this chapter. 

6.1 MOTIVATION: DESIGNER CHALLENGES 
Chapter 1 describes many of the challenges faced by interaction de-

signers today, which can be described as follows: 

Need for multiple specializations. Interaction design is a fairly young 

discipline, which often results in people from other areas (e.g., 

graphic design) fulfilling an interaction design role. Given require-

ment to create interactive behaviour (Cooper et al., 2014), the cur-

rent way to achieve behaviours is through coding. This means that 

interaction designers are working outside their typical training and 
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strength and investing a large amount of time and effort into a me-

dium that: (1) they are not well-versed in, and (2) where the building 

blocks have not been created to facilitate their quick explorations. In 

such a case, the consequence is that due to time and budget con-

straints, designers have to resort to lower resolution sketches, or to 

work with the tools that they have available, thus creating wireframes 

in tools such as Adobe XD. This problem is further exacerbated if the 

prototype needs to be a physical prototype (such as a smart interac-

tive object). To create higher resolution prototypes, the designer 

would require to create custom circuitry, program it to realize the in-

teractive behaviours, and then place the circuitry into a custom form 

that looks or feels similar to a final version of the physical product. 

These are all highly specialized skills which would be unreasonable to 

expect from a single interaction designer. Collaboration with other 

experts might be one way to address this challenge, but not one that 

makes sense if the goal is for the designer to explore varieties of alter-

native designs and discover nuances in the creation process. In fact, 

it achieves the opposite, stripping the designer of their agency to dis-

cover new solutions. 

The democratization of graphic design software exemplifies how 

software tools can disrupt and shape an entire industry. I believe that 

a similar result could be achieved in interaction design, if the tools 

can allow designers to come up with functional prototype represen-

tations. Graphic design was a discipline in which designers had to cre-

ate a lot of material by hand (including high quality rendered fonts), 

which was very time consuming. Different pieces had to be cut out, 

arranged and then delivered to printing professionals who would 
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screen print it and create duplicates. Graphic design software re-

moved the need to create things by hand and took away the depend-

ency on print specialists, time delay from waiting and difficulties it-

erating on the design once it had been printed, as it was already a high 

time and money investment. Now with graphic design, software de-

signers could create and vary their designs and in turn could go from 

start to finish in creating a high-resolution prototype. Then, the final 

product became a matter of taking the latest prototype, applying fin-

ishing touches and creating all the specifications for printing in the 

form of a brief. Thus, one way to reduce the need for specialization is 

to have the right tools in place for people to achieve their tasks. 

Lack of Tool Support. Design tools are limited to desktop-based in-

teractions, which favour simple state transitions. While a lot of inter-

actions can be summarized in simple storyboards as trigger-action 

pairs (e.g., tapping a button to go to the next screen), interactive be-

haviours are much more nuanced (Myers et al., 2007). People per-

form actions beyond clicking or tapping (e.g., using fingers to pinch, 

flick or swipe, or tilting the device altogether), and nowadays can 

even use physical gestures or even speech input. Consequently, sys-

tem design needs to distinguish the visual structure/form from the 

behaviour and interactivity taking place. Systems require more fine-

grained real-time feedback for people to understand the effect of their 

actions, and believe that the system appears responsive and alive, as 

well as designed with care. A lot of these interactions today only seem 

to be possible to accomplish through coding, as described in Chapter 

4 when I outlined the different kinds of prototyping tools. 
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Need for Close-to-Product Representations. Given that prototyping 

is a learning and discovery process in which designers learn by doing, 

the more they can approximate a close-to-product representation, the 

greater the variety of questions that they can probe. More specifi-

cally, the continuous responses of an interface or an interactive object 

can only be assessed if the designer can touch and hold the object/in-

terface. Holding and manipulating the object or interface itself allows 

designers to subjectively determine if the interaction is successful or 

whether it needs further nuance. Designers can also give the proto-

type to others and see how people respond to the authored behav-

iours. This is of particular importance with behaviours that go beyond 

trigger-action, given that elements of awareness and feedback rely on 

animations, sounds or lights that may play as the user performs the 

action: these animations are driven by the interactions. Moreover, the 

close-to-product representation allows the designer and the rest of 

the team to see the interaction in context. 

To exemplify the extent of these challenges, consider a smart speaker 

with a digital assistant. When a person calls the smart speaker, the 

speaker may light up to communicate that it is currently waiting for a 

command or question (e.g., “what time is it in Caracas?”). Once a 

command is issued, the speaker may change its pattern to convey that 

it is now searching online for a response and to acknowledge that it 

has not simply shut down. The lighting pattern (and perhaps even 

colour) changes again once the speaker is answering, where the 

brightness of the light may be synchronized to the speech emitted by 

the speaker. The light colour may reflect the speakers’ confidence or 

state (e.g., turning red if it is unable to find the answer). Perhaps the 

speaker features buttons that light up it is picked up, and specific 
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lighting patterns or sounds may execute once the person presses the 

different buttons to provide feedback.  

In terms of specialization, a designer would struggle to create a phys-

ical prototype to try out the potential smart speaker. In fact, the rep-

resentations would likely be limited to sketches and storyboards that 

do not reflect the nuanced behaviours taking place simultaneous with 

the actions. A savvy designer might resort to a video editing tool to 

try and create a video that carefully reflects all the small transactions 

as well as the live feedback for a particular scenario. However, there 

is no way to make a physical prototype that can show the behaviours 

in context without resorting to creating custom circuits and program-

ming. Thus, the designer has to rely on other specialized team mem-

bers whom each have their own tasks. This added reliance on other 

team members brings additional strains to the design cycle: the de-

signer has to wait for the prototypes to be realized, and the designer 

cannot learn by doing, they can only try out the current version they 

are provided, only being able to suggest changes and revisions. 

6.2 DESIGN RATIONALE 
One theme reflected in the literature and often discussed by the HCI 

community is that one cannot achieve interaction design complexity with-

out coding. While it is true that coding can be used in a truly flexible, 

malleable and expressive manner, prototyping tools can provide 

higher levels of programming without the need for code and probe 

specific aspects of the interaction design process. Given that tools af-

ford different building blocks and vocabularies, they each influence 

the types of solutions that are possible, as well as the most suitable 

way of thinking to generate such solutions. Thus, I believe that there 
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is a need to explore a broad variety of prototyping tools and integrate 

them to work together to: (1) help address some of the challenges pre-

sent in interaction design practice, as well as (2) reach broader audi-

ences and support different ways of thinking. 

In my thesis work, I explore a specific subset of these types of tools in 

the context described in §4.2, ones that can support both exploration 

of, and ability to try out interactive behaviours, while still preserving 

some of the structural elements of the prototype. I apply this to smart 

interactive objects, where the physical form also plays an important 

role. To do so, I operationalize the aforementioned challenges 

through the following design decisions:  

Enabling Close(r) to Product Representations. To be able to truly try 

out a behaviour, a representation that is closer to a product helps in 

that designers examine the nuances of the experience and see how the 

behaviour plays out. This means being able to work with mock-ups 

that feel like the real thing – in terms of forms, visual elements and 

the interactions with them. This also means extending prior work in 

working beyond mouse-based interactions or wireframes, and ex-

tending to other areas of physical computing and mobile interaction.  

Minimizing the Need for Coding. Given designers’ varied back-

ground, the expectation of them needing to code is one that needs 

mitigating. Moreover, if the tool does not require coding, the designer 

can focus on the design activity itself and not have to think about 

more intricate programming constructs that can interrupt the pro-

cess, as well as consume time and effort.  



162 SOUL–BODY PROTOTYPING 

 

Eliminating Circuit Building. Circuit building can become even 

more complex than coding given that the building of the circuit and 

its programming go hand-in-hand. If the designer wants to create a 

physical prototype for a smart object, circuit building is a require-

ment. In fact, Booth et al. (2016), show some of the learning barriers 

in physical computing, and more importantly how circuit bugs often 

introduced more software bugs. According to Booth et al. people find 

it hard to tell if the system does not work because of the circuit or 

because of the code, often leading people to think it is due to pro-

gramming issues when in fact it was because of issues in the circuitry. 

As a result, eliminating the need to collect different components, 

mount them on a board through soldering, and program them can 

simplify the process as a whole. 

Enabling Authoring of Interaction-Driven Animations.  Trigger-ac-

tion behaviours, such as clicking on a button to go between screens, 

can be easily prototyped in a sketch or storyboard (Myers et al., 

2007). Yet, a fundamental component of interactive systems is the 

continuous response as a result of a person’s action. In the digital 

form, this can be exemplified through interactions such as pinch-to-

zoom, where contents of the screen can change size (and progres-

sively show or hide information) as a function of the user’s distance 

between fingers. A video game character may transition from stand-

ing, tip-toeing, walking or running depending on the amount of mo-

tion applied to a controller’s joystick. Lastly, in the physical world 

these become even more important given the increased amount of 

sensing a device has: being able to know if a smart speaker is effec-

tively listening to a command, showing feedback as an oven’s knob is 

physically turned, or even how a smart lightbulb might progressively 
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increase brightness as a person walks into a room. These types of in-

teractions all entail rethinking animations with a new kind of abstrac-

tion: animating as a function of interaction (animation while actions 

are happening) as opposed to an abstraction of time (animation after 

the action happens).  

Live Changes on Prototypes. Given the focus on being able to try 

things out, designers should be able to manipulate the prototypes in 

a plastic manner: change them and fine-tune them as they create 

them. Ideally, designers can author the prototype and not have to 

switch an interface or mind-set between editing and testing, which is 

often a shift that takes place when programming: one way of thinking 

is required to author a behaviour, then the code needs to be compiled 

and run, and then finally the designer can try out the behaviour. 

6.3 SOUL–BODY PROTOTYPING PARADIGM: 
THE MOBILE DEVICE AS A PROTOTYPING 
ENGINE 

To address interaction designers’ challenges and achieve the afore-

mentioned goals, this thesis proposes using mobile devices in place of 

custom electronics, and creating fabricated passive ‘enclosures’ that 

define the object’s form while exposing the necessary inputs and out-

puts. Designers can moreover leverage and repurpose mobile sensors 

and outputs in new interesting ways. A mobile device such as a phone 

or a watch can act as the ‘soul’ to a temporary fabricated ‘body’ that 

holds the form and functionality of a smart interactive object. The 
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Nintendo Labo2 (Figure 6.1), which was released in 2018, is an ex-

ample of a commercial application already applying some of these 

principles, where the Nintendo Switch’s motion controllers and tab-

let can be enclosed in a cardboard structure to create new interactive 

experiences. The cardboard shape provides the necessary cues on 

how to hold the object and provides input mechanisms (e.g., but-

tons). Mobile devices are well suited as a prototyping engine, as they 

are ubiquitous and readily available and make for an excellent tempo-

rary stand-in for prototyping different smart objects.  

While a concern is the high cost of mobile devices, there are two 

prime reasons as to why Soul-Body Prototyping is feasible. The first 

is that as part of a prototyping process, the mobile devices are only 

intended for use temporarily, meaning that only one (or a few) might 

be necessary to test a concept. Second, given the current technologi-

cal advances, some mobile devices can be purchased with a low 

budget (e.g., $35). Some of these lower cost devices only provide a 

few sensors, but most seem to provide the basic: touch display, mi-

crophone, and accelerometer. Alternatively, a designer can use their 

own phone or watch, or repurpose an older phone or watch. Moreo-

ver, newer prototyping technologies are also adopting these ideas of 

becoming self-contained devices with basic sensors and outputs. 

M5Stack3, shown in Figure 6.2, uses Arduino technology in a modu-

lar case resembling a smart watch. It consists of a base module con-

taining a speaker, touch display, USB port, SD card slot and buttons. 

 
2 Nintendo LABO https://labo.nintendo.com/ – last accessed February 2020 

3 M5Stack https://m5stack.com/– last accessed February 2020 

 
Figure 6.1. Nintendo Labo from 2018 ena-
bles players to insert the Nintendo Switch 
tablet and controllers into cardboard enclo-
sures. Different controller sensors (e.g., the IR 
camera) are used to sense user input as de-
fined by the enclosure. 

https://labo.nintendo.com/
https://m5stack.com/
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Additional modules (e.g., battery, GPS, prototyping board) can be 

stacked using a Lego-like connection. While many mobile devices 

share the basic sensors and outputs, it is important to note that more 

expensive devices will feature newer sensors (e.g., iPhone X’s depth 

sensing front camera) or higher quality parts (e.g., brighter displays 

with higher resolutions and lower latency). 

It is worth noting that the definition of a mobile device is somewhat 

open-ended. The idea is to centre the discussion on readily available, 

self-contained computers with added sensors and outputs, and hav-

ing all physical extensions be passive, meaning that there are no addi-

tional electronic connections or added processing power outside the 

device. Under such conditions, a mobile phone, a watch, or even a 

tablet device are already commodity devices present in many design-

ers’ everyday work and home environments. However, one could 

loosely consider other platforms that follow similar principles to also 

be Soul–Body Prototypes. For example, a platform such as Lego 

MindStorms4, which also features a “core” computational device 

(the EV3 Intelligent Brick5) that powers additional electronic compo-

nents, also fits the metaphor despite not being discussed in this the-

sis. Consequently, while the primary discussion is centred on more 

sophisticated mobile devices which have access to many technical im-

plementations aspects that can be exploited for interaction design 

(e.g., speech recognition), other custom devices might also be con-

sidered provided they follow the metaphor. However, the danger of 

 

Accessed August 2020: 
4 https://www.lego.com/en-ca/themes/mindstorms 
5 https://www.lego.com/en-ca/product/ev3-intelligent-brick-45500  

 
Figure 6.2. M5Stack device. The image 
shows the M5Stack base module featuring a 2 
inch x 2 inch touchscreen, 3 buttons, USB 
port, and a Lego-compatible peg at the bottom 
to attach other modules. The bottom three im-
ages show the modules for battery, prototyping 
and GPS. Image adapted from 
http://www.m5stack.com/    

https://www.lego.com/en-ca/themes/mindstorms
https://www.lego.com/en-ca/product/ev3-intelligent-brick-45500
http://www.m5stack.com/
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keeping the metaphor so general is that the goal is not to make it so 

any physical user interface is a Soul–Body Prototype. Additional dis-

cussion on the boundaries of the paradigm can be found in §6.5. 

There are many benefits to using mobile devices instead of custom 

electronics in the context of prototyping, which are discussed below. 

Extensible Geometry. Mobile devices are fairly standardized in their 

form. Designers can now work with a flat cuboid shape and build 

more complex forms around it, where the phone or watch becomes 

the ‘soul’ of the smart interactive object prototype. 

Rich Sensing and Outputs. Mobile devices are self-contained, and 

house a myriad of sensors and outputs present in many smart objects 

(e.g., touchscreen, microphone, accelerometer). Designers can use or 

repurpose sensors in interesting ways. For examples, designers can 

use a diffuser or light pipes to create light sources from the phone 

screen or the camera flash, or use conductive materials (e.g., copper 

tape) to move the location of a touchpoint to a new location in the 

physical enclosure (the body). 

Access to Complex Functionality. Mobile devices also feature inter-

net connectivity, which adds further opportunities for Internet of 

Things applications. These include voice recognition, as well as web 

APIs (e.g., weather and Twitter). This also means that it is possible 

for mobile devices to communicate with other mobile devices or 

smart objects within the larger ecology of devices. 

Low Threshold and Less Technical Hurdles. Replacing custom elec-

tronic circuits with mobile devices dramatically lowers the threshold 

for entry. Working with a mobile device removes the need to solder 
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and embed components onto the form, and mitigates the concurrent 

and tricky ‘circuit vs. code’ debugging previously discussed. Moreo-

ver, given the computational power of mobile devices, there is a de-

creased need for low level programming constructs, such as memory 

management. 

6.4 DESIGN SPACE OF SOUL–BODY  
PROTOTYPING 

Mobile devices are equipped with different kinds of sensors and out-

puts that provide users with means for direct and implicit interaction. 

While the output space of mobile devices is fairly simple (i.e., only 

encompasses touchscreen, speakers and vibration motor, and some-

times could consider the camera flash), the variety of sensors is much 

higher. In the context of software development, a sensor might refer 

to the physical electronic component (e.g., accelerometer). Sensors 

can also refer to a virtual abstraction combining different physical 

sensor readings (e.g., orientation sensor, resulting from combining 

information from the accelerometer, magnetometer and gyroscope). 

Developers can access these different sensors through events6. 

There are sensors that are treated more independently in software 

development given their common use and higher relevance, these in-

clude: the touchscreen, camera, and microphone. These sensors tend 

to provide richer information compared to more simple sensors and 

thus may follow different programming paradigms. For example, 

 
6 In programming, events refer to functions that execute once an input takes place. 
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touchscreen events might be directly attached to a user interface ele-

ment (e.g., a button) or might also be accessible via an event. Another 

example is the camera, where some libraries might provide raw cam-

era images once they arrive, while others call the camera application 

to retrieve a photo (e.g., Android through its intents platform).  

Scope. In this review of mobile sensing and output, summarized in 

Table 6.1, I will focus on common physical sensors (i.e., excluding 

virtual sensors such as the pedometer, which is simulated via the ac-

celerometer) as outlined in current APIs including iOS7, Android8 

and Windows9. I exclude virtual sensors given that: (1) these sensor 

abstractions in software are inconsistent across operating systems, 

and (2) one can achieve these virtual sensor readings in custom soft-

ware, thus they can be considered as a building block where relevant. 

The goal of this section is not one of enumeration of sensors but inte-

gration of information. I bring in the aspects of both technical devel-

opment, as well as discuss some applications carried out in HCI. This 

informs opportunities of what prototyping tools could support, and 

also helps understand the existing building blocks from the imple-

mentation phases that then become accessible to designers so that 

we, as researchers, can also think of what might become building 

blocks in the tools of tomorrow. Additionally, the takeaway may vary 

depending on the reader – while many technical readers may know 

 

Accessed March 2020: 

7 https://developer.apple.com/documentation/coremotion 

8 https://developer.android.com/guide/topics/sensors/sensors_overview  

9 https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/sensors 

https://developer.apple.com/documentation/coremotion
https://developer.android.com/guide/topics/sensors/sensors_overview
https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/sensors
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some of this information, I have found in my experience teaching HCI 

courses that some elements, such as the fact that accelerometers pro-

vide orientation information, are often not known by computer sci-

ence graduates. 

 
Table 6.1. Table summarizing common basic mobile device inputs and outputs 
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 MOBILE SENSORS 

Capacitive Touchscreen. The primordial feature in mobile devices 

for over the last decade is their large capacitive touch screens. Direct 

touch is the main way in which people interact with mobile devices, 

where they can tap on different parts of the screen to transition be-

tween different states of the interface. Users might also be able to use 

continuous actions while touching the display such as pinching or 

sliding, which can continuously modify the contents of the display. 

The display might also feature specialized widgets such as buttons or 

sliders which suggest specific means of interaction. Alternatively, in-

teractions can be more direct and actually operate directly on the vir-

tual object of interest, such as dragging and dropping an object.  

Touch interaction also provides different kinds of gestures such as 

drawing explicit shapes to trigger a command (as shown by the $1 

Gesture Recognizer (Wobbrock et al., 2007)), or through variations 

on the tapping gesture (single tap, double tap, press and hold). Some 

touchscreens may provide additional information such as the contact 

area and orientation (Moscovich, 2009; Boring et al., 2012), which 

can be used to provide additional richness to the input and seamlessly 

alternate between different modalities, such as previewing versus ac-

tion (Moscovich, 2009) or panning versus zooming on a map (Boring 

et al., 2012). Wang and Ren (2009) provide a more in-depth discus-

sion on the input space of the finger on a touchscreen. 

Accelerometer. As the name suggests, accelerometer provides read-

ings on the acceleration of a mobile phone in three-dimensional 

space, thus acting as a motion sensor. Since the accelerometer obtains 

a reading resulting from the force of gravity and its direction it can 
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provide information on the orientation. For example, one can know if 

a mobile device is in portrait or landscape orientation and arrange the 

content accordingly (Hinckley et al., 2000). Orientation can also tell 

a mobile device when to dim a screen. For example, phones can know 

when they are placed faced down (e.g., against a table) and can then 

reduce the level of notifications, while smartwatches will show the 

time when the wrist is flicked towards the person’s head (upright po-

sition) and otherwise dim the screen. The accelerometer can provide 

other means of context sensing through its motion readings. For ex-

ample, mobile devices can sense a deliberate shake gesture – Apple’s 

iOS will trigger an undo command when shaken10. The accelerometer 

is also often used in synchronous gestures (Hinckley, 2003), where 

more than one device can match sensors readings to determine an ac-

tion, such as knowing when two devices are bumped against each 

other. If a smartwatch is attached to a person’s hand, it is possible to 

know when that hand interacts with another interconnected device 

through the accelerometer reading as shown by Chen et al. (2014), 

Hinckley et al. (2017) and Horak et al. (2018).  

Gyroscope. The gyroscope measures orientation and provides a dif-

ferential (delta) value for three dimensions. The gyroscope is often 

used in mathematical transformations combined with the accelerom-

eter and magnetometer. The reason for these combinations is that gy-

roscope information is often integrated over time to obtain rotation 

information, but often gyroscopes have noise and drifts in their data 

 
10 https://developer.apple.com/design/human-interface-guidelines/ios/user-interac-

tion/undo-and-redo/  

https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/undo-and-redo/
https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/undo-and-redo/
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that introduce errors over time and need to be compensated11. Thus, 

the gyroscope alone is perhaps not directly useful for designers. 

Magnetometer. The magnetic field sensor monitors changes in the 

earth’s magnetic field. Thus, the magnetometer can provide some 

positional information about the device. For example, it is possible to 

read the magnetic field with respect to the earth’s magnetic north and 

thus determine the cardinal direction of the device, thus acting as a 

compass. With the three-dimensional reading, it is possible to also get 

additional orientation information by integrating with the accelerom-

eter and gyroscope. Additionally, given the magnetometer’s ability to 

read magnetic field, it means a mobile device can sense the presence, 

strength and direction of a nearby magnet. Some rudimentary appli-

cations of the magnetometer with a magnet include Google Card-

board, where a magnet in the cardboard lets the mobile phone know 

that the enclosure has been closed; and phone cases with covers, 

where the cover contains a magnet that tells the phone when to turn 

off the display. In fact, many Android devices will turn off their 

screen by default when sensing a magnet on a particular location. 

Ambient Light Sensor. The ambient light sensor is often placed near 

the front edges of the display. While it can achieve very sensitive 

readings and changes in overall lighting, very nuanced readings can 

be error prone. The ambient light sensor is used as a rough proximity 

sensor to know when a person holds the phone against their ear 

 
11 https://developer.android.com/guide/topics/sensors/sensors_motion#java  

https://developer.android.com/guide/topics/sensors/sensors_motion#java
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(thereby dimming the display), or to adapt the screen brightness to 

the environment. 

Microphone. Mobile devices today typically contain two micro-

phones which are fused into a single signal. Microphone information 

is collected via sampling, where multiple amplitudes are captured in 

an array over a very small fraction of time (defined by the micro-

phone’s frequency). The array can then be interpreted to obtain ei-

ther the overall amplitude (or loudness) of the signal, as well as the 

actual audio captured. One can also operate on the array to obtain the 

audio frequency (pitch) or use services such as speech recognition to 

retrieve different kinds of voice commands. 

Camera. Today’s mobile phones and tablets are equipped with high 

resolution cameras, typically one at the front and one at the back. A 

single camera image contains a lot of information within the pixels, 

which can be accessed and interpreted through different computer 

vision algorithms. Therefore, a variety of contextual information can 

be picked up by this sensor, such as movement through optical flow, 

people’s faces, actions near the device, physical gestures, finger 

touches on a surface, etc. If the device is placed inside a form, it is 

possible to track the movement of different pieces (see modifiers in 

§6.4.4). An example of this type of implementation is Sauron (Savage 

et al., 2013), which embeds a camera inside a 3D-printed object to 

track how people interact with it. 

Global Positioning System (GPS). An important element of under-

standing people’s contextual information and use is to know their 

current location. Even at a broad scale, it is possible to determine if a 

user is, for instance, at home or at work, or see their current travel 



174 SOUL–BODY PROTOTYPING 

 

patterns if they are walking, driving, or riding a bike. One can envision 

future improvements to GPS where one can detect, for instance, the 

current room in a building, to adapt a prototype to an appropriate 

context of use.  

 MOBILE OUTPUT 

Current mobile devices are also equipped with a variety of output mo-

dalities, which designers can leverage in their prototyping. How well 

the output is provided depends on the body which encloses the device.  

Display. Most devices are equipped with a high-resolution, full-col-

our display, and are able to render text, images and video. When cre-

ating an enclosure, it will need to expose the display to provide access 

to this modality. 

Speakers. Many mobile devices contain one or more speakers with 

the ability to output both human-perceivable audio, as well as ultra-

sonic frequencies. This can be used to prototype objects that provide 

audio feedback for interactions, notifications, sound effects, as well 

as emitting speech.  

Vibration. Small, vibrating motors are embedded into most commer-

cial mobile devices to allow them to provide haptic feedback. De-

pending on how the mobile device is embedded into the target body, 

the tactile information can be passed onto the entire target object, or 

localized areas.  This feedback can be used to enable discreet notifi-

cations, or direct feedback to user operations.  
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 POWER AND CONNECTIVITY 

Connectivity. Currently, most mobile devices have a variety of wire-

less capabilities, allowing them to connect to the internet and other 

devices via Wi-Fi and Bluetooth. With this connectivity, devices are 

able to retrieve information about current events, the environment, 

and a wide range of other information that the user or system can act 

on. Thus, any prototype is wireless and web-enabled. 

Power. A core requirement of the vast majority of interactive devices 

is power. Mobile devices are by default equipped with a battery, as 

well as a connection port to recharge them. Moreover, one can also 

use an external power source if the prototype needs to be used for 

more extended periods of time. 

 INPUT AND OUTPUT MODIFICATION 

In addition to using the sensors of a mobile device for their intended 

purpose, my work extracts an additional layer of inputs and outputs 

through examining the existing literature. I refer to these as modifiers.  

Modifiers expand the sensing and output capabilities of the mobile 

device. Modifications can take the form of rerouting modifiers, or 

transducing modifiers. 

Rerouting Modifiers 

Rerouting modifiers preserve the nature of the sensing or output, but 

change the location where it takes place. Rerouting can be particularly 

useful if input and output is desired on different locations of the target 

object, which extend beyond the physical size of the mobile device. 

For instance, light pipes can be used to reroute light output to differ-

ent physical locations as done by Savage et al. in PipeDream (2014). 
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Input can be rerouted in a number of ways, for instance, capacitive 

touch sensing can be moved to off-screen buttons using conductive 

pathways as done in Clip-On Gadgets (Yu et al., 2011), Extension-

Sticker (Kato et al., 2015), and Midas (Savage et al., 2013). Touch 

sensor can thus be placed in a more convenient or appropriate loca-

tion. Similarly, light pipes can be placed over the ambient light sensor 

to sense lighting in remote locations of the physical prototype. 

Transducing Modifiers 

Transducing modifiers are those which allow for different types of 

interaction that extend beyond the base capabilities of the mobile de-

vice. This fosters a new set of interaction modalities. For instance, 

Acoustruments (Laput et al., 2015) leverage the microphone and 

speakers to sense how tangible controls are being manipulated, thus 

adding novel input mechanisms to a mobile device.  Microphones can 

also enable gestural or tangible interactions around the object, as 

done with Lamello’s custom 3d printed widgets (Savage et al., 2015), 

or by detecting the discrete audio patterns when interacting with the 

object or the environment and responding accordingly (Lopes et al., 

2011; Harrison et al., 2011). 

Beyond audio, the magnetometer can be used to sense the movement 

of a magnetic field as input from buttons, such as with Nenya (Ash-

brook et al., 2011) and Google Cardboard12. One can create different 

kinds of physical widgets such as switches and sliders with embedded 

magnets as done in MagGetz (Hwang et al., 2013). Alternatively, one 

 
12 https://arvr.google.com/cardboard/ Accessed February 2020 

https://arvr.google.com/cardboard/
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might sense the intensity or the orientation of the magnet (Hwang et 

al., 2013b; Cheung et al., 2019). 

The vibration motor can be used to move the prototype, as demon-

strated by the Nintendo Labo, where a cardboard bug toy moves 

through the vibration of two attached game controllers. 

These are only some examples of ways in which sensors and outputs 

can be repurposed. By integrating the types of sensing and knowing 

the ways in which they can be repurposed, designers are conceptually 

equipped with new ways of designing smart object prototypes that 

leverage mobile devices and their inputs and outputs. 

Modifiers are overall powerful prototyping tools, as they can push the 

inputs and outputs beyond the touchscreen of the mobile device. In-

creasingly, both industry and research continue to explore potential 

avenues to provide new inputs and outputs with the currently availa-

ble sensors. Sensors such as the touchscreen, accelerometer and mi-

crophone are unlikely to go away. Over time, new capabilities may 

become available on mobile devices. For example, newer phones such 

as the Google Pixel 4, have already included radar sensing technol-

ogy, which is low cost and shows promise in sensing not only physical 

gestures, but also an ability to detect and classify a variety of objects, 

as demonstrated by RadarCat (Yeo et al., 2016). In that sense, the 

design space of Soul–Body Prototyping is likely to grow as these sen-

sors become commonplace. 

6.4.5. SURROUNDING PHYSICAL FORM (BODY) 

The advantage of a self-contained device, such as a mobile phone, is 

that creating a surrounding physical form is quite simple, as designers 
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can leverage a variety of materials, some which are outlined in §4.1.1, 

as well as through examples of screen-poking described in §4.3.10. 

The level of sophistication can vary depending on the goal, though of 

course the input and output modifiers need to be sturdy enough to 

operate. However, unlike a static physical prototype, having the mo-

bile device inside instantly provides some functionality, even if it is 

just using an existing application (e.g., a media player or displaying a 

photo or website). The next chapter shows different examples of how 

these materials can used to create prototypes, while Pineal (Chapter 

8) shows higher resolution results through 3D printing. I next outline 

a few materials that could be used to create Soul–Body prototypes. 

Foam Core and Cardboard. Both foam core and cardboard are com-

mon materials that are easy to cut, fold, and layer. One can use a knife 

to cut out cavities that expose different outputs, such as the screen or 

the speakers, and one can also customize the visuals through markers 

or paper printouts. With more expertise or software tools, designers 

could perhaps create more complex cardboard cutouts, such as the 

ones illustrated by the Nintendo Labo depicted in §6.3, Figure 6.1. 

Lego. The Lego bricks provide an open-ended approach in which one 

can construct a surrounding physical form that encloses a mobile de-

vice. Because Lego are common-place, it is possible to acquire a vari-

ety of sizes and colours and designs. In fact, the specifications of Lego 

blocks are well-understood, and many fabrication software can gen-

erate Lego-compatible attachments. In particular, FaBrickator by 

Mueller et al. (2014) shows how Lego bricks can interplay with 3D 

printed objects to create more complex forms. 
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Foam. Professional industrial designers rapidly prototype by cutting 

or sanding down large blocks of foam. In doing so, designers can cre-

ate quite sophisticated forms with changes in volumes and geomet-

rical shapes. However, this usage of foam is highly specialized, which 

requires practice, expertise and access to appropriate tools. Using a 

reductive approach to create a foam model makes it so industrial de-

signers can account for aspects of aesthetics and ergonomics. 

3D Printing. A higher resolution approach one could work with is to 

use a 3D printer to generate an object. With a 3D printer, any designer 

can work with an existing CAD modeling software to generate a phys-

ical form. While there are challenges to design around a mobile de-

vice, Pineal in Chapter 8 shows how one can retrofit prior 3D models 

to accommodate a mobile device and expose the appropriate inputs 

and outputs. 3D printers can work with a variety of materials beyond 

hard plastic, including conductive and soft/elastic materials. 

Existing Objects. The easiest prototyping method is to work with an 

existing object. Attaching the mobile device to something like a toy 

or an appliance immediately changes how one perceives that object. 

Moreover, the existing object features some functional aspects, 

which the phone could leverage. In Chapter 10, I elaborate on some 

examples through sketches which show one can make everyday ob-

jects smart, such as by attaching a phone to: a coffee maker to sense 

its usage; a door to sense when it is opened, knocked, or track the 

activity on the peephole; or detecting energy consumption on a light. 

Attachments. There are a variety of ways to attach mobile devices to 

the environment, either by modifying the case, or by modifying forms 

to enable attachment to say, walls. For example, one can use hooks, 
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butterfly clips, hook and loop (commonly referred to as Velcro) 

straps, suction cups, magnets, etc. This makes it so people can try 

different arrangements mobile device with the space, and simulate 

other objects that for example may be mounted to a wall, such as a 

thermostat or an intercom.  

Given the variety of materials, working with a mobile phone or watch 

makes it so designers can easily create new physical prototypes in an 

accessible manner, and still be able to deal with the different aspects 

of interactive behaviour. 

6.5 DISCUSSION 
The Soul–Body Prototyping paradigm proposes one way in which de-

signers can think about their interactive systems. Because it is a par-

adigm, the goal is not to define or provide a strict constraint, rather 

prompt designers with an alternative way of thinking about prototyp-

ing problems. As a result, it is difficult to draw a clear line of when a 

prototype, housing a mobile device within a physical form, goes be-

yond the boundaries of the metaphor. Thus, it is necessary to provide 

some loose definitions of when something is no longer considered a 

Soul–Body prototype (§6.5.1). From that, it becomes possible to ex-

plain how one might extend the metaphor (§6.5.2), and how it is spe-

cifically applied to this thesis (§6.5.3). 

6.5.1. METAPHOR BOUNDARIES 

Considering the Soul–Body Prototyping paradigm as simply a mobile 

device with a surrounding form and passive modifications already 

shows that it is possible to create a variety of interesting prototypes. 
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These are demonstrated by looking at some of the example applica-

tions of the existing sensing techniques, or by looking at the resulting 

smart object prototypes in upcoming chapters. The smart object pro-

totypes encompass student examples, both retrofitted from an early 

implementation before the paradigm was devised (Chapter 7, §7.1), 

and through an in-depth exploration (Chapter 7, §7.2), well as the 

smart objects generated for Pineal (Chapter 8, §8.6) and Astral 

(Chapter 9, §9.5.3). That said, the question of when a Soul–Body Pro-

totype no longer fits the metaphor remains fuzzy. It is up to designers 

to assess when their prototype has deviated so far from the metaphor 

that it is no longer suitable. However, this could lead to potential is-

sues of terminology or re-appropriation that veer too far from the 

concept, as descriptions can become vague. In the context of this dis-

sertation, I suggest a few key conditions to preserve the Soul–Body 

paradigm, as outlined below. While the paradigm could be extended 

in future work, these conditions provide scope to how I operational-

ize Soul–Body Prototyping as a concept. 

Single Soul. There should be one computational core that drives the 

functionality. If there is more than one mobile device, for example, 

the metaphor breaks. Similarly, if there are additional plug and play 

components, such as a motor, but they are attached to a computer 

that is external to the prototype, then the metaphor has broken as 

well. On the other hand, if the motor is connected to the mobile de-

vice, or has a small, embedded micro-computer which only drives the 

motor and connects wirelessly to the mobile device, then the para-

digm is being preserved, since the added attachments are not routing 

elsewhere. Given this loose definition, it then also does not make 

sense to have multiple mobile devices within a form and still qualify 



182 SOUL–BODY PROTOTYPING 

 

it as a Soul–Body Paradigm. This does not mean that these types of 

prototypes are not possible or interesting, it only reflects that the con-

ceptual metaphor has gone too far away. 

Tool and Software Support. Given that the rationale is to target in-

teraction designers, reduce coding and eliminate the need to create 

circuits, any additional external components or sensing would need 

to be supported by a prototyping tool. As a result, inputs and outputs 

have to be accessible by the mobile device through its existing Appli-

cation Programming Interface (API). This requires appropriate en-

capsulation in software to make the sensing or output accessible to 

the designer themselves as some kind of building block. While future 

inputs and outputs can be added, such as an external motor, if the 

designer has to step into a more technical role, or requires technical 

implementations by another person, then the purpose of the para-

digm is compromised and the prototype is no longer a Soul–Body 

Prototype. 

6.5.2. EXTENDING THE METAPHOR: MOBILE DEVICES 

AS MOVING TARGETS 

One reality of mobile devices is that they are rapidly changing tech-

nologies, with new types of sensors being added and removed as ap-

plications and use cases evolve. The current overview of sensors is 

rooted in the commodity mobile devices of today, but §6.4.4 suggests 

new sensors are already being added to mobile devices. Radar sen-

sors, as well as depth cameras are examples of how mobile devices are 

looking to track additional context information from the surround-

ings of the mobile device. In particular, while depth cameras are pri-

marily being used for Augmented Reality, they provide additional 
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richness beyond what a single camera can track. The possibilities of 

image processing are already quite sophisticated, and adding the 

sense of depth features flexibility that could be accounted into new 

types of prototyping tools. 

As mentioned in §6.3, there is no reason why the paradigm needs to 

be constrained to mobile phones and watches other than the scoping 

of this specific dissertation. An object resembling a smart vacuum 

cleaner, a drone, or even a remote-controlled car could also become 

potential “souls” for Soul–Body Prototyping provided there are tools 

to access their functionality and make it accessible for interactive be-

haviour design. In that context, these devices provide added possibil-

ities, such as the ability to move in three-dimensional space. Moreo-

ver, additional modifiers could be created to change the kinds of pos-

sible outputs. For example, a camera flash could power an attached 

solar-battery-powered object. One could vary different light patterns 

to change how an attached object is powered. Another example would 

be to use multiple plastic pieces to reflect the display and create hol-

ograms, as shown by Pratte’s explorations of the Pepper’s Ghost Il-

lusion applied in computer science (Pratte, 2018). That said, explor-

ing these new types of attachments or extensions would then require 

tools that offer the building blocks in hardware and software to author 

suitable prototypes. The building blocks can be simple. For example, 

Savage et al. (2013) show how a fabricated object could use and fit 

mirrors to enable a camera embedded in a passive form to see inputs 

beyond the field of view.  

For this reason, an electronics-based solution, such as Lego Mind-

storms, Phidgets (Greenberg and Fitchett, 2001), or .NET Gadgeteer 
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(Villar et al., 2013) could be considered Soul–Body implementations 

if (1) they follow that there is a single core “soul”, and (2) that the 

tool provides physical components and a way for designers to exploit 

these without the need to code. 

6.5.3. APPLYING SOUL–BODY PROTOTYPING IN THE 

CONTEXT OF THIS THESIS 

The Soul–Body Prototyping paradigm opens up new opportunities 

for a class of prototyping tools to author interactive behaviours for 

smart objects. While the next chapter shows initial inspirations as 

well as a fully-fledged implementation of the concept, it is the systems 

themselves that provide designers with building blocks to author in-

teractive behaviours for smart objects, while also affording different 

ways of thinking about form and behaviour. Thus, the two tools in 

Part 3 of this dissertation (Chapters 8 and 9) show two instantiations 

for very specific contexts. Pineal (Chapter 8) focuses on behaviour-

driven automatic form modification of an existing 3D model, geared 

towards 3D printing. Astral (Chapter 9) focuses on behaviour proto-

typing in a broader perspective than Soul–Body implementations, 

looking also at interactive behaviour design more generally. That 

said, there are many other aspects of behaviour design that could be 

covered, such as other form-giving approaches, different types of pro-

gramming environments, and dealing with different interplays or 

combination of the resulting tools. Ideally, these tools would incre-

mentally add to a suite of approaches that can be used in different 

contexts and combinations to generate new smart object prototypes. 

Therefore, the power in combination (Olsen, 2007) of more tools are 
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what could truly influence interaction design practices once these 

tools become common-place. 

The two prototyping tools, Astral and Pineal focus on mobile devices 

of today as well as their current capabilities, and to support the pro-

totyping context in which the designer is creating and envisioning the 

smart object, for example, while sitting at a desk. Thus, I do not focus 

on more usage-related aspects of prototyping such as trying out the 

smart objects in different social situations. As a result, the resulting 

prototypes are ephemeral and short-term, and thus the selection of 

sensors and outputs has to reflect that. For this reason, a sensor such 

as the Global Positioning System (GPS) is excluded. 

I do not consider additional electronic components in the current ver-

sion of the paradigm. The idea is to exploit and repurpose the sensors 

and output of the mobile device, and to apply passive or mechanical 

modifiers where necessary. 

In addition, the camera, while an important physical sensor, is explic-

itly excluded from the current tools I build for several reasons. First, 

cameras have been widely explored as done in fields of computer vi-

sion and image processing, and can realize a large amount of sensing 

through mathematical operations, creating a very large scope which 

would shift the focus towards creating a prototyping tool providing 

building blocks to deal with camera images. Moreover, the way in 

which the camera operates across operating systems is not yet stand-

ardized or consistent – in fact, the raw camera image can in some 

cases be very difficult to access. However, Laput et al. (2017) demon-

strate that many of the other physical sensors can be used together 
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and achieve similar versatility and accuracy as one can when using a 

mobile device camera. 

6.5.4. KEY TECHNICAL LIMITATIONS WHEN NOT USING 

DEDICATED ELECTRONIC SENSORS 

Given that the intent of Soul–Body Prototyping is not to create fully 

functional objects, there may be cases where coding or custom cir-

cuitry are required. I believe that with the paradigm, the threshold to 

create a smart object prototype, even by putting together cardboard 

with a carved-out area for a display, already can lead to interesting 

explorations. However, the ceiling is dependent on the task that one 

wants to accomplish, but more importantly on the available tools. In 

particular, this is true if one needs to achieve a more finished or func-

tional prototype. In such a case, coding becomes necessary so one can 

explore detailed aspects of usage that go beyond individual behav-

iours. With the current implementation of Soul–Body Prototyping 

there are two caveats to consider, the complexity of the form and how 

far out components extend, and how much one can overload the ex-

isting sensors should there be multiple inputs.  

Physical Range of Modifiers 

If one is not using electronic circuitry of any sort, the physical input 

and output modifiers are limited by their own physical range and the 

strength of the signal they can interpret. In such a case, if one is to 

have, for instance, tactile buttons that either transfer a touch-point 

through a copper tape, or by making a sound, the input signals need 

to reach the mobile device sensors, which is not possible if the rerout-

ing or transduction points are too far away from the sensor. Addition-

ally, there is little physical output in current mobile devices, which 
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means that today, one would have to rely on additional attachments, 

such as electronic motors. Again, for these to be compatible, proto-

typing tools have to accommodate for them. These shortcomings be-

come clear in the next chapter, where I show how I retrofit the para-

digm from a variety of student examples which used electronic com-

ponents in conjunction with mobile devices to create rich and inter-

esting physical prototyping applications. 

Association Between Sensors and Modifiers 

Another fundamental challenge in Soul–Body Prototyping is what 

happens if one is using multiple sensors and needs to overload them. 

This can take place in two ways, one is when a sensor is fully occupied 

and another input needs to use that sensor, and the other is when 

multiple inputs require the same sensor association. For the former 

case, consider the example of an input that uses the mobile device 

light sensor, located near the front camera. Such choice can become 

a problem if another input needs to use that sensor, as it likely is phys-

ically bound (e.g., through a physical cavity) to that input. The latter 

challenge has to do with sensors that are more flexible in their physi-

cal range but that might need to be overloaded. For example, suppose 

multiple physical inputs rely on the microphone: what happens when 

two microphone inputs take place at the same time?  The reality is 

that assigning a modifier to a specific input is a challenge that requires 

understanding and learning, or strong software support to avoid mak-

ing less optimal choices. The sensor used also matters, as some may 

be prone to accidental inputs than others. An instance of a high-error 

sensor in my experience is the light sensor, since simple changes in 
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the ambient light of the overall room may affect the interpretation of 

the sensor data, leading to false positive inputs. 

6.6 CONCLUSION 
This chapter presented the Soul–Body Prototyping paradigm, which 

is a metaphor that proposes using mobile phones as a ‘soul’ inserted 

into a physical ‘body’ which acts as a temporary enclosure to simulate 

a physical prototype with meaningful form and exposing only the nec-

essary inputs and outputs. The ideas behind Soul–Body Prototyping 

are compatible with any sensing technique that can be used with a 

mobile device sensor, which fosters a variety of novel inputs and out-

puts that can be used. Moreover, given that many commercial prod-

ucts and research projects already have applied these means of inter-

action, it shows that is feasible and has the potential to become com-

monplace. The next question is whether Soul–Body Prototyping as a 

paradigm is something that can be adopted easily, and how to make it 

to bring it as close as possible to a walk-up and use paradigm for de-

signers as well.



 

 

 

 

 

 

 

 SOUL–BODY PROTOTYPING 

CASE STUDIES 

Soul–Body Prototyping is one way of repurposing existing hardware 

and software to enable designers to prototype interactive behaviours for 

smart interactive objects. It is particularly feasible, as mobile devices 

are commonplace and can act as temporary placeholders for proto-

types. As I progressed through my dissertation research, the ideas be-

hind Soul–Body Prototyping evolved, and additional products and 

projects from different sources emerged. From the early stages, how-

ever, it was possible to see a lot of the expressive power that the mo-

bile device provided through its portability and also through the so-

phisticated inputs and outputs. This chapter1 presents case studies 

 
1 Portions of this chapter have been published in: 

Hung, M., Ledo, D., & Oehlberg, L. (2019). WatchPen: Using Cross-Device Interaction 

Concepts to Augment Pen-Based Interaction. Proceedings of the 21st International Conference 
on Human-Computer Interaction with Mobile Devices and Services, 1–8. doi: 

10.1145/3338286.3340122 

https://doi.org/10.1145/3338286.3340122
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that demonstrate the feasibility, flexibility and expressive leverage 

provided by Soul–Body Prototyping. 

I revisit two different case studies of Soul–Body Prototyping which 

focus on the mobile device as a prototyping platform, which were cre-

ated by computer science students. As a result, rather than showing 

what designers could do given the right tools, it focuses on what could 

be possible if the authoring barrier was dramatically reduced. Before 

the conception of Soul–Body, I first explored how computer science 

students learning design might bring together mobile devices and 

Phidgets (Greenberg and Fitchett, 2001), which are modular plug-

and-play electronics that do not require soldering. The resulting pro-

totypes served as a heavy inspiration for the paradigm, and show the 

expressive power once a sophisticated device, such as a mobile 

phone, comes together with added sensors and attachments to create 

new objects (§7.1). Moreover, rather than describing the prototypes, 

I retrofit the concept to discuss how these prototypes fit the Soul–

Body paradigm if one tried to replicate the prototypes without elec-

tronics.  This reflection helps highlight what can be accomplished 

with Soul–Body prototyping, as well as highlighting how far the pro-

totypes can go before there is a need for electronic components. The 

second case study, three years later, shifts to Soul–Body Prototyping 

and exploring how the sensor and output could be exploited. Watch-

Pen2 (§7.2), is an undergraduate research project I supervised, in 

which the student successfully applied Soul–Body Prototyping to cre-

ate a smart stylus that connects to a tablet device, and can handle a 

 
2 A video figure for WatchPen can be found at: http://davidledo.com/projects/pro-

ject.html?watchpen 

http://davidledo.com/projects/project.html?watchpen
http://davidledo.com/projects/project.html?watchpen
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variety of sensors at once. WatchPen also explores a more fleshed out 

application in that it shows how a variety of tools can be accommo-

dated in the context of a drawing application. These case studies also 

as a result show promise and foster reflection (§7.3) on the extent one 

can use Soul–Body Prototyping to (1) continue to push HCI research 

forward; and (2) enable interaction designers to use Soul–Body Pro-

totyping, with the right tools, to create a wide variety of rich and in-

teresting prototypes. 

7.1 STUDENT EXPLORATIONS BEFORE  
REALIZING SOUL–BODY PROTOTYPING 

Before the realization of Soul–Body Prototyping, I explored ways to 

repurpose mobile devices to create new objects. I asked students in a 

second HCI computer science class (CPSC 581: Advanced HCI3) to 

create smart object prototypes using mobile devices and electronic 

components. Students worked with Windows Phones (Nokia Lumia 

735), programmed in C#, together with Phidgets components (which 

included a kit with sliders, pressure sensors, servo motors, buttons 

and others) connected to a desktop computer (also developed in C#). 

The electronics were to be placed on top of, or around the mobile 

device in a new custom form. To connect the electronics and mobile 

devices, I created a networking library4 and set up a relay server that 

would enable students to easily send messages between the mobile 

 
3 I was co-instructor for CPSC 581 in Fall 2015 together with Prof. Sonny Chan at 

the University of Calgary 
4 Kevin Ta formalized the library into a Github repository for a future installment of the 

course: https://github.com/kevinta893/NetworkIt  

https://github.com/kevinta893/NetworkIt
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application and the desktop. Students had five weeks to create a pro-

totype, and had to deliver prototypes in different stages: 20 concept 

sketches and variations, a narrative storyboard, a non-functional form 

prototype using materials such as foam core and paper to explore the 

form, a first demo to test the implementation and get feedback, and a 

final prototype demo and video. Students posted the results in their 

public web portfolio and were asked for permission to discuss their 

projects with attribution once the course was over. The course fol-

lowed Greenberg’s studio approach (2009), where there were small-

group critiques, as well as presentations to the class throughout the 

five-week span. 

The assignment prompt was as follows: 

Mobile devices have become common-place. A consequence of this 

ubiquity is that they have become largely standardized with high 

resolution touch displays. While this brings forth the advantage of 

software flexibility, there are also new limitations from these types 

of interactions. For this assignment, you will work to create a phys-

ical augmentation of a mobile device. This means you are to use 

other hardware to extend your phone or tablet so that it solves a 

well-defined problem. Three possible approaches include: solve a 

technology-centric problem of mobile device interaction; solve an 

application-centric problem focusing on a task; or solve a people-

centric problem, where you create a special device for someone. 

From 15 students, I have selected 5 representative prototypes that 

can exemplify potential Soul–Body Prototyping applications and be 

retrofitted to work with mobile devices directly. These show: (1) an 

interesting breadth of early ideas that were developed and functional; 



 DAVID LEDO, 2020  |  193 

 

and (2) the feasibility for computer science undergraduates taking 

their second HCI course to create Soul–Body prototypes. Indeed, 

there are a few factors to keep in mind. First, these students are 

trained programmers with little design experience, who are working 

with electronic components (albeit not requiring to solder or perform 

major circuit building). Second, the class setting is an artificial set-

ting, where students are working towards earning a grade. Lastly, the 

use of electronic components means that there was little use of the 

built-in sensing and output of the mobile device, and that potentially 

some components (e.g., servo motors) could not have an equivalent 

Soul–Body Prototyping counterpart. 

It is worth reiterating, that the Soul–Body Paradigm did not exist at 

this point in time, and thus it was not taught to the students as a way 

to think about prototyping. Students were instead taught other tech-

nical skills in Human–Computer Interaction, which include: sketch-

ing, mobile sensing, interaction techniques, how to use hardware 

components, physical prototyping using foam core and cardboard, 

how to work with C# and Blend, and how to design animations. I next 

describe the selected prototypes, and show how they can be con-

verted into the current paradigm of Soul–Body Prototyping. 
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 GYMBUDDY BY MIKE CHUBEY 

The Prototype. Gymbuddy (Figure 7.1) is a workout assistant which 

could be attached to any workout equipment via a hook-and-loop 

(Velcro) strap. The form of the device was heavily padded in case the 

device would fall or get hit during intense workout activities. Within 

the padded body, a distance sensor would measure when a gym-goer 

performed a particular repetition for a workout, such as performing a 

pull-up, a push up, or using a workout bench. The GymBuddy assis-

tant would guide users through workout routines, keeping count of 

repetitions and sets, and suggesting new exercises. 

Converting it into a Soul–Body Implementation. Because the 

GymBuddy system primarily uses a distance sensor to sense when a 

person performs an exercise repetition, there are a few alternative 

mobile sensors one might use to create a testable version of the pro-

totype. One can use the ambient light sensor to know when the gym-

goer is close to the device by looking at the fluctuation of illumination 

on the front of the mobile device. However, this might prove error-

prone, as any change in lighting might trick the system into thinking 

 
Figure 7.1. Gymbuddy (by Mike Chubey) is a mobile device which can be attached to 
gym equipment (e.g., bench press) and provides training and assistance through the dis-
play. The system keeps track of repetitions via a distance sensor. 
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that a repetition has been achieved. Alternatively, one can use the de-

vice’s accelerometer to sense the directional motion. The accelerom-

eter solution would work in the case of some workout equipment, 

such as doing weights on the bench, where the mobile device is at-

tached to the bench itself. In the case of the push-ups, where the mo-

bile device is placed on the floor, there is no way to sense the person’s 

motion with the accelerometer. In that case, perhaps one might have 

to modify the design itself, and require the user to strap the mobile 

device to their body (e.g., to their chest or arm) to sense the upwards 

and downwards motion.  

 PATHOLOGIST DEVICE BY TERRANCE MOK 

The Prototype. One of the students developed a special device for his 

wife, who is a pathologist (Figure 7.2). The device featured a caliper 

for measurements: turning a knob would cause a servo motor to op-

erate the rack and pinion caliper. A pathologist could navigate 

through a human body silhouette on the phone and choose an area to 

mark, where they could use the device’s calipers to measure the mark 

(e.g., a tattoo), enter additional information, comments, or photos 

and store them. 

Converting it into a Soul–Body Implementation. The only challenge 

in this prototype is that the caliper in this implementation relies on a 

servo motor to power the rack and pinion mechanism. One way to 

address this is to simply move the rack and pinion with an analog 

knob. To keep a record of the measurements, one can add a capacitive 

marker that reaches the touchscreen and use the coordinates of that 

contact point to map the value to the correct measurements. 

 
Figure 7.2. Pathologist device (by Ter-

rance Mok). The device features a caliper 

powered by a knob and a servo motor 
which is used to record measurements on 

different body features (e.g., a tattoo or a 

scar). The application allows pathologists 

to select different parts of the body to en-

ter the recorded information. 
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 SMART DOCKS BY ORKHAN SULEYMANOV 

The Prototype. Another student developed a set of docking stations 

which would provide different kinds of physical controls and af-

fordances to the mobile device (Figure 7.3). Placing the mobile de-

vice in these stations temporarily transformed the functionality of the 

phone. One docking station acted as a music station, which opened 

the music app and provided physical controls to play/pause, navigate 

through songs or mute. Another station acted as an alarm clock for 

the bedside table, which could be set, snoozed or dismissed. The 

phone was augmented with an RFID (Radio Frequency Identifica-

tion) tag, while the docking stations contained RFID readers to detect 

when the phone was stationed. 

Converting it into a Soul–Body Implementation. There are two main 

things that need to be converted in this prototype: one is the need for 

physical controls, and the second is the ability to recognize the cur-

rent docking station. For prototyping purposes, one can allocate the 

 
Figure 7.3.  Smart Docks by Orkhan Suleymanov provides physical controls at differ-
ent locations of a home with specialized usage contexts: a music station, as well as an 
alarm clock. 



 DAVID LEDO, 2020  |  197 

 

magnetometer for one of the two functionalities. For example, the 

different buttons can have an associated magnet, then the mobile de-

vice can read changes in the magnetic field vector orientation changes 

once one of the buttons is pressed. Alternatively, the docking stations 

can have different magnet strengths which are then used to recognize 

the identity of the stations. In that case, the buttons perhaps can have 

different sound signatures which are then picked up by the device mi-

crophone. One might also consider using NFC5 (Near Field Commu-

nication) tags if the phone supports reading these tags, though this 

functionality is typically reserved for higher end mobile phones. 

 HUGGABLE PHONE BY SARA WILLIAMSON 

Prototype. A stuffed animal holds a phone which performs video calls 

to parents who are at a different physical location (Figure 7.4). Chil-

dren can squeeze the stuffed animal’s hands to call a parent who 

might be away due to travel.  If the parent was not available, a video 

greeting of the parent would show up, and then allow the child to 

leave a video message. 

Converting it into a Soul–Body Implementation. The main physical 

means of interaction at play in this prototype is through squeezing the 

plushie’s hands, which hid a pressure sensor. A quick alternative to 

this approach is to use copper tape to reroute touch input from the 

toy’s hands to a location on the mobile device touchscreen. If the de-

signer wishes to make a more finished version of this, they can try 

different forms of conductive fabric and thread that can reroute the 

 
5 Mobile devices today often have an NFC reader, while Phidgets provide RFID readers 

and tags. Both work similarly: an event is triggered when the tag is near the reader.  

 
Figure 7.4. Huggable Phone by Sara Wil-

liamson presents a stuffed animal hugging 
a phone. The mobile device can be used to 

video call a parent who is currently away. 
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information, all while ensuring that the contact points are large 

enough to be recognized as touches by the mobile phone. 

 PHOAME SWORDS BY KEVIN TA 

Prototype. Phoame Swords is a physical sword fighting game (Figure 

7.5) in which players wear a shirt with “hit points”. Hitting an oppos-

ing player with the sword on a hit point decreases the attacked 

player’s health. The game is over when a player’s health hits zero, 

and one remains. The players wield a sword which holds a mobile 

phone showing the current health points and playing sound effects 

when a player is hit, or when the sword is swung. The hit points on 

the special shirt were implemented by having RFID readers in each 

one. The sword had an RFID tag attached to its tip, so the system 

could recognize when a player is attacked. 

Converting it into a Soul–Body Implementation. This is perhaps the 

hardest prototype to realize in a full Soul–Body implementation de-

 
Figure 7.5. Phoame Swords by Kevin Ta is an augmented physical game in which play-
ers engage in a sword fight until they run out of health. The mobile device plays sound 
effects and keeps track of player’s health / hit points. 
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void of electronics. The reason behind this challenge is that the dis-

tance between the mobile device and the tip of the sword makes it 

difficult for the mobile device to sense contacts and also preserve the 

identity of which hit point and which person was hit. Perhaps one 

could reroute touch points of the screen to the sword’s tip (via copper 

tape or conductive ink), and make the targets also with conductive 

material, thus instigating touch events on a specific region of the mo-

bile device, which is then used to compute the new health values. 

This of course assumes that there are only two players, where a more 

sophisticated implementation would be required to fully experience 

more complex gameplay. 

7.2 WATCHPEN: LATER STUDENT EXPLORATION 
WatchPen (Hung et al., 2019), shown in Figure 7.6, was an under-

graduate student project led by Michael Hung under my mentorship, 

implemented over the course of three months as part of an HCI re-

search course in the fall semester. This particular project examined 

the role of an augmented stylus for interacting with tablet devices and 

its benefits with added sensing and outputs. More importantly, how-

ever its implementation was a Soul–Body Prototype which enabled a 

comprehensive exploration of what interactions with tablets might 

look like in the context of a drawing application. Specifically, the aug-

mented pen leverages different smartwatch sensors and outputs, as 

well as their combinations, to envision possible features that could be 

added to a tablet stylus, and serves as an example of how Soul–Body 

Prototyping can be used to carry out in-depth explorations without 

the need for specialized hardware. 

 
Figure 7.6.  WatchPen is a tablet stylus 
that has been augmented with a smart-

watch. WatchPen explores how different 

sensors and outputs can augment tablet 

interactions in the context of a drawing 

application. 
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Tool Selection via Accelerometer Posture Sensing. The three-dimen-

sional orientation as sensed by the accelerometer can be used to de-

tect different postures in which the pen is being held. As a result, one 

can envision how different grips can be used to switch between tools 

in a drawing application. Given how the user holds the pen, exempli-

fied in Figures Figure 7.7-b and Figure 7.9, one can switch between: 

regular brush, airbrush, stamp and eraser.  

Display Controls and Awareness. One problem with direct input is 

that the information about the current state of the tool is dissociated 

from the location in which the action takes place. With a mouse cur-

sor, it is possible to provide feedforward informing the user of the 

current state reflecting the effect of a click: the cursor  can change 

its appearance and become a pencil  and draw or a hand  to move 

the canvas around. The cursor can even provide additional infor-

mation about the tool’s parameters, such as the colour or stroke size. 

With touch or pen interactions, these details are often relegated to 

the side of the interface, or hidden within menus. Having a display 

attached to the pen can help provide additional information about the 

current tool and its parameters (e.g., stroke size and colour), as well 

 
Figure 7.8 Physical airbrush (a), and its replication in WatchPen (b) which can control the ink flow with the watch’s touchpad. The 
orientation of the pen (c) changes how the paint is spread on the canvas.  

 
Figure 7.7.  The WatchPen display shows 

the current colour, as well as hue, satura-

tion, and brightness and radius sliders 

which can be adjusted anytime. 
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as the ability to change those parameters through different sliders 

(see Figure 7.7). 

Orientation-Based Airbrush. With orientation and touch sensing, it 

is possible to simulate the way a physical airbrush operates (compar-

ison shown in Figure 7.8-a and b). For example, the finger can touch 

the watch’s screen to control the paint flow (i.e., radius) and the ori-

entation can change how the paint is spread (Figure 7.8-c). 

Microphone-Enabled Tonal Brush. With the added sensing from the 

smartwatch, it is possible to explore new kinds of unusual and crea-

tive ways of operating a stylus. For example, it is possible to map dif-

ferent parameters of a brush from the sound captured by the micro-

phone. The sound frequency/pitch can be mapped to different hues, 

while the amplitude/loudness can be associated to the brush size. 

Stamp Tool. Holding the pen perpendicular to the tablet switches to 

the stamp tool (see Figure 7.9), which can be used to apply copy and 

 
Figure 7.9. Stamp tool in WatchPen, triggered when the pen is held upright. The 

pen tool can capture contents (a) and show it on the display, and then paste cop-

ies on the canvas (b). 
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paste operations. Moving the pen around the tablet captures an area 

and displays it on the watch screen, which acts as a visual clipboard. 

The user can then paste the content multiple times by pressing the 

upright stylus against the tablet.  

Tactile Feedback through Vibration. WatchPen also leverages tactile 

feedback through the watch’s vibration motor. The vibration is used 

to notify the user when a tool has been switched due to a change in 

posture, as well as when erasing. 

7.3 DISCUSSION 
Studying how students worked with Soul–Body Prototyping pro-

vided me with a first-hand experience on how people might operate 

the metaphor and paradigm and shows the expressiveness as well as 

the feasibility. However, the limitations of these explorations, as well 

as the lessons learned for both HCI and Design contexts provide in-

teresting insight that informs the design of prototyping tools that sup-

port Soul–Body Prototyping. 

 LIMITATIONS 

What Can We Extrapolate from Student Explorations? 

Student explorations are beneficial in that they are one way to explore 

the feasibility of a concept, especially if it is possible to provide them 

with the right equipment and tools. It can be argued that students are 

to some degree novices in HCI and design, since this advanced HCI 

class shifted focus from methods of inquiry to learn about end-users, 

to sketching and prototyping using a variety of technologies. This 

means that the students are essentially beginners in design but have a 

strong technical ability compared to design practitioners. At the same 
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time, there are a few artificial components to a student-based explo-

ration. The first is that participants are being driven by an assignment 

that has a grade component to it. Second, students have access to help 

at all times from the course instructors, and the assignment is scoped 

in such a way that it can be solved if the work is put in. In both explo-

rations, I provided students with software libraries that would facili-

tate the programming experience, so they could focus on the design 

component. Regardless of these limitations, there are key observa-

tions that can be made: 

− Students were able to apply Soul–Body Prototyping to invent 

novel smart objects 

− Students were able to explore a variety of mobile inputs and 

outputs and create rich experiences in a short timespan 

− Students created forms around the prototypes to give them 

meaning using a variety of readily available materials such as 

foam or cardboard 

Understanding Sensors 

Perhaps the biggest challenge and limitation of these explorations, 

and a lesson for Soul–Body Prototyping is that people who apply the 

paradigm must either understand sensors or have some degree of as-

sistance. For example, the accelerometer is used to sense the basic 

orientation information of a mobile device, yet students did not know 

the accelerometer data could be used to assess orientation. Similarly, 

with the microphone data, the mobile device simply returned an array 

of bytes for every sample which needed to be somehow interpreted 

meaningfully. Working with these kinds of sensors are very different 
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than working with, say, the touch sensor, or a mouse cursor, which 

have a specialized event where the resulting data can be understood 

right away through a simple print statement on the console. 

Many of the students in the class were programming on the mobile 

device for the first time. While the programming platform was set up 

to remain familiar to the students (e.g., using C# and Windows Uni-

versal Platform for Windows Phones), the gap was more in under-

standing what the mobile sensors were capable of and how to make 

sense of the increasing amount of data. Given the need to make sense 

of the array of sensor data in some way, it is perhaps why many pro-

totyping tools have opted to simply not show the available sensor data 

or make it usable, as sensors beyond the touchscreen could perhaps 

be simply categorized as niche applications, and get dismissed under 

the assumption that only experts should delve into. 

 SOUL–BODY PROTOTYPING AND  

HCI RESEARCH 

The explorations in WatchPen show how it was possible to explore a 

design space in a short amount of time. While I had provided Michael 

Hung, the lead author, with a software library that handled the net-

working and a lot of the sensing, along with examples, he recognized 

the advantages of working with higher-level programming specific 

components rather than low-level hardware. I have already discussed 

in Chapter 5 the power of toolkits as software infrastructures, and us-

ing mobile devices instead of hardware components are no different. 

One example of repurposing devices similar to Soul–Body Prototyp-

ing is Lee’s prototypes which he referred to as “procrastineering” 

(2008). Lee (ibid) was able to create a variety of prototypes in a short 
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amount of time, such as an interactive whiteboard, a head-tracking 

VR display and a multitouch display all using a Nintendo Wii Remote 

and its infrared camera through a widely available software library. In 

that sense, the infrastructures build on top of one another until they 

become high-level enough that they can increase people’s ability to 

participate in the prototyping activity, or people can save time that 

would have been spent working with lower level components other-

wise. This leads to two obvious directions for Soul–Body Prototyping 

in HCI research. The first is to continue exploiting mobile sensors in 

new and interesting ways using high-level programming platforms. 

The other direction is to create additional layers of infrastructure that 

can simplify the design and development process and open up new 

interesting paths of least resistance (Myers et al., 2000). 

 SOUL BODY PROTOTYPING AND DESIGNERS 

While the participants of these activities are not interaction design-

ers, they are an example of students beginning their training in design 

who happen to have the technical skills to code interactive applica-

tions. The results of these explorations then suggest what could be 

possible if designers did not have these technical difficulties. Moreo-

ver, the prototypes also show that simple materials such as cardboard 

and foam core are enough to build a basic form and focus on the in-

teractive behaviour implementation. 

With the Soul–Body Prototyping paradigm, it is possible to achieve 

more closer-to-product representations, provided designers can cre-

ate a physical form of some fidelity and resolution. It removes the 

need for technical expertise in circuitry and brings a few more tools 
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to their disposal, such as mobile apps or websites which can be recon-

textualized. However, it becomes clear that there is a need for a new 

class of prototyping tools that can help design interactive behaviours 

beyond the WIMP (Windows, Icons, Menus and Pointers) paradigm 

and shift towards different sensor-based input approaches. While 

there is still a need to learn and better understand some of the sen-

sors, the tools can help conceptualize some of these challenges.  

7.4 CONCLUSION 
This chapter presented case studies of Soul–Body Prototyping as a 

paradigm to circumvent the need for custom electronics to create 

smart interactive object prototypes. I showed some early examples of 

computer science students who programmed and used high-level 

electronics to create rich innovative prototypes over the course of five 

weeks. This shows that using mobile devices in this new prototyping 

context can inspire new interesting ideas and lead to fairly sophisti-

cated implementations which demonstrate the paradigm. I then dis-

cuss how these implementations can be converted into prototypes 

that use only built-in sensing on the mobile device. WatchPen (Hung 

et al., 2019) then shows the power of Soul–Body Prototyping at a 

larger scale and even demonstrates how a variety of sensors can be 

brought together. Indeed, these implementations raise the question 

of how to take this knowledge and operationalize it for designers to 

create new prototypes, which is the goal of the systems in the upcom-

ing chapters. Chapter 8 shows how a system might use basic behav-

iours to automatically generate 3D printable forms (Pineal) for Soul–

Body prototypes, while Chapter 9 shows a means to author nuanced 

interactive behaviours with (Astral). 



 

 

 

 

PART 3  
SYSTEMS 

 
 





 

 

 

 

 

 

 

 PINEAL: BEHAVIOUR-DRIVEN 

PHYSICAL PROTOTYPING 

“Form follows function – that has been misunderstood. Form and function 

should be one, joined in a spiritual union” – Frank Lloyd Wright 

The last part proposed the Soul–Body Prototyping paradigm as a 

method for repurposing existing hardware and software to enable design-

ers to create live interactive prototypes for smart interactive objects. In it, 

designers place a mobile device (soul) into a temporary physical form 

(body) to create a physical prototype for a smart object. The paradigm 

on its own helps alleviate some of the designer challenges, such as the 

need for specialization and the need for close-to-product representa-

tions. However, Soul–Body Prototyping needs tools that enable its 

operationalization. Specifically, it opens up the second research ques-

tion posed in Chapter 1: 

RQ2. How might designers author forms around mobile devices 

to make them look and feel like smart objects? 
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To address this research question, I created Pineal1, a prototyping 

tool capable of generating a functional smart object prototype. The 

resulting prototype consists of a fabricated form (e.g., 3D printed), 

which houses a mobile device which performs all the programmed 

behaviours. With the aim of providing a base understanding of Pineal 

and its research contributions, I begin this chapter by providing a 

summary description of the system (§8.1), while also situating it 

within the existing related work (§8.2). This then enables describing 

the more technical details behind Pineal, such as the interface com-

ponents (§8.3), how a user might leverage these components to cre-

ate an example prototype (§8.4), and the implementation details that 

realize the end-user operations (§8.5). Further validation of Pineal 

and its expressiveness is achieved through a series of prototypes I cre-

ated using the system (§8.6), which cover the elements of the design 

space of Soul–Body Prototyping. Lastly, I discuss Pineal’s concept, 

limitations and reflections (§8.7) which are then tied together with 

concluding thoughts (§8.8). 

  

 
1 Portions of this chapter have been published in: 

Ledo, D., Anderson, F., Schmidt, R., Oehlberg, L., Greenberg, S., & Grossman, T. (2017). 

Pineal: Bringing Passive Objects to Life with Embedded Mobile Devices. Proceedings of the 
2017 CHI Conference on Human Factors in Computing Systems, 2583–2593. doi: 

10.1145/3025453.3025652 

Video figure: http://davidledo.com/projects/project.html?pineal  

Patent application: 

Grossman, T., Anderson, F., Schmidt, R. M., Greenberg, S., & Ledo, D. (2018). Tech-

niques for Designing Interactive Objects with Integrated Smart Devices. U.S. Patent Appli-
cation No. 15/863,767. 

https://doi.org/10.1145/3025453.3025652
http://davidledo.com/projects/project.html?pineal
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8.1 PINEAL 
Pineal is a software prototyping tool that operationalizes Soul–Body 

Prototyping and enables designers to author smart interactive object 

prototypes. Pineal enables: (1) programming interactive behaviours 

on mobile devices (the soul); and (2) modifying a 3D model form to 

house the mobile device and expose the phone or watch’s inputs and 

outputs (the body). As a result, one can use an existing fabrication 

method, such as 3D printing, to realize the object’s form, and insert 

the programmed mobile device into it to create a new prototype that 

resembles a smart object.  

Pineal features two main workspaces within the same view. On one 

side, there is a visual programming environment which leverages trig-

ger-action modules as node-link diagrams. The other side shows a 3D 

modeling environment, which operates Autodesk Meshmixer in the 

background. The 3D modeling environment serves to show the 3D 

model, and also to perform all necessary automation tasks that will 

modify the 3D model to make it into a physical form that supports 

Soul–Body Prototyping. Thus, the form can fit the mobile device and 

facilitate inputs and outputs which connect to said mobile device.  

Pineal works through four steps, summarized in Figure 8.1: 

1. Importing an Existing 3D Model. Designers can import any stand-

ard 3D model file format (e.g., STL or OBJ) into the 3D modeling 

environment. As a result, one can work with existing models down-

loaded from the web (e.g., through a model-sharing site such as 

Thingiverse.com), or with a custom model created from scratch on 

 
Figure 8.1. Overview of Pineal. 
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any 3D modeling tool (e.g., Meshmixer, Autodesk Fusion 360, Solid-

Works, OpenSCAD). 

2. Programming Interactive Behaviours for Mobile Devices. The vis-

ual programming environment provides a set of building-blocks for 

trigger-action behaviours that leverage mobile device sensors and 

outputs. Pineal features a mobile device client which connects to the 

desktop application to author interactive behaviours. The design of 

the visual programming is such that designers can immediately test 

and modify the behaviours in a live manner: a change in the visual 

program is reflected on the mobile device in run-time (Figure 8.1-2). 

3. Modifying the 3D Model. The programmed behaviours send mod-

ification instructions to the 3D modeling environment, which the de-

signer can step through to customize the form (Figure 8.1-3). For ex-

ample, if the visual program requires the mobile device screen to be 

visible (e.g., a module output displays text), the 3D modeling envi-

ronment will add a step to create a cavity to expose the screen. The 

designer can then select the location of the 3D model where they wish 

to create the screen cavity. Once all steps are finalized, the system 

takes these constraints and automatically modifies the original 3D 

model: it splits it into two pieces that can be assembled, creates room 

for the mobile device, and exposes the inputs and outputs specified 

by the visual program, such as exposing the device’s screen in the 

previously selected location. 

4. Fabricating and Assembling the Model. The modified 3D model is 

exported as a file to any folder, and is now ready for fabrication via a 

designer-chosen slicer software. The designer can realize the physical 

forms (e.g., through 3D printing) and place the mobile device. Once 
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the device is inside, the programmed behaviours run as expected, 

thus temporarily turning the mobile device into a smart object proto-

type. Interaction designers can use the prototype to envision the be-

haviour in the context of a physical form that can closely resemble 

real world use (Figure 8.1-4). 

8.2 RELATED WORK AND CONTRIBUTIONS 
Pineal integrates different technologies to author smart object behav-

iours. In particular, there are two main benefits over prior work, dis-

cussed below. 

1. Leveraging a Single Mobile Device Rather than Many Electronic 

Components. By repurposing mobile devices, designers can have all 

the primary functionality of a smart object through the myriad of mo-

bile sensors, all contained in an easily extensible geometry. Existing 

work to date focuses on the creation of custom circuitry. Different 

platforms exist that lower the thresholds for programming electron-

ics, where the focus is on removing the need for circuit building, but 

still require end-users to code and create the surrounding physical 

form. For example, Phidgets (Greenberg & Fitchett, 2001), Smart-

Its (Gellersen et al., 2004), and .NET Gadgeteer (Villar et al., 2013) 

offer a set of premade electronic boards with sensors and resistors 

that programmers can easily “plug and play”, all while coding in fa-

miliar object-oriented, event-driven environments, such as C#. As a 

result, an expert programmer can author physical user interfaces that 

can sense human input or contextual information from the environ-

ment. Other platforms, such as Trigger-Action Circuits (Anderson et 

al., 2018) and PaperPulse (Ramakers et al. 2015) leverage more inex-
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pensive electronics (e.g., Arduino), provide simplified visual pro-

gramming, and automatically generate a full circuit diagram to help 

with assembling the circuit based on the pre-programmed behav-

iours. In the case of PaperPulse, the circuit diagram can be printed 

with conductive ink using a modified printer. Micro:Bit2 packs a set 

of basic sensors (accelerometer, temperature sensor, compass, Blue-

tooth, and two buttons) and a 5x5 LED display, thus containing hard-

ware building blocks on a single board. Micro:Bit can be programmed 

with TouchDevelop (Ball et al., 2016), web-based visual program-

ming language that helps novices such as makers and children to au-

thor basic behaviours. However, the Micro:Bit was designed to teach 

children programming, and thus has a few arrays of low-cost sensors 

and outputs. Thus, while Micro:Bit removes the coding complexity 

and the circuit building, the range of what can be created with the few 

sensors and outputs is limited. By tapping onto the mobile device’s 

sensors and outputs, Pineal brings forth a wider variety of program-

mable sensors and outputs, while accessing more complex functions 

such as web operations through its internet connection, or built-in 

services such as speech recognition. 

2. Using Programmed Behaviours to Automatically Modify 3D Mod-

els. Creating 3D models from scratch is difficult, especially when 

those models have to match existing, real-world geometries. A num-

ber of projects have examined integrating electronic components 

with 3D models. For instance, RetroFab (Ramakers et al., 2015) au-

tomatically generates enclosures for electronic components which 

 
2 https://microbit.org/ – Accessed December 2019 

https://microbit.org/
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are used to actuate existing physical interfaces. PipeDream (Savage 

et al., 2014) allows users to easily author internal pipe structures 

within 3D printed objects, which can be applied to a range of inputs 

(capacitive sensing) and outputs (haptic feedback, light pipes) but re-

lies on the author to define the location and purpose of these pipes. 

MakersMarks (Savage et al., 2015) allows users to physically sculpt 

and create an object by hand using clay and use tags to specify physi-

cal input mechanisms. Objects are then 3D scanned, and the model 

combines the tagged markers to create a solid model that reflects both 

the overall form as providing cavities to fit the electronic compo-

nents. Enclosed (Weichel et al., 2013) is a modeling environment to 

create enclosures for electronic objects. While it allows for custom 

shape creation, its focus is on incorporating the shape of the elec-

tronic components, not on working with existing 3D models. MixFab 

(Weichel et al., 2014), CopyCAD (Follmer et al., 2010), and 

KidCAD (Folmer et al., 2012) all allow novices to begin to perform 

3D modelling operations using real-world objects. The objects are 

scanned in via cameras or sensors and brought into a 3D modelling 

environment which, simplifies the modelling process. In many of 

these approaches, the modelling techniques are simple enough for 

novice end-users to use. Pineal builds on these prior works by auto-

mating the 3D modelling tasks necessary for embedding devices into 

3D objects. Pineal leverages prior algorithms such as creating internal 

pipe structures to route fiber optic cables (Savage et al., 2014), while 

introducing new functionality such as automatic splitting of 3D mod-

els to physically insert mobile devices inside the form. Moreover, this 

automation is entirely dictated by the behaviours specified by the de-

signer, thus reducing the need for manual 3D modeling operations 
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while still providing customization opportunities. As a result, users 

technically do not need much understanding of 3D modelling, thus 

simplifying the creation of smart object forms. 

8.3 INTERFACE AND WORKSPACES 
The system contains a visual programming authoring environment 

(Figure 8.2, left) and a 3D modeling workspace (Figure 8.2, right). 

After authoring the behaviours, the system guides the users through 

simple steps to modify the model as dictated by the behaviours. To 

aid in the visual programming process, designers can test behaviours 

in real-time on the mobile device independently of the 3D model.  

 VISUAL PROGRAMMING ENVIRONMENT 

Designers author the behaviour of their smart object using a high-

level node-based visual programming language interface. Inputs can 

be placed on the canvas and linked to outputs to enable the creation 

of basic behaviours. The mobile device, which runs the Pineal mobile 

client, is always checking the state of the visual programming canvas, 

and accordingly updates and allows for live testing. The visual pro-

gramming language is composed of the following components.  

Input Modules 

Pineal provides support for several inputs commonly found on mobile 

devices, including discrete inputs (those that have an explicit ‘trig-

ger’) and continuous inputs (those that respond to changing, always-

available values). 
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Button (discrete). Triggers an event when the generated button is 

pressed by remapping the user’s touch directly to the touch screen 

via conductive material. Buttons can be of arbitrary shapes, and must 

be printed in conductive plastic. 

Speech (discrete). Triggers an event when the specified word is sensed. 

Speech recognition is done by the mobile device, with events being 

sent to the server once the word is detected. Multiple speech modules 

can be placed onto the canvas, and thus the system can detect and 

respond to various words. 

 
Figure 8.2. Pineal consists of (1) a simplified visual programming language to author basic behaviours for mobile devices 

(left); and (2) a 3D modeling environment, which allows designers to import custom models that can be 3D printed (right). 

Pineal’s programmed behaviours then automatically modify the 3D models so they can indeed house the mobile device and 
expose the necessary inputs and outputs once 3D printed. This figure shows a Toy Firetruck model, which is used as a run-

ning example, where pressing a button makes the truck flash its lights and play a siren sound. 
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Shake (discrete). Triggers an event when a device is shaken. To recog-

nize shakes, Pineal processes the accelerometer data and triggers the 

event when the magnitude of the acceleration exceeds a pre-defined 

threshold. 

Orientation (discrete & continuous). Triggers an event when the speci-

fied axis of orientation (azimuth, pitch or roll) exceeds a given value, 

or reads a continuous value that can be mapped to another module.  

Web (discrete & continuous). Triggers an event when a specified web 

event occurs (e.g., a hashtag is tweeted about), or provides a contin-

uous value corresponding to the temperature forecast for a given city. 

Currently, only these two web functionalities are supported, but this 

feature could be extended to other services. The web service is se-

lected by a dropdown menu. 

Output Modules 

A number of types of output are supported by Pineal to allow the 

smart objects to have expressive characteristics. 

Text Display. Displays a text sequence when an action takes place. 

This sequence is fetched from a specified sequence every time the 

module is activated. The module also shows a set of sequencing op-

tions to iterate through the list, in increasing or decreasing order, or 

in a random fashion. 

Image. Displays an image selected from the pre-loaded library of im-

ages. The image location (x and y) can be updated via the input. The 

input is assumed to be screen coordinates, and appropriate mapping 

must be done by using the appropriate module sending the input. 
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Simulated LEDs (small light points). Simulates the effect of an LED 

turning on when triggered by routing light from the screen to another 

location on the object via light pipes. The module takes a list of col-

ours as input, and each time the module is triggered it reads the next 

element in the circular sequence. 

Light Diffusers (large light sources with 3D form). Changes the colour of 

the display pixels when triggered. This enables the smart object to 

function as a low-resolution ambient display. Conceptually, this is 

similar to the simulated LED module, except it allows the user to im-

port another 3D model to be placed on top of the base model as a light 

rather than having the light reroute to appear as an LED. 

Sound. Plays a wave formatted file selected from the pre-loaded li-

brary when triggered. 

Mapping Modules 

Mapping modules support the input and output modules by provid-

ing means to store values and invoke timers.  Currently Pineal sup-

ports two mapping modules: 

Retrievable Sequences. Text sequences and colour groups are lists that 

contain multiple entries. A calling module (e.g., input module) re-

trieves a value, which can be provided in increasing order, decreasing 

order, or random order, as specified by the user. 

Timer. Fetches a retrievable value from a sequence for a specified du-

ration at a given interval in milliseconds. A discrete input value can 

start a timer. 
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 MODELING ENVIRONMENT INTERACTION 

As the behaviours are put together, the modeling environment loads 

a set of instructions to modify the 3D model and creates a new form 

suited to the mobile device. In this section, I describe the types of 

interactions that the user can partake when interacting with the 3D 

modeling environment. The specific implementation details are later 

discussed in §8.5. While Pineal does a lot of automation to modify the 

3D model, the system relies on an interplay with the designer to en-

sure they can customize the model to the way they want it to look and 

feel like once it is 3D printed (e.g., allowing them to consider where 

to place the screen, buttons, etc.). 

The user can explore the 3D model within the environment (e.g., 

panning and zooming within the workspace). The Pineal interface 

displays a series of steps that the designer can take to continue mod-

ifying the 3D model, following the pattern of a traditional user inter-

face Step by Step Wizard (described in Chapter 4, §4.3.8). As a step 

is loaded, the instruction to the designer is shown on the interface on 

top of the 3D modeling workspace (Figure 8.2-left). Once the de-

signer agrees to step through the modeling tasks (by clicking the 

green checkbox to engage in that step), the system will automatically 

select the appropriate tool to enable the designer to customize the 

model (e.g., to place the screen of a device, the model of the screen is 

dropped and can be dragged across the surface of the base imported 
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3D model). In addition to the standard panning (right click and drag) 

and zooming (scroll wheel), there are three types of interactions de-

signers can perform, where the current tool or modality is determined 

by the current instruction. These interactions are defined by the Au-

todesk Meshmixer interface. 

Hover 

Designers can hover on top of 3D models (Figure 8.3-A), which 

shows the cursor as well as additional feedback (a circle projected 

onto the 3D model mesh coordinates) to suggest the point one is tar-

geting. 

Brush Selection 

To place a button (Figure 8.3-B), the user “paints” a selection on the 

surface of the 3D model. Alternatively, double clicking will select the 

immediately surrounding “face” of the mesh. The system will ex-

tract that portion of the model, and extrude it upwards, creating the 

model for the button. 

Object Placement 

Screen/Light Placement. A model of the mobile device screen is placed 

atop the surface of the existing model (Figure 8.3-C), where the de-

signer can drag and drop the model of the screen around and it will 

always be perpendicular to the mesh. The screen model then is trans-

lated towards the centre of the model and defines the splitting plane. 

In the case of a light, the system places a small sphere that acts as an 

anchor point for the light’s end-point. 

Model Placement. Users are prompted to import a new 3D model (e.g., 

one which will become a light diffuser), which gets inserted into the 

 
Figure 8.3.  Interactions in the 3D 

modeling environment are of three 

types: (a) hovering the cursor shows 

where an operation will take place; (b) 

pressing down the left button and drag-
ging allows the user to paint a selec-

tion; and (c) placing an imported 

model. Operations are always relative 

to the surface of the 3D model mesh. 
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modeling environment and incorporated as part of the larger model. 

The designer then can move the imported model around the original 

model via drag and drop. The drag and drop operation, like the screen 

placement, moves the imported model’s base always relative to the 

surface of the original model. 

8.4 USAGE SCENARIO: CREATING A TOY FIRE-
TRUCK 

To show how a potential user might work with Pineal, I illustrate a 

walkthrough of the various steps a designer takes to create a func-

tional prototype. This scenario demonstrates a prototype with some 

degree of sophistication given that it uses a variety of inputs and out-

puts, and serves to highlight Pineal’s threshold (i.e., how easy it is to 

get started). In particular, Pineal brings the focus of the authoring to 

the trigger-action interactive behaviours. The authored behaviours 

then serve as instructions to generate the appropriate form, as re-

flected in Figure 8.2. Note that the specific implementation details 

 
Figure 8.4. Components of the complete firetruck model. 
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of how the behaviours and the form modification take place are ex-

plained after the scenario, in §8.5.  

Pre-Conditions. To accomplish any prototype, designers must have: 

(1) a desktop computer to work with Pineal; (2) a mobile device to 

test the programmed behaviours and act as the prototype’s “soul”; 

and (3) a means to realize the prototype’s “body”, such as a 3D 

printer (to fabricate Pineal’s generated 3D model). 

The Scenario. A designer creates an interactive firetruck toy where 

pressing a button plays a siren sound and triggers two flashing lights 

which are illuminated in alternating red-and-white colours. As a re-

sult, this scenario exemplifies a smart object with one physical input, 

and three different outputs, which lead to a form with multiple mod-

ifications, resulting in the physical components shown in Figure 8.4.  

 STEP 1: IMPORTING THE BASE FORM 3D MODEL 

Prior to interacting with Pineal, the designer acquires a 3D model of 

a firetruck that they wish to make interactive and imports it into Pin-

eal. This model can be downloaded from common online repositories 

such as Thingiverse.com, or can be created using other tools (e.g., 

using Autodesk Fusion 360 or Meshmixer). The designer also selects 

the type of mobile device that they are working with (phone or 

watch), which defines the dimensions of the mobile device for future 

mathematical operations. 

 STEP 2: AUTHORING THE BEHAVIOUR VIA VIS-

UAL PROGRAMMING 

After importing the model, the designer begins to create the behav-

iour of the device using the visual programming interface. The visual 
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programming components can be selected from a palette of inputs 

and outputs and arranged in the central canvas within the program-

ming environment. The program flow for the Firetruck is visually 

represented as a schematic in Figure 8.5. Every time the visual pro-

gram is modified, the new instructions are sent to the mobile device 

live: the system adjusts what inputs to listen for, interprets them 

based on the visual program, and prompts the mobile device to pro-

vide the appropriate outputs accordingly. As a result, the designer 

can try out and modify the program continuously.  

To create the program for the firetruck, the designer first selects the 

‘Button’ input from the palette and drags it onto the canvas. Then, 

they drag the ‘Sound’ output from the toolbar onto the canvas and 

select a siren-sound from Pineal’s library of sounds and connect the 

sound output to the button press. To create the lights, the designer 

wishes to alternate between different colour patterns. The designer 

drags two ‘Light’ modules, along with corresponding ‘Colour’ mod-

ules onto the canvas. The designer then specifies the lists of colours 

of the two colour modules, showing different arrangements of white, 

red and blue, which are set to sequence linearly. To make the lights 

change colour, the designer connects the button to a timer, which 

runs for 5000 milliseconds and updates every 100 milliseconds. As a 

result, whenever the button is pressed, the timer starts. The timer is 

then connected to the colour groups, and each colour group is con-

nected to the corresponding light. Each time the timer updates, the 

next colour in the list is sent to the corresponding light. Once the se-

quences run out of colours in the list, they go back to the beginning 
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and continue pushing a new colour every 100 milliseconds until 

reaching the 5000-millisecond duration. 

 STEP 3: GUIDING THE MODELLING PROCESS 

Once the user has defined a behavioural description of the object, Pin-

eal guides them through the process of placing the physical compo-

nents within the virtual model. The system runs through the visual 

program to determine the necessary manipulations the designer can 

make. While the generalized order of modelling steps is described in 

§8.5.2, Figure 8.6 shows a schematic of the interplay between the 

designer and the system to generate the desired 3D model for the fire-

truck prototype. Given the set of instructions, Pineal automatically 

splits the firetruck into two pieces about the centre of the model, and 

creates a cavity for the phone along on the bottom half. The system 

also generates four alignment pins so that the two parts can be assem-

bled together later on: four posts in the top half, and four holes in the 

bottom half. Pineal then instructs the user to specify the location of 

 
Figure 8.5. Schematic of visual program to create interactive firetruck. 
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the two lights, which the designer does by directly clicking on the sur-

face of the 3D model within the 3D modelling workspace. Following 

this, Pineal automatically creates a curved tubular path from the sur-

face of the model, through the object, terminating at the screen of the 

mobile device. Each half of the mobile device will display the colour 

for each light. The generated tubular path provides a channel where 

the designer will insert light pipes that will redirect light from the 

screen’s pixels to the desired location. Next, the designer adds the 

button by selecting and painting the desired region on the surface of 

the model. This selection defines the shape and location of the but-

ton. Finally, since the user will be using audio output, Pineal creates 

an array of ‘speaker holes’ through the object to better allow sound to 

travel out of the device.  

 STEP 4: OBJECT GENERATION 

Once the designer completes their walkthrough, Pineal automatically 

generates the following objects that the designer can export: (1) the 

top of the fire truck (with alignment pin posts, a button cavity, and 

two hollowed channels for the lights); (2) the bottom of the fire truck 

(with a phone cavity, holes for the speakers, and alignment pin holes); 

(3) a button; and (4) a spring. The spring 3D model is automatically 

 
Figure 8.6. Steps taken by the designer to customize the firetruck 3D model from the moment it is imported until all mod-

ifications have taken place. The figure also shows the operation that the system performs in the background. 
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generated, which can be attached to the bottom of the button to pro-

vide a more realistic button feel if desired. 

 STEP 5: OBJECT ASSEMBLY 

The top and bottom of the firetruck can be printed in any material, 

while the button requires conductive material for the phone’s 

touchscreen to detect when it is pressed (e.g., using conductive 

PLA). The optional spring is printed in an elastic material (e.g., Nin-

jaFlex). The spring can wrap around the button to require activation 

force so that the button triggers a contact event. After printing, the 

designer can begin assembly. Assembly is relatively simple (final 

pieces shown in Figure 8.4), with this example taking approximately 

5 minutes to assemble. The phone is placed in the cavity, and the two 

halves of the model snap together.  The alignment pins, as well as 

implicit affordances (e.g., overall shape) help guide the assembly. 

Next, the light pipes can be inserted into the channels carved out for 

them, and the button can be placed into the corresponding hole in the 

back of the truck. The firetruck is now ready for use, and when the 

button is pressed, it will play a siren sound and flash its lights. 

8.5 IMPLEMENTATION 
Pineal is comprised of a visual programming language, allowing de-

signers to author high-level behaviours using a drag and drop inter-

face. An interactive 3D modelling canvas updates as the user modifies 

these high-level behaviours. When changes in the visual program-

ming language require modifications to the model, the interface dis-

plays the required actions above the modelling environment to guide 

the user through the process. 
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 SYSTEM OVERVIEW 

Software Components. The Pineal system (Figure 8.7) includes a 

smartwatch, smartphone and desktop PC, each running custom soft-

ware. Currently, only the Google Nexus 5 phone and a Samsung Gear 

Live smartwatch are fully supported and both run a custom applica-

tion implemented in Java for Android (SDK 23), as they were the de-

velopment devices available. The smartphone application connects 

to a NodeJS relay server on the desktop PC, which in turn connects 

to the Pineal C# (WPF) desktop application featuring the visual pro-

gramming and modelling environments. This C# application con-

nects to an instance of Autodesk Meshmixer, using the Meshmixer 

API3. This API allows Pineal to perform all the necessary automated 

modelling steps.  

 
3 https://github.com/Meshmixer/mm-api – last accessed July, 2020 

 
Figure 8.7. System architecture of Pineal, showing connections between smart 

phone, watch, NodeJS Server, C# client and Meshmixer 

https://github.com/meshmixer/mm-api
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To realize the implementation of the watch application, a worka-

round needed to be devised. Given that this particular watch (the 

Samsung Gear Live) does not feature WiFi connectivity, the only way 

to communicate between the watch and the desktop is by first reach-

ing the mobile phone via Bluetooth. 

Deciding How to Deal with Inputs and Outputs. The application 

running on the mobile devices streams all sensor data to the C# desk-

top application, where the data is processed. The desktop application 

takes charge of interpreting when inputs from the mobile device took 

place by looking at the current input modules on the visual program. 

For example, if a shake module is added, the system checks the accel-

erometer data in real time, and triggers an event when a significant 

change in accelerometer data is detected. When input events take 

place, the application runs through all the visual programming path-

ways created that are connected to that input. If any output action is 

to be taken as dictated by the visual program (e.g., play a sound, dis-

play an image), the C# application sends a message back to the mobile 

device indicating what action is to be taken. This constant streaming 

of data through the central C# application via the relay server allows 

for live debugging and interactive re-programming of the smart ob-

ject. As a result, the designer can test the program as they write it 

without the need to compile the code. 

Making the 3D Modeling Environment Part of the Application. Pin-

eal does not actually have a native 3D modelling environment. In-

stead, it borrows an instance of Meshmixer on the desktop to create 

an interactive experience. Pineal leverages WPF’s ability to work 

with transparency within the operating system, which means that 

 
Figure 8.8. Visual description of win-

dow transparency: the 3D modeling en-

vironment in Pineal is an instance of 

Meshmixer that sits behind the Pineal 
window. 
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gaps in the application’s interface (i.e., the holes) can be clicked-

through and click events go to other windows behind Pineal’s inter-

face. As a result, one can click through the window’s hole and interact 

directly with the Meshmixer interface, as shown in Figure 8.8. Thus, 

the interaction with Meshmixer takes place in two ways. First, the 

system leverages the API to send instructions to Meshmixer so that 

it can modify its 3D models. Second, users can interact with the 3D 

modeling environment (e.g., pan and zoom), as well as manipulate 

the model itself once Pineal sends the model manipulation instruc-

tions through the API (e.g., placing the LED lights, adding a screen, 

painting the button). 

 AUTOMATED MODEL CONFIGURATION 

Pineal steps the user through different actions that modify the 3D 

model to fit the mobile device and any new modifications (e.g., but-

tons). The types of operation vary depending on the authored behav-

iours, and are summarized visually in Figure 8.9. To generate the 

forms, the system relies on applying a series of Boolean operations4 

that get applied to the user-imported base-model (e.g., the firetruck). 

This process is not fully automated, as the user has the flexibility to 

provide input for locating the inputs or outputs. 

Defining the Mobile Device Screen Position on the Form and 

Placing the Mobile Device 

By default, the device is placed in the centre of the 3D model. Images, 

text, and light diffuser modules require the display to be exposed, and 

 
4 Boolean operations are a set of instructions to combine two polygons into a new shape. 

One can add two shapes together (union), subtract them, or intersect them. 
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thus are configured by the user in the modelling workspace. As shown 

in Figure 8.9-A, once the user places the screen on the model, the de-

vice model is moved 2 cm towards the centre of the base model. This 

distance is the result of tests I conducted with multiple 3D prints to en-

sure that the screen is visible while still being securely fastened within 

the object. If there are no instructions to place the screen in a custom 

position, the system places the device model inside the base 3D model’s 

centre, facing upwards and parallel to the ground. The top surface of the 

device model acts as a cutting plane. The system then cuts a plane on 

 
Figure 8.9. Operations performed by Pineal on the 3D models include: (A) Positioning the screens; (B) Carving out the 

screen and placing alignment pins; (C) Speaker and other sensor holes; (D) Buttons; (E) Simulated LED lights through light 

pipes and (F) Light Diffuser. 
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the base model, creating two pieces: top and bottom. The device model 

is subtracted from the bottom piece of the cut to create a cavity.  

Screen Cavity and Alignment Pins 

As shown on Figure 8.9-B, Pineal can create openings on the device, 

as well as alignment pins. This is done through Boolean operations 

between the base model and new models (invisible to the user) gen-

erated at runtime: 30 x 30 x 50 mm for the watch screen (measure-

ments that fit most smartwatches without a strap), 0.9 x 0.9 x 11 mm 

for the alignment pins. The system aligns the watch screen carving 

object with the screen centre of the device model, and then subtracts 

it from the top piece of the base model. 

Alignment pins work in a similar fashion. Each alignment pin is du-

plicated to create one post and one hole for each alignment point. The 

hole is scaled by a factor of 1.1 in every dimension for clearance, so 

that the new printed object will fit together. Finally, the alignment 

objects are centered on the division plane in different locations with 

respect to the mobile device model (3 mm from the edges of the de-

vice cavity). The system performs a Boolean union between the top 

model and the posts, and a Boolean subtract between the bottom 

model and the holes. The number of alignment pins can be changed 

programmatically within Pineal’s code from 4 up to 8. However, 4 

seemed to be enough for generating stable attachments. The pins are 

placed parallel to each edge about the centre of the segment, and to 

place more than 4 the new pins are placed about the top and bottom 

of the edges. 
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Speaker and Sensor Holes 

In the same way that Pineal supports alignment pins and screen carv-

ings, it also supports carvings for other sensors (Figure 8.9-C). Cur-

rently supported configurations include speakers and camera, but one 

can also imagine creating holes for the microphone, volume buttons, 

etc. which can be easily integrated into the current system. In the cur-

rent implementation, the phone volume description includes a set of 

tags that define the relative size and position of the camera and speak-

ers. Indeed, for these holes to be generalized one would need to tag the 

models for mobile devices to define where the sensors are (if applica-

ble). This can be done with built-in functionality of Meshmixer, by 

adding and naming pivot points by hand onto a device model. 

Button Creation 

Pineal can accommodate modifiers that transduce or reroute input 

(defined in Chapter 6 §6.4), such as buttons, as shown in Figure 8.9- 

D. To place a button, the user paints a brush selection in a region 

above the display location (since it requires capacitive input). This 

selection is smoothed by the system and then is extracted as a flat, 

separate object. This object is then extended downward to meet the 

screen, and is duplicated. The duplicate is subtracted from the top 

piece of the base model, while the original, now the new button, is 

rescaled by a factor of 0.9 for clearance. The system finds the centroid 

for the button face touching the screen, and adds a 7.5 x 7.5 x 5 mm 

cylinder. The button model can then be printed using a conductive 

material (in our case 1.75 mm Proto Pasta PLA).  The conductive 

PLA is a reliable trigger when contacting with human skin. To create 

restoring force, Pineal creates an optional spring model to be printed 

 
Figure 8.10. Example of the optional 

spring around the button as done in the 

Firetruck prototype. The spring is soft 

and elastic and requires the user to ap-

ply an activation force for the button to 
make contact with the mobile device 

screen. 
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with a flexible material such as Thermoplaster Elastomer (in our case, 

NinjaFlex). The spring model wraps around the button’s cylinder, as 

shown in Figure 8.10. 

LEDs Simulated with Light Pipes 

Another modifier is achieved using light pipes (fiber optic cables). 

The current prototypes use 1.5 mm diameter fiber optic cables from 

Industrial Fiber Optics. From different trials conducted, I found 

these to have the best light transfer and variety of available thick-

nesses as many cables can be bundled together. The light transfer is 

dependent on the screen brightness, with newer and higher-end 

phone models emitting much brighter lights. While the light pipes are 

only 1.5 mm wide, the system generates 5 mm tubes, so that the user 

can fit multiple cables within one opening. 

To add the lights, the user selects a location on the model, as shown in 

Figure 8.9-E. The Meshmixer client then creates a tube from that loca-

tion to a screen coordinate of the mobile device. The system attempts to 

have the lights distant from each other to avoid the tubular cavities from 

crossing each other. To achieve this, the system will favour the corners 

of the screen. The mobile application then subdivides the screen into the 

number of lights placed, as determined by the program logic. For exam-

ple, if two lights are placed, the screen will be divided in half. Each region 

of the mobile device will change colour as defined in the visual program-

ming instructions.  

Diffusers 

As shown in Figure 8.9-F, a user can import models to create custom 

shaped ambient lights that are illuminated by the mobile device’s screen. 

These ambient light models attach on top of the base model that have 
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already been cut by the system. The user can import a new model and 

place it on the base model within the 3D modelling workspace. The sys-

tem then creates an opening so that the mobile device light can shine 

through it. The light structure model is hollowed to a depth of 1 mm, and 

then printed using clear material (in our case MakerBot Natural PLA). 

 RAW SENSOR VIEW 

To aid in the debugging and understanding of the constructed smart 

objects, Pineal includes an interface which displays raw sensor values 

that are live-streaming from the mobile device (Figure 8.11). Cur-

rently, Pineal provides raw views to acceleration, orientation and 

touch input data. 

8.6 RESULTING PROTOTYPES 
To illustrate the breadth of use-cases and functionality supported 

with Pineal, I built five prototype objects. These sample objects are 

shown in Figure 8.12. The selection of these prototypes show differ-

ent levels of complexity and functionality, while also covering differ-

ent aspects of the design space of the Soul-Body Prototyping Para-

 
Figure 8.11.  Live accelerometer data from the mobile device as visualized by Pin-

eal. The visualization plots the raw X, Y and Z values. 



236 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING 

 

digm, as illustrated in Table 8.1. As a result, the prototypes demon-

strate Pineal’s expressiveness by collectively covering a variety of in-

puts and outputs, and even web-based connectivity through novel 

and replicated examples. 

 TOY FIRE TRUCK 

The sample walkthrough, described earlier, describes the workflow 

used to create the toy fire truck (Figure 8.12-A), which lights up and 

plays a sound when a tactile button is pressed. The firetruck is an ex-

ample of using the mobile device to enable visual and audio output. It 

is also an example of transducing input – translating the phone's ca-

pacitive sensing into a physical button that provides tactile feedback 

when pressed. 

 MAGIC 8 BALL 

A Magic 8 Ball (Figure 8.12-B) is a ball with a display that reveals a 

random answer to a question when shaken. To construct this smart 

object, a designer first creates a model of a sphere and loads it into 

Pineal, which will adapt the model to a smartwatch. Once the sphere 

model is loaded, the designer uses the visual programming language 

to create a module to sense when the object is shaken, and sets an 

 
Figure 8.12. Sample of smart interactive objects created with Pineal, which includes: (A) Toy Firetruck; (B) Magic 8 Ball;  

(C) Level; (D) Ambient Light Planter; and (E) Voice-Activated Light Bulb 
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output to display one of the following strings randomly: ‘yes; ‘no’; 

‘maybe’; ‘try again’; ‘never’. The modeling steps can then be carried 

out, in this case consisting of specifying the location for the display 

and then clicking ‘generate model’. The model is automatically generated 

and can be exported for printing. The print creates two halves, with 

alignment pins, that house the watch. When the ball is shaken, a new 

response appears on screen. After testing the device, the designer can 

add a new response by editing the text field within the output module to 

include ‘wrong question’. The logic updates in real-time. This example 

shows the use of discrete motion input triggers and visual output. 

 LEVEL 

A level (Figure 8.12-C) provides visual feedback to indicate when a 

surface is parallel with the ground. Currently there are existing mo-

bile apps to simulate the functionality of a level, however, the form 

factor of a phone is not well-suited to being used as a level as it will 

easily fall over. To create a level in Pineal, a designer imports a model 

for a level, to which they add the smartwatch. The visual program-

ming interface is used to map the horizontal location of a bubble im-

age to be proportional to the watch’s sensed orientation. The de-

signer can then select the location of the screen on the model and ex-

port it for printing. This prototype demonstrates how Pineal is able 

to create linear mappings between inputs and outputs, and shows 

how motion-based input and visual image-based output can be used.  

 AMBIENT DISPLAY PLANTER 

An ambient display (Figure 8.12-D) changes its colour in response to 

data – in this case, live Twitter data. To develop an ambient display 
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with Pineal, the designer first imports a base model (a rounded box). 

They can then use the visual programming language to follow the 

Twitter hashtag #CHI2017. They add a diffuser module and import 

another model for the light diffuser, a Bulbasaur planter.  Finally, they 

add a colour group module and populate it with a list of colours, con-

nect the Twitter module to the colour group module, and connect the 

colour group module to the diffuser module. Each time a new tweet 

is detected, the light scrolls through to the next colour from the list, 

thus actively changing colour. This means that if there are many col-

our changes happening in a short amount of time, there is a high 

amount of activity online. Pineal also supports other live web data 

sources such as weather information. This ambient planter replicates 

an existing commercial product, the Ambient Orb5. 

 VOICE-ACTIVATED LIGHT-BULB 

A voice controlled light bulb (Figure 8.12-E) could add ambience to 

a room, allowing the user to change the colour of the light by speaking 

to it. To create a smart lightbulb that responds to voice commands, 

the designer creates different speech modules with different words: 

“off”, “yellow”, “blue”, “red”, “white”, “green”. Each of these is 

respectively mapped to a different colour group containing an indi-

vidual item: black, yellow, blue, red, white, and green. All of these 

colour groups attach to the light diffuser module. Now, each time a 

word is recognized, Pineal will send the appropriate colour to the 

light command, to which the phone will respond by changing the 

screen’s colour. The designer then modifies the model by importing 

 
5 https://ambientdevices.myshopify.com/products/stock-orb – Accessed July, 2020. 

https://ambientdevices.myshopify.com/products/stock-orb
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a lightbulb model and placing it on top of a round base model which 

houses the phone. 

8.7 DISCUSSION  
The purpose of Pineal was to operationalize Soul–Body Prototyping. 

Consequently, the focus of the research was to explore the concep-

tual components of the system and implement them in a way such 

 
Table 8.1.  Soul–Body Prototyping design space as fulfilled by Pineal. High-

lighted areas in green show which dimensions of the design space were explored 

by each prototype.  
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that the functionality supported the concepts. Given the technical 

complexities present in the system, there are limitations which I will 

discuss next. Despite such limitations, Pineal plays an important role 

in prototyping by allowing designers to focus on the interactive be-

haviours, and also having a corresponding physical form as part of the 

prototype. Moreover, the lessons from the architecture implementa-

tion served to inform my next prototyping tool, Astral, which is de-

scribed in the next chapter. In fact, I found that even after Pineal’s 

completion, I still turned to it to generate forms for future systems, 

including Astral and early versions of WatchPen. I describe the limi-

tations (§8.7.1) and discuss ways in which they can be addressed, or 

the potential compromise should the approach need adjusting. This 

leads to broader reflections on Pineal’s role as a prototyping tool, its 

fit to current practices, and some of the decisions behind the ap-

proach (§8.7.2). 

 LIMITATIONS 

There are two key types of limitations pertaining to Pineal. One is the 

limitations of the concepts and approaches taken when creating Pin-

eal, and the other refers to the more technical implementation details. 

Conceptual Limitations 

Pineal’s conceptual limitations refer to the reflection on what Pineal 

as a tool can and cannot do given how it was designed and what its 

purposes were. These result from aspects such as how the visual pro-

gramming environment was realized, the lack of error checking, as-

sumptions about the 3D modeling approach and scale in terms of the 

knowledge Pineal needs about 3D modeling geometries, as well as the 

variability among many mobile devices. 
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Creating a Generic Visual Programming Approach that can Inform 

Form Generation. The visual programming language was the result 

of a three-step process. First, I ideated and generated sketches of po-

tential prototypes using different types of sensors and outputs, and 

incorporated ideas and suggestions from collaborators. Next, we se-

lected and prioritized a representative sample of the sketches that 

could explore a significant part of the Soul–Body Prototyping design 

space. Finally, I implemented the components for the visual pro-

gramming as I generated the prototypes, making sure that: (1) the 

previous prototypes still functioned, and (2) that it would be possible 

to achieve variations within the prototypes.  

The incremental approach when developing a toolkit is beneficial in 

that it ensures recombination of building blocks still works. For ex-

ample, the Magic 8 Ball prototype was the first prototype developed 

and thus the shake and text modules were the first and only building 

blocks. When first designing and testing the colour module, I tested 

the system using the shake module to change colours of the screen 

whenever the phone was shaken. I then scaled the system so that it 

integrated speech recognition for the Voice-Activated lightbulb. At 

this point, I was able to test different combinations of shake and 

speech inputs to display colours or text. This process continued for 

each new prototype and set of modules that were being created. As a 

result, the system is capable of generating the prototypes presented 

in §8.6, as well as crossed variations resulting from manipulating the 

different building blocks. That said, the visual programming environ-

ment was a means to explore the concept rather than a fully fledged 

implementation. While it is possible to realize the prototypes shown 

in this chapter, as well as variations, there is no guarantee that more 
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complex programs or specific variations will all function. Thus, what 

is possible is not exhaustive and is directly tied to the current example 

prototypes. 

Focus on Trigger-Action Behaviours. Visual programming is limited 

in terms of the behaviours that it can create. Pineal’s design was in-

spired by other trigger-action systems, such as IFTTT6, which led to 

the expectation that following a standardized approach would cover 

a large range of interactive behaviours. As I created more of the pro-

totypes, I realized some of the limitations of trigger-action behav-

iours, which led to the creation of the Mapping Modules to facilitate 

more continuous actions and responses. In particular, I became at-

tuned to how different commercial applications or even games cre-

ated rich experiences through nuanced behaviours. As a result, these 

lessons shed light on the opportunities for nuanced behaviours result-

ing from looking at the continuous data provided by multiple sensors. 

This led to further investigation of the meaning of interactive behav-

iour, and what is currently possible with authoring tools, which seem 

to be simplifying interaction design to such an extreme degree that 

flexibility has been compromised in favour of high standardization. 

When interfaces become highly standardized, there is less room for 

error, as there is more likelihood that the end-result will match the 

requirements. However, it becomes difficult to create something 

new, which again creates a need for specialization to allow the de-

signer to work at a lower level and break the pattern of standardiza-

tion. This is why there is a need for many prototyping tools that can 

 
6 https://ifttt.com/  – accessed January 2020 

https://ifttt.com/
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fit different ways of thinking, and support a variety (of sometimes 

overlapping) results. These reflections became integral points in the 

development of this dissertation, both for future systems and in fur-

ther devising the theoretical foundations.  

Lack of Error Checking. Because Pineal communicates with Mesh-

mixer via its API, Pineal has no awareness of the geometry of the 3D 

model. Therefore, it will try and perform all operations (i.e., send 

mesh operations as commands) even if the model is unfit or will not 

work (e.g., it is too small to fit a mobile device). As a result, there is 

no way to know if the designer has chosen an appropriate model for 

the task. Furthermore, while the visual programming is a way to en-

sure the automation to modify the 3D model is done in an appropriate 

order, it does not guarantee that the end-result will work. Conse-

quently, more complex models that leverage more than one place-

ment operation (e.g., LED lights, exposing the display, adding a light 

diffuser) will likely not work, as it would lead to conflict (e.g., reset-

ting the splitting plane once a new instruction comes in). This limits 

the ceiling of the prototyping created with Pineal, but it also means 

that Pineal is not the appropriate tool for higher levels of complexity. 

There is also no error checking for the visual programming, so noth-

ing prevents a designer from erroneously linking two outputs to-

gether (something that should not be possible). Checking for errone-

ous inputs, or issues in geometries, is important should the system 

move on to a sturdier implementation as a product, but does not af-

fect Pineal’s concept as a whole. That said, a potential avenue for fu-

ture work is to explore ways for designers to better see the effects of 

their actions. For example, one could have an augmented reality 
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model visible from a mobile phone camera or head mounted display 

that shows a preview of what a particular visual programming step 

will do, how a mobile device might fit inside the model, as well as the 

effect of an input before the model is officially printed. 

Geometry assumptions. It is important to note that Pineal makes im-

plicit assumptions about the underlying 3D models. For example, 

Pineal assumes a 3D model is complete, meaning that there are no 

gaps, or self-intersecting triangles in the meshes. This can pose a 

problem when an object is for example, 3D scanned, and it will man-

ifest itself in any 3D CAD environment. Next, it is important to dis-

tinguish the construction of the mesh in the 3D model. Meshmixer is 

also optimized for manipulating meshes via actions such as sculpting, 

addition, and subtraction of multiple 3D geometries, which is differ-

ent from precise parametric design used to create professional indus-

trial design models.  The models that are best suited for Meshmixer 

should have a large number of triangles which are as evenly distrib-

uted as possible. This goes against the paradigm followed by many 

tools that favour optimization (e.g., Fusion 360 or OpenSCAD), as 

they optimize for the fewest triangles possible, and thus do not dis-

tribute the triangles evenly.  

When the meshes have few triangles and uneven distribution, mesh 

operations tend to fail. Meshmixer provides tools to solve this prob-

lem through operations that redistribute the triangles and increases 

the triangle density of a mesh. However, there is no simple way of 

telling what kind of mesh a 3D model has when browsing online, and 

thus the designer often would have to check and fix these models 
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ahead of time. Meshmixer also provides additional features to opti-

mize mesh operations, such as “generating face groups”, which looks 

at the overall collection of triangles and defines where the faces of the 

object are. As a result, having a good understanding of 3D modeling 

and of a tool like Meshmixer greatly improves the likelihood of work-

ing with acceptable 3D models. In discussions with an industrial de-

signer colleague, we discovered that the best suited models for Pineal 

are often those generated by tools that favour sculpting approaches, 

such as Cinema4D, ZBrush, Blender, or Maya. This is because 

sculpting-based tools have even distribution of many triangles as op-

posed to trying to optimize for the fewest possible triangles and per-

fect parametric design. These sculpting tools, however, are more tai-

lored for character design for animation, where the aesthetic aspects 

come before the precise measurements of an object and their scalabil-

ity. As a result, designers who want full customization and control 

when using Pineal need to understand how 3D models work and how 

different tools generate them. This level of understanding is not the 

same as becoming an expert with the tools like, say, an industrial de-

signer. However, a lot of this understanding is required if one wishes 

to engage in activities such as 3D printing. If this becomes a deterrent, 

3D printing may not necessarily be the best prototyping approach for 

a novice.  

Pre-annotating mobile device models. The current implementation 

only has two models for mobile devices: a phone and a watch corre-

sponding to the models used in the implementation. For these mod-

els, while they feature a simple geometry, the models needed to be 

annotated in Meshmixer to define the boundaries of the screen, as 

well as locations of the speakers, cameras, etc. Some of these aspects 
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can be automated to some degree (e.g., one might define the screen 

as being a rectangle centered on one of the faces of the prism). To 

reduce the need for annotating models, one could generate a set of 

models that either (1) cover a wide range of possible devices that 

share similar geometries; or (2) that designers can then modify to 

generate new ones. Alternatively, Pineal could register the dimen-

sions of a mobile device, and ask about the locations of specific parts 

(e.g., volume buttons) as a step-by-step wizard, thus allowing the 

specification of mobile device models. 

Mobile Device Variance and Limitations. Depending on the mobile 

device being used, the hardware limits the types of prototypes that 

are possible. For instance, the smart watch does not have rich audio 

output abilities, so designing a very small prototype that plays sounds 

would not work. This limitation will be addressed as devices gain 

richer capabilities and more devices are added to the system. Next, 

for very complex prototypes, not all desired functionality may be sat-

isfied with a single device. For instance, if an object requires an LCD 

display on the top as well as the side, a second device would need to 

be added. This is not currently supported in the system but could 

make for future work exploring how to create more complex smart 

objects with multiple mobile devices. 

Technical Limitations 

Technical limitations refer to Pineal’s specific implementation de-

tails, either in terms of what is and is not possible to build, as well as 

lessons learned later for future implementations. 

Architecture Limitations. Looking back, one problem with Pineal’s 

architecture was the constant “daisy chaining” of technologies. First, 
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the smartwatch used in Pineal was limited in that it did not have wire-

less internet capabilities. This meant that the only way for the smart-

watch application to run was to have the Bluetooth-paired mobile 

phone also running the application. Thus, communication with the 

PC client from the watch would have to first make it to the phone and 

then to the relay server before it could reach the PC client. The relay 

server using NodeJS did not pose any major challenges at the time. In 

fact, the relay server from an architectural point of view, simplified 

much of the development. Given that there was more than one pro-

gramming language involved in Pineal the relay server simplified the 

process since: (1) socket.io libraries are available for many platforms; 

and (2) the relay server creates a distributed model-view-controller 

pattern, where the developer only worries about creating clients that 

share specific information. However, the disadvantage is that having 

a relay server creates an additional step when it comes to data transfer 

such as sensor data from the phone, as it effectively doubles any de-

lay. The data first has to go through the relay server, which then goes 

to the destination, as opposed to clients communicating directly. 

This was an issue when working with more continuous and complex 

values in the following explorations such as in Astral, discussed in the 

next chapter, where I needed to transfer data such as live desktop 

screen captures.  The next generation of implementations I created 

improved on the lessons from Pineal by: (1) using a WiFi-enabled 

watch; (2) working with the same programming language whenever 

possible (C# Xamarin and WPF); and (3) reducing the number of 

connections, and while working at lower levels to achieve higher effi-

ciency (e.g., traversing arrays, such as images with pointers). 
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Flexibility vs. Simplicity. Pineal’s implementation remains close to 

the Soul–Body Prototyping paradigm. As a result, one can only rely 

on mobile sensors and outputs. This means that more complex func-

tions such as actuation or physical movement are not possible. Simi-

larly, there are constraints from the prototyping materials them-

selves. For example, while it is possible to reroute touch points 

through conductive material, the material has to be conductive 

enough to work. In the case of the firetruck prototype, the conductive 

PLA print had to be of high density and it is likely that longer paths 

of rerouting would not work as reliably. One possibility for future 

work is to have custom electronics work in tandem with Soul–Body 

Prototyping. For example, .NET Gadgeteer or other microcontrol-

lers could be integrated. However, the compromise is that the proto-

types no longer become self-contained within the mobile device. The 

consequence is added complexity both in terms of implementation as 

well as in terms of designer’s assembly in a “plug and play” manner, 

as they would need to ensure multiple components are plugged in and 

running. 

 PINEAL, DESIGNERS AND PROTOTYPING 

Reflecting on Pineal as a prototyping tool leads to many thoughts 

about the role of what designers would need so they can adopt a tool 

like Pineal; to what extent Pineal’s prototyping is rapid; how perma-

nent the resulting prototypes from Pineal should be; and to what ex-

tent tools should automate design processes. 
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Pineal, Expertise and Current Practices 

Although Pineal simplifies the process of programming and form giv-

ing, now designers need to have more understanding of the underly-

ing 3D models they are working with and the added constraints. Uti-

lizing a tool like Pineal proposes a shift in mindset. First, Pineal forces 

designers to think about behaviours first, as the behaviours dictate 

what the form modifications will be. Thus, the only way to think 

about form first is to have a concrete idea in mind of what input or 

output is needed, and then create the behaviour for that particular 

feature. One could argue that the input and output modules, such as 

the button or the text display, are already suggesting that the designer 

has a vision for the form. Still, it is different from an approach where 

the designer physically sculpts a form while programming interactive 

behaviours, where they can circulate back and forth much more 

freely. Should one remove the constraint of behaviours-first, how-

ever, automation would no longer be possible.  

Is Automation Good?  

Pineal performs some degree of automation when it comes to creating 

new physical forms. Computer science often values problem solving 

by generating a wide variety of alternatives through automatic gener-

ation. Generative design is an example of an extreme case. As de-

scribed by Chakrabarti et al. (2011), generative design argues that 

computer scientists can create a grammar that “computationally en-

code[s] knowledge about creating designs… which can be used to rapidly 

generate design alternatives” (pp. 021003-2). Anderson et al. (2018) 

argue that systems as a result can generate “a greater number of designs 

to be evaluated, and can enable the creation of designs that could not be 
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possible by humans alone” (pp. 3). Indeed, technology can look at cer-

tain constraints to create solutions that would be difficult for a human 

to generate, and even remove repetitive steps. For example, consider 

an example of divergent generative design by Matejka et al. (2018), 

where the goal of generating a monitor stand led to 16,800 alterna-

tives, which then were filtered to produce a set of 1,242 designs. Ul-

timately, choosing a particular solution is up to a person. Perhaps 

those 1,242 designs may not fit some of the qualities that person is 

looking for. There is no question about the value of generative design, 

nor a system’s ability to generate solutions people cannot achieve eas-

ily (e.g., looking at specific and technical constraints). Yet, this means 

that: (1) the systems that are automatically generating solutions for 

people require heavy engineering to ensure robust solutions; (2) 

there is a need for a human-in-the-loop to ensure the solutions reflect 

the intention and process of the designer; and (3) in the case of any 

blind spots in the generated solutions, the human needs to be savvy 

enough to be able to solve it.  

It is important to note that there can be a trade-off between automa-

tion and an individual’s agency. On the one hand, having a system 

take care of the process can take away steps that are tedious, difficult 

or time consuming. On the other hand, systems should still enable 

users to craft where needed. With Pineal, it is possible to spend time 

crafting a form before it is imported into the system. The automation 

process takes away a lot of time-consuming steps, such as the creation 

of cavities for the mobile device, or creating alignment pins when 

models are split into two. However, if the designer wants to carefully 

refine the model to fit a particular aesthetic, or they wish to fine-tune 
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interactive behaviours to perform a particular animation, the automa-

tion might get in the way. In that sense. it is important to identify Pin-

eal as creating prototypes that can resemble final products, but by no 

means has the refinement or sophistication of a final product. This is 

where it is important to have techniques or other systems that can be 

used in tandem to continue evolving the prototype. 

How Rapid is Pineal’s Rapid Prototyping? 

One term that often remains vague when discussing prototyping is 

how ‘rapid’ is rapid prototyping. It is possible to claim that Pineal 

indeed reduces the programming threshold by providing simple 

building blocks through its visual programming, and that Pineal in-

deed takes away the complexity of circuit building, or thinking about 

the form generation itself. This by default reduces the time dedicated 

to create functional prototypes. That said, the 3D printing process 

still requires some technical skill in operating a 3D printer, as well as 

assembling components. In addition, the 3D printing can take hours. 

For example, each half of the firetruck took 18 hours to print, which 

meant waiting overnight to see if the prototype fully worked. While 

this idle time might be considerably lower than creating a form from 

scratch, it is a time constraint that needs to be taken into account. In 

such cases there are two key elements to keep in mind. First, design-

ers can use the idle time to work on another prototype or design ac-

tivity altogether, so they are not completely stopped in the process. 

Second, the behaviours authored are immediately live on the mobile 

device. Thus, it is possible to have a reasonable idea of what the pro-

totype will behave like, and one can use the 3D modeling environ-

ment preview to see what it will look like, so the assembly step at the 
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end could be mostly a reality check. That said, if for some reason the 

3D print is not successful or the model does not look or work as ex-

pected, it can be disappointing. This is simply a reality of these types 

of fabrication processes. 

How Long Should Pineal Prototypes Live? 

While the primary purpose of Pineal is to enable designers to rapidly 

prototype and iterate on ideas, it is possible that the created objects 

are of high-enough fidelity and resolution to serve as a permanent, 

functioning object. For instance, the Magic 8 Ball is of sufficient qual-

ity that it could be used as a customized novelty object for a child’s 

birthday party, for instance. Future work is needed to explore what 

requirements vary when designing a ‘body’ that is intended to perma-

nently house a mobile device (e.g., considerations for charging cables 

or external batteries). That way, Pineal may encourage reuse and re-

purposing of old mobile devices to create new interesting objects. 

Generality 

Finding an audience today that operates with both smart object form 

design, as well as the design of interactions is difficult given how spe-

cialized these fields are. Perhaps industrial designers and makers to-

day could directly benefit from a tool like Pineal, but the reality is that 

these are not common tasks they perform today. What remains be-

yond Pineal is the set of ideas that will go forward and inform the fu-

ture of design tools, which can eventually help construct a new set of 

practices for designers. In the current implementation, the interac-

tive prototypes along with the usage scenario evaluate Pineal’s ex-

pressiveness in terms of the range of smart objects created (along 
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with their possible variations), as well as its coverage of the design 

space of Soul–Body Prototyping. 

8.8 CONCLUSION  
Smart objects are ubiquitous, yet their design and prototyping re-

quires substantial effort and knowledge in programming, circuit 

building, and form-giving. Current mobile devices, such as smart 

watches and phones, possess a range of input and output capabilities 

that can be leveraged to prototype interactive devices. With Pineal, 

designers are able to rapidly prototype smart objects and modify both 

their form and function without substantial technical skills. Pineal 

uses the authored behaviours as means for automation to create new 

3D models that fit Soul–Body Prototyping. The example prototype 

smart objects demonstrate a wide variety and use-cases that are ena-

bled by this approach. Pineal can help designers overcome a large de-

gree of designers’ challenges of needing multiple expertise, lacking 

the necessary prototyping tools and needing close to product repre-

sentations when prototyping. In realizing Pineal, it became possible 

to create interesting physical prototypes that could be held and 

tested. However, it also led to the discovery that interactive behav-

iour design could be much more than trigger-action behaviours, lead-

ing to the design and development of Astral. 

 





 

 

 

 

 

 

 

  ASTRAL: BEHAVIOUR 

PROTOTYPING VIA FAMILIAR TOOLS 

“Our hands feel things, and our hands manipulate things. Why aim for 

anything less than a dynamic medium that we can see, feel, and ma-

nipulate?”– Bret Victor 

Recall my thesis statement: we can repurpose existing hardware (mobile 

phones and watches) and software to enable designers to create live inter-

active prototypes for smart interactive objects.  

Thus far, I have shown in Chapter 6 how to repurpose mobile devices 

to prototype smart interactive objects, and in Chapter 8, I explored 

one way in which designers can repurpose a 3D modeling tool to gen-

erate forms to realize the Soul-Body Prototyping design metaphor.  

The next step is to author interactive behaviours. As described in 

Chapter 6, this is challenging. Today’s design tools are modeled after 

the desktop-computer paradigm and thus are limited to click-based 

transitions (e.g., tapping a button shows the next screen on a web-

site). Even prototyping tools for mobile devices are still following the 



256 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS 

 

trend of desktop-based design in spite of the added input and output 

possibilities.  Yet, interactive behaviours are more varied and nu-

anced, as people perform actions beyond tapping (e.g., using fingers 

to pinch, flick or swipe, or tilting the device altogether). To transition 

beyond the current limitation of design tools, systems require more 

fine-grained real-time feedback that responds to the increasing rich-

ness of inputs. Doing so, people can better understand the effects of 

their actions and the system appears responsive and alive, as well as 

designed with care. To address the described challenge, this chapter 

presents Astral1, a prototyping tool that allows interaction designers 

to author live interactive behaviours for mobile devices and smart in-

teractive objects by repurposing existing and familiar desktop appli-

cations. Astral explores interactive behaviour generally for mobile de-

vices, and it looks to support the interactive behaviour descriptions 

and design practices from Chapters 3 and 4. However, within it, As-

tral also accommodates for smart object prototyping through Soul–

Body Prototyping. More specifically, this chapter addresses the third 

research question posed in Chapter 1:  

RQ3. How might designers leverage existing familiar soft-

ware tools to author interactive behaviours for smart interac-

tive objects? 

 
1 Portions of this chapter have been published in: 

Ledo, D., Vermeulen, J., Carpendale, S., Greenberg, S., Oehlberg, L., & Boring, 

S. (2019). Astral: Prototyping Mobile and Smart Object Interactive Behaviours 

Using Familiar Applications. Proceedings of the 2019 on Designing Interactive Sys-
tems Conference, 711–724. doi: 10.1145/3322276.3322329 

Video figure: http://davidledo.com/projects/project.html?astral 

https://doi.org/10.1145/3322276.3322329
http://davidledo.com/projects/project.html?astral
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To have a general understanding of Astral and its benefits, I first pre-

sent a brief overview of the system (§9.1), and contextualize the re-

search contributions within the related work (§9.2). The technical 

details which break down the interface and the rule system are pre-

sented next (§9.3). These interface elements are then brought to-

gether in a usage scenario which demonstrates an example of what 

can be created with Astral (§9.4). The scenario particularly highlights 

Astral’s threshold and to some extent its ceiling, while also illustrat-

ing the nuances of how a designer might bring an interactive proto-

type to life. I further build on what is possible with Astral by showing 

how it can integrate and extend common prototyping activities (§9.5) 

such as the ones outlined in Chapter 4 (§4.4.1). In these scenarios, 

Astral converts the end-results of these prototyping activities into in-

teractive prototypes working in the target device itself, such as a 

phone, a watch or a physical prototype that follows Soul–Body Pro-

totyping. Finally, I delve into the low-level implementation details of 

the system (§9.6) before providing a larger discussion (§9.7).  

9.1 ASTRAL 
Astral is a prototyping tool for authoring interactive behaviours on 

mobile devices by repurposing existing desktop applications. The 

premise behind reusing desktop applications when interaction design 

has gone beyond the WIMP (Windows, Icons, Menus and Pointers) 

paradigm might seem odd, yet the rationale is two-fold. First, desktop 

applications have the power and flexibility to author many aspects of 

interactive behaviour design (e.g., animations). Second, designers are 

familiar with existing desktop applications both as authors and users, 

where they can leverage tools such as web browsers, video editors or 
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presentation software. To exploit these assumptions, Astral enables 

designers to display portions of the desktop screen on the mobile de-

vice, and provides building blocks for a mobile device’s rich inputs to 

interact with the desktop. 

Astral, as shown in Figure 9.1, works as two network-connected ap-

plications: a desktop and mobile client. The mobile client only has 

two functions: (1) receiving images from the desktop and displaying 

them live, and (2) sending the data of all sensors (i.e., potential in-

puts) of the mobile device to the desktop. On the other hand, the 

desktop application enables designers to explore and convert the sen-

sor data to create commands the desktop can understand, therefore 

 
Figure 9.1. Astral allows designers to prototype interactive behaviours by: (1) mirroring contents of a desktop region to a 

mobile device, (2) streaming mobile sensor data to the desktop, and (3) remapping the sensor data into desktop input (e.g., 

mouse and keyboard events) on a designer-chosen desktop application 



 DAVID LEDO, 2020  |  259 

 

enabling manipulation of desktop contents via the mobile device. 

Thus, while end-users are technically operating the desktop com-

puter in its entirety, Astral’s features create the illusion that users are 

manipulating and interacting with a mobile device. Given such an ap-

proach, Astral belongs to the category of “Smoke and Mirrors” pro-

totyping tools, described in Chapter 4 §4.4.3.  

To realize the illusion that end-users are interacting with a mobile de-

vice when they are in fact controlling the desktop computer, Astral 

has three main functions: a portion of the desktop’s screen is con-

stantly mirrored onto a mobile device (Figure 9.1-1), the mobile de-

vice streams its sensor data to the desktop in real time (Figure 9.1-

2), and a set of building blocks enable converting the sensor data into 

mouse or keyboard events to remote control the desktop computer 

(Figure 9.1-3). These functions can be applied into a workflow of 

three steps, as illustrated in Figure 9.2: (1) defining what one sees on 

the phone, (2) exploring what the phone can do, and (3) manipulating 

the desktop with the phone.  

Astral’s three workflow steps can be broken down using a deliberately 

simple example of converting a web game of Flappy Bird on the desk-

top into a mobile version. In the game Flappy Bird (http://flap-

pybird.io), players can make a bird flap its wings by hitting the space-

bar (Figure 9.2, top). The goal of the game is to keep the bird flying 

and avoid obstacles. Suppose a designer wishes to create a mobile ver-

sion in which tapping the phone makes the bird fly. In this case, the 

designer has to:  

1. Define What One Sees on the Phone. As shown in Figure 9.2-1, 

the designer selects a region of the desktop display, such as a web 

 
Figure 9.2. Astral’s steps to convert a 

desktop website into a mobile game. 

       

  

 

http://flappybird.io/
http://flappybird.io/
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browser running Flappy Bird. The contents of the desktop PC’s dis-

play are then mirrored to a connected mobile device (phone or watch) 

display in real time. Consequently, the mobile device shows a live 

copy of the desktop monitor’s contents, meaning that its visual out-

put is exclusively a reflection of what is seen on the desktop. Any ac-

tions taken on the desktop, such as clicking or pressing a key will af-

fect the desktop active application and therefore these changes will 

be seen on the mobile device. If the desktop monitor plays an anima-

tion or a video, the changing visuals will be immediately shown on the 

mobile device. In the example of Flappy Bird, the designer can see 

the main screen, or a live feed if the designer chooses to play the game 

on the desktop. Thus, at this stage, the mobile device only provides 

visual output.   

2. Explore What the Phone Can Do. All the sensor data from the mo-

bile device is streamed to the Astral desktop client (Figure 9.2–2). 

As a result, the designer can see custom visual representations (e.g., 

line charts) depicting the live data for multiple types of sensors, such 

as touch, acceleration, ambient light or the microphone. The designer 

can find the desired mobile sensors, select them and view their live 

data, as well as the individual parameters (e.g., the x-axis of the accel-

erometer). Through visual inspection of the data visualization, the 

designer can decide on a range of values of interest for that particular 

sensor (such as the touch-screen area, which shows the current touch 

point). While the designer can inspect the mobile inputs, actions on 

the mobile device do not have any effect on the desktop. Therefore, 

the mobile device at this point still only displays what is in view on 

the selected region of the desktop to mirror.  
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3. Manipulating the Desktop with the Phone. Now, Astral can enable 

the connected mobile device to control the desktop. This is done by 

simulating mouse and keyboard commands which are executed virtu-

ally on the desktop’s active application. Thus, the designer can con-

vert the selected sensor data in the data visualization into mouse or 

keyboard events, which is achieved via rules. As shown in Figure 9.2-

3, the designer converts a “tap” anywhere on the touchscreen into a 

spacebar keypress. Thus, every time the designer taps the phone, the 

Astral desktop client recognizes this action and executes a spacebar 

press and release. The active application, in this example the web 

browser with the Flappy Bird game, receives the keypress and makes 

the bird fly. Because the mobile device mirrors the selected portion 

of the display, the prototype appears to be brought to life on the mo-

bile device: it successfully creates the illusion that tapping on the mo-

bile phone makes the bird flap its wings and the response is seen on 

the mobile device screen. With very few changes, the designer in-

stantly creates a temporary mobile version of a desktop game. More-

over, the designer can now quickly modify the set of rules to test dif-

ferent sensors. For instance, the spacebar command can be rede-

fined/remapped as one blows on the microphone, or shakes the de-

vice (further exemplified in §9.5). 

Because the mobile device shows a live view of the desktop, and the 

mobile device inputs affect the contents of the desktop, which are all 

reflected on the phone, Astral creates a closed-loop of interaction (of 

input and output) between the desktop and the mobile device. This 

loop of interaction can be seen in Figure 9.1, by following the flow of 
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the 3 main operations of Astral. Systems to date only consider re-

mapping inputs, or remapping outputs, without examining the inter-

play of both (see next section). 

By creating a closed-loop functionality, Astral now allows designers 

to have a greater range of expressiveness: they can prototype and fine-

tune interactive behaviours on a new variety of target devices 

(phones, watches and even tablets) and their variety of novel and in-

teresting sensors (e.g., accelerometer, microphone, etc.). One can for 

example, repurpose a video editor so that a phone’s side-to-side mo-

tion moves a mouse cursor across the video timeline on the desktop, 

while the video preview plays on the mobile device’s screen at the 

same time. The result is a prototype where the speed and direction of 

the motion in the video are tied to the motion of the device. In this 

manner, Astral exploits existing desktop applications which design-

ers already know and understand without the need to code. Moreo-

ver, Astral’s use of mobile devices means that designers can apply 

Soul–Body Prototyping (Chapter 6) and extend the possibilities of be-

haviour authoring to smart objects. Overall, leveraging Astral and 

coming up with new ways of appropriating desktop applications 

opens the door to many new opportunities for interactive behaviour 

design and live testing of these behaviours on the target device itself, 

as opposed to a desktop simulation.  

9.2 RELATED WORK AND CONTRIBUTIONS 
Astral’s design is informed directly by: (1) prior formative stud-

ies (Maudet et al., 2017; Myers et al., 2008); (2) state of the art tools 

in research and industry; and (3) personal experiences. My personal 

experiences span talking with interaction and graphic designers, 
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teaching interaction design to generalist designers and computer sci-

entists, and creating prototyping tools and toolkits for interactive be-

haviour authoring in the past ten years. Based on the collected infor-

mation, I have derived following four core design rationale decisions 

(R) for Astral, which corresponds to the system’s contributions:  

R1. Prototyping Live Interactive Behaviour on the Mobile Device. 

Fast prototyping not only relies on expressiveness, but also on how 

quickly designers can preview and evaluate designs. Typically, there 

is a temporal gap between prototyping and testing. When construct-

ing the interactive prototype, designers engage in some form of pro-

gramming, as discussed in Chapter 4, §4.4.2, where the programming 

can take different forms such as arranging screen transitions. The 

program is then compiled which enables testing. The separation of 

authoring and testing forces end-users to constantly switch their fo-

cus of attention,  and in consequence add difficulty to the process. 

Designer are forced to go back and forth between modifying the pro-

gram and testing the prototype as part of the iterative design process. 

Hancock (2003) characterizes the distinction between regular and 

live programming as the difference between shooting arrows at a bull-

seye versus shooting water with a hose: the hose provides continuous 

feedback with which one can aim, adjust and shoot at the same time. 

I believe that by integrating the programming and testing, designers 

can always keep their goal in mind while making small adjustments to 

achieve the desired result. Astral acts like the hose in this case, and 

supports live authoring in two ways. First, designers can leverage the 

closed loop of interaction (§9.1) to simply run and execute a desktop 

application onto a new target mobile device with new means of ma-

nipulating the application (e.g., converting motion sensors to arrow 
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key presses on a desktop’s web map). Second, designers can run the 

rules as they are being authored all while experiencing these behav-

iours on the target device itself (i.e., the mobile device). As a result, 

the designer can fine-tune and adjust the behaviours almost instantly 

(exceptions and workarounds are explained in the next section). 

Astral builds on prior approaches to create the live prototyping expe-

rience. Victor’s systems in Inventing on Principle (2012) show differ-

ent strategies to achieve liveness in the context of coding, such as in-

tegrating the code and the program within the same screen, or show-

ing the trails of movement history and allowing the developer to ad-

just the values while seeing that trail change given the new data. Dif-

ferent interface prototyping tools feature aspects that can help ap-

proximate live prototyping to help designers create interactive appli-

cations. In the area of mobile interaction, prior work has explored 

having a live custom UI builder mirroring the desktop screen’s UI 

(Meskens et al., 2008), collecting and connecting photos of sketches 

which can be tested in an ad-hoc manner (de Sá et al. 2008), or 

demonstrating actions in one source device and replaying those ac-

tions on a new target device (Meskens et al., 2009). The demonstra-

tion-based approach is also seen in electronics programming. Exem-

plar (Hartmann et al., 2007) leverages programming-by-demonstra-

tion as a way to associate sensor patterns to actions, which can then 

trigger a key press on the desktop or control the mouse cursor.  

R2. Providing an End-User Interface that Allows Designers to Ex-

plore Variations Among Mobile Sensors. Because the types of input 

data provided by sensors is non-trivial, one way to make sense of sen-

sor information is through data visualizations. Such approach has 
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been followed in prior systems such as A CAPella (Dey et al., 2004), 

Exemplar (Hartmann et al., 2007), and MAGIC (Ashbrook and 

Starner, 2010). However, given the large number of sensors present 

on a mobile device nowadays, there are two new challenges. The first 

challenge is that the sensors on a mobile device are varied, and thus 

benefit from different visualization approaches based on the data pro-

vided. I address this challenge by including different visual represen-

tations according to the nature of the sensor (see §9.4.3). The second 

challenge is that performing a single action (e.g., shaking the device) 

triggers multiple sensors that are difficult to disambiguate. To solve 

this problem, I build an interface in which designers can record their 

actions on video (see §9.4.6). The video recording also shows a stack 

of visualizations of the sensor data values which the designer can in-

spect and select the right sensor. These two strategies help increase 

the expressive match2 (Olsen, 2007), as one can choose between the 

live isolated visual representation or the video analysis approach de-

pending on the task and goal. Moreover, custom visuals aim to look 

and feel more like what the designer is doing with the mobile device, 

such as showing a dial-like visualization for the compass, or a map of 

the screen for the touchscreen. 

R3. Supporting the Use and Repurposing of Existing, Familiar Ap-

plications for Prototyping. When working on top of existing infra-

 
2 Olsen (2007) defines expressive match as the “estimate of how close the means 

for expressing design choices are to the problem being solved”. For example, when 

selecting colour, a low expressive match is using hexadecimal code compared to a 

higher match through picking a colour with a colour picker.  
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structures, toolkits can leverage existing functionality to quickly ex-

plore new types of interactions. In itself, this is not a new idea. For 

example, Olsen (2007) already discusses how working with common 

infrastructures enables new technology combinations to support new 

solutions. Olsen uses a scenario where pen input behaves as mouse 

input, and thus mouse-based applications can now be operated with 

a pen as the input device. Through screen mirroring and keyboard 

remapping, Astral introduces the closed loop of interaction, which ena-

bles designers to use their own workflows and control any familiar 

desktop application to prototype novel mobile interactions.  

While many prototyping tools in the research literature reappropriate 

native operating system functionality, the focus of the work is often 

only on one side of the equation, either focusing on inputs only or 

outputs only. For example, Exemplar (Hartmann et al., 2007) and 

MaKey MaKey (BM Collective & Shaw, 2012) support remapping 

sensor input into mouse and keyboard events, while Icon (Dragicevic, 

2004), which is a toolkit and editor, creates input-reconfigurable in-

teractive applications.  On the other hand, other systems have lever-

aged screen mirroring, as done in Semantic Snarfing (Myers et al., 

2002), VNC3, and TeamViewer4, to display the desktop application’s 

contents (or a portion of its visual contents) onto the mobile device. 

In the case of applications such as TeamViewer, the system provides 

a one-to-one mapping from touch input on a mobile device to a con-

trol a desktop’s mouse cursor. 

 
3 https://www.realvnc.com/en/ – Last accessed April 2020 
4 https://www.teamviewer.com/en/ – Last accessed April 2020 

https://www.realvnc.com/en/
https://www.teamviewer.com/en/
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R4. Supporting interaction-driven animations. While desktop-based 

applications can often rely on trigger-action behaviours, they already 

feature behaviours that are hard to recreate in a way that does not 

require coding. For example, consider a single drag and drop opera-

tion, where one selects an item and can move it across the screen from 

one location to another. Such an action has an animation which is de-

fined by more than just time, it is driven by the user’s input. Few sys-

tems have operationalized this type of authoring without code 

through keyframing approaches (see Chapter 4 §4.3.6), such as Mo-

net (Li & Landay, 2005) and Kitty (Kazi et al., 2017). With newer 

devices such as phones and watches, these types of interactions have 

the potential to become more common given the wide variety of rich 

sensors. Many operating system functions feature these types of 

highly nuanced and sophisticated animations, such as Slide to Unlock 

in iOS, Android’s Quick Settings, or the animations that play while 

one emits a voice command to a digital assistant such as Google Voice 

or Siri. Astral can achieve interaction-driven animations on a variety of 

sensors thanks to fully-fledged desktop tools such as video editors 

which can leverage Astral’s proposed closed-loop of interaction.  

Building on interaction–driven animations, designers must be able to 

see continuous live effects from their input, but moreover examine 

and modify how those effects take place. One way to address this 

‘how’ is through easings. Easing is a term used by Adobe Animate5 

(formerly Adobe Flash) to refer to the slow-in and slow-out principle 

 
5 https://www.adobe.com/products/animate.html accessed October 2018 

https://www.adobe.com/products/animate.html
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of animation (Thomas & Johnson, 1995). Here, the number of in-be-

tween frames are increased or decreased at keyframes between poses 

to create the illusion that an object is speeding up or slowing down. 

Figure 9.3 provides examples of several different easing methods and 

how a circle would appear over time. Adobe Flash incorporated eas-

ings as a default linear inbetween (commonly referred to as “tween”) 

that could be applied to a change in motion (i.e., through position, 

scale, or rotation). Penner (2002) created scripts for Flash to change 

the character of the easing through mathematical functions, which 

further nuance the types of easings available. Easings, however, as-

sume the animation plays as a function of time. Prior work has applied 

animations as a function of continuous sensor input, such as OctoPo-

cus (Bau & MacKay, 2008). Other work applies Penner’s (2002) eas-

ing functions as a function of continuous inputs (e.g., Ledo et al. 

(2015), Kazi et al. (2017), and Reach and North (2017)).  

In Astral, one can apply easing functions to continuous mouse-move 

events to fine-tune animations as continuous sensor-based interac-

tions happen. This provides additional customization power to the 

authoring of interactive behaviours. The easing functions can pro-

duce aesthetic experiences, as well as more utilitarian functions such 

as balancing the sensitivity of an input’s effect. These continuous an-

imations with easing functions are not explored in prior programming 

by demonstration approaches, as they tend to favour recognition of 

discrete events from continuous sensor inputs (e.g., Exemplar (Hart-

mann et al., 2007)).  

To recapitulate, Astral extends previous approaches by combining 

existing techniques of mirroring, streaming and remapping to feed 

 

 

Figure 9.3.  Easings in animation. A 
circle moves horizontally over time 

(from time = 0 to time = n). Ticks on 

the timeline mark the position of 

keyframes. 
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into new building blocks: the creation of small, self-contained rules 

that drive a lively and animated prototype. These rules allow repur-

posing familiar desktop applications in ways not seen before. 

9.3 WORKING WITH ASTRAL 
When using Astral, designers are working with their existing desktop 

applications, which carry the bulk of the work. Designers then can use 

Astral to make that prototype interactive on a phone or a watch. 

Therefore, it is meant to require minimal setup and leave as little 

trace as possible after its use so that designers can keep the source 

material the way they had it before. Astral’s interface has few com-

ponents to it (see Figure 9.4), which I describe next.  

 MIRRORING DESKTOP CONTENTS 

By clicking on the camera icon (Figure 9.4-A), designers can mirror 

display contents onto the connected mobile device. Next, an overlay 

region, a rectangular window with the proportions of the mobile de-

vice, is shown. The window which can be moved, scaled, or rotated 

around the desktop screen. The area enclosed within the region con-

tains the intended visual output for the mobile device. The pixels con-

tained within the rectangular area are captured and mirrored live to 

the mobile device client. 

 SPECIFYING INPUT REMAPPING THROUGH 

RULES 

Once desktop content is streamed to the mobile device, designers can 

author an interactive behaviour by defining a rule. A rule is a software 

abstraction that contains information as to how mobile sensor data is 
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converted via simple mapping to keyboard and mouse events. This 

abstraction holds a source sensor type, a range of values to which the 

mobile sensor data is compared, and a destination mapping (mouse 

or keyboard event). To create a new rule, the designer clicks on the 

‘plus’ sign to open the Rule Editor (Figure 9.4-b) – a guided pop-up 

window. In the editor interface, a designer can select the source mo-

bile device sensor, define the values of interest on the live visualiza-

tion via direct manipulation, and assign a destination mouse or key-

board event. Figure 9.5 shows a schematic of a rule which will be 

used as a running example. The figure depicts the mobile device’s 

physical motion, the corresponding data visualization for the y-axis 

 
Figure 9.4.  Astral’s main interface as displayed on a desktop computer, showing the (a) Main View, and (b) the Rule 

Editing Window, where designers can create mappings from sensor data onto mouse and keyboard events. 
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of the acceleration plotting the live response to the motion, and the 

resulting mouse move event which is the destination desktop input. 

To create this rule, the designer must use the Rule Editor, select a 

sensor and its range of values, and create a mapping (i.e., convert the 

sensor data to a mouse or keyboard event). 

Selecting a Sensor and Range of Values. The Rule Editor shows a 

list of sensors provided by the mobile device. A designer can choose 

the individual sensor of interest (Figure 9.4-B side panel) to define the 

rule. Clicking on a sensor icon reveals a live visualization of the sensor 

and its values to help the designer understand: (1) the particular sen-

sor’s response as the device is being manipulated, and (2) whether 

the sensor is appropriate to use. The visualization is tailored to the 

selected sensor (and its parameters/individual data) to provide 

higher expressive match (Olsen, 2007). Examples of these custom 

visual representations are shown in Figure 9.6. In the example shown 

in Figure 9.5, the designer can select the accelerometer sensor from 

the Rule Editor side panel, and select which parameter to observe 

(the aggregate magnitude or x-, y- or z-dimension). In this case, the 

designer chooses the y-dimension. Moving the device forwards and 

 
Figure 9.5. Rules in Astral take a sensor value, such as the accelerometer y-axis, 

and map it to a desktop input such as a mouse position. 
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backwards dynamically updates the visualization, where the red line 

shows the current value. They can use visual inspection to see the 

range of values of interest and then constrain the sensor values to a 

range such as 1.0 m/s2 and 4.0 m/s2 by clicking and dragging, which 

creates a vertical selection shown in yellow. Note that the visualiza-

tion dynamically resizes as larger values are detected (e.g., if one were 

to shake the phone much harder, the acceleration ranges may in-

crease significantly). Sensor readings can be further transformed by 

applying prepackaged filters (e.g., extracting gravity and linear accel-

eration values from the acceleration). 

Converting the Mobile Sensor to a Desktop Input via Mappings. 

The designer can now map the mobile device sensor input to a desktop 

input (e.g., a mouse move event). Mouse events can be constrained 

on the desktop (as shown in Figure 9.5), for example, only allowing 

mouse movements vertically between 100 and 300 pixels. The rule 

editor offers the option to select the destination region for the mouse 

motion events through a rectangular selection region similar to mir-

roring overlay. Alternatively, one can define increments for mouse 

wheel events (Windows default scrolling: 120 pixels per step). For 

keyboard events, designers can specify a key event (key down, key 

press, or key up) and the associated key (e.g., arrow left, spacebar). 

Keys can either be typed or selected from a list of operating system 

defined keys (e.g., volume controls, media playback, print screen). 

One can even leverage shortcuts offered by the target application 

adding modifier keys (e.g., control, shift). 

Astral implicitly distinguishes between discrete or continuous inputs, 

in line with Exemplar’s categorization of sensor values (Hartmann et 

 
Figure 9.6. Sensor visualizations 

change depending on the currently se-

lected sensor, to enable more straight-
forward mappings. The figure shows 

(A) Compass, (B) Touchscreen, and 

(C) Light Sensor. 
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al., 2007). Figure 9.7 shows how Astral maps a mobile input (in this 

case the accelerometer value) to a: (a) discrete input destination (e.g., 

key press), and (b) to a continuous event destination such as a mouse 

move event or a scroll action. When a discrete device sensor input 

(e.g., 1 or 0 for a proximity sensor) is mapped to a discrete desktop 

 
Figure 9.7. Mapping sensor inputs to discrete and continuous keyboard/mouse 

inputs. Figure shows (A) mapping to a discrete input such as a key press, and (B) 

mapping to a continuous input destination (e.g., mouse position). 
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input (e.g., a mouse click), the inputs are mapped one-to-one (if one 

triggers, the other triggers). When a continuous device sensor input 

(e.g., an accelerometer’s x-dimension) is mapped to a discrete desk-

top input (e.g., a mouse click), it is triggered when the device sensor 

input enters or exits the designer’s chosen range of values. When a 

continuous device sensor input is mapped to a continuous desktop 

input (e.g., a mouse move), the value is interpolated between the 

source range and the destination range (e.g., from the accelerome-

ter’s y-dimension to a mouse position within a selected range). 

Lastly, a discrete sensor mapped to a continuous desktop input will 

simply map to the two extremes of the destination values. Note that 

the system handles discrete and continuous values for both mobile 

device sensor (source) inputs and desktop (destination) inputs auto-

matically based on the designer’s mapping. This means that design-

ers do not need to explicitly think about whether their source or des-

tination inputs are discrete or continuous.  

Easing Functions. Mapping continuous device sensor input to mouse 

motion or scrolling inputs allows designers to apply easing functions 

that interpolate between both (Penner, 2002). Instead of doing a lin-

ear interpolation, a designer can choose from a list of easings (Figure 

9.8) which immediately changes how the destination input behaves.  

The authoring process is dynamic: designers can immediately view, 

test and modify rules as they author or edit them. If they want to stop 

the rule from running (e.g., because the mobile device input is taking 

over the mouse cursor), they can press the ‘escape’ key to pause or 

play live mapping. This is particularly important to prevent input 
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locks, where the mouse cursor is overtaken by the mobile device sen-

sor during the authoring process. When the designer is finished, they 

can name the rule and finish creating it, which adds it to the active 

ruleset in the main application window. 

 MERGING SEVERAL RULES INTO RULESETS 

A behaviour may often require several rules, potentially using differ-

ent sensors. Astral adds an additional layer of abstraction, rulesets, to 

support combining rules. If a ruleset is active, rules within that set 

will execute as long as the mobile device streams sensor data. 

To test variations of interactive behaviours, designers can create mul-

tiple rulesets and switch between them at any time. When there is an 

active ruleset, a newly created rule will be added to that set and 

stacked vertically along with the others. 

 DECIDING WHEN RULES ARE TRIGGERED 

Astral aims for rules to be a minimal unit of mapping an input to an 

output. As a result, multiple rules can be combined into rulesets. 

 
Figure 9.8. Easing function options in Astral based on Penner (2002). These easing functions can also be inverted. 
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However, Astral provides several additional structures that expand 

the expressiveness of a ruleset. 

Conditional (When). When a device input meets a condition (e.g., 

values within a selected range), rules inside a conditional structure 

are activated. Conditional structures are always listening for input, 

and as long as the condition is met, all contained rules will execute. 

Thus, it is possible to implement techniques such as the clutch  

mechanism in tilt-to-zoom6 (Hinckley and Song, 2011) by nesting two 

conditionals. The first condition is touch is down, which holds true 

as long as a contact point is touching the screen. The second condi-

tion, which depends on the former one, is that the touch is not mov-

ing. Thus, once the conditions of touch is down and the condition of 

not touch move (i.e., the negation of touch is moving) are met, it is pos-

sible to interactively map accelerometer Y-dimension from the device 

to mouse scroll up/down desktop input. This is elaborated in §9.5.2. 

Sequence (Next). A sequence defines a chain of rule transitions, 

where different rules are chained in order, and once a rule has trig-

gered, the next one becomes active. This means that designers can 

create interactions such as simple state transitions (e.g., where the 

mirrored portion of the display can shift, move or resize), or support 

rules that enforce an order. After a rule in a sequence is executed, it 

becomes inactive and the next rule in the chain becomes active. Each 

rule in a sequence can mirror different portions of the desktop screen. 

 
6 Tilt-to-zoom is a one-handed mobile interaction technique. Users can pan across 

content by sliding their finger. When the touch is held, one can zoom in and out by 

tilting the device. The change in global state is referred to in HCI as “clutching”. 
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Through sequence structures, Astral can approximate state-based 

approaches (as done by design tools like d.tools (Hartmann et al. 

2006) and InVision7) without explicitly implementing states. That 

said, the chain is only a single linear pathway. 

Medley. A medley switches the currently active ruleset to the next 

ruleset on the list when a device input rule is triggered. Designers can 

define one medley at a time. As a result, designers can use this special 

rule to quickly switch to and test different variations of a prototype 

(getting the right design (Buxton, 2007)). As a result, designers can se-

quentially test a set of prototype alternatives, thus being able to check 

different types of inputs and how they affect the overall experience. 

Astral can thus support experimentation with any variation within 

rules, including sensors, thresholds, easings, or desktop inputs. 

 SENSOR SELECTOR 

Astral allows designers to disambiguate between multiple sensors. 

The Sensor Selector provides an overview of values from all available 

sensors as stacked line charts. Figure 9.9 shows the Sensor Selector 

interface, which shows a video on the top left corner (live feed of the 

desktop’s web camera when recording, or the current frame of a rec-

orded video once a recording has completed). By pressing the record 

button, the system records a webcam view that is synchronized with 

the different sensor data. All sensor data (except touch, which shows 

touch points over time) shows a corresponding line chart which up-

dates its values as the recording takes place, displaying the different 

sensor values across time. Designers can scrub through the recorded 

 
7 https://www.invisionapp.com/ – Last accessed April, 2020 

https://www.invisionapp.com/
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video by hovering on the timeline or by hovering on the line chart 

visualizations. Thus, designers can go through the video and inspect 

both video of the performed action and the visualization of the corre-

sponding sensor data as stacked line charts. Hovering on the charts 

or the timeline updates the current video frame. The timeline fea-

tures a range slider to select the area that reflects the designer’s phys-

 
Figure 9.9. Sensor Selector. Designers can record and playback a video which plots the sensor data of all detected mobile 

device sensors. Designers can then scrub on the video or the visualizations to see the associated video frame to that sensor 

value. Designers can create a selection to automatically create a rule that uses the range of values for that sensor. 
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ical action of interest.  From that selection, designers can see all sen-

sors that reacted, and select a specific sensor to create a rule. The 

system will open the Rule Editor with the sensor and its recorded 

ranges already filled in.  

Having all sensors displayed together with the webcam view can help 

designers select the relevant sensor to use. This was inspired by prior 

experiences with students in computer science as well as discussions 

with designers, in which people were unsure as to what sensors cor-

responds to which particular actions. For example, it often came as a 

surprise that the accelerometer can detect the mobile device angle of 

rotation by looking at the value of gravity (9.8 m/s2).  

9.4 USAGE SCENARIO: CREATING A LEVEL 
Having described Astral’s interface and the nuances of screen mir-

roring and how to convert mobile sensor data to desktop events, I now 

describe a simple usage scenario to illustrate Astral’s functionality. I 

showcase how a designer might work with Astral to create a lively 

prototype and author its interactive behaviours without any need for 

coding.  For this example, the designer wishes to create a level (akin 

to a carpenter’s level) on a phone. The level should portray a bubble 

that is centered on the screen when the phone is level, where that 

bubble moves to corresponding sides when the phone is not level. 

The designer can already use Adobe Illustrator and AfterEffects – fa-

miliar image and video applications (see §4.2) to draw and realize 

these visuals and nuanced behaviours. Since no coding is involved, 

the designer can focus most of their time and effort on the aesthetic 

elements of the behaviours (e.g., animations, visuals) as opposed to 

implementation details. This scenario can also be seen in the video 
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figure for Astral, and will be described below as a sequence of steps. I 

also note how long I spent in the first-time creation of the scenario, 

which shows minimal time in getting the prototype to run8. Figure 

9.10 shows some of the steps in the scenario as a visual summary 

which includes a snapshot of the final result.  

 PREPARING THE PROTOTYPE: ILLUSTRATOR AND 

AFTEREFFECTS 

This step occurs outside of Astral, where the designer is using famil-

iar desktop tools. The designer uses Adobe Illustrator to create illus-

tration of the level at reasonable fidelity. The “bubble” is extracted 

as a separate layer that can be masked and animated (15 minutes). 

The designer imports the Illustrator file into Adobe AfterEffects and 

creates a simple linear animation in which the bubble moves from one 

end of the level to the other as the video progresses through its time-

line (7 minutes). The designer now has a video prototype on their 

desktop that communicates what happens, but not how it happens.  

Normally, a designer would be stuck after this step, as they would be 

unable to transform this video into an interactive prototype running 

on the phone. Thus, it is not possible to truly test and interact with 

the prototype on the target device, and so it is difficult to achieve any 

additional sophistication acquired by fine-tuning the results. Astral 

can now bridge the gap, as the designer can transform this desktop 

video into an interactive prototype running on the mobile device.  

 
8 Prior knowledge in Astral and the desktop tools influences design time. When creating 

this example, I was not very familiar with Adobe AfterEffects, but I consider myself an ex-

pert in using Adobe Illustrator and Astral. 



 DAVID LEDO, 2020  |  281 

 

  

 
Figure 9.10. Visual description for Astral’s usage scenario. In the scenario, a designer authors a prototype for an interactive 

level on a mobile device by repurposing the timeline on a video editing software. 
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 STEP 1: STARTING ASTRAL 

The designer launches Astral on the desktop (Figure 9.10) and con-

nects the mobile device to it. The designer clicks the camera icon to 

select a region of the desktop to mirror onto the device. The region is 

the output video in the AfterEffects window, which will then appear 

live on the device (1 minute).  

 STEP 2: SENSOR SELECTOR 

The designer wants the interaction to play out when tilting the phone 

from side to side in a portrait orientation. Unsure of which sensor 

might be used for this, the designer opens the Sensor Selector (Fig-

ure 9.9), and moves the webcam so that it can capture him in the act 

of tilting the phone. The designer presses record. Astral records all 

available sensor values, as well as webcam video of their actions, 

which shows him tilting the device from side to side along with other 

motions (2 minutes). The designer then plays back the video and sen-

sor recording, to determine which sensor is being activated as the de-

vice motion takes place. From visual inspection and scrubbing 

through the video timeline, he finds that Linear Acceleration X and 

Linear Acceleration Y both react to the side-to-side tilt. However, Lin-

ear Acceleration Y is also triggered when the device is tilted forward 

and back and therefore is less valuable. Thus, the designer decides 

that Linear Acceleration X is the sensor of interest. He narrows down 

the area of interest by adjusting the range slider, right clicks on Linear 

Acceleration X and clicks on the “Create Rule” option, which opens 

the Rule Editor (1 minute). 
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 STEP 3: RULE EDITOR 

The Rule Editor (Figure 9.4-b) automatically selects Linear Accel-

erometer X as its active sensor parameter, and already has a defined 

range based on the readings from the Sensor Selector. The designer 

repeats the desired behaviour (side to side motion) and sees the val-

ues up close in the Rule Editor Linear Accelerometer X live visualiza-

tion. He now adjusts the acceleration range on the data visualization 

via direct manipulation of the yellow-filled range (1 minute).  

 STEP 4: MAPPING MOUSE POSITION TO THE  

AFTEREFFECTS TIMELINE 

The designer now uses input remapping to specify how the interaction 

takes place. He decides that moving the device from side to side 

should be converted to mouse click and drag actions that scrub 

through the video timeline so that the level’s bubble animation is 

mapped to the side to side motion. The designer creates a mapping 

by clicking on ‘Mouse’ and selecting the move event. The designer 

next defines the range of pixels that for the mouse move event desti-

nation. Clicking the “Map to Screen Selection” button, the designer 

can create a rectangular selection determining the destination mouse 

coordinate range. He now creates a rectangular selection overlaying 

the AfterEffects Timeline and ticks the checkbox so that the mouse 

performs a mouse down (holding) whenever the move event takes 

place. Because of the immediate preview, moving the phone already 

causes the mouse to move (which can be activated or deactivated 

from anywhere in the operating system using the escape key). As the 
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prototype is already interactive via its live preview, the designer im-

mediately sees these effects (both input and output) on the mobile 

device (2 minutes).  

 STEP 5: FINE-TUNING THROUGH EASING  

FUNCTIONS 

While the interaction is being tested, the designer might find that it 

does not respond as desired, as it is very easy for the level to jump 

quickly from one side to another. One way to iterate on this behaviour 

is to make the bubble remain in the middle of the level for longer pe-

riods of time through an easing function. This can be achieved 

through an inverse cubic-in-out easing – which would slow down the 

animation towards the middle of the timeline, and speed up the ani-

mation towards the edges of the timeline. By playing around with dif-

ferent easing functions, the designer can fine-tune and instantly test 

the qualities of the interaction-driven animation and improve the in-

teraction. This can take as long as the designer wishes to engage in 

the process. The designer may also decide to readjust the input pa-

rameters or the mouse region for further fine-tuning (2 minutes).  

The prototype is now complete. The designer can modify it further 

as desired (e.g., its looks, additional functions, etc), or try other 

variations. The designer can also have others try it out. 
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9.5 INTERACTIVE PROTOTYPES  
MADE WITH ASTRAL 

While the previous scenario shows one possible application of Astral, 

I also examined how Astral can support different types of design ac-

tivities, derived from insights in Chapter 2. I specifically explore con-

verting video into interaction-driven animations (§9.5.1), converting 

existing input/output into new device-specific interactions (§9.5.2), 

and bringing sketches to life (§9.5.3). Note that these exploration cat-

egories are meant to provide additional structure and do not imply 

mutually exclusive solutions to problems that designers might 

achieve when using Astral. 

 CONVERTING VIDEO INTO INTERACTION-DRIVEN 

ANIMATION 

Video-Based Prototyping 

Both our own experiences and past literature have shown designers’ 

inclination towards working with high-resolution video9 to convey 

prototype ideas to developers e.g., Maudet et al. (2017), Subtrac-

tion.com (2015) and UxTools.co (Palmer, 2018). While video can 

show state-based animations, it does not enable direct interaction. 

One can use a video editor in conjunction with Astral to bring inter-

activity to these prototypes on the target devices, in these cases, a 

mobile phone. I use the same workflow as the scenario in §9.4.  

 
9 Here, video-based prototyping refers to the take by Maudet et al. (2017) where designers 

use video editors to animate high fidelity illustrations and specify how systems should be-

have in terms of animations. This is not to be confused with MacKay (1988): Wizard-of-Oz 

style play-acting of prototypes in video format. 

 
Figure 9.11. Video based prototypes in 

addition to the level phone app used in 

the scenario. (A) shows a compass, 
while (B) shows a re-implementation of 

Android’s quick settings menu, where 

one can change the phone brightness. 
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Level Mobile Phone App. The level prototype described in the previ-

ous section belongs to this category of prototyping. In particular it 

emphasizes: (1) how the Sensor Selector can help designers deter-

mine which sensor corresponds to an action (in this case determining 

tilt by acceleration); and (2) the power of easing functions to change 

the ‘feel’ of an interactive behaviour.  

Compass. I created a simple animation of a compass needle rotating 

360 degrees (Figure 9.11-A), including a separately-animated needle 

shadow that creates a three-dimensional effect when in motion. I then 

created a rule that provided a linear mapping of the device’s compass 

angle to the position on the video timeline. 

Quick Settings. The Android Quick Settings menu contains a nu-

anced animation where multiple icons change size, position, and 

opacity, to reveal available operating system functions to a mobile 

user. With Astral, it is possible to map a downward sliding gesture to 

progressively reveal controls. Furthermore, one can add an additional 

interaction of controlling the screen brightness by mapping a side 

swipe on the top of the mobile screen, which shows a slider (Figure 

9.11-B), to another portion of the video timeline on the desktop in 

which the screen fades to black. This shows how even within video 

timelines Astral can support multiple interactions. While it is not a 

full approximation to state transitions, it is still possible to create in-

teraction-driven animations within those limited states. 
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 CONVERTING EXISTING DESKTOP INPUTS/OUT-

PUTS INTO NEW DEVICE-SPECIFIC  

INTERACTIONS 

Authoring Open-Ended Interaction Techniques 

With Astral, it is also possible to prototype interaction techniques 

that provide more open-ended ways of interaction than the video-

based prototypes. 

Tilt to Move. I used Astral to create a one-handed map navigation by 

mapping the different tilt directions from a phone’s accelerometer 

data to the cardinal arrow keys in Google Maps. The rules are set so 

that key commands are triggered when the acceleration crosses a cer-

tain range (x: 4 to 7 triggers right, x: -4 to -7 triggers left, y: 4 to 7 

triggers down, y: -4 to -7 triggers up). Because Astral is using a key-

press event, the mapping initiates a key down when the accelerome-

ter enters the specified range, and a key up when leaving the range. 

This scenario replicates an example from d.tools (Hartmann et al., 

2006) that originally required programming to realize the tilt-based 

map navigation. In contrast, the Astral version leverages input re-

mapping and avoids the need to write code. 

Tilt-to-Zoom. I implemented tilt-to-zoom (Hinckley & Song, 2011), 

where a designer can pan through a map using touch, and zoom in 

and out via tilting provided that there is also a touch down event 

(their finger acts as a clutch). This is achieved using conditional con-

structs (shown in Figure 9.12). A touch down conditional becomes ac-

tive if touch is down on the device. It contains another nested condi-

tion that checks whether touch move is not taking place. The rule 
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within this nested conditional maps the accelerometer’s y-dimension 

to mouse scrolling (up or down). This prototype replicates prior re-

search, incorporating the concept of motion in touch – mapping more 

than one sensor to a single function.  

 
Figure 9.12. Tilt-to-Zoom Prototype. This figure shows how Astral leverages conditionals to create an interaction that re-
quires considerable coding only repurposing a web browser on the desktop. 
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Prototyping Multiple Alternatives 

In Chapter 2, I discuss how designers often generate multiple ideas 

and prototypes as part of the exploration process. I also described 

how typically many of the ideas end up stuck as an early paper sketch 

due to the amount of time required to realize the idea. However, with 

Astral, one can explore a lot of ideas quickly in high resolution. 

Input Variations in a Mobile Game. Previously in §9.1, I used an ex-

ample of the Flappy Bird game. While working with this prototype, I 

mapped different mobile sensors to a spacebar keypress (shown in 

Figure 9.13) so that the bird flaps its wings when: (a) tapping, (b) 

blowing onto the microphone, and (c) shaking the phone. Each of 

these interactions was encapsulated in individual rulesets. By creat-

ing a medley rule (Figure 9.13-d), one can quickly switch between 

active rulesets to explore different forms of interaction – in this case 

whenever the light sensor is covered. 

 BRINGING SKETCHES TO LIFE 

Iterative Prototyping at Multiple Resolutions  

Since Astral remaps inputs from mobile sensors to any key, it is pos-

sible to work with multiple applications at different stages of the de-

sign process. As a result, Astral can support different tasks and spe-

cialized tools – wireframing and walkthroughs, transitions between 

states/flow (similar to d.tools by Hartmann et al. (2006)), or working 
 

Figure 9.13. Input variations in Flappy 
Bird on a mobile device, using different in-

puts: (A) touching the screen, (B) blowing 

on the microphone, and (C) shaking the 

device. The designer alternates these by 

(D) covering the screen’s light sensor. 
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with more sophisticated programming platforms that may not be 

available for mobile prototyping. To realize these examples, Astral 

mainly relies on the sequences rulset type. 

Music Controller Sketches. Using a default image viewer, one can 

scan or photograph an interface sketch on the desktop and immedi-

ately view it (and test it) on the mobile device (Figure 9.14-A). De-

signers can emulate states by chaining multiple rules with the se-

quence construct. Each rule moves the streamed region to different 

parts of the image (i.e., the screen drawings) depending on the tap 

interactions that may take place. By previewing the sketches on the 

target device – here, a watch – designers can make early decisions 

such as defining appropriate button sizes. 

Music Controller PowerPoint Mock-up. Presentation software such 

as PowerPoint and Keynote remain relevant for mocking up inter-

faces and wireframes (see §4.3). With Astral, it is possible to use 

mock-ups created with these applications to press the wireframe but-

tons on the watch (given the streamed visual) and move to another 

part of the slideshow by perform a click event on different parts of the 

slide thumbnail preview (Figure 9.14-B). Thus, one can easily test 

the flow between different interface screens. 

 
Figure 9.14. Prototypes in low resolutions. The figure shows: (A) a sketch rendered on the mobile watch, (B) a PowerPoint 

mockup, and (C) an in-progress drawing in Illustrator which controls the music in iTunes. 
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Image to Media Keys. The keyboard media keys can control applica-

tions, including volume controls or music software’s state (play, 

pause, next/previous song). It is possible to take an in-progress 

sketch in, say, Adobe Illustrator, and map portions of the screen to 

trigger different media keys. Thus, designers can switch between dif-

ferent songs in a music software (in this case iTunes) to simulate a 

remote-control software. This prototype is shown in Figure 9.14-C.  

Authoring Smart Object Behaviours 

Designers may also leverage Astral to explore behaviours on smart 

objects and appliances, as well as some degree of Internet of Things 

applications. Using Soul-Body prototyping (Chapter 6), designers 

can repurpose phones and watches in novel and unexpected ways.   

Smart Speaker Animations. Using video editing applications, one 

can author nuanced animated responses that a smart home speaker 

might perform. I created a smart speaker prototype by placing a smart 

watch inside a mug with a 3D printed tray and light diffuser (Figure 

9.15-A). Given this new physical prototype, it becomes possible to 

test different animations in AfterEffects and see what they might be 

like on a smart speaker. Moreover, Astral supports speech recogni-

tion through the built-in Microsoft speech API, so one could also ex-

plore different kinds of animations that trigger depending on a variety 

of voice commands. 

3D Printed ‘Smart’ Level. I recreated the 3D-printed level from Pin-

eal (Chapter 8) and reused the level mobile phone app prototype from 

the usage scenario described in this chapter. Figure 9.15-B shows a 

smartwatch enclosed in a larger 3D print. This demonstrates how As-

tral can also adapt prototypes to different devices and form factors. 

 
Figure 9.15. Smart object prototypes 

featuring (A) a mug holding a smart 

watch as a smart speaker, and (B) a 

physical prototype to the initial video-

based level presented in the first usage 
scenario. 
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With this example I also show how the prototyping tools described in 

this thesis can work together and assist designers in the task by creat-

ing a suite of programs.  

Thus far, I showed prototypes that take different design activities at 

different resolutions and (1) make them interactive, and (2) bring 

them into the context of working with the target device. The applica-

tions in this section represent both novel and replicated prototypes 

(e.g., from prior research) using Astral. These examples help convey 

Astral’s threshold, ceiling, and expressiveness (methods described in 

Chapter 5). Figure 9.16 summarizes the prototypes in this section 

and how they are extended by Astral.  

9.6 IMPLEMENTATION 
Astral is designed to work with one mobile device per Astral desktop 

client, which constrains and simplifies the workflow. This is tied to a 

technical limitation of desktops, as mouse and keyboard commands 

can only be sent to a single focused program. The desktop client of 

Astral is implemented using C# and WPF, while the mobile applica-

tions are written in C# Xamarin to allow cross-platform mobile devel-

opment (iOS, Android, Android Wear). To reuse code and quickly 

adapt to newly added sensors of future devices, all communication 

aspects were developed in shared code, using the .NET Standard 2.0 

(see below for details). 
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Device Modules. The underlying software features classes in shared 

code for each of the mobile device’s sensors or outputs (e.g., accel-

erometer, microphone, or display), referred to as device modules. The 

mobile device instantiates all modules it is equipped with when the 

 
Figure 9.16. Summary of the interactive prototypes, what the original design activity entails and how Astral bridges taking 

non-interactive prototypes into prototypes that can be tested on the target device and refined before implementation efforts. 
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application starts. Once the device connects to the Astral desktop ap-

plication, it sends a list of all available modules to the desktop. The 

desktop then creates the same modules to access the sensors by 

proxy, as if they were local sensors. Each module updates its values 

with newly measured sensor data. Modules trigger an event in code 

once values have been updated. 

Data Exchange between Devices. Because the desktop and the client 

are not running on the same machine, device modules handle the in-

ternal network communication. There are two forms of communica-

tion between the clients: sensor data goes to the desktop, and desktop 

client visuals go to the mobile device. For sensor data coming from 

the mobile device, this works as follows: (1) the mobile device records 

the respective sensor data natively (i.e., iOS or Android specific); (2) 

it then updates the module using a device-independent abstraction of 

the measured data (e.g., three floating-point numbers for the accel-

erometer); (3) the module sends this data as bytes (using a unique 

identifier) over the network; (4) the module on the desktop unpacks 

the message and triggers an event; and (5) if the Astral desktop client 

subscribes to the event, it receives the sensor data, and sends the up-

date to rules using that sensor. Mirroring desktop contents works 

similarly, except that the desktop client updates the display device 

module. To speed up the transmission of images, we detect changes 

through image differencing and only transmit the areas that did 

change. These image (parts) are compressed (JPEG). 

Performance. Astral uses wireless LAN via TCP for connectivity be-

tween devices. Astral’s mobile client was tested on multiple phones 

(Nexus 5 and 5X, iPhones 6, 7 and 8, Pixel 2) and one smartwatch 
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(Sony Smartwatch 3). Image transmission is at varies depending on 

the image size, but frame rates are typically 50 fps on iOS, and 25 fps 

on Android. This is concurrent with mobile sensor data streaming to 

the desktop, yet only if the desktop actually requires a specific sensor 

(i.e., a Rule or the Sensor Viewer is using that sensor). Sensor data is 

streamed in real-time but restricted to a rate of 100 fps to ensure high 

transmission rates in both directions. During testing and creation of 

the prototypes, my co-authors and I did not experience significant de-

lays transferring data from multiple sensors. That said, sometimes 

when the screen area was considerably large or on a large resolution 

display (e.g., a 4K display monitor), the image transfer would some-

times turn choppy from different parts slowing down. Larger images 

lead to the desktop screen capture and JPEG compression taking 

slightly longer. Similarly, the network requires transferring a larger 

image, and the mobile device has to then downscale the image to fit 

the screen size. The next section examines some of the implementa-

tion limitations in more detail. 

9.7 DISCUSSION 
While Astral represents a promising concept for a prototyping tool, 

there needs to be a critical assessment as to the extent to which the 

contributions have been reached (§9.7.1), describing the evaluation 

approach (§9.7.2), reflecting on Astral’s scale beyond prototyping 

(§9.7.3) and discussing some of the reality about its implementation-

level constraints (§9.7.4). I suggest potential avenues for future di-

rections, either by showing what Astral’s work paves the way to-

wards, or by suggesting potential improvements to the system or de-

sign practices in general.  
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 REVISITING THE DESIGN RATIONALE 

Earlier in §9.2, I described the design rationale behind creating Astral 

presented as four decisions which shaped its contribution. It is im-

portant to have a closer look at the extent to which each one of these 

objective have been achieved and discuss potential extensions.  

R1. Prototyping Live Interactive Behaviour on the Mobile Device. 

Astral, as shown by the scenario and prototypes, indeed supports live 

authoring, and it is possible to test the behaviours as they are being 

created. In fact, this proved to be very useful in many research dis-

cussions with colleagues and co-authors, as it was possible to adjust 

the rules to reach the desired effects almost instantly. However, there 

are a few caveats to consider, namely: it is possible to create conflict-

ing rules, mappings can sometimes accidentally affect the wrong ap-

plication, and the inputs can become locked (described in §9.3).  

The current implementation of Astral does not check for conflicting 

rules. This has been a deliberate choice to ensure designers have 

more flexibility, but also opens the door for potential sources of hu-

man error. For example, a designer can create two rules that are 

nearly identical but map the mouse movement in opposite directions. 

The result will be that whenever the rules are both active, the mouse 

cursor will start rapidly jumping back and forth. That said, given that 

the interactive behaviour explorations (such as the ones in the proto-

types above) take only a few rules (none of the examples have more 

than five rules running at once), designers should in theory be able to 

keep track of what they are creating. Rather than adding constraints 

to the interface (e.g., showing a warning in a suspected case of con-

flict), I consider a better solution is to further iterate on the way the 
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list of rules is displayed to increase the amount of awareness cues pro-

vided, so that designers are more aware of the effect of their actions. 

The next consequence of live authoring with mouse and keyboard 

commands is the possibility for inputs to affect the wrong application. 

Given that Astral is unaware of the active application and simply ex-

ecutes mouse and keyboard commands on the fly, there is a chance 

that a designer might perform an accidental undesired action. For ex-

ample, a mouse click could accidentally activate another application 

which will receive the remapped inputs. This in fact happened to me 

a few times before I implemented the ‘escape’ key workaround, where 

I would have a small window of a web browser on top of a full screen 

version of Astral’s code. I would then create a behaviour that per-

formed a click and drag operation. In the behaviour creation process 

I would unwittingly move the web browser window to read the un-

derlying code without deactivating the rule. I would then lower the 

phone, which makes the accelerometer move and triggered a click, 

which would click and drag on top of my code window, thereby se-

lecting my code and rearranging it to a different location. Perhaps a 

stricter implementation could enable selecting whether the mouse 

and keyboard events should affect every desktop application, or only 

affect a subset of the currently opened applications, but it would add 

extra steps to setting up Astral. 

The last and perhaps least concerning (yet most common) conse-

quence of live authoring were the input locks. Input locks occurred 
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sometimes in the process of creating a rule which mapped a very sen-

sitive sensor (e.g., accelerometer) to the mouse cursor movement. 

The system would start a live preview immediately once the mouse 

cursor mapping was established, which could in some cases prevent 

one from regaining control of the mouse again. The ‘escape’ key 

solved this situation entirely right away, as the moment an input lock 

took place it could be temporarily turned off with one key. Because 

the system listens for the ‘escape’ key across the operating system, it 

also became extra useful for live demos. With the ‘escape’ key it be-

came possible to author the rules, minimize everything, and then play 

the rules while showing only the target application. 

As long as designers are aware of these potential side effects of live 

authoring, and that they know that the ‘escape’ key can relax some of 

these effects, I expect there to be few problems beyond usability de-

tails. I think that because Astral has so few added menus and con-

straints it works well as a tool that one can use quickly without having 

to do too much setup (e.g., defining which application to affect). 

Given the current design, I do believe that Astral could become a 

quick “walk up and use” tool once learned. That said, I think that it 

would be beneficial to provide additional feedback so that designers 

are more aware of the current mappings and the effects of their ac-

tions on the mobile device. The active rules in the main view of Astral 

could show live previews along with the source input from the mobile 

device and the destination input on the desktop, as well as which area 

it will affect. One way of doing this is envisioned in Figure 9.17. 

R2. Providing an End-User Interface that Allows Designers to Ex-

plore Variations Among Mobile Sensors. For Astral to be a tool that 

 
Figure 9.17. Rule preview enhance-

ments with additional feedback and 

awareness cues. 
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designers can use quickly and effectively, there needs to be as little 

coding as possible (for the discussion of this problem see Chapter 4, 

§4.4.2). Thus, the visual representations for sensor data need to 

make sense as much as possible. I put care into trying to achieve a 

strong expressive match (Olsen, 2007) by tailoring visualizations to 

particular mobile sensor data through the Sensor Selector interface. 

However, in spite of a higher expressive match, there is no guarantee 

that there is a reduced need to learn and understand how sensors 

work. For instance, consider that accelerometer data can be used to 

determine the orientation of a mobile device. While visual inspection 

on the Sensor Selector could lead a designer to realize the effect of 

device tilt on the accelerometer values, it is hard to know without un-

derstanding how the sensors work, whether it is a generalized effect. 

While one could study how designers learn to work with sensor data 

and the extent to which tools need to explain it, I believe this is more 

of a communication problem. More of the existing programming-spe-

cific documentation needs to reach designers and even computer sci-

ence students. 

R3. Supporting the Use and Repurposing of Existing, Familiar Ap-

plications for Prototyping. The prototypes discussed in §9.4 and §9.5 

show a variety of applications which match many of the tools used by 

designers in the past ten years (see §4.2). These range from more 

general usage tools such as the web browser, to more casual ones such 

as PowerPoint, to more specialized tools such as Illustrator and Af-

terEffects. What is interesting is that Astral, in cases such as the video 

editor example (§9.4), can take a non-interactive video on the desk-

top and instantly turn it into an interactive experience on the mobile 

device. The fact that the area that is mirrored to the mobile device 
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screen (AfterEffects’ video preview) is different from the area in 

which the mouse move event is being executed on (the timeline) sug-

gests that there might be a lot of room for interesting applications of 

Astral beyond what is presented in this chapter. Thus, even though it 

seems like the ceiling of Astral only goes as high up as the desktop 

application itself, the reality is that Astral, unpredictably, achieves 

more than that, as it now accomplishes functions that were not pos-

sible in the native application.  

R4. Supporting Interaction-Driven Animations. An important as-

pect often overlooked in interaction design prototyping tools is the 

authoring of behaviours which respond to continuous input as the in-

teraction takes place. Astral supports interaction-driven animations, 

provided that the desktop application can create some form of mov-

ing visual, such as the timeline preview in AfterEffects or the scroll-

ing to zoom on the web browser maps. However, with such tools it is 

only possible to progress through one dimension of output: the video 

player has a single timeline, the zoom function on the map is depend-

ent only on the mouse scroll. The current types of animations likely 

cover a majority of the common interactive behaviours. Still, it would 

be interesting to animate individual objects as a function of different 

sensors, or to manipulate different timelines at once. This could lead 

to richer behaviour explorations perhaps more in tune with other ar-

eas such as game design (e.g., using two joysticks to affect the anima-

tion and response). 

 EVALUATION APPROACH 

There are various strategies for evaluating toolkits as discussed in 

Chapter 5. Of these, I use evaluation by demonstration as the primary 
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method. In particular, the prototypes tie back to key design activities 

as reflected in Chapter 4, where Astral can bring the prototype to the 

target device in a way that it can be tried out, thus enabling further 

elaboration of interactive behaviour. The prototypes represent both 

novel and replicated systems from past research, which reflect how 

Astral can achieve results that might be difficult to create otherwise, 

as well as ensuring that prior paths of least resistance (Myers et al., 

2000) can still be accommodated. The usage scenario (§9.4) provides 

a perspective on how designers might work with Astral while convey-

ing some of its threshold and ceiling (Myers et al., 2000). More im-

portantly, I have carefully considered the claims made in this chapter 

and revisited the original goals.  

It is important to note that the potential research question for a hypo-

thetical future study is not whether designers can use Astral. The 

problem with such a question is that it easily focuses on usability bugs 

that get in the way of using the system, and there is little inquiry on 

the value of Astral as a potential design tool. The larger question and 

more interesting question for future work is more about how designers 

might leverage a tool like Astral. This question is much more difficult 

to answer, and studying it directly with designers is beyond the scope 

of this thesis. This question, however, can still be answered through 

the demonstrations in §9.4 and §9.5. 

I deliberately did not pursue a lab usability study. A usability evalua-

tion would be inappropriate given that Astral is not a walk-up and use 

system and the paths of interaction are very open-ended (Olsen, 

2007). Furthermore, a lab study would sacrifice realism (McGrath, 

1996). There are three reasons why it is so. First, designers each have 
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different applications and computer setups which cannot be reflected 

in a lab setting. Second, Astral provides an alternative way to think 

about prototyping, which requires time to internalize. Finally, short 

tasks can lead to the “usability trap” (Olsen, 2007), or test tasks we 

know Astral can succeed at, thus leading to unfair comparisons or 

weak generalizations from the current implementation rather than 

the concept as a whole (Greenberg and Buxton, 2008). Open-ended 

tasks require designers to envision ideas ahead of time (thus requiring 

an understanding of what Astral can do) – it would be unreasonable 

to request a design on the spot.  

One interesting avenue for future work is to consider an observational 

field study, as it might be an appropriate way of testing Astral’s po-

tential for designers. However, for the software to be deployable 

would require a large amount of testing and additional engineering 

efforts, which are beyond the scope of this thesis. 

I see two large issues in a potential user study with Astral and both 

stem from the existing design practices. The first challenge is that de-

signers have a specific set of expectations which are a consequence of 

the tools of today. The current set of tools and job descriptions typi-

cally guide a designer towards creating wireframes and specifications 

without a lot of room for exploration and animations. Moreover, be-

cause of the lack of tools today, little is known about what a smart 

object behaviour designer might look like. Thus, the number of po-

tential people that could truly experiment with Astral for mobile in-

teraction or smart object design outside of the research community is 

perhaps small if not still inexistent. This becomes evident when look-

ing at the plethora of mobile applications and how aside from mobile 
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games and operating system functions, the explorations of nuanced 

behaviours are quite limited. The second challenge is that a tool will 

always be compared with the current industry software, and meas-

ured with the expectation that it achieves similar levels of complexity. 

This is difficult to achieve with small prototypes like Astral. I think 

the solution is for Astral, or a tool like Astral, to become robust 

enough and readily available so that people can try it, or bring it into 

an educational setting with enough support and documentation. For 

example, perhaps motion design students could see how their ideas 

can be applied in the context of interaction design. 

While Astral could enrich interaction design practice, Astral is not 

intended to replace existing prototyping software, but to instead pro-

vide an alternative approach. State models, as discussed in Chapter 4 

§4.3.3, are a common prototyping strategy, and there is a reason they 

remain standard. State diagrams can quite intuitively describe the 

flow of the interaction. However, explorations with state models can 

easily be complemented by leveraging Astral’s closed loop of interaction 

to explore how behaviours might play out on different target devices, 

or to try out new interesting interaction-driven animations. 

 SCALE AND REAPPROPRIATION OF TOOLS 

When looking at Astral’s application agnosticism, I realized one real-

ity in current technology is that development platforms are largely 

siloed and highly specialized. For example, to develop for smart-

watches, developers can only work with Java on Android Studio, 

Swift in XCode, or Xamarin in Visual Studio. With an application like 

Astral, one can potentially bridge development for short-term use ap-

plications. Moreover, from a conceptual standpoint, Astral is a plug-
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and-play application, which means that there is no need for custom 

software IDE and API installations. A designer can work with Power-

Point or go as far as to create an HTML/Javascript site that runs on 

the watch. 

While this chapter focuses on Astral as an interaction design tool, it 

is worth mentioning that its applications can go beyond what has been 

shown. For example, an early prototype I created served to control 

applications remotely. Applications such as Adobe Illustrator do not 

have hotkeys for all features, such as alignment tools (Figure 9.18). 

Consequently, designers often make selections and drag the mouse 

cursor to an edge of the screen to select a command such as aligning 

all objects to the left. When conducting repeated alignment tasks, the 

constant moving back and forth of the mouse can become tedious. 

One way to solve this is to move the interface to a mobile device using 

Astral. This way, the interface can rest on the phone by the desk next 

to the keyboard and provide end-users with opportunities for biman-

ual interaction: the mouse on the right hand selects the objects on the 

screen while the left hand chooses the desired command. Moreover, 

unlike keyboard hotkeys, the distributed interface shows meaningful 

icons that inform the user of the effect of the action. This experiment 

shows a replication of prior visions of using mobile devices for control 

(Myers, 2002) and creating custom interfaces by borrowing from ex-

isting ones (e.g., Stuerzlinger et al.  (2006)). Thus, a future avenue is 

to explore how Astral could be adapted for people to create custom 

interfaces and extend their current application functionality. 

 
Figure 9.18. Alignment tools in Adobe 
Illustrator. 
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 IMPLEMENTATION-LEVEL CONSTRAINTS 

It is important to remember that Astral is in itself a proof-of-concept 

prototype, developed by a small team of researchers in a limited 

amount of time while handling different projects. There are certain 

limitations, or constraints, in terms of the current implementation. 

Some of these details are less relevant to the concept and more re-

lated to the usability, while others helped shape more heavily the ex-

pectations that a potential user might have when using Astral. I focus 

on three aspects: the challenge of the complexities behind Astral, the 

fact that each desktop and mobile device is different, and the degree 

of permanence of a prototype made in Astral. 

Implementation Bottlenecks 

One aspect that is important to stress is that Astral itself is a highly 

complex proof-of-concept system with many components working 

together. The display capture code leverages libraries in .NET 

graphics in System.Drawing that are at least 10 years old, which are 

not highly prioritized within the operating system (thus capping at 60 

frames per second). Once images are transferred, mobile devices 

across multiple platforms which treat images differently (e.g., An-

droid is big endian while iOS is little endian, so individual bytes from 

images that arrive need to sometimes be reinterpreted, which might 

explain some of the bottlenecks on Android). Xamarin, while robust 

and capable of generating cross-platform shared code in C#, is not as 

optimized as using native languages such as Swift (iOS) or Java (An-

droid). Sensor data across devices varies from model to model. The 

data is inconsistent in terms of which sensors are available, their re-
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fresh rate, and the levels of granularity (as well as the range of maxi-

mum and minimum values). While most of the software is written 

from scratch, there are many external libraries that we leverage, such 

as to retrieve the camera view in WPF. This “daisy-chaining” of li-

braries on a prototype leads to issues such as memory leaks, which 

can slow down the system over time. Moreover, the rule system, vis-

ualizations, and interface are all built from scratch, and were the re-

sult of an evolving architecture which was updated as new ideas 

emerged. As a result, Astral also lacks key features that enable longer 

term usage, such as inability to save rulesets once the software closes, 

the absence of an undo-redo stack, or the inability to reconnect when 

the system crashes. Lastly, the open-endedness when creating rules 

means that there needs to be extensive testing. These tests might in-

clude orders of operation across different rules, as well as error check-

ing when settings for a rule are left blank. These aspects matter more 

if Astral were to become a product, so they are relevant for the imple-

mentation but have no bearing on the concept itself.  

Astral’s implementation limitations are a direct result of integrating 

many specialized features of networking, image processing, mobile 

sensing, data visualization, operating system hooks, etc. It is im-

portant to note that Astral works well enough to realize the proto-

types described thus far, as well as different permutations, provided 

that the user has a good understanding of the code-base (i.e., they are 

resilient to bugs and crashes). This is not an uncommon challenge in 

systems research (Olsen, 2007), as it is unreasonable to expect a small 

team of researchers to create a full product. Astral in the end remains 

a prototype of its own, and taking it to a stage in which it can be de-

ployed onto different machines reliably would require significant 
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time, engineering effort, and a larger highly proficient team.  As such, 

making Astral deployable is beyond the scope of this dissertation. 

Device Relativism 

Every device is different, and Astral works with values relative to 

both the desktop and the mobile device being used. 

Mappings of mouse and screen coordinates may not work across dif-

ferent computers with different resolutions, as all these are relative 

dimensions for each desktop monitor. Moreover, desktop application 

window sizes are not fixed, so once the workspace has changed the 

mappings may no longer work. There are workarounds to the latter 

concern: it is possible to store the position and sizes of the windows 

and associate them to the rules, so that when a ruleset executes it ad-

justs its values to match the window sizes. Yet, storing this infor-

mation still may not carry to another desktop, with different resolu-

tions, zoom factors and customizations within the familiar applica-

tions (e.g., where controls and palettes are placed within the win-

dow).  

Mobile phones and smartwatches also have a wide variation within 

their resolutions and sensors. Additionally, some sensors may not be 

available on each device, and some sensors may have device-specific 

readings in units that may not be intelligible. One example of an un-

expected sensor behaviour was that the Nexus 5X phone has a very 

sensitive gyroscope which updates at a very fast rate with very fine-

grained values (over 6 decimal places). Transmitting this data on up-

dates caused the system to slow down and eventually crash, which led 

us to add a threshold that can be set in code to determine how much 

change there needs to be before value updates are sent. 
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Permanence 

The device relativism and current implementation lead to a side ef-

fect of Astral, which is that the prototypes are only temporarily func-

tional. Prototypes work as long as all external software is running and 

the active application that the designer wants to manipulate (e.g., Af-

terEffects) has not been moved or resized. In other words, Astral is 

not aware of what applications are being manipulated, it is simply a 

means to provide mapping from mobile device data to the desktop 

while having a mirrored view of the desktop screen (or a portion of 

it). Otherwise, the designer needs to readjust the values in each of the 

rules. The lack of permanence is not necessarily an issue, as it ensures 

the designer focuses on the behaviour design in itself and keeps the 

activity as a self-contained exploration. Given that Astral can be 

simply opened and operated on top of the existing designer work-

space, the cost of setting up the interactivity for the prototype is rel-

atively low. That said, the problem is that it does not leave a lot of 

room for simply reusing the prototype or comparing different states 

or versions within it. One interesting avenue of future work would be 

to store the streamed images along with sensor values into the mobile 

device to create small application simulations. With this, the proto-

types in Astral could be saved for longer-term usage and for more 

communications within the larger design and development team. 

9.8 SUMMARY 
This chapter presented Astral, a prototyping tool that allows design-

ers to create rich interaction driven behaviours for mobile devices by 

repurposing existing applications. Designers can stream contents of a 

desktop and reflect them on mobile devices, and easily create rules 
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that map mobile input into desktop mouse and keyboard events to 

enable the repurposing of existing applications. I described the inter-

face in Astral and explored a series of prototypes that demonstrate 

how the tool can be used in different activities within the design pro-

cess. In particular, Astral integrates aspects of Soul-Body Prototyping 

discussed in Chapter 6 and shows how designers can create interac-

tive behaviours for smart objects without the need to code. Thus, As-

tral serves as the glue to bring together my thesis that we can repurpose 

existing hardware (mobile phones and watches) and software to enable de-

signers to create live interactive prototypes for smart interactive objects. 





 

 

 

 

 

 

 

 CONCLUSION 

This conclusion chapter revisits and reviews the solutions to the 

problems outlined in Chapter 1, addressing my thesis, which is: 

we can repurpose existing hardware (mobile phones and watches) 

and software to enable designers to create live interactive proto-

types for smart interactive objects. 

To review how this thesis is ultimately addressed, I revisit the de-

signer challenges discussed in Chapter 1 and further developed in 

Chapter 6, and show how they have been fulfilled (§10.1). Thus, it 

becomes possible to discuss the primary (§10.2) and secondary 

(§10.3) contributions of my work, to then share potential future di-

rections (§10.4). I reflect on the overall role of this thesis (§10.5) , 

showing my overall vision as well as where this work might continue. 

10.1 REVISITING THIS THESIS’  
TARGET PROBLEMS 

In Chapter 1 and Chapter 6, I describe three core problems that de-

signers face, which from about understanding the background and 
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training of interaction designers, as well as the existing tools to author 

interactive behaviour (described in Part 1 of this thesis). Specifically, 

when prototyping smart interactive objects, the challenges are: 

− Need for multiple specializations, specifically programming, 

circuit building, and form-giving; 

− Lack of tool support beyond click-based screen transitions; 

and 

− Need for close-to-product representations, where designers 

can manipulate the physical objects and feel the interactive 

behaviours in context. 

The Soul–Body Prototyping paradigm, along with Pineal and Astral 

as tools that operationalize it, directly address these three designer 

challenges. In Chapter 6, where I propose the Soul–Body Prototyping 

paradigm, I explain how mobile devices can replace the need for elec-

tronic circuits through their many sensors and outputs which can per-

form many of the functions of smart objects. Moreover, these con-

structs are brought to higher levels of programming, as the sensors 

and outputs have additional software abstractions that facilitate the 

development such as event-driven programming, as well as platforms 

that can automate many of the time-consuming low-level program-

ming (e.g., memory management). These development benefits make 

it so it becomes easier to develop even higher-level design tools to 

exploit these different sensors and outputs, as demonstrated by Pin-

eal (Chapter 8) and Astral (Chapter 9). Given that mobile program-

ming platforms are well maintained, it also means it is possible to 
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tighten the design-build-test cycle, such as through live program-

ming, where designers can see the effects of their decisions right away 

as opposed to having to compile code, reassemble circuits, etc. to test 

the behaviours. In addition, since Astral leverages existing tools, it 

means it is possible to go beyond simple screen transitions, and tackle 

aspects of interaction-driven animations. While Soul–Body Prototyp-

ing can be carried out through many kinds of materials (e.g., card-

board), Pineal’s fabrication-ready 3D models mean designers can 

achieve a closer-to-product representation, which in conjunction to 

Astral’s high ceilings for software sophistication, can lead to proto-

types that designers can manipulate, feel, and fine-tune. This is not 

to say that these are the only two solutions, but instead to show that 

with two self-contained explorations it was possible to see a relatively 

expressive outcome through a variety of prototypes. Indeed, there are 

more opportunities for better understanding interactive behaviours, 

and different authoring mechanisms and paths of least resistance that 

may favour different end-results and classes of prototypes. 

Both Astral and Pineal are early explorations, which raise the ques-

tion of how designers might actually work with these kinds of tools. 

This is a difficult question beyond the scope of this thesis, and one 

that may not necessarily have a right answer. Many of the design tools 

in HCI research promise hypothetical futures, but the only way to 

truly know if these tools will indeed change people’s practices is by 

becoming part of the practice as fully fledged tools with ongoing sup-

port. Laboratory experiments can only answer some questions spe-

cific to the implementation details of these systems, such as usability 

problems at the interface level. This truly leads to a paradox in our 

field of research, as technologies that become common-place can 
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shape existing practices, but for practitioners to adopt new technolo-

gies, these technologies need to become common-place. In that 

sense, the role of an interaction designer is exclusively defined by 

what they can create as a common denominator with the tools that 

are available. Perhaps an interaction designer for smart interactive 

objects does not exist as a job description because there are no tools 

that let an interaction designer create these kinds of prototypes. To-

day’s design tools (discussed in Chapter 4) seem to converge towards 

large standardization of interfaces and few opportunities to diverge 

and customize outside of these boundaries.  

This dichotomy of practice and vision are a common challenge in 

HCI as a field. My approach has thus been to try and best understand 

both the audience of these tools, in this case interaction designers, as 

well as what the tools both in research and industry themselves offer. 

As a result, it becomes possible to create certain constraints given the 

understanding, such as acknowledging that there need to be program-

ming alternatives that do not require coding. From there it becomes 

possible to envision new tools. While these tools may not become part 

of everyday practice in the short term, these ideas can then live and 

inform future systems both in research and industry. This is why, as 

discussed in Chapter 3, demonstrations are crucial components to ex-

ploring what software tools might do, and realizing bold visions of the 

future, as revealed by the many toolkits we surveyed. Similarly dis-

cussed in Chapter 3, it is key to determine whether a user study would 

add significant value to the work beyond a “sanity check” and realize 

that as researchers we are in a much stronger position to critically en-

vision potential future practice as opposed to our study participants. 
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Table 10.1. Summary of primary thesis contributions 
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10.2 PRIMARY CONTRIBUTIONS 
This thesis at its core devises an alternative way for designers to pro-

totype interactive behaviours for smart interactive objects without 

the need for coding or custom circuitry. In doing so, I examined both 

conceptual and technical standpoints. I summarize the three primary 

contributions in context with my thesis statement, research ques-

tions, goals, as well as evaluation in Table 10.1. 

Conceptual Contribution: Soul–Body Prototyping. The Soul–Body 

Prototyping Paradigm provides an alternative way of thinking about 

designing smart interactive object prototypes by repurposing readily 

available smartphones and watches into a new context. I provided a 

design space of the different mobile inputs and outputs as well as 

ways in which they can be repurposed for physical prototyping. In 

particular, the categorization of modifiers (rerouting or transducing) 

opens up ways to think about creating new and interesting physical 

widgets for potential interactions with smart objects. The collection 

of individual prototypes across Chapters 7, 8, and 9 are all living ex-

amples and demonstrations of the opportunities of the paradigm.  

Technical Contributions: Pineal and Astral as Software Tools. The 

two proof-of-concept systems created for this thesis, Astral and Pin-

eal, are ways of operationalizing Soul–Body Prototyping and bringing 

the paradigm into the interaction design context. The sample proto-

types created with these tools showcase the breadth and ceiling of 

what is possible to create in terms of interactive behaviours that can 

be tested live on a physical prototype. These prototypes are created 

without the need to code and without having to create custom cir-

cuitry, which on its own removes several time-consuming steps, and 
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enables designers to focus on the design activity itself rather than the 

implementation details. There are also individual features of the tools 

that are novel and could be considered in future design tools, such as 

Astral’s visualizations which are tailored to specific sensors, with live 

updates, as well as the ability to record and scrub through video syn-

chronized with the sensor data. Pineal and Astral are tools that could 

be used in combination and suggest that perhaps there could be a 

larger suite of tools that support different aspects of Soul–Body Pro-

totyping that may be suitable at different stages of the design process.  

10.3 SECONDARY CONTRIBUTIONS 
Interaction Design Background. Chapter 2 presents a comprehen-

sive review looking at interaction design as a field, as well as proto-

typing theory, with a large corpus of work that has emerged since the 

last comprehensive review of the field by Hartmann (2009).  

Defining Interactive Behaviour. In addition, I integrate different the-

ories from both interaction design research and HCI to start uncov-

ering what researchers might mean when referring to interactive be-

haviour, and examining the different authoring approaches to these 

types of prototypes as done in research and industry tools to date. 

Toolkit Evaluation Methods. The survey on evaluation methods for 

toolkit research represents an empirical overview of different ap-

proaches taken by researchers to date, which broadly includes 

demonstrations, usage, performance and heuristics. This perspective 

helps support prior criticism to the role of usability studies, as noted 

by authors such as Olsen (2007), Kaye (2007), as well as Greenberg 
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and Buxton (2008). The collection of methods provides an initial un-

derstanding as to how toolkit researchers create and validate 

knowledge within the field of HCI. More importantly, this work and 

its approach has inspired similar kinds of surveys in other areas of 

HCI, including the landscape of creativity research (Frich et al., 

2019), as well as the taxonomy of cross-device interactions (Brudy et 

al., 2019). It is worth emphasizing that Brudy et al. found that these 

same evaluation strategies I uncovered in Chapter 5 also apply to over 

300 systems investigating aspects of cross-device interaction, further 

generalizing this knowledge.  

10.4 FUTURE WORK 
Given the set of building blocks in any software tools, they are bound 

to shape how people think about, and approach problems, as well as 

what is possible to produce. As a result, having a wider variety of 

methods and tools than what already exists can lead to different kinds 

of solutions and accommodate individual ways of thinking. Soul–

Body Prototyping and the current encompassing tools already pro-

vide an alternate way to think about how to use mobile devices for 

prototyping, how to prototype smart objects, and how to realize in-

teractive behaviours. The next set of projects propose a natural ex-

tension to this dissertation’s work, while others suggest further ques-

tions for the field. 

 MAKING EXISTING OBJECTS INTO SMART PRO-

TOTYPES 

Soul–Body Prototyping thus far has examined making new objects 

from scratch. An alternative thought is to consider what if one could 
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attach a mobile device to an existing object to immediately turn it into 

a smart object. This can be a prototyping approach that leads to new 

kinds of smart objects, or new ways to think about smart objects. Af-

ter all, mobile device sensors and outputs provide a creative prompt 

to generate new kinds of ideas. For example, a mobile device can be 

attached to a door to create a smart door: the motion patterns can 

know if the door is being opened or closed, while sound patterns can 

suggest if the door is being locked or unlocked. One can then experi-

ment with different ways of displaying notifications on the door itself 

(e.g., if someone knocked on the door while one is away), or perhaps 

sending messages to the homeowner’s phone (e.g., if they forget to 

lock the door). One could also attach a smart watch to a coffee ma-

chine and detect when it may need cleaning, or track how often dif-

ferent coffees are made. The lack of actuation and the constraint of 

the mobile device can also provide an advantage, as it can foster more 

communication between the end-user and the device to better under-

stand what is happening at a given moment. Thus, this type of Soul–

Body Prototyping opens opportunities to new kinds of smart object 

prototypes that can communicate with people or track activity with-

out taking away people’s agency and control. Additionally, one can 

explore how to create architectures that can help make some of these 

prototypes into longer term objects, and provide people with novel 

ways of reusing old mobile devices. Some examples of smart objects 

and how they can exploit mobile sensors and outputs are summarized 

in Figure 10.1 as a sketch. 
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 SOUL–BODY MULTI-DEVICE ECOLOGIES 

In Chapter 1, I discussed how one can think of the interaction with a 

single device, or one can look at how one or more devices support 

people’s activities. A natural extension of the body of work in this 

dissertation is to consider how to create prototyping tools that lever-

age multiple devices. One can think of how individual devices interact 

together, meaning that the output of one device yields input in an-

other device, and then further expand considering how we can define 

scenarios with activities. Buxton (2018) discusses the concept of 

place being more than a single location, and exemplifies his concept 

 
Figure 10.1. Sketch sample showing different ways of augmenting existing ob-
jects with mobile devices to work as smart object prototypes. 



 DAVID LEDO, 2020  |  321 

 

of ubiety through a personal digital assistant, where the conversation 

can move as one travels from one room to another by connecting to 

different smart speakers in different rooms. In that case, the interac-

tion is no longer about the device, but the seamless transition from 

one location to another while the interaction still takes place.  This 

exploration can initially look at how devices communicate with each 

other, or how multiple devices can incorporate themselves together 

within a single object to provide different points of sensing and out-

puts. With these, it is possible to create more complex prototypes. 

For example, consider a smart home where opening a door gradually 

makes the lights turn on as the door is being opened. Another exam-

ple could be to build an air hockey table where mobile devices are at-

tached to the two goals and use their sensors to track the score. As a 

result, the scale of applications increases and thus can lead to user 

experiences where the devices are working more interconnected 

while still supporting everyday human activity. 

 SUPPORTING MULTIPLE PARAMETERS 

With current prototyping tools, and even with Astral running a video 

editor, only one “main” animation can take place at a certain point. 

Yet, this is not how many interactions play out. For example, Astral’s 

implementation of tilt-to-zoom (§9.5.2) can animate more than one 

parameter at once: the position (x, y) from the touch event, and the 

zoom from the accelerometer tilt. This is one of many examples in 

which the input leads to an animation that affects more than one out-

put parameter. The question that arises is to devise how designers can 

author more complex experiences in which multiple sensors are tied to a va-

riety of outputs which are independent from each other. One way to do so 
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is through a more generalized animation tool, which instead of a main 

timeline features a series of independent sensor-based timelines from 

which one can create keyframes and motion tweens. Thus, designers 

could take multiple sensor data and associate individual sensor values 

to independent animations, generating more dynamic and responsive 

environments. The animations could span both motion tweens (ex-

plained in Chapter 4 and 9) or frame-by-frame animations. 

 NEW BUILDING BLOCKS FOR  

INTERACTIVE BEHAVIOUR DESIGN 

One potential way to break from existing authoring approaches is to 

generate a new one by studying and analyzing how designers describe 

interactive behaviours. Myers et al. (2004) conducted a study in 

which they devised programming building blocks by asking program-

mers and non-programmers to verbally describe photos showing dif-

ferent states of a program. One instance included, for example, an 

image showing Pac-Man moving and stopping when hitting a wall, 

where participants had to then verbally describe what a program 

should do. This study led to rich insights, such as the common use by 

programmers of the word “when” to describe events. “When” has 

been adopted as a keyword in newer programming languages such as 

Scratch (Maloney et al., 2010), and can be considered a simple con-

cept to understand: when an event happens, do something. A similar ap-

proach to the study by Myers et al. (2004) can be extrapolated into 

design, where one could study the kinds of words and descriptions 

designers use given a variety of prompts. Moreover, it is also an op-

portunity to assess the different approaches designers might take to 

solve these prompts in a variety of resolutions, to better understand 
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how they think about certain interaction problems. One could select 

a variety of interactions that populate a representative portion of the 

interactive behaviour framework in Chapter 3, and have designers de-

scribe them and then express how they would prototype them in dif-

ferent ways. Careful consideration would have to be placed to make 

sure that the designers are not biased by the prompts, that is, ensuring 

that a particular authoring approach is not in any way implied or sug-

gested. This can be mitigated by using visual narratives (e.g., word-

less comics) or even videos. While there is a possibility that many of 

the results replicate what is already known, we can discover some of 

the designers’ inclinations, as well as more fine-grained details of how 

they express and describe what happens. 

 REFLECTIONS IN SYSTEMS RESEARCH 

The work in toolkit evaluation made me realize that a lot of the re-

flection on toolkits is the result of the authors’ experiences, and that 

some of the richest validation was from their insightful discussions 

rather than their studies. Many of these studies have taken Myers et 

al. (2000), as well as Olsen (2007), and leverage their work as a vo-

cabulary to discuss certain aspects of toolkit research such as the ex-

pressiveness or the flexibility. At this point in time, given a larger cor-

pus of work, there is room for devising a broader vocabulary and set 

of questions authors can make when looking at authoring environ-

ments. For example, Myers et al. (2000) bring forth the concept of 

“threshold”, which refers to how easy it is to get started with a tool. 

However, one can further discuss the threshold in terms of different 

perspectives. For example, “technical threshold” can refer to a user’s 

ability to get started with the software, while “setup threshold” can 
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refer to how difficult a tool can be to put together so that the user can 

operate it. A “conceptual threshold” may refer to the required exper-

tise of the user in terms of the concepts they are exploring with the 

particular tool.  

These discussions typically stem from the systems’ demonstrations. 

While I argue that demonstrations are a valuable form of evaluation, 

another important question that remains is what makes a strong or 

weak demonstration. It is possible to distill what demonstrations do 

to support the overall argumentation. For example, Astral’s demon-

strations felt unique in that they establish how to fit within existing 

practices, but also how Astral as a tool can co-exist with the applica-

tions today. In that sense, a new interaction technique may show 

more value by showing how it integrates into todays workflows and 

environment within a device than testing its accuracy and speed. 

Somehow this type of reflection shows that a research vision can be 

realized and can belong in our existing ecosystems.  

10.5 REFLECTION 

Together, the contributions of this thesis work entail that interaction 

designers can now join in and perform activities that were not possi-

ble with current tools. The existing literature, as discussed in Chap-

ters 2 and 4, reflects that interaction design tools in the market today 

do not align with interaction designers’ main goal, which is to explore 

and envision interactive behaviours, largely due to the technical lim-

itations of what the tools can do. Soul–Body Prototyping, together 

with Pineal and Astral, as presented in this thesis, show how their 

applications can adapt to tasks designers already do, and even co-exist 
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with already available hardware (phones and smartwatches) and soft-

ware platforms (e.g., 3D modeling tools, video editors). The focus on 

interactive behaviour proposes an added layer of prototypes design-

ers might deliver, such as interactive behaviours in the context of the 

form, as well as behaviours as driven by the users’ actions (i.e., inter-

action-driven animations). 

Astral and Pineal, while separate tools, can work together, as shown 

in Chapter 9, where one can take a Soul–Body Prototype and author 

richer behaviours using Astral. An interpretation of this integration is 

visualized in Figure 10.2. It would seem that then, Pineal could be 

better off by incorporating some of the authoring aspects from Astral. 

However, Pineal’s automation necessitates clear cut instructions that 

can modify a physical form, which is something the visual program-

ming approach helped ensure. Because Astral’s authoring is more 

open-ended, even if the behaviour was not tied to external applica-

tions, it would not reliably generate modification instructions. One 

could expand the visual programming to support different kinds of 

rich animations within the authoring environment. However, I see 

value in keeping the tools separate, specialized, and able to work in 

tandem, as it gives the designer flexibility, and would not force the 

creation of a form when all designer wants to do is to test a behaviour 

and vice versa. While some technical aspects of Pineal could benefit 

from the lessons applied in Astral, such as the use of a WiFi-enabled 

smart watch, and direct TCP connection, I believe the role of Pineal 

should remain to author forms, with some coverage of behaviour as-

pects. In that sense, perhaps the system design could have benefitted 
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by first having a generalized toolkit for implementing Soul–Body Pro-

totyping systems, and then using the toolkit to create the two sys-

tems. In the current Astral implementation, there are plenty of ab-

stractions that could be used to create such a toolkit, and in fact 

WatchPen was implemented from an “empty” version of Astral. 

This general toolkit could then be an additional technical contribu-

tion, which could also promote additional creation of prototyping 

tools, as well as research systems. 

 
Figure 10.2. Visualization which interprets how Pineal and Astral cover the dif-
ferent aspects of interactive behaviour design and how they can be combined. 
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Many of the design tools in HCI research promise hypothetical fu-

tures, but the only way to truly know if these tools might indeed 

change people’s practices is by becoming part of the practice as fully 

fledged tools with ongoing support. For example, as described early 

in the Soul–Body Prototyping motivation, Chapter 6, computers for-

ever changed how graphic design was done, but for that change to 

happen all the software and existing infrastructure had to be in place 

for the technological shift to happen. Once the technology is widely 

available, a change in practice can indeed take place. I believe that 

interaction design tools are still at an early stage, given that no com-

mercial software has remained as industry standard for more than a 

few years in the past decade. In that sense, the role of an interaction 

designer has been exclusively defined by what the currently available 

commercial tools can create. Today’s design tools (discussed in 

Chapter 4) seem to converge towards large standardization of inter-

faces and little opportunity to diverge and customize outside of these 

boundaries. While there is value to base standards and generalizabil-

ity, if every single interface looks and feels the same, then there is no 

room for custom or interesting user experiences that break away from 

the norm. 

A question beyond the scope of this thesis, is how then, can the work 

produced in this thesis potentially become, or influence, part of fu-

ture practices? I believe the major step will need to be for interaction 

design as a discipline to further mature, and gain a better sense of 

what it is about and what is possible. This can be achieved through: 

(1) integrative theories that can continue to define interactive behav-

iours, (2) devising new methods to enable designers to prototype, and 

(3) technical explorations that help show what is possible and raise 
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new questions that can help inform the theories. As I progressed 

through this thesis, my software and hardware explorations led me to 

find new ways for designers to envision their creations, and that led 

to larger questions of what is interactive behaviour and how can de-

signers further elevate their current designs. While these tools may 

not become part of everyday practice in the short term, the ideas can 

then live and inform future systems both in research and industry.  

For systems to be adopted, it almost seems like they need to be avail-

able, documented, and attract some form of attention, such as 

through social media. A tool like Astral could be iterated upon to re-

move glitches and become more robust, which would make it so dif-

ferent kinds of designers can start creating prototypes with it. In fact, 

a school of motion design was interested in working with Astral and 

using it to teach motion designers many aspects of interaction design. 

Through this type of more in-depth usage, it would be possible to 

learn what it is like for people to use the tool, and discover the types 

of strategies they devise, as well as which familiar tools they leverage 

and for what purpose. Additionally, there would be insight on the ex-

tent to which these mappings as a form of programming serve com-

pared to other existing strategies such as scripting or coding. 

The tools proposed in this thesis focus primarily on exploration ra-

ther than specification. Specification is indeed a fundamental next 

step as it is necessary for designers to hand off their designs to the 

appropriate people, such as developers or engineers. It is important 

to ask to what extent it is possible to preserve all the details and nu-

ances from a design in a future implementation, but also how to en-

sure that whoever receives the design can appreciate and mimic all of 
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the aspects behind a carefully crafted interactive behaviour. One way 

of accommodating this in Astral and Pineal is to be able to save the 

authored prototypes (e.g., saving the sensor data and visuals within 

Astral) so designers can show them to developers. Alternatively, one 

could consider part of the process as a matter of communication, as 

shown in Leiva’s PhD work (2019), which looks at the breakdowns in 

communication, but also how to design tools that enable designers to 

deliver their work to programmers. Alternatively, perhaps the role of 

interaction design tools is to grow to such a degree that designers can 

accomplish functional systems, and create a similar shift to how 

graphic designers expanded their role at the end of the 20th century.  

10.6 CLOSING REMARKS 
Overall, as the kinds of applications in computing continue to expand, 

our tools need to accordingly catch up to enable easy authoring. De-

Line (Fraser et al., 2015) discusses how programming languages that 

are not at the inception of a new area struggle to gain adopters even if 

they are technically superior or have higher expressive match. This 

may also be the case in higher-level tools. In particular with prototyp-

ing tools, the challenge is the fast-moving target of all the base plat-

forms (e.g., electronics, mobile programming platforms, web librar-

ies, design standard), which can quickly become obsolete before the 

tools gain traction. Our duty as HCI researchers is to explore differ-

ent kinds of platforms and approaches to (1) stay relevant in terms of 

the authoring we support; and (2) repurpose existing strategies into 

new contexts. The explorations in interactive behaviour and smart 

interactive object prototyping brought forth in this thesis open poten-
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tial avenues to significantly help reclaim interaction design as a disci-

pline to build functional prototypes rather than continue a trend of 

focusing on simple transitions that take place on highly polished static 

visuals. 
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