
13706  |  Ecology and Evolution. 2019;9:13706–13730.www.ecolevol.org

1  | INTRODUC TION

Camera traps—also known as wildlife, remote, field, or trail cameras—
are increasingly used to address a broad range of ecological research
and field monitoring applications (e.g., Steenweg et al., 2017; Swann,
Kawanishi, & Palmer, 2010). Their basic idea is deceptively simple.
First, cameras are located at strategic stations within a geographic
study site, where they are positioned to capture activities occurring

within a particular field of view (e.g., Tobler, Zúñiga Hartley, Carrillo‐
Percastegui, & Powell, 2015). Second, cameras are set up to take
images automatically in one of two ways: a Timelapse mode where im‐
ages are taken at regular intervals, or a motion‐triggering mode where
one or more images are taken whenever movement is detected in
the scene. Third, cameras are serviced after a period of time (weeks
or months), where field personnel change camera batteries and re‐
trieve the image‐laden SD cards. Fourth, analysts review the set of

Received: 18 June 2019  |  Revised: 15 August 2019  |  Accepted: 30 August 2019

DOI: 10.1002/ece3.5767

O R I G I N A L R E S E A R C H

Design patterns for wildlife‐related camera trap image analysis

Saul Greenberg1  | Theresa Godin2 | Jesse Whittington3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd

1Department of Computer
Science, University of Calgary, Calgary, AB,
Canada
2Freshwater Fisheries Society of BC
Research Evaluation & Development
Section, University of British Columbia,
Vancouver, BC, Canada
3Parks Canada, Banff National Park, Banff,
AB, Canada

Correspondence
Saul Greenberg, Department of Computer
Science, University of Calgary, 2500
University Dr. NW, Calgary, AB T2N 1N4,
Canada.
Email: saul@ucalgary.ca

Funding information
National Science and Engineering Research
Council of Canada

Abstract
This paper describes and explains design patterns for software that supports how an‐
alysts can efficiently inspect and classify camera trap images for wildlife‐related eco‐
logical attributes. Broadly speaking, a design pattern identifies a commonly occurring
problem and a general reusable design approach to solve that problem. A developer
can then use that design approach to create a specific software solution appropri‐
ate to the particular situation under consideration. In particular, design patterns for
camera trap image analysis by wildlife biologists address solutions to commonly oc‐
curring problems they face while inspecting a large number of images and entering
ecological data describing image attributes. We developed design patterns for image
classification based on our understanding of biologists' needs that we acquired over
8 years during development and application of the freely available Timelapse image
analysis system. For each design pattern presented, we describe the problem, a de‐
sign approach that solves that problem, and a concrete example of how Timelapse
addresses the design pattern. Our design patterns offer both general and specific
solutions related to: maintaining data consistency, efficiencies in image inspection,
methods for navigating between images, efficiencies in data entry including highly
repetitious data entry, and sorting and filtering image into sequences, episodes, and
subsets. These design patterns can inform the design of other camera trap systems
and can help biologists assess how competing software products address their pro‐
ject‐specific needs along with determining an efficient workflow.

K E Y W O R D S

camera traps, data encoding and acquisition, design patterns, experience design, human–
computer interaction, image inspection, tagging, wildlife monitoring

www.ecolevol.org
mailto:
https://orcid.org/0000-0003-0174-9665
http://creativecommons.org/licenses/by/4.0/
mailto:saul@ucalgary.ca

     |  13707GREENBERG Et al.

retrieved images. The analyst examines each image for attributes of
interest and encodes those as descriptive or quantitative data. This
step is also known as tagging. Finally, that data—usually managed and
stored in a database or spreadsheet—become the input for the data
processing (including statistical analysis) particular to the project.

This paper is primarily concerned with the fourth tagging step
described above: how analysts examine images and encode its attri‐
butes of interest as data. The number of images typically collected is
voluminous: thousands or tens of thousands of images per retrieved
camera card easily accumulate to hundreds of thousands and even
millions of images per project. Consequently, image examination and
data encoding are laborious, time‐intensive, error‐prone, and expen‐
sive. It is no wonder that international survey respondents identified
image classification as the top challenge in camera trapping (Glover‐
Kapfer, Soto‐Navarro, & Wearn, 2019).

Recent research seeks to remedy this burden via automated
image recognition, where promising wildlife species detection and
identification rates have been reported (e.g., Norouzzadeha et al.,
2018; Schneider, Taylor, & Kramer, 2018; Tabak et al., 2018; Yousif,
Yuan, Kays, & He, 2019). Unfortunately, image recognition for cam‐
era traps is still in its formative stage. It is limited in what can be
recognized. For example, somewhat easy to extremely difficult
recognition challenges range from: detecting if wildlife is present,
identifying the species, identifying individuals, determining animal
health, to distinguishing animal behaviors. Image recognition also:
requires a model trained on domain‐specific images; incurs varying
rates of classification errors (false positives and false negatives); per‐
forms less well with new camera placements (due to different back‐
grounds); and is currently poorly integrated in the analyst's software
and workflow. Even if it was available, analysts would still have to
verify recognition predictions and correct erroneous ones. Manual
methods will likely dominate for years to come, especially when ad‐
ditional attributes beyond simple species detection are required (but
see Section 8 below).

In the past, analysts resorted to off‐the‐shelf generic software
when tagging images, such as a stock image viewer to view images,
and a separate spreadsheet package to record data. More recently,
researchers and corporations have developed specialized software
packages to support camera trap analysis (e.g., Bubnicki, Churski, &
Kuijper, 2016; Ivan & Newkirk, 2016; Krishnappa & Turner, 2014;
Reconyx Inc, 2016; Scotson et al., 2017; Swanson et al., 2015;
WildTrax, 2019; Young, Rode‐Margono, & Amin, 2018). Such cam‐
era trap software systems should, of course, include user interface
features that encourage efficient human inspection of images and
encoding of its data attributes. Those interface features should be
based on a firm understanding of what analysts do when examin‐
ing and encoding images, including mitigating human performance
bottlenecks. However, most descriptions of these systems often
provide only sparse details and discussions (if any) of the problems
faced by analysts that the system purportedly solves, the benefits
of the particular interface features provided, and how the particular
solution offered can be generalized to other systems. Thus, there is
a gap in how the lessons learnt from developing such systems could

be applied to evaluate current software and/or developing next
generation camera trap software interfaces. As a recent extensive
World Wildlife Fund report on best practices for camera‐trapping
summarizes:

Importantly, no single software package has emerged
as a favourite amongst camera trappers, and lots of
very different solutions to the problem of camera trap
data management are currently being trialled… For
any given camera trap project…, this makes it difficult
to decide which software package to commit to. Many
large camera trap projects … have ended up designing
their own systems from scratch. (p. 146)

The various software options available differ greatly
in their approaches …and you may need to test vari‐
ous options before deciding which one satisfies your
requirements and most efficiently fits into your work‐
flow (p. 150).

(Wearn and Glover‐Kapfer, 2017)

Our goal in this paper is to describe and explain user interface de‐
sign patterns for software supporting how wildlife biologists perform
camera trap image analysis during the tagging step. By way of back‐
ground, the notion of design patterns was first introduced by architect
Christopher Alexander as a documented reusable and proven solution
to commonly occurring architectural design problems (Alexander,
1977). Design patterns are typically derived by examining existing
solutions to design problems (which may include “folk” solutions) and
generalizing them. Design patterns were later advocated as a way of
describing common solutions to typical software engineering prob‐
lems (Gamma, Helm, Johnson, & Vlissides, 1994) and to human–com‐
puter interaction problems (Borchers, 2001). Design patterns are much
more than a feature list, for that they provide the rationale behind a
feature in a general and reusable manner. Design patterns are usually
structured as a name, a problem that explains it, and a design approach
to a solution that solves the problem. Importantly, a design pattern is
not a finished design. Rather, it is a description or template for how to
solve a problem that can be used in many different situations.

We base our design patterns on both our understanding of what
biologists require and the user interface features that support their
needs from over 8 years of developing and deploying our freely
available Timelapse Image Analysis system1  (Greenberg, 2019;
Greenberg & Godin, 20152 ). For each design pattern presented, we
describe the problem faced by the image analyst, a design approach
that solves that problem, and a concrete example of how Timelapse
addresses that design pattern.3 

While this paper concerns the design of software, we stress
that it is highly relevant to wildlife biologists. It is the biologist—
not programmers—that should determine and decide upon what
camera trap design features are important to their work. We also
recommend that biologists should be part of any camera trap soft‐
ware design team, where they should be the ones motivating what

13708  |     GREENBERG Et al.

requirements should be included, how requirements should appear
in the software, and how software features should be considered in
the workflow.

2  | THE DIVERSIT Y OF C AMER A TR AP
RESE ARCH PROJEC TS, GOAL S, AND
IMAGES

Camera traps are used to address a wide diversity of ecological
research and management objectives and associated taxa. This di‐
versity leads to large differences in how cameras are situated and
configured, the kinds of images collected, how analysts would ex‐
amine those images, the attribute data recorded from images, and
how the collected data would be subsequently analyzed. For exam‐
ple, Figure 1 illustrates differences between two images of the same
species with varying research objectives. In Figure 1a, the camera
was set to motion‐triggering to capture close‐up views of mountain
goats (Oreamnos americanus) as they passed by. Attributes of the goat
could then be analyzed (e.g., species identification, sex, estimated

age, individual identification, etc.). In Figure 1b, the camera was set
to Timelapse mode that took an image every 5 min in order to moni‐
tor the presence and activity of a herd of goats over time on a distant
pasture and mountain‐side. Attributes of herd activity could then be
analyzed (e.g., counts, duration in the meadow, ratio of kids to adults,
etc.). Figure 1b includes a small herd in the green pasture, each goat
just visible as white dots.

Perhaps, the most familiar uses of camera traps and the subse‐
quence analysis of its images are in some form of in situ wildlife mon‐
itoring (e.g., Burton et al., 2015; Steenweg et al., 2017). For example,
in a review of 266 camera trap publications over a 6‐year period,
Burton et al. counted a range of ecological objectives and responses
metrics including: relative abundance (43.6%), presence–absence
(41.4%), behavior such as activity patterns and diet (32.3%), popula‐
tion density (15.8%), and occupancy (15.4%) (Burton et al., 2015, p.
678). Other examples illustrate further diversity of objectives:

• monitor species diversity and inventories (e.g., Ahumada, Hurtado,
& Lizcano, 2013; Glover‐Kapfer et al., 2019; O'Brien & Kinnaird,
2010),

F I G U R E 1   The diversity of images
produced by two camera traps. (a) A
close‐up shot of a mountain goat. (b)
Mountain goats are barely visible in the
meadow as white dots.

     |  13709GREENBERG Et al.

• measure population abundance, density, and distribution of
marked and unmarked populations (e.g., Goswami, Madhusudan,
& Ullas Karanth, 2007; Heilbrun, Silvy, Peterson, & Tewes, 2006;
Karanth & Nichols, 1998; Rowcliffe & Carbone, 2008; Royle,
Fuller, & Sutherland, 2018; Whittington, Low, & Hunt, 2019;
Whittington, Hebblewhite, & Chandler, 2018)

• examine multi‐species dynamics (Swanson et al., 2015),
• estimate population trends (e.g., Karanth, Nichols, Samba Kumar,

& Hines, 2006),
• correlating wildlife abundances to anthropological stressors (e.g.,

Fisher & Burton, 2018), including human activity, and to mitiga‐
tion efforts (e.g., Pollock, Nielsen, & St. Clair, 2017; Whittington
et al., 2019),

• quantify animal behavior and success rates in DNA hair capture
sites (Clevenger & Sawaya, 2010),

• linking seasonal plant phenology to climate change and wildlife
distributions (e.g., Laskin et al., 2019; Mills et al., 2018), and

• quantifying how seasonal changes in coat color are influenced by
climate change (e.g., Mills et al., 2018).

Camera traps can also help answer very specific research questions.
For example, García‐Salgado et al. (2015) analyzed the diet of nest‐
ing raptors by examining images for prey deliveries to nests. Rollack,
Wiebe, Stoffel, and Houston (2013) similarly deployed cameras around
nests, but in this case to study the breeding behaviors of turkey vul‐
tures. Jumeau, Petrod, and Handrich (2017) used camera traps to
estimate the effectiveness of wildlife crossing structures for small
mammals.

Camera traps are also used to monitor and analyze human activity.
Examples include: counting the number of anglers actively fishing in
order to estimate angling effort in small lakes fisheries (Greenberg &
Godin, 2015); evaluating the influence of human disturbance on wild‐
life (e.g., Blake, Mosquera, Loiselle, Romo, & Swing, 2017; Oberoslerab,
Groff, Lemma, Pedrini, & Rovero, 2017), quantifying levels of human
use and type of human activities (e.g., Campbell, 2010; Fairfax,
MacKenzie Dowling, & Neldner, 2014); and detecting types and oc‐
currences of illegal activity in wildlife sanctuaries including identifying
perpetrators (e.g., Hossain et al., 2016).

The above is just a very small sampling to indicate the diverse
use of camera traps (e.g., see Section 5 in Steenweg et al., 2017;
Wearn & Glover‐Kapfer, 2017). While there may be some overlap in
the kinds of images gathered across projects, we can easily expect
differences between projects in: the kinds of images that are cap‐
tured, the data attributes that would be encoded from these images,
and the ways analysts would have to examine those images to ex‐
tract and record that data. Our design patterns reflect this diversity
of project objectives. Some design patterns are broadly applicable
and useful in all kinds of image classification, while others may be of
use in narrower suites of projects. More generally, software based
on these design patterns will include tools for examining images, will
provide a flexible user interface for efficiently encoding project‐spe‐
cific attributes, and will simplify data entry by automatically extract‐
ing available image features as data. Collectively, it can substantially

increase project efficiency, increase data quality and improve the
user experience.

3  | METHODOLOGY: DECONSTRUC TING
THE DESIGN OF TIMEL APSE INTO DESIGN
PAT TERNS

Our methodology for understanding how analysts classify data
and what user interface design patterns would be useful was de‐
rived from deconstructing our real‐world experiences designing,
implementing, and refining the Timelapse open software system.
Timelapse was specifically developed to help analysts inspect and
classify camera trap images via tagging. Timelapse is conceptually
simple: it displays images to analysts, along with a variety of project‐
specific (and user generated) attribute fields that they can efficiently
fill in to describe the image. Yet its design goes far beyond that, for
it, includes many features addressing the subtleties of the analyst's
workflow.

Timelapse evolved through many versions over its 8 years. Its
capabilities were designed to meet a broad variety of ecological
needs as requested from a diverse international user community
comprising different agencies (government, industry, university,
and independents) and biologists (researchers, practitioners, and
students). Most had differing projects and goals (e.g., wildlife moni‐
toring, angling effort in fisheries, environmental monitoring, human
monitoring, etc.). Our requirements, analysis, and various redesigns
of Timelapse were further informed by the following.

• We had ongoing discussions with both project managers and an‐
alysts about their camera trap image analysis needs and existing
workflow.

• We held observational studies of analysts using Timelapse as
they did their work (e.g., Greenberg & Godin, 2015), using stan‐
dard techniques in the field of human–computer interaction (e.g.,
Shneiderman et al., 2016). We observed and interviewed the
technicians analyzing images, paying particular attention to their
workflow, problems encountered, and bottlenecks;

• We collected feedback from analysts who had used Timelapse
to inspect millions of images (e.g., problems, feature requests,
bottlenecks).

We emphasize that our methodology followed an iterative ver‐
sus one‐time design process. We began with understanding the
requirements of a single small‐lakes fisheries agency (Greenberg
& Godin, 2015). We repeated our methodology as other agen‐
cies from different domains and with different project needs
came on board. Our ongoing discussions, observations, and
feedback with those agencies helped us understand and articu‐
late the subtleties and variations in the workflow that arose due
to various factors. For example, the type of images captured at
particular sites differed considerably, which often led to work‐
flow alterations in how technicians analyzed images. As well,

13710  |     GREENBERG Et al.

particular subprojects required analysts to examine and encode
different image features as data, again resulting in workflow dif‐
ferences. We used this knowledge to update the Timelapse de‐
sign, albeit with the constraint that it had to remain a tool usable
by its broad community. That is, new interface features would
be added only if they were potentially valuable to a broad range
of projects and users, or—at the very least—could be ignored if
they were not needed.

The remainder of this paper deconstructs and generalizes as
design patterns the key workflow tasks and problems seen, and
how they informed the corresponding Timelapse interface design
solutions. Each section is organized around an issue that relates
particular problems faced by analysts. Each problem is followed by
a named design pattern. This includes a general description of an
interface design solution that mitigates that problem and a con‐
crete example of how Timelapse realized that design pattern. We
also invite the reader to run Timelapse as they read the design pat‐
terns, as this can help them better understand the nuances of the
proposed solution.

While we highlight how Timelapse instantiates a particular
design pattern solution, we stress that the design pattern is more
general than that, as it can also inform alternate software designs.

For example, designers can selectively incorporate particular design
solutions as seen in Timelapse into their own systems. Alternately,
designers can use our design pattern problem descriptions and
general solutions to create their own novel, alternate ways to solve
those problems. Finally, project managers can match design patterns
against their project needs, and then evaluate competing software
solutions to see whether those solutions have interface features that
support the design patterns relevant to their project.

We recognize that other camera trap software systems may
offer similar or alternate solutions to our design patterns. However,
we restrict our example solutions to Timelapse, as a comparative re‐
view and analysis are beyond the scope of this paper. Still, the design
patterns supplied here should allow readers to reconsider whether
and how other software solutions address particular design prob‐
lems and may even help them identify problems and design patterns
that are outside of what we provide below.

4  | ISSUE: DATA CONSISTENCY

The ultimate goal of the analyst is to enter attribute data that re‐
flect the contents of the images. Statistical analysis of attribute

F I G U R E 2   The Template Editor. The project manager defines the attribute data of interest (the schema) as well as the associated user
interface specifications by form‐filling (top pane). The middle pane generates a preview of the user interface data entry controls that will be
seen by the analyst. The bottom pane shows how the data of interest will be stored as columns within a database table. Interface controls
and spreadsheet columns can be re‐ordered by dragging them to the desired location

     |  13711GREENBERG Et al.

data collected from those images typically occurs later as a sepa‐
rate step. The value of attribute data depends upon its consist‐
ency (explained below) and quality. Thus, data entry protocols
for what attributes to collect must be developed prior to image
classification.

4.1 | Problem—The data required and how they are
named may be inconsistent between analysts

Projects typically involve multiple cameras located at multiple sta‐
tions at one or more study sites. In turn, this can generate a large
number of distinct image sets,4  each containing many thousands
of images. Multiple analysts may be involved (perhaps including
volunteer citizen scientists), each analyzing the images within a
particular image set. A key issue is maintaining data consistency
across different image sets and different analysts, that is, where all
analysts are inputting consistently formatted data into a set of con‐
sistently named data fields. Without data consistency (e.g., if each
analyst idiosyncratically specified what data should be encoded
from images, in what format, and under what name), it would be
extremely difficult to make sense of the data across analysts and
image sets.

4.1.1 | Design pattern: Specify and deploy a
common data schema

The project manager should initially decide what data should be col‐
lected from the image sets and communicate those needs to the ana‐
lysts as a standardized computer‐readable schema that defines and

specifies the data of interest. Analysis of image sets by all analysts
should then be based on that schema. The image analysis software
should enforce the schema, where deviations from that schema are
discouraged unless absolutely necessary. The schema should define
the required data fields, how they are named, their data type, their
format, and constraints on what values they allow.

4.1.2 | Timelapse example

Project managers use a Timelapse utility called the template edi‐
tor (Figure 2) to construct a template file that defines the data
schema. Analysts place the data template file in the folder contain‐
ing the image set. When the actual Timelapse application is opened
(Figure 3), it uses the template schema to build the user interface and
to construct the database table that will ultimately contain the data
entered by the analyst. This enforces the data schema.

Figure 2 illustrates a screenshot of the template editor in ac‐
tion. In this example, the project manager has specified a fairly sim‐
ple schema used to count how many goats and hikers are seemed
and to track environmental conditions and a few other attributes.5 
Generally, each row in the form specifies all attributes of a particu‐
lar data field, while each column names the attribute. The template
editor allows project managers to easily create project‐specific sche‐
mas. Each attribute field of the schema is developed with the fol‐
lowing options:

• Type indicates the data type and its format. For example, the type
DateTime and UTCOffset follow the international standard for spec‐
ifying dates. Counters are positive integers and are usually used for

F I G U R E 3   Timelapse Image Analyzer.
The analyst uses Timelapse to navigate
and inspect images (lower panel) and to
enter data describing an image's features
of interest (top panel). The data entry
controls shown in the top panel were
automatcially constructed from the
schema information specified by the
project manager through the template
editor illustrated in Figure 1

13712  |     GREENBERG Et al.

counting entities in an image. Flags can only contain true/false val‐
ues. Notes are free‐form text fields. Choices are constrained to a
limited number of possible values provided by the project manager.
For example, a field labeled “Weather” could be constrained to the
values “Sunny,” “Cloudy,” “Foggy” etc., while a field named “Species”
could list—and eventually allow an analyst to select from—all possi‐
ble species of interest in that ecology.

• Data Label names the data field containing that data, that is, the col‐
umn name as it would appear in a database table or a spreadsheet.

• Default Value indicates the initial value of that data, which will be
applied to every image seen by Timelapse.

• List defines the allowable entries for Choice data types. Selecting
“Define list” raises a small window where the manager can type in
those entries (see Figure 2, lower right side).

4.2 | Problem—Data schema terminology may not
be in the analyst's language

Computer systems often ask users to enter data by either filling in rows
in a table, or via data entry widgets (textboxes for text entry, menus
for selecting choices, etc.). These are often labeled in some manner
(e.g., column names in a table or a name associated with the data entry
widget). Labels are important, as analysts need to understand what
data they are expected to enter. The issue is that the terminology used
may not be in the analyst's language. For example, systems may use
the database field name to label a data entry widget, but these names
may not be understandable (e.g., acronyms, abbreviations, technical
terms, ambiguous meanings, etc.) or insufficient to describe what the
analyst should enter. This can lead to inconsistencies between the pro‐
ject manager's expectations of the data required versus the analysts'
interpretation of what data should be entered. A related issue is that
the schema may include fields that are of little interest to the analyzer,
such as fields they are not expected to review or fill in. Their inclusion
in the analyst's user interface would add clutter and perhaps confu‐
sion, or have the analyst fill in fields unnecessarily. Finally, because
the project manager and all analysts need to communicate to one an‐
other, the terminology used to identify that data should be common.
These terminology problems are particularly endemic to analysts who
inspect images only occasionally, as they may forget what particular
terms mean, and to citizen scientists with minimal training.

4.2.1 | Design pattern: Present the data schema
in the analyst's language

The data entry interface presented to the analyst should be ex‐
pressed clearly in familiar words, phrases, concepts, and explana‐
tions rather than in system‐oriented terms. Nonrelevant data items
should be removed (Nielsen, 1993, Chapter 5). One way to do this is
to associate the terms in the data schema with a more understand‐
able terminology and descriptions of what data they are expected to
enter, and whether or not particular data items should be displayed
to the analyst. While the interface seen by the analyst would be
constructed using that terminology, the data entered by the analyst

would be stored under the data labels provided by the data schema,
thereby maintaining data consistency.

4.2.2 | Timelapse example

Using the Timelapse Template Editor, the project manager specifies the
terminology of data entry controls, that is, the interface controls as‐
sociated with every data field used by the analyst to enter data. For
example, consider the data field with the data label of “GoatCnt” in
Figure 2. In the Label column, the manager specified “Goats” as a more
human‐readable alternative to that data field. In the Tooltip column,
the manager provided a brief help explanation of what should be
entered: “A count of how many goats appear in this image.” By un‐
checking the “Visible” checkbox, the manager has indicated that the
“UtcOffset” data field should not be displayed to the analyst. As the
manager performs these actions, a live preview of the user interface
(Figure 2, middle pane) reflects the actual user interface that will be
seen by the analyst when using the Timelapse system (Figure 3, top
pane). Both illustrate how the data controls adopt the analyst‐ori‐
ented terminology and explanations specified in the template (e.g., the
“Goats” control and the displayed tooltip). When the analyst enters
data in that control (Figure 3), it is stored in the corresponding data
field (e.g., “GoatCnt”).

4.3 | Issue: Data input errors are commonplace

When analysts enter data, they may inadvertently introduce errors
into the stored data. For example, the entered data may be outside
of what is expected (e.g., nonnumeric characters entered into an
integer data field, Yes/No instead of True/False as expected by a
boolean data field). As another example, the entered data may not
be in the correct format (e.g., date may be incorrectly entered as
“mm/dd/yyyy” order instead of the expected “dd//mm/yyyy”).

4.3.1 | Design pattern: Data entry controls should
minimize input errors by constraining input to the
data field's type

Input controls should provide visual hints of what input is accepted,
and should only accept input that matches the data field's type and
format. This pattern is now common in many modern user inter‐
faces, where myriads of input controls suggest and constrain what
can be entered into them.

4.3.2 | Timelapse example

Timelapse generates its user interface from the description pro‐
vided in the template editor (Figure 2), where each data entry con‐
trol is based on its corresponding template specification (Figure 3,
top pane). The data entry control constrains the input, where only
valid data can be entered into it. For example, an analyst interacting
with the DateTime data entry control (Figure 3, top pane, right side)
can only enter or edit valid date and time values. Counter controls

     |  13713GREENBERG Et al.

(e.g., Goats, Hikers) only accept positive integers (either by typing
or by mouse interaction). Choice data controls (e.g., Image Quality,
Weather) restrict the analyst to selecting from a pop‐up menu con‐
taining only valid text entries. Flags (e.g., Delete?, Publicity?) present
themselves as a checkbox, where the control itself translates its
“checked” state to the two allowable data storage values of “true”
or “false.” In all cases, the analyst's data entry is constrained by the
corresponding data control to allow only legal values, which reduces
possible input errors significantly.

5  | ISSUE: INSPEC TING IMAGE FE ATURES

A major part of the analyst's tasks is to inspect the image to discover
(and record as data) features of interest. Yet inspection can be prob‐
lematic for some images, especially when the features of interest are
not discernable at a glance.

5.1 | Problem—Relevant image details may be
difficult to examine

Depending on what is captured in the image's field of view, analysts
may have to inspect small image details in order to classify what is
there. One example is camera images that capture large fields of view,
where the items of interest are very small. Figures 1b, 3 and 4a illus‐
trate such an image, where the camera is oriented to capture distant
goats as they wander through a mountain‐side and meadow. Other

examples include cases where the analyst has to identify small ani‐
mals, or details of that animal (e.g., sex, health), or where the image
only displays a portion of that animal (e.g., because of occlusion by
vegetation, or because the animal is only partly in the camera's field
of view).

5.1.1 | Design pattern: Allow the analyst to examine
image details through magnification

Image magnification can help the analyst examine small image fea‐
tures. However, due to the number of images inspected, the ana‐
lyst's interaction with the provided magnification technique must
be efficient to use. Various magnification interaction techniques
are known. The most common is perhaps a pan and zoom facility
(Figure 4b), which allows the analyst to zoom (magnify) a particular
image region (called the focus). While powerful, zooming into local
detail incurs the cost of losing global context, that is, only the zoomed
in portion of the image is visible, which means informative details
outside of the focus cannot be seen at the same time.

Another common approach mimics a magnifying lens (see
Figure 4c), where the area under the cursor (the focus point) is over‐
laid by a small zoomed in region. The area being magnified is imme‐
diately updated as the cursor is moved. Again, there is a trade‐off:
while the magnified areas show the focus area under the cursor, it
occludes some of the surrounding global context as it overlays it.
For example, Figure 4c magnifies 3 of the goats, but at the cost of
occluding the other two nearby goats.

F I G U R E 4   Various approaches to
examining details via magnification. (a)
The unaltered view. (b) Pan and zoom.
(c) Standard Magnifying lens. (d) Offset
magnifying. (e) Fisheye lens.

(a)

(c) (d)

(e)

(b)

13714  |     GREENBERG Et al.

Far more sophisticated magnification approaches have
been developed in the field of information visualization (e.g.,
Shneiderman et al., 2016; Spence, 2014 Ch. 12). For example, an
offset magnifying lens avoids occlusion by offsetting the magnified
area away from the cursor's focus area (Ware & Lewis, 1995). As
Figure 4d illustrates, the small square by the cursor is the area to
magnify, where that zoomed in area is shown offset in the larger
square. Thus, the analyst can simultaneously see both the unzo‐
omed and zoomed in area at the same time. Another approach is
focus plus context magnification. For example, a fisheye lens distorts
an image to provide magnification in place (Carpendale, Light, &
Pattison, 2004). As Figure 4e illustrates, the highest magnification
is focused under the cursor, where a drop‐off function applies pro‐
gressively less magnification away from the cursor. The advantage,
as seen in Figure 4e, is that local detail is shown in place within the
global context. This also avoids separation of the magnified versus
unmagnified image as evident in Figure 4b,c.

Of course, the value of magnification is affected by image fidel‐
ity. Some systems may, for example, reduce an image's display reso‐
lution for performance purposes with the side effect of comprising
image details. The fewer the pixels read in, the less memory required
and the faster images can be displayed. The trade‐off is that magni‐
fication would then produce “fat pixels” (aka blurry images) rather
than details. Fortunately, various image processing techniques are
known that can efficiently display the whole image at low fidelity,
while reading in high resolution details for only the magnified re‐
gions (Carpendale et al., 2004).

5.1.2 | Timelapse example

Timelapse contains several methods for rapidly examining image de‐
tails through magnification.

1. Zoom and pan. The analyst can zoom and pan into any part of
the image using the scroll wheel and the mouse. Zooming occurs
at the cursor location, while panning to a particular image region is
done by dragging the image with the mouse. Timelapse's zooming
and panning features also include nuances that support how an
analyst would use it over multiple images. First, the analyst can
“bookmark” a particular zoomed in area, where she can flip be‐
tween the zoomed and normal image with a single keypress, thus
maintaining some sense of how the zoomed‐in focus relates to the
global context. Bookmarks have other advantages. For example, if
the analyst was interested in animal activity in the pasture seen
in Figure 3, she could zoom into that pasture and bookmark it.
When checking other images for activity in that pasture, she can
use that bookmark to zoom into the same corresponding area.
Second, zoom/pan levels are maintained when navigating between
images. For example, the analyst could zoom into the pasture of
Figure 3 and then see how the goats have moved around that
pasture by navigating to the next few images.

2. Offset magnifying lens. Similar to Figure 4d but with different vis‐
uals, the analyst can turn on a magnifier that displays zoomed‐in

image of the area around the cursor: the lens is offset to avoid
occluding that area. Figure 3 illustrates the Timelapse magnifier
in action, where the analyst is using it to detect and examine a
herd of goats. The analyzer can easily scan the image details for
features of interest by dragging the magnifier, whose magnified
content is instantly updated. The analyst can also quickly adjust
the amount of magnification through a few keystrokes.

5.2 | Problem—The presence of small entities may
be difficult to notice

Various projects use cameras in Timelapse mode, where periodically
taken images capture a very wide field of view. We already saw how
Figures 1b and 3 illustrate one actual example, where the camera
was located to capture distant goat activity in a pasture and on a
mountain side. Another real example includes cameras positioned to
capture distant anglers on and around a large lake area (Greenberg &
Godin, 2015). The issue is that analysts may not notice the presence
of these small entities. This becomes more problematic when a run
of images being examined have nothing in them, as analysts expect
that pattern to continue. Magnification, while somewhat helpful, is
best used to examine details after an entity has been noticed.

5.2.1 | Design pattern: Enhance the noticeability of
small entities within images

Various techniques can enhance how the analyst can notice small
entities in a scene by making them visually distinctive.

Animation of image sequences visually highlights changes that occur
by rapidly switching between images. Because the background scene
is reasonably constant, the appearance, disappearance, and move‐
ments of entities within the scene are often very noticeable.

Image processing through image differencing compares, pixel by
pixel, the current image against the previous and/or next image. A
new image is generated from that comparison, where (for example)
a white pixel is drawn if the compared pixels differ significantly
in brightness and color (set by threshold values), and black oth‐
erwise. The resulting image visually highlights the differences in
white, while removing the somewhat static background. Because
entities appear, disappear, and move around a scene, the differ‐
enced image will display that entity as a white blob (usually in the
shape of the desired entity) against a black background. Other
image processing techniques may also help, such as motion track‐
ing that track the position of an object over subsequent frames.
We note that the effectiveness of image processing techniques
can be compromised when large visual differences occur between
the images, such as dramatic changes in image lighting, motion of
nearby grass and branches affected by the wind, and even slight
changes of a camera's position (e.g., due to wind effects on the
tree, it is mounted on). As well, image differencing will not work
for the few cases where the animal is completely still.

Image enhancement. Many off‐the‐shelf photo viewing systems
now include various ways to adjust an image. Examples include

     |  13715GREENBERG Et al.

contrast adjustment, saturation and luminance of particular colors,
dehazing, sharpening, edge detection, etc. In the image analysis
context, an analyst could apply various adjustments on a test image
and—if effective at enhancing an entity's visibility—have that setting
automatically applied when viewing other images.

5.2.2 | Timelapse example

Timelapse contains the first two methods above for enhancing the
noticeability of small entities, both based on analyzing the differ‐
ences between images. Timelapse does not include other image en‐
hancement methods, but they could be added easily.

1. Animation through rapid image switching. Timelapse lets the
analyst rapidly switch between the current image of interest
and the next or previous image (using the arrow keys), where
images are displayed immediately and without flicker. The analyst
perceives this as an animation, where the differences between
images—such as a small moving animal—“pop out.” Furthermore,
the magnifier and zoom/pan level are maintained at their current
setting and position during image switching, which helps the
analyst spot differences in a magnified region.

2. Image processing through image differencing compares the original
image to the previous image, the next image, or to both. The analyst
toggles between the differenced and original image with a single
key press. When blobs of interest appear, the analyst can use the
magnifying glass (which displays that region in its original form) to
investigate. Alternately, the analyst can use rapid image switching
to see whether the blob has moved. Figure 5 provides an example
of how this appears in practice. Figure 5a displays the normal image:
The small goat can be easily missed or mistaken for a rock. Figure 5b
is the differenced image: not only is the goat highlighted as a blob,
but another goat partly hidden in the trees on its left is revealed.
Figure 5b also shows the analyst furthering inspecting a blob via the
magnifier, which displays the goat as it appears in the original image.

5.3 | Problem—Entities within images may be
difficult to see due to poor image fidelity

Because cameras are positioned in the field, the quality of the images
produced can be compromised by many factors. Weather is one fac‐
tor, where fog, rain, and snow can limit what is visible, especially at a
distance. Lighting is another fact, such as sharp shadows mixed with
bright sunshine, or failing light due to dusk and night‐time shots. The
camera itself can be compromised, such as by moisture on the lens, or
by focus problems.

5.3.1 | Design pattern: Enhance images whose
fidelity is compromised

Various image processing techniques can enhance the clarity of com‐
promised images, albeit with limits. Indeed, the previously described

techniques used to enhance the noticeability of small entities could
perhaps help here: contrast adjustment, color correction including
saturation and luminance, sharpening, edge detection, etc. Dehazing
will likely be of particular value in mitigating fog effects. As before,
an analyst could apply various adjustments on one image and have
that setting automatically applied to other similarly compromised
images.

5.3.2 | Timelapse example

Timelapse does not yet include these image processing capabilities.
Currently, the analyst would have to correct the image outside of
Timelapse (e.g., using the many tools available in photograph editors
such as Adobe Photoshop or Adobe Lightroom). The modified saved
image would then be visible within Timelapse.

F I G U R E 5   Image differencing. The analyst flips between
the normal and differenced view of the image. (a) Normal
image (cropped). Several goats are in the lower right corner, but
the analyst may easily miss them. (b) Differenced image (same
cropped region). The analyst investigates the white blobs with the
magnifying glass, and sees that they are goats.

13716  |     GREENBERG Et al.

6  | ISSUE: NAVIGATING IMAGES

Analysts are often tasked with inspecting tens and even hundreds of
thousands of images in an image set. Thus reviewing, searching, and
navigating between images should be rapid.

6.1 | Problem—Tedious image navigation and review

An analyst may want to rapidly navigate and review a sequence of
images for various reasons. She may want to scan all images quickly
before coding them, in order to get a sense of what is in them. She may
want to quickly move over “empty images” (e.g., scenes with no wildlife
in it) until she spots an image containing something of interest. She
may want to visually search the image set for a particular scene, for
example, an image with wolves and cubs. She may also want to search
for a particular image by its file name. The problem is that image pack‐
ages often differ considerably in how they support navigation, where
some navigational methods can interfere with the analyst's task. For
example, image review would be severely impeded if each image has
to be separately opened in its own window.

6.1.1 | Design pattern: Provide tools that allow
rapid navigation and review of images

Analyst often examines images sequentially to see how they unfold
over time. Stepping forward and backward through them should be
visually instantaneous and should require minimal effort, for example,
via a single key press or mouse click. Because image sets can num‐
ber in the hundreds of thousands, analysts should be able to move,
scrub, and jump through images quickly, similar to how one can scrub
through a video. To help the analyst visually review and compare im‐
ages during navigation (such as to detect changes as discussed in the
previous design pattern), display settings such as zoom levels and the
image location on the screen should be kept constant.

6.1.2 | Timelapse example

Timelapse contains many navigation methods, each allowing rapid
image review.

1. Forwards/Backwards controls. Timelapse lets the analyst rapidly
move either backwards or forwards between images via the
keyboard (the arrow keys) or by the File Player (described next).
Holding down the arrow key scrubs through successive images.
Settings on the current image—the location of the magnifying
glass, zoom and pan levels, image differencing (if any) are all
retained during navigation, allowing the analyst to rapidly com‐
pare images for similarities and differences as he or she views
them.

2. File Player (seen at the upper right of Figure 3 and annotated in
Figure 6) provides an alternative mouse‐operated navigational
control. Depending on the button pressed, the analyst can step
through images, jump to the first or last image, or automatically

play (and thus review) successive images at slow and fast speeds.
These speeds are user‐configurable.

3. Navigational Slider (next to the File Player, see top middle of
Figure 3) allows the analyst to both scrubs through and to rap‐
idly jump across many images. Intervening images are displayed
as fast as possible as the analyst moves the slider.

4. The Overview. Analysts can “zoom out” to see an overview con‐
taining multiple images, as illustrated in Figure 7. The more one
zooms out, the more images are displayed, albeit at progressively
smaller sizes. The analyst can navigate to a full‐sized view of a de‐
sired image (as in Figure 3) by clicking its thumbnail in the over‐
view. The behavior of the navigational controls described above is
also transformed to work with the overview. For example, the File
Player controls now allow the analyst to navigate through succes‐
sive images one by one, row by row, or page by page. Using the
overview, the analyst can navigate and review collections of multi‐
ple images quickly.

5. Find Search Bar, illustrated at the top left of Figure 7, is some‐
what similar to search bars seen in text editors. The analyst uses
it to find and display the next file in the image sequence whose
file name partially matches the entered text. Figure 7 illustrates
a search for any file name containing “05.” Find works in both
the single image view (Figure 3) and in the overview where the
found image becomes the first image in the displayed image array
(Figure 7). Find also works on suffixes. For example, if an image
set is interspersed with video files, searching on “.avi” will step
through all videos.

6. Navigating via the data table. Analysts have the option of a da‐
tabase view, which displays all the data entered so far as a scrol‐
lable table. This is available through the “Data Table” tab as seen
in Figure 8. Each row represents all the data currently associated
for an image. The analyst can inspect the rows for data of interest
and click on that row to navigate to and view the image associated
with that row (akin to the display in Figure 3).

F I G U R E 6   The Timelapse File Player

     |  13717GREENBERG Et al.

7  | ISSUE: ENTERING DATA

Our example data schema illustrated in Figure 2 and composed as a
data entry interface in Figure 3 has relatively few data entry fields. This

contrasts with the actual number of data fields that analysts can en‐
counter in practice. For example, one of the agencies using Timelapse
composed and regularly used a template defining 30 separate data
entry fields that analysts had to fill in. Even if only a subset of those

F I G U R E 7   The overview showing selection and the Find feature

F I G U R E 8   The Data Table view

13718  |     GREENBERG Et al.

fields relevant to a particular image had to be filled in, data entry can
quickly become tedious, error prone, and very time‐consuming when
done over hundreds of thousands of images.

7.1 | Problem—Typing is time‐consuming and error‐
prone

Filling in data fields by typing is tedious. Fields have to be navigated,
and typing takes time. Mis‐typing is common and introduces errors
and inconsistencies in the data.

7.1.1 | Design pattern: Data entry controls should
minimize or eliminate typing when possible

Selection (via the mouse or via tab/select/enter) should replace typ‐
ing whenever possible. Since much data entry is repetitious, previ‐
ously typed‐in entries should be offered as candidates for selection
rather than requiring re‐entry.

7.1.2 | Timelapse example

Several data controls available through Timelapse (e.g., see top of
Figure 3) favor selection via the mouse or through the keyboard's tab and
arrow keys. An analyst selects a Flag's true or false value by clicking on its
checkbox. She selects from a Choice's limited possibilities via a pop‐up
menu. She can fill in Counters by clicking its up/down arrow buttons, or
by clicking an entity in the image to count it (discussed shortly). She can
edit the dates and times in the DateTime control by its up/down arrow
buttons, or by directly selecting a date from a calendar. She can accept
text predictions in Notes instead of typing an entry in full. Each Note
tracks all previously typed text entries and uses those to predict the rest
of the text as the analyst types. For example, Figure 9 illustrates the text
prediction that appears after the analyst has typed the single letter “O.”

7.2 | Problem—Counting is difficult and error‐prone
when there are many countable entities present in
an image

As previously discussed, some cameras are positioned to capture a
wide field of view. In turn, the resulting images can contain many enti‐
ties, perhaps of different types, that must be counted (e.g., Figure 1b).
A wildlife monitoring example is a herd of animals present in the field
of view, while a fisheries example is many anglers and nonanglers
present on a popular lake's shoreline or in boats (Greenberg & Godin,
2015). All entities must be categorized and counted. The problem is
that mis‐counting is easy. Common errors include losing track of the

current count number, double counting that counts an entity more
than once, and omission errors where an entity is accidentally skipped.

7.2.1 | Design pattern: The system should allow one
to visually mark the entities present in an image that
have been counted along with its type

Visually marking entities as the analyst counts them can mitigate
common counting errors: the analyst can discern what has been
counted and what is yet to be counted. If different entities are pre‐
sent and being counted, the visual mark could also indicate how that
entity was identified. Visual marking also affords validation, where a
(perhaps different) analyst can later review the image and its marked
entities for counting or classification errors.

7.2.2 | Timelapse example

The Counter data entry control supports interactive counting and
visual marking and is illustrated in Figure 10. Here, the analyst has
activated the “Goats” interactive counting mode by clicking its radio
button. The analyst then counts goats simply by clicking next to each
one: each click increments the count and adds a colored marker at
that spot. Markers also work with the magnifying glass, where the
analyst can inspect entities before marking them. Finally, markers

F I G U R E 9   A note displaying a text prediction

F I G U R E 1 0   An activated Count control showing the visual
marks next to the counted goats

     |  13719GREENBERG Et al.

provide feedback as to which Counter button they are associated
with. For example, hovering over a marker reveals that it was counted
as a “Goat” (as in Figure 10). Conversely, hovering over the Goats
Counter button will highlight only those marks in the image counted
as a “Goat.”

7.3 | Problem—The analyst has to manually re‐enter
image data even when it is available in a computer‐
readable form

Analysts find it particularly frustrating when they have to re‐enter
information that is already available electronically. This problem
usually arises when software does not try to read in that infor‐
mation, or cannot make sense of that information without some
guidance.

7.3.1 | Design pattern: The system should
automatically fill in data fields if the information
is available

The system should try to automatically fill in useful and readily avail‐
able known information. This can include “standard” information
such as file names, file location in folder, and the date and time the
image was taken. As well, image files typically contain embedded

metadata that describes attributes of the image, where some of these
fields could be of interest and automatically imported. Yet metadata
introduces its own problems. Most camera vendors embed a mix of
standard and nonstandard (proprietary) metadata, which means that
the information available is highly camera‐dependent. For example,
some may include ambient temperature and GPS location of the sta‐
tion, but others may not. Another issue is that different venders may
name fields differently, for example, the outside temperature may be
recorded in one camera as “Ambient temperature,” and in another as
“Temperature C.” Thus, the analyst should be able to specify what
metadata fields of interest, if any, should be imported, and where that
information should go.

7.3.2 | Timelapse example

Timelapse automatically fills in data fields in two ways.

1. Standard file information. Timelapse template schemas always
include several default data fields representing standard file
information: its name, its location (as a folder name and rel‐
ative path), and the date and time that image was taken (as
a combined Date/Time Field). Figure 2, top, shows these data
fields in the top rows: The grayed out cells are not editable.
When the analyst first invokes Timelapse on an image set,

F I G U R E 11   The metadata inspector. The analyst can see what metadata fields are available, and link a particular metadata field to a
Timelapse data field to import the metadata value into that field across all images

13720  |     GREENBERG Et al.

Timelapse scans every file for that information and fills in those
corresponding data fields.

2. Metadata. Timelapse includes a metadata viewer, which the analyst
can invoke on one of the images being analyzed and specify what
data should be imported. We explain how this works by the example
illustrated in Figure 11. The metadata viewer displays all the meta‐
data found in the image as a table. The analyst sees, in the first row
of the table in Figure 11, that the camera has recorded some meta‐
data of interest: the “Ambient Temperature” field that records the
temperature at the time the image was taken. As annotated in red in
Figure 11, the analyst can link the Ambient Temperature metadata
field to a Timelapse data entry Note field—in this case a field called
“Temperature”—simply by selecting both of them. When the ana‐
lyst clicks the “Populate” button (bottom), the “Temperature” field
for each and every image is automatically filled in with the Ambient
Temperate metadata value recorded in each image. The process can
be repeated for other metadata of interest.

7.4 | Problem—The analyst has to enter information
that the computer should be able to recognize by
image analysis

Analysts usually have experience using a variety of other image‐
based systems when doing day to day and recreational tasks. Many
include capabilities that recognize aspects of an image, with perhaps
face recognition, bar code reading, and text recognition being com‐
mon examples. Analysts may find it frustrating to enter data that
they believe could be detected through image analysis and automati‐
cally filled in.

7.4.1 | Design Pattern. The system should,
if plausible, use image analysis techniques to
automatically fill in data fields

Generally speaking, image analysis is the extraction of meaning‐
ful data from a digital image. One form of image analysis is image
recognition, where complex algorithms use models built upon prior
human classification to identify features in an image, such as ob‐
jects, people, text, faces, and so on. As previously discussed, vari‐
ous researchers are now applying image analysis, and in particular
image recognition techniques, to classify images from camera traps.
A typical objective is to see how well various recognition algorithms
identify animal species (e.g., Norouzzadeha et al., 2018; Schneider
et al., 2018; Tabak et al., 2018; Yousif et al., 2019), and even in rec‐
ognizing individuals in particular species (e.g., Cheema & Anand,
2017; Crouse et al., 2017). Simpler image analysis methods can also
identify other image aspects, for example, differentiate between
color versus monochrome images, light versus dark images, and so
on. Because image analysis and recognition are not yet full proof,
manual verification of the data will be required, at least for the near
future. Thus, extracted data should be integrated into the analyst's
workflow in a manner that allows the analysts to check and correct
that data as needed.

7.4.2 | Timelapse example

1. Dark images. Some of the agencies we worked with used
cameras set in Timelapse mode that periodically took images
over a day's 24‐hr period. A good number of those images
proved of little value because they were too dark (e.g, shots

F I G U R E 1 2   Timelapse prototype
incorporating recognition data: bounding
boxes are drawn around each suspected
species in the image when its detection
confidence exceeds a user‐defined
threshold

     |  13721GREENBERG Et al.

taken at night time) and added clutter to the images being
reviewed. To help identify overly dark images, Timelapse incor‐
porates an image analyser that automatically classifies images
against a user‐configurable darkness threshold. Its classification
is recorded in the “Image Quality” data field of every image
as either “Dark” or “Ok.” Timelapse also includes the ability to
filter the displayed images by its data, which we will discuss
shortly. Analysts could apply a “Dark” image filter to display
only dark images, where the analyst can quickly review and
correct the classification if needed, and perhaps discard those
night‐time shots. Alternately, the analyst could apply an “Ok”
filter, which displays only the nondark images.

2. Animal detection and recognition. We are currently working with
several vision researchers who specialize in automated animal de‐
tection (e.g., whether an animal is in an image) and species recog‐
nition (which species the animal is). (Microsoft, 2019; Schneider
et al., 2018). Figure 12 illustrates a Timelapse prototype that im‐
ports and displays animal detection data produced by Microsoft's
“Megadetector” model (Microsoft, 2019). Basically, Megadetector
scans all provided images and outputs data to a file. For each
image, Megadetector detects whether an animal, person, or vehicle
is in an image, its confidence of correctness, and the coordinates of
a bounding box outlining each entity's location. Timelapse imports
that data and draws a bounding box atop each identified entity

above a detection confidence threshold (set by the analyst). The
analyst then uses the standard Timelapse features to select de‐
tected entities and review predictions at given confidence levels
and accepts or rejects those predictions as needed.

7.5 | Problem—Cameras often record incorrect or
ambiguous timestamps

We have observed many issues resulting from the way camera traps
record date and time. While the software can automatically import
and fill in date/time fields, analysts may have to correct those after
the fact. The problem is that it is incredibly time‐consuming to man‐
ually correct every image's date and time. Common issues we have
observed are as follows:

• The camera is not set to the correct date and time when deployed,
meaning all date/times are off by a fixed amount.

• The camera does not take into account changes in daylight saving
time, which means a large subset of images are off by an hour.

• The camera's internal clock drifts, for example, it runs slow or fast,
which means that the date/time of successive images is increas‐
ingly inaccurate.

• The camera records dates ambiguously. For example, consider
a date recorded as 02/10/2019. This date can be interpreted as

F I G U R E 1 3   Dialog for correcting
daylight savings time

13722  |     GREENBERG Et al.

either October 2, 2019 in day/month order, or as February 10 in
month/day order. Even worse are cameras that record the year
as only the last two digits, for example, 02/10/10 could be inter‐
preted many different ways. This issue is exacerbated by the way
different countries set different format standards for encoding
dates and times (e.g., see Wikipedia: Date format by country).

7.5.1 | Design pattern: The system should provide
facilities to bulk‐correct common date/time errors

All the above errors care amenable to bulk‐correction, albeit with
some manual guidance. For example, if the camera was not set to
the correct date and time, the analyst would only have to enter
the correct date for the first image. The system could calculate
the difference between the two, and then use that difference to
time‐shift the date and time for all subsequent images. Similarly,
the analyst can specify where the daylight savings time change
should occur and time‐shift previous or subsequent images by plus
or minus an hour. To correct for internal clock drifts, the analyst
can specify the correct time for the last image, where the system
would then calculate a drift factor and adjust the times across all
images. When the software detects a possibility for ambiguous
dates, it can notify the analyst who can then indicate which date
format to apply.

7.5.2 | Timelapse example

Because we expect analysts to have to correct dates only infre‐
quently, analysts can raise specialized dialogs for each type of
date/time error mentioned above: each dialog includes full in‐
structions and an easy to use interface for specifying how the
date should be corrected. For example, Figure 13 illustrates the
Timelapse dialog for correcting standard/daylight savings time
errors. The analyst navigates to the first image that should be
corrected, and then specifies (via various checkboxes) how the
correction should be applied. A preview of the corrected date and
time is also displayed.

8  | ISSUE: ENTERING REPETITIOUS DATA

8.1 | Problem—Similar data are often entered and
re‐entered over many images

Image sets often comprise subsets of very similar images. For example,
a motion‐triggered camera may capture a sequence of multiple images
of an animal moving through a scene. As another example, an image
set can comprise a small set of recurrent but interspersed images, for
example, images containing goats, or elk, or deer, or nothing at all. The
data entered that describe these images are often highly similar. Even
when the analyst recognizes these similarities, she still has to manually
enter the same data per similar image over and over again. This leads
to highly repetitious and very time‐consuming data re‐entry.

8.1.1 | Design pattern: It should be easy to re‐enter
data previously entered elsewhere

Various general techniques are known in other domains for re‐enter‐
ing the same data efficiently. Examples include history lists, copying
and pasting, predictions based on previous entries, data propaga‐
tion, and others.

8.1.2 | Timelapse example

Timelapse includes several techniques for easing the task of entering
repetitive data across multiple images.

1. Text prediction in a single data field. As already discussed,
Notes include auto‐completion capabilities. They maintain a
history of previously typed text entries and use those to
predict the rest of the text as the analyst types.

2. Propagating data across a single data field. Every data field includes
a pop‐up menu that allows the analyst to propagate data across a se‐
quence of images (Figure 14). Propagate from the last nonempty value
to here uses back‐filling. That is, it will copy the last nonempty value
entered by the analyst in a data field (e.g., several images back in the

F I G U R E 1 4   The data field's pop‐up
menu for propagating data

F I G U R E 1 5   Copy Previous Values
button, showing previews of the data to
be copied

     |  13723GREENBERG Et al.

sequence) to every intervening image up to the current image. For
example, the analyst may enter an image's weather as “Sunny,” then
navigate forward through the images until the weather changes, and
then backfill the intervening empty fields with that value. Copy for‐
ward to end is somewhat similar, except it forward‐fills the current
value to all remaining images in the sequence. It can be re‐applied at
any time where it over‐writes existing values. For example, an ana‐
lyst may Copy forward Cloudy (as in Figure 14), then move through
the sequence until the next non‐Cloudy day is noted, enter the new
value, and then Copy that forward as well. Copy to all copies the cur‐
rent value to all images. For example, the analyst may just enter their
name once in the “Analyst” field and copy that to all images.

3. Copy Previous Values. Image sets often contain runs of identical
images, where some of the data entered over the next image are
identical to what was entered in the previous image. Timelapse
supplies a “Copy Previous Values” button, illustrated in Figure
15. Pressing this button copies the previous image's values from
particular data fields (those set as “Copyable” in the template: See
Figure 2) to the current image's data fields. As illustrated in Figure
15, previews of what fields are affected and the data that will be
copied are displayed and highlighted in green when the analyst
hovers the mouse over the Copy previous values button.

4. Quickpaste: Copying and pasting multiple data fields. Analysts
typically recognize when they entering a small set of similar data
patterns over and over again. Timelapse provides QuickPaste as a
way for the analyst to capture and name these data entry patterns,
where the analyst can then paste that pattern into an image's
data field via a single mouse click. Figure 16 below illustrates this
through a simple example. The analyst has raised the QuickPaste

editor (left) to compose a QuickPaste entry: she has titled the
entry “No goats, sunny” and has selected and filled in which
data fields should be used (Goats, Weather, Analyst, Comments,
Publicity) and the values to be pasted. This entry is then added
to the list of other QuickPaste entries in the QuickPaste window
(right side). The analyst can then use the QuickPaste window to
select and paste particular patterns into the image's data entry
fields. As illustrated in Figure 16, when she hovers over an entry,
a preview of the values to be pasted appears in the affected data
fields (highlighted in green). Clicking the entry pastes, those val‐
ues into the field. While requiring some initial setup to create
these custom entries, QuickPaste becomes a very effective and
efficient way for entering common data patterns.

8.2 | Problem—Reviewing and entering repetitive
data image by image can be inefficient

Most image packages display a single image at a time, where the ana‐
lyst has to inspect and enter data for them individually. Bulk‐image
inspection and data entry are not possible.

8.2.1 | Design pattern: Allow the analyst to
inspect and bulk‐enter data for multiple images at
a time

The system should provide facilities for displaying multiple images
at a time (e.g., a table of large thumbnails). The analyst should be
able to select particular images with common features, and then
bulk‐entering data for those selected images all at once. The analyst

F I G U R E 1 6   The QuickPaste editor
(left) and the QuickPaste window (right)

13724  |     GREENBERG Et al.

should also be able to choose the appropriate thumbnail size, as the
features of interest need to be discernable.

8.2.2 | Timelapse example

The overview supplied in Timelapse, discussed above and previously
illustrated in Figure 7, allows the analyst to review multiple images at
the same time. The analyst can quickly trade‐off the number of images
displayed versus the image size (to optimize just‐discernable features
with the number of images shown) by zooming in or out of different
overview levels with the scroll wheel. The analyst can then select and
bulk‐edit data for one or more of those images. For example, Figure 7
shows how the analyst selected only those images with a full view of
a goat in it (the first five images), where she has entered a “1” in the
Goats Counter field and “Full body view” in the Comment field. Those
values are then applied to all the selected images. Interface subtleties
are also addressed. As multiple selections are done, the data fields and
their contents are adjusted to reflect that selection. For example, and
as also shown in Figure 7, the DateTime data field is disabled as bulk‐
editing that field makes little sense. If a data field in the selected im‐
ages all share the same data value, that value is displayed. Otherwise a
“…” symbol is displayed to indicate that their values differ.

9  | ISSUE: SORTING AND FILTERING THE
IMAGE SEQUENCE

9.1 | Problem—Images are often presented in a single
sort order, usually based on their file name, which may
not reflect how the analyst wants to view them

Analysts usually inspect images as a sequence, one after the other.
Thus, the way images are ordered (sorted) can affect what they
see and how they interpret images as events unfolding over time.
Consider the example of a motion‐triggered camera taking images

of one or more animals moving through the scene. If the presenta‐
tion sequence is in time order, the analyst will recognize that those
images relate to one another, as they are capturing a single event.
As another example, the analyst may wish to review already classi‐
fied images ordered by a combination of criteria. For example, the
analyst may want to get a sense of whether the number of goats
using the pasture in Figure 3 is correlated to weather conditions.
This can be done by ordering images by weather and then by the
number of goats. The problem is that most systems typically order
images only by its file name and do not allow any other sorting
capabilities.

9.1.1 | Design pattern: Allow the analyst to sort
images by one or more criteria

Providing the ability to sort by date/time rather than file name is per‐
haps the most fundamental sort capability that should be included.
While cameras typically add a sequence number to a file name as
images files are created, there is no guarantee that they will be pre‐
sented in time order for example, alphabetically sorted files named
1.jpg, 2.jpg… 10.jpg would be presented as 1.jpg, 10.jpg, 2.jpg…,
which breaks time ordering. Ideally, the software will also allow the
analyst to sort on any data field or combination of fields and their
data values.

9.1.2 | Timelapse example

Timelapse provides a sorting capability based on one or two data
fields of the analyst's choosing. The analyst can quickly select (via
a menu) common sorting criteria including image load order, date/
time order, how images are organized into folders, and by particular
data entry field contents. The analyst can also raise a custom sort
dialog (Figure 17 below), where she can choose primary and second‐
ary sorting criteria from a drop‐down menu that lists labels for the

F I G U R E 1 7   The sorting dialog

     |  13725GREENBERG Et al.

data fields. In this case, she is sorting by weather and then by Goats.
Images are then presented in that sort order. The rows in the data
table in Figure 8 are also updated to that sort order.

9.2 | Problem—The analyst may need to view a
particular subset of images

Analysts may, at times, be interested in only a subset of the available
files. Yet finding and viewing the images in this subset can be prob‐
lematic, especially with large image sets comprising tens of thou‐
sands of files. As one example, the analyst may want to verify and
possibly correct prior image classification category, for example,
that all system‐classified dark images are indeed dark, that images
classified by another analyst as “Goats” all contain goats, and so on.
As another example, the analyst may be interested in only those
files taken at a certain site and between particular dates. As yet
another example, the analyst may want to review a particular image
classification in order to choose an archetypical image, for example,
an excellent image of a goat to be used for publicity purposes.

9.2.1 | Design pattern: Allow the analyst to specify
criteria that filters which images are displayed

The system should provide the analyst with a query facility and search
engine. The analyst should be able to specify a search query, where
the system filters images so that it only displays images matching that
query. Query criteria should include queries against the values recorded
in the image data fields.

9.2.2 | Timelapse example

Timelapse incorporates a free database (SQLite: http://www.sqlite.
org) to store the data entered by the analyst. SQLite includes a query
language for searching for matching records. Thus, Timelapse can per‐
form any standard database search against that data, where search
results are returned as records describing the matching images. Those
images are then displayed. However, it is unrealistic to expect ana‐
lysts to compose cryptic SQL query expressions. As a better alterna‐
tive, Timelapse displays a dialog box listing all data fields, as illustrated
in Figure 18. The analyst then composes a query by selecting the
data fields of interest, and then specifying the values that should be
matched. The system translates that into an SQL query and returns
only those images that match the query. For example, in Figure 18,
the analyst is interested in the interaction between goats and hikers
and wishes to see only those images that have both a goat and a hiker
in it. The analyst selects the Goats and Hikers data fields for use (the
“Select” column on the left) and has specified that both have values
greater than 0 (the “Expression column”). The “AND” checkbox at the
top indicates that both those constraints must be satisfied. Feedback
(bottom right) indicates that three files match that query. After click‐
ing Okay, only those three images will be available for navigation and
display. Had the analyst had clicked the “OR” checkbox instead, then
all returned images would contain either one or more goats, or one or
more hikers, or both. The Timelapse Sort function can also be applied
to the results, for example, to show all images with both goats and
hikers, but sorted by the number of goats and then by the number of
hikers.

F I G U R E 1 8   The query dialog for
filtering images from view

http://www.sqlite.org
http://www.sqlite.org

13726  |     GREENBERG Et al.

9.3 | Problem—The analyst may need to consider
images taken over a short time period as a unit

As previously mentioned, camera traps set in motion‐capture mode
are often triggered when an animal or herd is moving through a scene.
This can result in a burst of images that capture that activity, which we
define as an episode. Episodes are sometimes treated differently than
individual images. For example, we saw analysts manually determine
which images fall into an episode (e.g., by examining their timestamp),
count the unique wildlife seen in that episode, and enter that data into
only a single image. They do this to avoid inflating the number of wildlife
present. To illustrate, consider the analyst who has to count the number
of hikers using a trail. A single hiker may appear on several images over
time, perhaps due to motion triggering, or because the hiker is milling
about in the camera's field of view. To avoid double counting, the ana‐
lyst would only count the hiker once in this series. The problem is that it
is laborious for the analyst to recognize which images belong together
in an episode.

9.3.1 | Design pattern: The system should
identify and group episodes of time‐related images

Various strategies can be used to identify episodes. For example,
some cameras include metadata that indicate whether an image is
part of a motion‐capture sequence, as well its position in that se‐
quence (e.g.,1/5, 2/5, etc.). While useful, it is limited as an episode
can easily comprise two or more back to back motion‐capture se‐
quences. Alternately, a reasonable heuristic is to have the system

examine the time interval between time‐ordered images. If the in‐
terval is small, the system would group them together as part of an
episode.

9.3.2 | Timelapse example

Timelapse uses the heuristic above, where the analyst can ask it to
group together images separated by a small user‐configurable time in‐
terval. Timelapse then annotates each image to indicate how images
relate to one another as an episode. Figure 19 is similar to Figure 7,
except that it now illustrates how episode annotations appear in the
overview. The first image in an episode is colored red (top left) so that
the analyst can visually identify the start of the episode. That and sub‐
sequent images in the episode are given a sequence number (e.g., 1/3,
2/3, and 3/3). A timestamp is also overlaid atop the image, so that
the analyst can examine the time differences between those images
if needed. If an image does not belong to an episode, it is marked as
“Single” (not shown). In Figure 19, the first ten and the last five images
are identified as two different episodes of a goat walking through the
scene. In this case, the analyst does not want to double count the same
goat. Consequently, she selects the best image in each episode (Img04
and Img15), and increments the Goats counter of only that image.

10  | DISCUSSION

Decisions on what software is used to inspect and encode image
data have consequences on how well an analyst can perform their

F I G U R E 1 9   Episodes. Here, the analyst is using a strategy of entering data on only one image per episode

     |  13727GREENBERG Et al.

job. Yet, we question how some agencies make their decision.
We have seen some consider only the stock software available
on typical computers: For example, Microsoft Photo Viewer to
view images, and an Excel spreadsheet for data entry. This is inef‐
ficient. For example, we previously studied how analysts entered
data using spreadsheets versus an earlier version of Timelapse.
Timelapse provided time improvements of ~200% or more, which
translates into significant cost savings (Greenberg & Godin, 2015).
We saw other agencies use either researcher‐based software or
the stock software that came bundled with their cameras without
considering the consequences of that choice on the analyst. Some
agencies may also make their choice based on other factors, such
as how the software stores data in a format amenable to stand‐
ardization or later analysis versus how that data are actually en‐
tered by analysts. We advocate that decisions on which software
is used should deeply consider how well they support the analysts'
tasks. The design patterns described earlier should be part of that
consideration. Poor system choices imply tedious data entry, are
error‐prone (which affects the validity of the collected data), are
morale‐sucking, and—in the long run—are very expensive in terms
of analyst time.

While our design patterns mitigate various problems faced by
analysts, we recognize that these problems range in seriousness, in
frequency of occurrence, in applicability to particular projects, and in
consequences if they are not addressed. We also recognize that our
catalog of design patterns is just a starting point and future work is
required: There are surely other problems and design patterns that
could and should be articulated and considered in camera trap analysis
design. For example, if image analysis is done through crowdsourcing
and citizen science (Swanson, Kosmala, Lintott, & Packer, 2016), de‐
sign patterns specific to that audience would likely emerge. Design
patterns can also extend beyond interface features. For example, they
can recognize and address the problems related to data management
issues (e.g., Ivan & Newkirk, 2016), data validation, and data standard‐
ization and scaling across the field (e.g., Steenweg et al., 2017).

We also stress that design patterns are not “feature list.” Rather,
each design pattern suggests a design approach that can be adapted,
refined, and specialized to best fit the project, the background and
needs of the analysts, and the equipment available. Each design
pattern can also inform decision‐making. If the problem and design
approach is relevant, that should become a factor influencing the
requirements analysis of the software being developed or for a man‐
ager deciding between available software systems.

We also show how our own Timelapse system implements the
design pattern. These are intended to serve as concrete examples
rather than prescriptions. Of course, the specific techniques used
by Timelapse could be implemented “as is” in other camera trap
systems. However, we recognize—and indeed encourage—future
system designers to see beyond our own solutions, where they
should seek solutions that implement the design pattern in even
better ways. For example, Timelapse was intentionally designed
to work on lowest common denominator computers typically
available to analysts: Microsoft Windows running a keyboard and

mouse on a conventional low‐cost computer as found in many
agencies. Thus its design eschewed more modern interaction tech‐
niques, such as touch interaction, as we felt it would limit its de‐
ployment. If a system such as Timelapse was redesigned to run on
(say) a touch‐based tablet, we would expect different design solu‐
tions that still follow the above design pattern recommendations.
Similarly, Timelapse was designed to work off‐line so analysts
could work in the field on disconnected laptops. If Timelapse was
redesigned to work as a networked client or over the web, design
solutions would have to account for performance aspects such as
network bandwidth and latency that could affect responsiveness
and rapid image display.

As mentioned, we recognize that our list of design patterns is
incomplete, where future work should elicit other design patterns
to produce a comprehensive catalog. Researchers should continu‐
ally conduct interviews and observation of analysts as they work to
gain an even more nuanced understanding of their core tasks and
problems. Because camera traps are broadly used for many quite
different purposes, domain‐specific design patterns should be de‐
veloped. Other software systems should be reviewed and compared
for how they address problems and deliver solutions not covered by
Timelapse, and whether those can be encapsulated as useful design
patterns. As well, our design patterns are limited to only the ana‐
lyst's interface for inspecting images and entering data. Future work
should consider design patterns for other related tasks. One exam‐
ple concerns interface patterns that suggest how a project manager
can view and manage data within and across projects. To illustrate,
the Reconyx MapView software (Reconyx Inc, 2016) includes a map
interface that lets the project manager or analyst geo‐locate study
sites and stations onto it, and which lets them drill down into the
captured data.

Finally, we recognize that elements of various design patterns
are based on aspects well‐known within the field of human–com‐
puter interaction, information visualization, and experience de‐
sign. These fields have a rich literature of research, practitioner's
guides, and texts relating to the design of systems for human use,
including methodologies that describe how to test how well a per‐
son can use that system and its features (e.g., Shneiderman et al.,
2016; Spence, 2014). As well, various stock components and inter‐
action techniques are readily available in software development
tools, where most are based upon best practices of user interac‐
tion. The catch is that decisions of what is relevant must still be
made on the needs of the domain being considered. This is the
purpose of this paper, where it identifies problems and solutions
as design patterns relevant to the domain of camera trap image
analysis.

ACKNOWLEDG EMENTS

This research was partially funded by the National Science and
Engineering Research Council. We interacted with a large num‐
ber of Timelapse users over the years. We listened to their needs,
their feature requests, heard their feedback of using Timelapse,

13728  |     GREENBERG Et al.

and watched them use Timelapse on their own images. That in‐
formation was invaluable for designing the successive improved
versions of the system over time. We also thank Todd West for his
contributions to earlier versions of Timelapse. Images are courtesy
of Parks Canada.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

See the Section 3, which describes the various roles played by the
authors in more detail. Greenberg developed the Timelapse soft‐
ware and was the primary author of the design patterns listed here.
Godin and Whittington contributed regularly to the Timelapse soft‐
ware design via on‐going discussions of its features and its use by
their team of analysts. They also reviewed and contributed to vari‐
ous drafts of this paper.

ORCID

Saul Greenberg https://orcid.org/0000‐0003‐0174‐9665

OPEN RE SE ARCH BADG E S

This article has earned an Open Materials Badge for making pub‐
licly available the components of the research methodology needed
to reproduce the reported procedure and analysis. All materials
are available at https ://Github.com/saulg reenb erg/Timel apse and
http://saul.cpsc.ucalg ary.ca/timel apse/.

DATA AVAIL ABILIT Y S TATEMENT

Timelapse is an open source project written in C#/WPF and avail‐
able on the Github repository: https ://github.com/saulg reenb erg/
Timel apse. For even easier access, Timelapse software, installation
instructions, tutorial documentation (describing all its functions and
including example image and template files), and mailing list infor‐
mation are freely available at http://saul.cpsc.ucalg ary.ca/timel apse.
Project managers and analysts are invited to download Timelapse,
and developers are invited to modify or enhance the software as
needed. Finally, Timelapse is actively maintained and supported by
the first author of this paper. Contact saul@ucalgary.ca for more
information.

ENDNOTE S
1 Timelapse availability is described at the end of this paper.
2 The cited paper concerns an earlier version of Timelapse. While it in‐

cludes descriptions of a subset of interface features explored in this
paper, those descriptions tend to be more superficial, are not provided

as design patterns, or discussed in that context. The current paper also
covers design patterns of features not present in that earlier system or
paper.

3 A narrated video illustrating many of the Timelapse features de‐
scribed in this paper can be found at: http://grouplab.cpsc.
ucalgary.ca/grouplab/uploads/Publications/Publications/2019‐
DesigningCameraTrapSoftware.TechSymp.mp4

4 An image set as the collection of images being analyzed by an analyst.
The images that comprise an image set depends on how the project
manager conceptualizes and manages images as a set. As one example,
an image set can comprise only the images just extracted from the SD
card at a particular camera station at the end of a servicing period.
Alternately, an image set can comprise all images at a particular station,
where new images extracted from a servicing period are added to the
collection of older (perhaps already analyzed) images. As a further ex‐
ample, an image set can comprise all images taken from multiple cam‐
era stations at a particular study site.

5 This paper uses a deliberately simple schema/template for illustration. In
practice, schemas can be quite rich and complex.

R E FE R E N C E S

Ahumada, J. A., Hurtado, J., & Lizcano, D. (2013). Monitoring the status
and trends of tropical forest terrestrial vertebrate communities from
camera trap data: A tool for conservation. PLoS ONE, 8(9), e73707.
https ://doi.org/10.1371/journ al.pone.0073707

Alexander, C. (1977). A pattern language: Towns, buildings, construction.
New York: Oxford University Press.

Blake, J. G., Mosquera, D., Loiselle, B. A., Romo, D., & Swing, K. (2017).
Effects of human traffic on use of trails by mammals in lowland forest
of eastern Ecuador. Neotropical Biodiversity, 3(1), 57–64. https ://doi.
org/10.1080/23766 808.2017.1292756

Borchers, J. (2001). A pattern approach to interaction design (vol. 12, pp.
359–376). AI & Society, Springer.

Bubnicki, J. W., Churski, M., & Kuijper, D. P. J. (2016). Trapper: An open
source web‐based application to manage camera trapping projects.
Methods in Ecology and Evolution, 7(10), 1209–1216. https ://doi.
org/10.1111/2041‐210x.12571

Burton, C. A., Neilson, E., Moreira, D., Ladle, A., Steenwag, R.,
Fisher, J. T., … Boutin, S. (2015). Wildlife camera trapping: A re‐
view and recommendations for linking surveys to ecological
processes. Journal of Applied Ecology, 52, 675–685. https ://doi.
org/10.1111/1365‐2664.12432

Campbell, J. M. (2010). Seeing is believing: Using digital cameras to
monitor trail use in Riding Mountain National Park. In S. Bondrup‐
Nielsen, K. Beazley, G. Bissix, D. Colville, S. Flemming, T. Herman,
M. McPherson, S. Mockford, & S. O'Grady (Eds), Ecosystem
based management: Beyond boundaries. Proceedings of the Sixth
International Conference of Science and the Management of Protected
Areas. Wolfville, NS: Science and Management of Protected Areas
Association.

Carpendale, S., Light, J., & Pattison, E. (2004). Achieving higher magni‐
fication in context. In Proceedings of the 17th annual ACM symposium
on User interface software and technology (UIST '04) (pp. 71–80). New
York, NY: ACM.

Cheema, G. S., Anand, S. (2017). Automatic detection and recognition
of individuals in patterned species. In Y. Altun (Ed.), Machine learn‐
ing and knowledge discovery in databases. ECML PKDD 2017. Lecture
notes in computer science (vol. 10536, pp. 27–38). Cham, Switzerland:
Springer.

Clevenger, A. P., & Sawaya, M. A. (2010). Piloting a non‐invasive genetic
sampling method for evaluating population‐level benefits of wildlife
crossing structures. Ecology and Society, 15(1).

https://orcid.org/0000-0003-0174-9665
https://orcid.org/0000-0003-0174-9665
https://openscience.com
https://Github.com/saulgreenberg/Timelapse
http://saul.cpsc.ucalgary.ca/timelapse/
https://github.com/saulgreenberg/Timelapse
https://github.com/saulgreenberg/Timelapse
http://saul.cpsc.ucalgary.ca/timelapse
mailto:saul@ucalgary.ca
http://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2019-DesigningCameraTrapSoftware.TechSymp.mp4
http://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2019-DesigningCameraTrapSoftware.TechSymp.mp4
http://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2019-DesigningCameraTrapSoftware.TechSymp.mp4
https://doi.org/10.1371/journal.pone.0073707
https://doi.org/10.1080/23766808.2017.1292756
https://doi.org/10.1080/23766808.2017.1292756
https://doi.org/10.1111/2041-210x.12571
https://doi.org/10.1111/2041-210x.12571
https://doi.org/10.1111/1365-2664.12432
https://doi.org/10.1111/1365-2664.12432

     |  13729GREENBERG Et al.

Crouse, D., Jacobs, R. L., Richardson, Z., Klum, S., Jain, A., Baden, A. L., &
Teco, S. R. (2017). LemurFaceID: A face recognition system to facili‐
tate individual identification of lemurs. BioMed Central Zoology, 2, 2.
https ://doi.org/10.1186/s40850‐016‐0011‐9

Fairfax, R. J., MacKenzie Dowling, R., & Neldner, V. J. (2014). The use
of infrared sensors and digital cameras for documenting visitor use
patterns: A case study from D'Aguilar National Park, south‐east
Queensland, Australia. Journal of Current Issues in Tourism, 17(1), 72–
83. https ://doi.org/10.1080/13683 500.2012.714749

Fisher, J. T., & Burton, A. C. (2018). Wildlife winners and losers in an
oil sands landscape. The Ecological Survey of America, 16(5), 323–328.
https ://doi.org/10.1002/fee.1807

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns:
Elements of reusable object‐oriented software. Pearson.

García‐Salgado, G., Rebollo, S., PérezCamacho, L., Martínez‐Hesterkamp,
S., Navarro, A., & Fernández‐Pereira, J.‐M. (2015). Evaluation of
TrailCameras for analyzing the diet of nesting raptors using the
northern goshawk as a model. PLoS ONE, 10(5), e0127585. https ://
doi.org/10.1371/journ al.pone.0127585

Glover‐Kapfer, P., Soto‐Navarro, C. A., & Wearn, O. R. (2019). Camera‐
trapping version 3.0: Current constraints and future priorities for
development. Remote Sensing in Ecology and Conservation, 5(3), 209–
223. https ://doi.org/10.1002/rse2.106

Goswami, V. R., Madhusudan, M. D., & Ullas Karanth, K. (2007). Application
of photographic capture–recapture modelling to estimate demo‐
graphic parameters for male Asian elephants. Animal Conservation,
10, 391–399. https ://doi.org/10.1111/j.1469‐1795.2007.00124.x

Greenberg, S. (2019). The Timelapse user guide version 2.2.2.4. Updated
versions of this manual available at Retrieved from http://saul.cpsc.
ucalg ary.ca/timel apse/pmwiki.php?n=Main.UserG uide

Greenberg, S., & Godin, T. (2015). A tool supporting the extraction of an‐
gling effort data from remote camera image (feature article). Fisheries
Magazine, 40(6), 276–287. American Fisheries Society, June. https ://
doi.org/10.1080/03632 415.2015.1038380

Heilbrun, R. D., Silvy, N. J., Peterson, M. J., & Tewes, M. E. (2006).
Estimating bobcat abundance using automatically trig‐
gered cameras. Wildlife Society Bulletin, 34, 69–73. https ://doi.
org/10.2193/0091‐7648(2006)34(69:EBAUA T)2.0.CO;2

Hossain, A. N. M., Barlow, A., Greenwood Barlow, C., Lynam, A. J.,
Chakma, S., & Savini, T. (2016). Assessing the efficacy of camera
trapping as a tool for increasing detection rates of wildlife crime in
tropical protected areas. Biological Conservation, 201, 314–319. https
://doi.org/10.1016/j.biocon.2016.07.023

Ivan, J. S., & Newkirk, E. S. (2016). Cpw Photo Warehouse: A cus‐
tom database to facilitate archiving, identifying, summariz‐
ing and managing photo data collected from camera traps.
Methods in Ecology and Evolution, 7(4), 499–504. https ://doi.
org/10.1111/2041‐210X.12503

Jumeau, J., Petrod, L., & Handrich, Y. (2017). A comparison of camera
trap and permanent recording video camera efficiency in wildlife
underpasses. Ecology and Evolution, 7(18), 7399–7407. https ://doi.
org/10.1002/ece3.3149

Karanth, K. U., & Nichols, J. D. (1998). Estimation of tiger densities in
India using photographic captures and recaptures. Ecology, 79, 2852–
2862. https ://doi.org/10.1890/0012‐9658(1998)079(2852:EOTDI
I)2.0.CO;2

Karanth, K. U., Nichols, J. D., Samba Kumar, N., & Hines, J. E. (2006).
Assessing tiger population dynamics using photographic capture‐re‐
capture sampling. Ecology, 87(11), 2925–2937. https ://doi.org/10.18
90/0012‐9658(2006)87(2925:ATPDU P)2.0.CO;2

Krishnappa, Y. S., & Turner, W. C. (2014). Software for minimalistic data
management in large camera trap studies. Ecological Information, 24,
11–16. https ://doi.org/10.1016/j.ecoinf.2014.06.004

Laskin, D. N., McDermid, G. J., Nielsen, S. E., Marshall, S. J., Roberts,
D. R., & Montaghi, A. (2019). Advances in phenology are conserved

across scale in present and future climates. Nature Climate Change, 9,
419–425. https ://doi.org/10.1038/s41558‐019‐0454‐4

Microsoft (2019). AI for Earth camera trap image processing API. Github re‐
pository of its Megadetector recognizer. Retrieved from https ://github.
com/Micro soft/Camer aTraps

Mills, L. S., Bragina, E. V., Kumar, A. V., Zimova, M., Lafferty, D. J. R.,
Feltner, J., … Fay, K. (2018). Winter color polymorphisms identify
global hot spots for evolutionary rescue from climate change.
Science, 359(6379), 1033–1066. https ://doi.org/10.1126/scien
ce.aan8097

Nielsen, J. (1993). Usability engineering. San Diego, CA: Academic Press.
Norouzzadeha, M. S., Nguyenb, A., Kosmalac, M., Swanson, A., Palmere,

M. S., Packere, C., & Clunea, J. (2018). Automatically identifying,
counting, and describing wild animals in camera‐trap images with
deep learning. Proceedings of the National Academy of Sciences of
the United States of America, 115(25), E5716–E5725. https ://doi.
org/10.1073/pnas.17193 67115

O'Brien, T. G., & Kinnaird, M. F. (2010). Estimation of species richness of
large vertebrates using camera traps: An example from an indone‐
sian rainforest. In A. F. O'Connell, J. D. Nichols, & K. Karanth (Eds.),
Camera traps in animal ecology: Methods and analysis (pp. 233–252).
Tokyo, Japan: Springer. ISBN 978‐4‐431‐99495‐4. Retrieved from
http://www.sprin ger.com/us/book/97844 31994947

Oberoslerab, V., Groff, C., Lemma, A., Pedrini, P., & Rovero, F. (2017).
The influence of human disturbance on occupancy and activity
patterns of mammals in the Italian Alps from systematic camera
trapping. Mammalian Biology, 87, 50–61. https ://doi.org/10.1016/j.
mambio.2017.05.005

Pollock, S. Z., Nielsen, S. E., & St. Clair, C. C. (2017). A railway increases
the abundance and accelerates the phenology of bear‐attracting
plants in a forested, mountain park. Ecosphere, 8(10), e01985. https
://doi.org/10.1002/ecs2.1985

Reconyx, Inc (2016). Reconyx MapView professional software (2016)
Version 3.7.2.2, including user guide. Retrieved from https ://www.
recon yx.com/softw are/mapview

Rollack, C., Wiebe, K., Stoffel, M. J., & Houston, S. (2013). Turkey vul‐
ture breeding behavior studied with trail cameras. Journal of Raptor
Research, 47(2), 153–160. https ://doi.org/10.3356/JRR‐12‐40.1

Rowcliffe, J. M., & Carbone, C. (2008). Surveys using camera traps: Are
we looking to a brighter future? Animal Conservation, 11(3), 185–186.
https ://doi.org/10.1111/j.1469‐1795.2008.00180.x

Royle, J. A., Fuller, A. K., & Sutherland, C. (2018). Unifying population
and landscape ecology with spatial capture‐recapture. Ecography, 41,
444–456. https ://doi.org/10.1111/ecog.03170

Schneider, S., Taylor, G. W., & Kramer, S. C. (2018). Deep learning object
detection methods for ecological camera trap data. In Proceedings
IEEE 15th Conference on Computer and Robot Vision (pp. 321–328).
May 8–10. Toronto, ON, Canada.

Scotson, L., Johnston, L. R., Iannarilli, F., Wearn, O. R., Mohd‐Azlan, J.,
Wong, W., … Fieberg, J. (2017). Best practices and software for the
management and sharing of camera trap data for small and large
scales studies. Remote Sensing in Ecology and Conservation, 3, 158–
172. https ://doi.org/10.1002/rse2.54

Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., &
Diakopoulos, N. (2016). Designing the user interface: Strategies for ef‐
fective human‐computer interaction (6th ed.). Essex, England: Pearson.

Spence, R. (2014). Information visualization: An introduction (3rd ed.).
Heidelberg, Germany: Springer.

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton,
C., … Rich, L. N. (2017). Scaling‐up camera traps: Monitoring the
planet's biodiversity with networks of remote sensors. Frontiers in
Ecology and the Environment, 15(1), 26–34. https ://doi.org/10.1002/
fee.1448

Swann, D. E., Kawanishi, K., & Palmer, J. (2010). Evaluating types and fea‐
tures of camera traps in ecological studies: A guide for researchers.

https://doi.org/10.1186/s40850-016-0011-9
https://doi.org/10.1080/13683500.2012.714749
https://doi.org/10.1002/fee.1807
https://doi.org/10.1371/journal.pone.0127585
https://doi.org/10.1371/journal.pone.0127585
https://doi.org/10.1002/rse2.106
https://doi.org/10.1111/j.1469-1795.2007.00124.x
http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.UserGuide
http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.UserGuide
https://doi.org/10.1080/03632415.2015.1038380
https://doi.org/10.1080/03632415.2015.1038380
https://doi.org/10.2193/0091-7648(2006)34(69:EBAUAT)2.0.CO;2
https://doi.org/10.2193/0091-7648(2006)34(69:EBAUAT)2.0.CO;2
https://doi.org/10.1016/j.biocon.2016.07.023
https://doi.org/10.1016/j.biocon.2016.07.023
https://doi.org/10.1111/2041-210X.12503
https://doi.org/10.1111/2041-210X.12503
https://doi.org/10.1002/ece3.3149
https://doi.org/10.1002/ece3.3149
https://doi.org/10.1890/0012-9658(1998)079(2852:EOTDII)2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079(2852:EOTDII)2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87(2925:ATPDUP)2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87(2925:ATPDUP)2.0.CO;2
https://doi.org/10.1016/j.ecoinf.2014.06.004
https://doi.org/10.1038/s41558-019-0454-4
https://github.com/Microsoft/CameraTraps
https://github.com/Microsoft/CameraTraps
https://doi.org/10.1126/science.aan8097
https://doi.org/10.1126/science.aan8097
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1073/pnas.1719367115
http://www.springer.com/us/book/9784431994947
https://doi.org/10.1016/j.mambio.2017.05.005
https://doi.org/10.1016/j.mambio.2017.05.005
https://doi.org/10.1002/ecs2.1985
https://doi.org/10.1002/ecs2.1985
https://www.reconyx.com/software/mapview
https://www.reconyx.com/software/mapview
https://doi.org/10.3356/JRR-12-40.1
https://doi.org/10.1111/j.1469-1795.2008.00180.x
https://doi.org/10.1111/ecog.03170
https://doi.org/10.1002/rse2.54
https://doi.org/10.1002/fee.1448
https://doi.org/10.1002/fee.1448

13730  |     GREENBERG Et al.

In A. F. O'Connell, J. D. Nichols, & K. Karanth (Eds.), Camera traps
in animal ecology: Methods and analysis (pp. 27–43). Tokyo, Japan:
Springer. ISBN 978‐4‐431‐99495‐4. Retrieved from http://www.
sprin ger.com/us/book/97844 31994947

Swanson, A., Kosmala, M., Lintott, C., & Packer, C. (2016). A generalized
approach for producing, quantifying, and validating citizen science
data from wildlife images. Conservation Biology, 30(3), 520–531. https
://doi.org/10.1111/cobi.12695

Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., & Packer, C.
(2015). Snapshot serengeti, high frequency annotated camera trap
images of 40 mammalian species in an African Savanna. Scientific
Data, 2, 150026. https ://doi.org/10.1038/sdata.2015.26

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J.,
Vercauteren, K. C., Snow, N. P., … Miller, R. S. (2018). Machine learn‐
ing to classify animal species in camera trap images: Applications in
Ecology. Methods in Ecology and Evolution, 10(4), 585–590. https ://
doi.org/10.1111/2041‐210X.13120

Tobler, M. W., Zúñiga Hartley, A., Carrillo‐Percastegui, S. E., & Powell, G.
V. (2015). Spatiotemporal hierarchical modelling of species richness
and occupancy using camera trap data. Journal of Applied Ecology, 52,
413–421. https ://doi.org/10.1111/1365‐2664.12399

Ware, C., & Lewis, M. (1995). The DragMag image magnifier. Chi '95 Video
Program. From ACM Conference on Human Factors in Computing
System, May 7–11. Denver, CO: ACM Press. Videotape.

Wearn, O. R., & Glover‐Kapfer, P. G. (2017). Camera‐trapping for conservation:
A guide to best‐practices. WWF Conservation Technology Series 1(1).

WWF‐UK, Woking, UK. Retrieved from https ://www.wwf.org.uk/conse
rvati ontec hnolo gy/docum ents/Camer aTraps‐WWF‐guide lines.pdf

Whittington, J., Hebblewhite, M., & Chandler, R. B. (2018).
Generalized spatial mark‐resight models with an application to
grizzly bears. Journal of Applied Ecology, 55, 157–168. https ://doi.
org/10.1111/1365‐2664.12954

Whittington, J., Low, P., & Hunt, B. (2019) Temporal road closures im‐
prove habitat quality for wildlife. Nature: Scientific Reports, 9, 3772.
https ://doi.org/10.1038/s41598‐019‐40581‐y

WildTrax (2019). Website of the Alberta Biodiversity Monitoring Institute.
Biological Sciences Centre, University of Alberta, Edmonton, AB,
Canada. Retrieved from http://www.wildt rax.ca/home.html

Young, S., Rode‐Margono, J., & Amin, R. (2018). Software to facilitate
and streamline camera trap data management: A review. Ecology and
Evolution, 8(19), 9947–9957. https ://doi.org/10.1002/ece3.4464

Yousif, H., Yuan, J., Kays, R., & He, Z. (2019). Animal Scanner: Software
for classifying humans, animals, and empty frames in camera
trap images. Ecology and Evolution, 9(4), 1578–1589. https ://doi.
org/10.1002/ece3.4747

How to cite this article: Greenberg S, Godin T, Whittington J.
Design patterns for wildlife‐related camera trap image analysis.
Ecol Evol. 2019;9:13706–13730. https ://doi.org/10.1002/
ece3.5767

http://www.springer.com/us/book/9784431994947
http://www.springer.com/us/book/9784431994947
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1111/1365-2664.12399
https://www.wwf.org.uk/conservationtechnology/documents/CameraTraps-WWF-guidelines.pdf
https://www.wwf.org.uk/conservationtechnology/documents/CameraTraps-WWF-guidelines.pdf
https://doi.org/10.1111/1365-2664.12954
https://doi.org/10.1111/1365-2664.12954
https://doi.org/10.1038/s41598-019-40581-y
http://www.wildtrax.ca/home.html
https://doi.org/10.1002/ece3.4464
https://doi.org/10.1002/ece3.4747
https://doi.org/10.1002/ece3.4747
https://doi.org/10.1002/ece3.5767
https://doi.org/10.1002/ece3.5767

