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1  | INTRODUC TION

Camera traps—also known as wildlife, remote, field, or trail cameras—
are increasingly used to address a broad range of ecological research 
and field monitoring applications (e.g., Steenweg et al., 2017; Swann, 
Kawanishi, & Palmer, 2010). Their basic idea is deceptively simple. 
First, cameras are located at strategic stations within a geographic 
study site, where they are positioned to capture activities occurring 

within a particular field of view (e.g., Tobler, Zúñiga Hartley, Carrillo‐
Percastegui, & Powell, 2015). Second, cameras are set up to take 
images automatically in one of two ways: a Timelapse mode where im‐
ages are taken at regular intervals, or a motion‐triggering mode where 
one or more images are taken whenever movement is detected in 
the scene. Third, cameras are serviced after a period of time (weeks 
or months), where field personnel change camera batteries and re‐
trieve the image‐laden SD cards. Fourth, analysts review the set of 
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Abstract
This paper describes and explains design patterns for software that supports how an‐
alysts can efficiently inspect and classify camera trap images for wildlife‐related eco‐
logical attributes. Broadly speaking, a design pattern identifies a commonly occurring 
problem and a general reusable design approach to solve that problem. A developer 
can then use that design approach to create a specific software solution appropri‐
ate to the particular situation under consideration. In particular, design patterns for 
camera trap image analysis by wildlife biologists address solutions to commonly oc‐
curring problems they face while inspecting a large number of images and entering 
ecological data describing image attributes. We developed design patterns for image 
classification based on our understanding of biologists' needs that we acquired over 
8 years during development and application of the freely available Timelapse image 
analysis system. For each design pattern presented, we describe the problem, a de‐
sign approach that solves that problem, and a concrete example of how Timelapse 
addresses the design pattern. Our design patterns offer both general and specific 
solutions related to: maintaining data consistency, efficiencies in image inspection, 
methods for navigating between images, efficiencies in data entry including highly 
repetitious data entry, and sorting and filtering image into sequences, episodes, and 
subsets. These design patterns can inform the design of other camera trap systems 
and can help biologists assess how competing software products address their pro‐
ject‐specific needs along with determining an efficient workflow.
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retrieved images. The analyst examines each image for attributes of 
interest and encodes those as descriptive or quantitative data. This 
step is also known as tagging. Finally, that data—usually managed and 
stored in a database or spreadsheet—become the input for the data 
processing (including statistical analysis) particular to the project.

This paper is primarily concerned with the fourth tagging step 
described above: how analysts examine images and encode its attri‐
butes of interest as data. The number of images typically collected is 
voluminous: thousands or tens of thousands of images per retrieved 
camera card easily accumulate to hundreds of thousands and even 
millions of images per project. Consequently, image examination and 
data encoding are laborious, time‐intensive, error‐prone, and expen‐
sive. It is no wonder that international survey respondents identified 
image classification as the top challenge in camera trapping (Glover‐
Kapfer, Soto‐Navarro, & Wearn, 2019).

Recent research seeks to remedy this burden via automated 
image recognition, where promising wildlife species detection and 
identification rates have been reported (e.g., Norouzzadeha et al., 
2018; Schneider, Taylor, & Kramer, 2018; Tabak et al., 2018; Yousif, 
Yuan, Kays, & He, 2019). Unfortunately, image recognition for cam‐
era traps is still in its formative stage. It is limited in what can be 
recognized. For example, somewhat easy to extremely difficult 
recognition challenges range from: detecting if wildlife is present, 
identifying the species, identifying individuals, determining animal 
health, to distinguishing animal behaviors. Image recognition also: 
requires a model trained on domain‐specific images; incurs varying 
rates of classification errors (false positives and false negatives); per‐
forms less well with new camera placements (due to different back‐
grounds); and is currently poorly integrated in the analyst's software 
and workflow. Even if it was available, analysts would still have to 
verify recognition predictions and correct erroneous ones. Manual 
methods will likely dominate for years to come, especially when ad‐
ditional attributes beyond simple species detection are required (but 
see Section 8 below).

In the past, analysts resorted to off‐the‐shelf generic software 
when tagging images, such as a stock image viewer to view images, 
and a separate spreadsheet package to record data. More recently, 
researchers and corporations have developed specialized software 
packages to support camera trap analysis (e.g., Bubnicki, Churski, & 
Kuijper, 2016; Ivan & Newkirk, 2016; Krishnappa & Turner, 2014; 
Reconyx Inc, 2016; Scotson et al., 2017; Swanson et al., 2015; 
WildTrax, 2019; Young, Rode‐Margono, & Amin, 2018). Such cam‐
era trap software systems should, of course, include user interface 
features that encourage efficient human inspection of images and 
encoding of its data attributes. Those interface features should be 
based on a firm understanding of what analysts do when examin‐
ing and encoding images, including mitigating human performance 
bottlenecks. However, most descriptions of these systems often 
provide only sparse details and discussions (if any) of the problems 
faced by analysts that the system purportedly solves, the benefits 
of the particular interface features provided, and how the particular 
solution offered can be generalized to other systems. Thus, there is 
a gap in how the lessons learnt from developing such systems could 

be applied to evaluate current software and/or developing next 
generation camera trap software interfaces. As a recent extensive 
World Wildlife Fund report on best practices for camera‐trapping 
summarizes:

Importantly, no single software package has emerged 
as a favourite amongst camera trappers, and lots of 
very different solutions to the problem of camera trap 
data management are currently being trialled… For 
any given camera trap project…, this makes it difficult 
to decide which software package to commit to. Many 
large camera trap projects … have ended up designing 
their own systems from scratch. (p. 146)

The various software options available differ greatly 
in their approaches …and you may need to test vari‐
ous options before deciding which one satisfies your 
requirements and most efficiently fits into your work‐
flow (p. 150). 

(Wearn and Glover‐Kapfer, 2017)

Our goal in this paper is to describe and explain user interface de‐
sign patterns for software supporting how wildlife biologists perform 
camera trap image analysis during the tagging step. By way of back‐
ground, the notion of design patterns was first introduced by architect 
Christopher Alexander as a documented reusable and proven solution 
to commonly occurring architectural design problems (Alexander, 
1977). Design patterns are typically derived by examining existing 
solutions to design problems (which may include “folk” solutions) and 
generalizing them. Design patterns were later advocated as a way of 
describing common solutions to typical software engineering prob‐
lems (Gamma, Helm, Johnson, & Vlissides, 1994) and to human–com‐
puter interaction problems (Borchers, 2001). Design patterns are much 
more than a feature list, for that they provide the rationale behind a 
feature in a general and reusable manner. Design patterns are usually 
structured as a name, a problem that explains it, and a design approach 
to a solution that solves the problem. Importantly, a design pattern is 
not a finished design. Rather, it is a description or template for how to 
solve a problem that can be used in many different situations.

We base our design patterns on both our understanding of what 
biologists require and the user interface features that support their 
needs from over 8 years of developing and deploying our freely 
available Timelapse Image Analysis system1  (Greenberg, 2019; 
Greenberg & Godin, 20152 ). For each design pattern presented, we 
describe the problem faced by the image analyst, a design approach 
that solves that problem, and a concrete example of how Timelapse 
addresses that design pattern.3 

While this paper concerns the design of software, we stress 
that it is highly relevant to wildlife biologists. It is the biologist—
not programmers—that should determine and decide upon what 
camera trap design features are important to their work. We also 
recommend that biologists should be part of any camera trap soft‐
ware design team, where they should be the ones motivating what 
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requirements should be included, how requirements should appear 
in the software, and how software features should be considered in 
the workflow.

2  | THE DIVERSIT Y OF C AMER A TR AP 
RESE ARCH PROJEC TS,  GOAL S,  AND 
IMAGES

Camera traps are used to address a wide diversity of ecological 
research and management objectives and associated taxa. This di‐
versity leads to large differences in how cameras are situated and 
configured, the kinds of images collected, how analysts would ex‐
amine those images, the attribute data recorded from images, and 
how the collected data would be subsequently analyzed. For exam‐
ple, Figure 1 illustrates differences between two images of the same 
species with varying research objectives. In Figure 1a, the camera 
was set to motion‐triggering to capture close‐up views of mountain 
goats (Oreamnos americanus) as they passed by. Attributes of the goat 
could then be analyzed (e.g., species identification, sex, estimated 

age, individual identification, etc.). In Figure 1b, the camera was set 
to Timelapse mode that took an image every 5 min in order to moni‐
tor the presence and activity of a herd of goats over time on a distant 
pasture and mountain‐side. Attributes of herd activity could then be 
analyzed (e.g., counts, duration in the meadow, ratio of kids to adults, 
etc.). Figure 1b includes a small herd in the green pasture, each goat 
just visible as white dots.

Perhaps, the most familiar uses of camera traps and the subse‐
quence analysis of its images are in some form of in situ wildlife mon‐
itoring (e.g., Burton et al., 2015; Steenweg et al., 2017). For example, 
in a review of 266 camera trap publications over a 6‐year period, 
Burton et al. counted a range of ecological objectives and responses 
metrics including: relative abundance (43.6%), presence–absence 
(41.4%), behavior such as activity patterns and diet (32.3%), popula‐
tion density (15.8%), and occupancy (15.4%) (Burton et al., 2015, p. 
678). Other examples illustrate further diversity of objectives:

• monitor species diversity and inventories (e.g., Ahumada, Hurtado, 
& Lizcano, 2013; Glover‐Kapfer et al., 2019; O'Brien & Kinnaird, 
2010),

F I G U R E  1   The diversity of images 
produced by two camera traps. (a) A 
close‐up shot of a mountain goat. (b) 
Mountain goats are barely visible in the 
meadow as white dots.
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• measure population abundance, density, and distribution of 
marked and unmarked populations (e.g., Goswami, Madhusudan, 
& Ullas Karanth, 2007; Heilbrun, Silvy, Peterson, & Tewes, 2006; 
Karanth & Nichols, 1998; Rowcliffe & Carbone, 2008; Royle, 
Fuller, & Sutherland, 2018; Whittington, Low, & Hunt, 2019; 
Whittington, Hebblewhite, & Chandler, 2018)

• examine multi‐species dynamics (Swanson et al., 2015),
• estimate population trends (e.g., Karanth, Nichols, Samba Kumar, 

& Hines, 2006),
• correlating wildlife abundances to anthropological stressors (e.g., 

Fisher & Burton, 2018), including human activity, and to mitiga‐
tion efforts (e.g., Pollock, Nielsen, & St. Clair, 2017; Whittington 
et al., 2019),

• quantify animal behavior and success rates in DNA hair capture 
sites (Clevenger & Sawaya, 2010),

• linking seasonal plant phenology to climate change and wildlife 
distributions (e.g., Laskin et al., 2019; Mills et al., 2018), and

• quantifying how seasonal changes in coat color are influenced by 
climate change (e.g., Mills et al., 2018).

Camera traps can also help answer very specific research questions. 
For example, García‐Salgado et al. (2015) analyzed the diet of nest‐
ing raptors by examining images for prey deliveries to nests. Rollack, 
Wiebe, Stoffel, and Houston (2013) similarly deployed cameras around 
nests, but in this case to study the breeding behaviors of turkey vul‐
tures. Jumeau, Petrod, and Handrich (2017) used camera traps to 
estimate the effectiveness of wildlife crossing structures for small 
mammals.

Camera traps are also used to monitor and analyze human activity. 
Examples include: counting the number of anglers actively fishing in 
order to estimate angling effort in small lakes fisheries (Greenberg & 
Godin, 2015); evaluating the influence of human disturbance on wild‐
life (e.g., Blake, Mosquera, Loiselle, Romo, & Swing, 2017; Oberoslerab, 
Groff, Lemma, Pedrini, & Rovero, 2017), quantifying levels of human 
use and type of human activities (e.g., Campbell, 2010; Fairfax, 
MacKenzie Dowling, & Neldner, 2014); and detecting types and oc‐
currences of illegal activity in wildlife sanctuaries including identifying 
perpetrators (e.g., Hossain et al., 2016).

The above is just a very small sampling to indicate the diverse 
use of camera traps (e.g., see Section 5 in Steenweg et al., 2017; 
Wearn & Glover‐Kapfer, 2017). While there may be some overlap in 
the kinds of images gathered across projects, we can easily expect 
differences between projects in: the kinds of images that are cap‐
tured, the data attributes that would be encoded from these images, 
and the ways analysts would have to examine those images to ex‐
tract and record that data. Our design patterns reflect this diversity 
of project objectives. Some design patterns are broadly applicable 
and useful in all kinds of image classification, while others may be of 
use in narrower suites of projects. More generally, software based 
on these design patterns will include tools for examining images, will 
provide a flexible user interface for efficiently encoding project‐spe‐
cific attributes, and will simplify data entry by automatically extract‐
ing available image features as data. Collectively, it can substantially 

increase project efficiency, increase data quality and improve the 
user experience.

3  | METHODOLOGY: DECONSTRUC TING 
THE DESIGN OF TIMEL APSE INTO DESIGN 
PAT TERNS

Our methodology for understanding how analysts classify data 
and what user interface design patterns would be useful was de‐
rived from deconstructing our real‐world experiences designing, 
implementing, and refining the Timelapse open software system. 
Timelapse was specifically developed to help analysts inspect and 
classify camera trap images via tagging. Timelapse is conceptually 
simple: it displays images to analysts, along with a variety of project‐
specific (and user generated) attribute fields that they can efficiently 
fill in to describe the image. Yet its design goes far beyond that, for 
it, includes many features addressing the subtleties of the analyst's 
workflow.

Timelapse evolved through many versions over its 8 years. Its 
capabilities were designed to meet a broad variety of ecological 
needs as requested from a diverse international user community 
comprising different agencies (government, industry, university, 
and independents) and biologists (researchers, practitioners, and 
students). Most had differing projects and goals (e.g., wildlife moni‐
toring, angling effort in fisheries, environmental monitoring, human 
monitoring, etc.). Our requirements, analysis, and various redesigns 
of Timelapse were further informed by the following.

• We had ongoing discussions with both project managers and an‐
alysts about their camera trap image analysis needs and existing 
workflow.

• We held observational studies of analysts using Timelapse as 
they did their work (e.g., Greenberg & Godin, 2015), using stan‐
dard techniques in the field of human–computer interaction (e.g., 
Shneiderman et al., 2016). We observed and interviewed the 
technicians analyzing images, paying particular attention to their 
workflow, problems encountered, and bottlenecks;

• We collected feedback from analysts who had used Timelapse 
to inspect millions of images (e.g., problems, feature requests, 
bottlenecks).

We emphasize that our methodology followed an iterative ver‐
sus one‐time design process. We began with understanding the 
requirements of a single small‐lakes fisheries agency (Greenberg 
& Godin, 2015). We repeated our methodology as other agen‐
cies from different domains and with different project needs 
came on board. Our ongoing discussions, observations, and 
feedback with those agencies helped us understand and articu‐
late the subtleties and variations in the workflow that arose due 
to various factors. For example, the type of images captured at 
particular sites differed considerably, which often led to work‐
flow alterations in how technicians analyzed images. As well, 
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particular subprojects required analysts to examine and encode 
different image features as data, again resulting in workflow dif‐
ferences. We used this knowledge to update the Timelapse de‐
sign, albeit with the constraint that it had to remain a tool usable 
by its broad community. That is, new interface features would 
be added only if they were potentially valuable to a broad range 
of projects and users, or—at the very least—could be ignored if 
they were not needed.

The remainder of this paper deconstructs and generalizes as 
design patterns the key workflow tasks and problems seen, and 
how they informed the corresponding Timelapse interface design 
solutions. Each section is organized around an issue that relates 
particular problems faced by analysts. Each problem is followed by 
a named design pattern. This includes a general description of an 
interface design solution that mitigates that problem and a con‐
crete example of how Timelapse realized that design pattern. We 
also invite the reader to run Timelapse as they read the design pat‐
terns, as this can help them better understand the nuances of the 
proposed solution.

While we highlight how Timelapse instantiates a particular 
design pattern solution, we stress that the design pattern is more 
general than that, as it can also inform alternate software designs. 

For example, designers can selectively incorporate particular design 
solutions as seen in Timelapse into their own systems. Alternately, 
designers can use our design pattern problem descriptions and 
general solutions to create their own novel, alternate ways to solve 
those problems. Finally, project managers can match design patterns 
against their project needs, and then evaluate competing software 
solutions to see whether those solutions have interface features that 
support the design patterns relevant to their project.

We recognize that other camera trap software systems may 
offer similar or alternate solutions to our design patterns. However, 
we restrict our example solutions to Timelapse, as a comparative re‐
view and analysis are beyond the scope of this paper. Still, the design 
patterns supplied here should allow readers to reconsider whether 
and how other software solutions address particular design prob‐
lems and may even help them identify problems and design patterns 
that are outside of what we provide below.

4  | ISSUE: DATA CONSISTENCY

The ultimate goal of the analyst is to enter attribute data that re‐
flect the contents of the images. Statistical analysis of attribute 

F I G U R E  2   The Template Editor. The project manager defines the attribute data of interest (the schema) as well as the associated user 
interface specifications by form‐filling (top pane). The middle pane generates a preview of the user interface data entry controls that will be 
seen by the analyst. The bottom pane shows how the data of interest will be stored as columns within a database table. Interface controls 
and spreadsheet columns can be re‐ordered by dragging them to the desired location
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data collected from those images typically occurs later as a sepa‐
rate step. The value of attribute data depends upon its consist‐
ency (explained below) and quality. Thus, data entry protocols 
for what attributes to collect must be developed prior to image 
classification.

4.1 | Problem—The data required and how they are 
named may be inconsistent between analysts

Projects typically involve multiple cameras located at multiple sta‐
tions at one or more study sites. In turn, this can generate a large 
number of distinct image sets,4  each containing many thousands 
of images. Multiple analysts may be involved (perhaps including 
volunteer citizen scientists), each analyzing the images within a 
particular image set. A key issue is maintaining data consistency 
across different image sets and different analysts, that is, where all 
analysts are inputting consistently formatted data into a set of con‐
sistently named data fields. Without data consistency (e.g., if each 
analyst idiosyncratically specified what data should be encoded 
from images, in what format, and under what name), it would be 
extremely difficult to make sense of the data across analysts and 
image sets.

4.1.1 | Design pattern: Specify and deploy a 
common data schema

The project manager should initially decide what data should be col‐
lected from the image sets and communicate those needs to the ana‐
lysts as a standardized computer‐readable schema that defines and 

specifies the data of interest. Analysis of image sets by all analysts 
should then be based on that schema. The image analysis software 
should enforce the schema, where deviations from that schema are 
discouraged unless absolutely necessary. The schema should define 
the required data fields, how they are named, their data type, their 
format, and constraints on what values they allow.

4.1.2 | Timelapse example

Project managers use a Timelapse utility called the template edi‐
tor (Figure 2) to construct a template file that defines the data 
schema. Analysts place the data template file in the folder contain‐
ing the image set. When the actual Timelapse application is opened 
(Figure 3), it uses the template schema to build the user interface and 
to construct the database table that will ultimately contain the data 
entered by the analyst. This enforces the data schema.

Figure 2 illustrates a screenshot of the template editor in ac‐
tion. In this example, the project manager has specified a fairly sim‐
ple schema used to count how many goats and hikers are seemed 
and to track environmental conditions and a few other attributes.5  
Generally, each row in the form specifies all attributes of a particu‐
lar data field, while each column names the attribute. The template 
editor allows project managers to easily create project‐specific sche‐
mas. Each attribute field of the schema is developed with the fol‐
lowing options:

• Type indicates the data type and its format. For example, the type 
DateTime and UTCOffset follow the international standard for spec‐
ifying dates. Counters are positive integers and are usually used for 

F I G U R E  3   Timelapse Image Analyzer. 
The analyst uses Timelapse to navigate 
and inspect images (lower panel) and to 
enter data describing an image's features 
of interest (top panel). The data entry 
controls shown in the top panel were 
automatcially constructed from the 
schema information specified by the 
project manager through the template 
editor illustrated in Figure 1
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counting entities in an image. Flags can only contain true/false val‐
ues. Notes are free‐form text fields. Choices are constrained to a 
limited number of possible values provided by the project manager. 
For example, a field labeled “Weather” could be constrained to the 
values “Sunny,” “Cloudy,” “Foggy” etc., while a field named “Species” 
could list—and eventually allow an analyst to select from—all possi‐
ble species of interest in that ecology.

• Data Label names the data field containing that data, that is, the col‐
umn name as it would appear in a database table or a spreadsheet.

• Default Value indicates the initial value of that data, which will be 
applied to every image seen by Timelapse.

• List defines the allowable entries for Choice data types. Selecting 
“Define list” raises a small window where the manager can type in 
those entries (see Figure 2, lower right side).

4.2 | Problem—Data schema terminology may not 
be in the analyst's language

Computer systems often ask users to enter data by either filling in rows 
in a table, or via data entry widgets (textboxes for text entry, menus 
for selecting choices, etc.). These are often labeled in some manner 
(e.g., column names in a table or a name associated with the data entry 
widget). Labels are important, as analysts need to understand what 
data they are expected to enter. The issue is that the terminology used 
may not be in the analyst's language. For example, systems may use 
the database field name to label a data entry widget, but these names 
may not be understandable (e.g., acronyms, abbreviations, technical 
terms, ambiguous meanings, etc.) or insufficient to describe what the 
analyst should enter. This can lead to inconsistencies between the pro‐
ject manager's expectations of the data required versus the analysts' 
interpretation of what data should be entered. A related issue is that 
the schema may include fields that are of little interest to the analyzer, 
such as fields they are not expected to review or fill in. Their inclusion 
in the analyst's user interface would add clutter and perhaps confu‐
sion, or have the analyst fill in fields unnecessarily. Finally, because 
the project manager and all analysts need to communicate to one an‐
other, the terminology used to identify that data should be common. 
These terminology problems are particularly endemic to analysts who 
inspect images only occasionally, as they may forget what particular 
terms mean, and to citizen scientists with minimal training.

4.2.1 | Design pattern: Present the data schema 
in the analyst's language

The data entry interface presented to the analyst should be ex‐
pressed clearly in familiar words, phrases, concepts, and explana‐
tions rather than in system‐oriented terms. Nonrelevant data items 
should be removed (Nielsen, 1993, Chapter 5). One way to do this is 
to associate the terms in the data schema with a more understand‐
able terminology and descriptions of what data they are expected to 
enter, and whether or not particular data items should be displayed 
to the analyst. While the interface seen by the analyst would be 
constructed using that terminology, the data entered by the analyst 

would be stored under the data labels provided by the data schema, 
thereby maintaining data consistency.

4.2.2 | Timelapse example

Using the Timelapse Template Editor, the project manager specifies the 
terminology of data entry controls, that is, the interface controls as‐
sociated with every data field used by the analyst to enter data. For 
example, consider the data field with the data label of “GoatCnt” in 
Figure 2. In the Label column, the manager specified “Goats” as a more 
human‐readable alternative to that data field. In the Tooltip column, 
the manager provided a brief help explanation of what should be 
entered: “A count of how many goats appear in this image.” By un‐
checking the “Visible” checkbox, the manager has indicated that the 
“UtcOffset” data field should not be displayed to the analyst. As the 
manager performs these actions, a live preview of the user interface 
(Figure 2, middle pane) reflects the actual user interface that will be 
seen by the analyst when using the Timelapse system (Figure 3, top 
pane). Both illustrate how the data controls adopt the analyst‐ori‐
ented terminology and explanations specified in the template (e.g., the 
“Goats” control and the displayed tooltip). When the analyst enters 
data in that control (Figure 3), it is stored in the corresponding data 
field (e.g., “GoatCnt”).

4.3 | Issue: Data input errors are commonplace

When analysts enter data, they may inadvertently introduce errors 
into the stored data. For example, the entered data may be outside 
of what is expected (e.g., nonnumeric characters entered into an 
integer data field, Yes/No instead of True/False as expected by a 
boolean data field). As another example, the entered data may not 
be in the correct format (e.g., date may be incorrectly entered as 
“mm/dd/yyyy” order instead of the expected “dd//mm/yyyy”).

4.3.1 | Design pattern: Data entry controls should 
minimize input errors by constraining input to the 
data field's type

Input controls should provide visual hints of what input is accepted, 
and should only accept input that matches the data field's type and 
format. This pattern is now common in many modern user inter‐
faces, where myriads of input controls suggest and constrain what 
can be entered into them.

4.3.2 | Timelapse example

Timelapse generates its user interface from the description pro‐
vided in the template editor (Figure 2), where each data entry con‐
trol is based on its corresponding template specification (Figure 3, 
top pane). The data entry control constrains the input, where only 
valid data can be entered into it. For example, an analyst interacting 
with the DateTime data entry control (Figure 3, top pane, right side) 
can only enter or edit valid date and time values. Counter controls 
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(e.g., Goats, Hikers) only accept positive integers (either by typing 
or by mouse interaction). Choice data controls (e.g., Image Quality, 
Weather) restrict the analyst to selecting from a pop‐up menu con‐
taining only valid text entries. Flags (e.g., Delete?, Publicity?) present 
themselves as a checkbox, where the control itself translates its 
“checked” state to the two allowable data storage values of “true” 
or “false.” In all cases, the analyst's data entry is constrained by the 
corresponding data control to allow only legal values, which reduces 
possible input errors significantly.

5  | ISSUE: INSPEC TING IMAGE FE ATURES

A major part of the analyst's tasks is to inspect the image to discover 
(and record as data) features of interest. Yet inspection can be prob‐
lematic for some images, especially when the features of interest are 
not discernable at a glance.

5.1 | Problem—Relevant image details may be 
difficult to examine

Depending on what is captured in the image's field of view, analysts 
may have to inspect small image details in order to classify what is 
there. One example is camera images that capture large fields of view, 
where the items of interest are very small. Figures 1b, 3 and 4a illus‐
trate such an image, where the camera is oriented to capture distant 
goats as they wander through a mountain‐side and meadow. Other 

examples include cases where the analyst has to identify small ani‐
mals, or details of that animal (e.g., sex, health), or where the image 
only displays a portion of that animal (e.g., because of occlusion by 
vegetation, or because the animal is only partly in the camera's field 
of view).

5.1.1 | Design pattern: Allow the analyst to examine 
image details through magnification

Image magnification can help the analyst examine small image fea‐
tures. However, due to the number of images inspected, the ana‐
lyst's interaction with the provided magnification technique must 
be efficient to use. Various magnification interaction techniques 
are known. The most common is perhaps a pan and zoom facility 
(Figure 4b), which allows the analyst to zoom (magnify) a particular 
image region (called the focus). While powerful, zooming into local 
detail incurs the cost of losing global context, that is, only the zoomed 
in portion of the image is visible, which means informative details 
outside of the focus cannot be seen at the same time.

Another common approach mimics a magnifying lens (see 
Figure 4c), where the area under the cursor (the focus point) is over‐
laid by a small zoomed in region. The area being magnified is imme‐
diately updated as the cursor is moved. Again, there is a trade‐off: 
while the magnified areas show the focus area under the cursor, it 
occludes some of the surrounding global context as it overlays it. 
For example, Figure 4c magnifies 3 of the goats, but at the cost of 
occluding the other two nearby goats.

F I G U R E  4   Various approaches to 
examining details via magnification. (a) 
The unaltered view. (b) Pan and zoom. 
(c) Standard Magnifying lens. (d) Offset 
magnifying. (e) Fisheye lens.

(a)

(c) (d)

(e)

(b)
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Far more sophisticated magnification approaches have 
been developed in the field of information visualization (e.g., 
Shneiderman et al., 2016; Spence, 2014 Ch. 12). For example, an 
offset magnifying lens avoids occlusion by offsetting the magnified 
area away from the cursor's focus area (Ware & Lewis, 1995). As 
Figure 4d illustrates, the small square by the cursor is the area to 
magnify, where that zoomed in area is shown offset in the larger 
square. Thus, the analyst can simultaneously see both the unzo‐
omed and zoomed in area at the same time. Another approach is 
focus plus context magnification. For example, a fisheye lens distorts 
an image to provide magnification in place (Carpendale, Light, & 
Pattison, 2004). As Figure 4e illustrates, the highest magnification 
is focused under the cursor, where a drop‐off function applies pro‐
gressively less magnification away from the cursor. The advantage, 
as seen in Figure 4e, is that local detail is shown in place within the 
global context. This also avoids separation of the magnified versus 
unmagnified image as evident in Figure 4b,c.

Of course, the value of magnification is affected by image fidel‐
ity. Some systems may, for example, reduce an image's display reso‐
lution for performance purposes with the side effect of comprising 
image details. The fewer the pixels read in, the less memory required 
and the faster images can be displayed. The trade‐off is that magni‐
fication would then produce “fat pixels” (aka blurry images) rather 
than details. Fortunately, various image processing techniques are 
known that can efficiently display the whole image at low fidelity, 
while reading in high resolution details for only the magnified re‐
gions (Carpendale et al., 2004).

5.1.2 | Timelapse example

Timelapse contains several methods for rapidly examining image de‐
tails through magnification.

1. Zoom and pan. The analyst can zoom and pan into any part of 
the image using the scroll wheel and the mouse. Zooming occurs 
at the cursor location, while panning to a particular image region is 
done by dragging the image with the mouse. Timelapse's zooming 
and panning features also include nuances that support how an 
analyst would use it over multiple images. First, the analyst can 
“bookmark” a particular zoomed in area, where she can flip be‐
tween the zoomed and normal image with a single keypress, thus 
maintaining some sense of how the zoomed‐in focus relates to the 
global context. Bookmarks have other advantages. For example, if 
the analyst was interested in animal activity in the pasture seen 
in Figure 3, she could zoom into that pasture and bookmark it. 
When checking other images for activity in that pasture, she can 
use that bookmark to zoom into the same corresponding area. 
Second, zoom/pan levels are maintained when navigating between 
images. For example, the analyst could zoom into the pasture of 
Figure 3 and then see how the goats have moved around that 
pasture by navigating to the next few images.

2. Offset magnifying lens. Similar to Figure 4d but with different vis‐
uals, the analyst can turn on a magnifier that displays zoomed‐in 

image of the area around the cursor: the lens is offset to avoid 
occluding that area. Figure 3 illustrates the Timelapse magnifier 
in action, where the analyst is using it to detect and examine a 
herd of goats. The analyzer can easily scan the image details for 
features of interest by dragging the magnifier, whose magnified 
content is instantly updated. The analyst can also quickly adjust 
the amount of magnification through a few keystrokes.

5.2 | Problem—The presence of small entities may 
be difficult to notice

Various projects use cameras in Timelapse mode, where periodically 
taken images capture a very wide field of view. We already saw how 
Figures 1b and 3 illustrate one actual example, where the camera 
was located to capture distant goat activity in a pasture and on a 
mountain side. Another real example includes cameras positioned to 
capture distant anglers on and around a large lake area (Greenberg & 
Godin, 2015). The issue is that analysts may not notice the presence 
of these small entities. This becomes more problematic when a run 
of images being examined have nothing in them, as analysts expect 
that pattern to continue. Magnification, while somewhat helpful, is 
best used to examine details after an entity has been noticed.

5.2.1 | Design pattern: Enhance the noticeability of 
small entities within images

Various techniques can enhance how the analyst can notice small 
entities in a scene by making them visually distinctive.

Animation of image sequences visually highlights changes that occur 
by rapidly switching between images. Because the background scene 
is reasonably constant, the appearance, disappearance, and move‐
ments of entities within the scene are often very noticeable.

Image processing through image differencing compares, pixel by 
pixel, the current image against the previous and/or next image. A 
new image is generated from that comparison, where (for example) 
a white pixel is drawn if the compared pixels differ significantly 
in brightness and color (set by threshold values), and black oth‐
erwise. The resulting image visually highlights the differences in 
white, while removing the somewhat static background. Because 
entities appear, disappear, and move around a scene, the differ‐
enced image will display that entity as a white blob (usually in the 
shape of the desired entity) against a black background. Other 
image processing techniques may also help, such as motion track‐
ing that track the position of an object over subsequent frames. 
We note that the effectiveness of image processing techniques 
can be compromised when large visual differences occur between 
the images, such as dramatic changes in image lighting, motion of 
nearby grass and branches affected by the wind, and even slight 
changes of a camera's position (e.g., due to wind effects on the 
tree, it is mounted on). As well, image differencing will not work 
for the few cases where the animal is completely still.

Image enhancement. Many off‐the‐shelf photo viewing systems 
now include various ways to adjust an image. Examples include 
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contrast adjustment, saturation and luminance of particular colors, 
dehazing, sharpening, edge detection, etc. In the image analysis 
context, an analyst could apply various adjustments on a test image 
and—if effective at enhancing an entity's visibility—have that setting 
automatically applied when viewing other images.

5.2.2 | Timelapse example

Timelapse contains the first two methods above for enhancing the 
noticeability of small entities, both based on analyzing the differ‐
ences between images. Timelapse does not include other image en‐
hancement methods, but they could be added easily.

1. Animation through rapid image switching. Timelapse lets the 
analyst rapidly switch between the current image of interest 
and the next or previous image (using the arrow keys), where 
images are displayed immediately and without flicker. The analyst 
perceives this as an animation, where the differences between 
images—such as a small moving animal—“pop out.” Furthermore, 
the magnifier and zoom/pan level are maintained at their current 
setting and position during image switching, which helps the 
analyst spot differences in a magnified region.

2. Image processing through image differencing compares the original 
image to the previous image, the next image, or to both. The analyst 
toggles between the differenced and original image with a single 
key press. When blobs of interest appear, the analyst can use the 
magnifying glass (which displays that region in its original form) to 
investigate. Alternately, the analyst can use rapid image switching 
to see whether the blob has moved. Figure 5 provides an example 
of how this appears in practice. Figure 5a displays the normal image: 
The small goat can be easily missed or mistaken for a rock. Figure 5b 
is the differenced image: not only is the goat highlighted as a blob, 
but another goat partly hidden in the trees on its left is revealed. 
Figure 5b also shows the analyst furthering inspecting a blob via the 
magnifier, which displays the goat as it appears in the original image.

5.3 | Problem—Entities within images may be 
difficult to see due to poor image fidelity

Because cameras are positioned in the field, the quality of the images 
produced can be compromised by many factors. Weather is one fac‐
tor, where fog, rain, and snow can limit what is visible, especially at a 
distance. Lighting is another fact, such as sharp shadows mixed with 
bright sunshine, or failing light due to dusk and night‐time shots. The 
camera itself can be compromised, such as by moisture on the lens, or 
by focus problems.

5.3.1 | Design pattern: Enhance images whose 
fidelity is compromised

Various image processing techniques can enhance the clarity of com‐
promised images, albeit with limits. Indeed, the previously described 

techniques used to enhance the noticeability of small entities could 
perhaps help here: contrast adjustment, color correction including 
saturation and luminance, sharpening, edge detection, etc. Dehazing 
will likely be of particular value in mitigating fog effects. As before, 
an analyst could apply various adjustments on one image and have 
that setting automatically applied to other similarly compromised 
images.

5.3.2 | Timelapse example

Timelapse does not yet include these image processing capabilities. 
Currently, the analyst would have to correct the image outside of 
Timelapse (e.g., using the many tools available in photograph editors 
such as Adobe Photoshop or Adobe Lightroom). The modified saved 
image would then be visible within Timelapse.

F I G U R E  5   Image differencing. The analyst flips between 
the normal and differenced view of the image.  (a) Normal 
image (cropped). Several goats are in the lower right corner, but 
the analyst may easily miss them. (b) Differenced image (same 
cropped region). The analyst investigates the white blobs with the 
magnifying glass, and sees that they are goats.
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6  | ISSUE: NAVIGATING IMAGES

Analysts are often tasked with inspecting tens and even hundreds of 
thousands of images in an image set. Thus reviewing, searching, and 
navigating between images should be rapid.

6.1 | Problem—Tedious image navigation and review

An analyst may want to rapidly navigate and review a sequence of 
images for various reasons. She may want to scan all images quickly 
before coding them, in order to get a sense of what is in them. She may 
want to quickly move over “empty images” (e.g., scenes with no wildlife 
in it) until she spots an image containing something of interest. She 
may want to visually search the image set for a particular scene, for 
example, an image with wolves and cubs. She may also want to search 
for a particular image by its file name. The problem is that image pack‐
ages often differ considerably in how they support navigation, where 
some navigational methods can interfere with the analyst's task. For 
example, image review would be severely impeded if each image has 
to be separately opened in its own window.

6.1.1 | Design pattern: Provide tools that allow 
rapid navigation and review of images

Analyst often examines images sequentially to see how they unfold 
over time. Stepping forward and backward through them should be 
visually instantaneous and should require minimal effort, for example, 
via a single key press or mouse click. Because image sets can num‐
ber in the hundreds of thousands, analysts should be able to move, 
scrub, and jump through images quickly, similar to how one can scrub 
through a video. To help the analyst visually review and compare im‐
ages during navigation (such as to detect changes as discussed in the 
previous design pattern), display settings such as zoom levels and the 
image location on the screen should be kept constant.

6.1.2 | Timelapse example

Timelapse contains many navigation methods, each allowing rapid 
image review.

1. Forwards/Backwards controls. Timelapse lets the analyst rapidly 
move either backwards or forwards between images via the 
keyboard (the arrow keys) or by the File Player (described next). 
Holding down the arrow key scrubs through successive images. 
Settings on the current image—the location of the magnifying 
glass, zoom and pan levels, image differencing (if any) are all 
retained during navigation, allowing the analyst to rapidly com‐
pare images for similarities and differences as he or she views 
them.

2. File Player (seen at the upper right of Figure 3 and annotated in 
Figure 6) provides an alternative mouse‐operated navigational 
control. Depending on the button pressed, the analyst can step 
through images, jump to the first or last image, or automatically 

play (and thus review) successive images at slow and fast speeds. 
These speeds are user‐configurable.

3. Navigational Slider (next to the File Player, see top middle of 
Figure 3) allows the analyst to both scrubs through and to rap‐
idly jump across many images. Intervening images are displayed 
as fast as possible as the analyst moves the slider.

4. The Overview. Analysts can “zoom out” to see an overview con‐
taining multiple images, as illustrated in Figure 7. The more one 
zooms out, the more images are displayed, albeit at progressively 
smaller sizes. The analyst can navigate to a full‐sized view of a de‐
sired image (as in Figure 3) by clicking its thumbnail in the over‐
view. The behavior of the navigational controls described above is 
also transformed to work with the overview. For example, the File 
Player controls now allow the analyst to navigate through succes‐
sive images one by one, row by row, or page by page. Using the 
overview, the analyst can navigate and review collections of multi‐
ple images quickly.

5. Find Search Bar, illustrated at the top left of Figure 7, is some‐
what similar to search bars seen in text editors. The analyst uses 
it to find and display the next file in the image sequence whose 
file name partially matches the entered text. Figure 7 illustrates 
a search for any file name containing “05.” Find works in both 
the single image view (Figure 3) and in the overview where the 
found image becomes the first image in the displayed image array 
(Figure 7). Find also works on suffixes. For example, if an image 
set is interspersed with video files, searching on “.avi” will step 
through all videos.

6. Navigating via the data table. Analysts have the option of a da‐
tabase view, which displays all the data entered so far as a scrol‐
lable table. This is available through the “Data Table” tab as seen 
in Figure 8. Each row represents all the data currently associated 
for an image. The analyst can inspect the rows for data of interest 
and click on that row to navigate to and view the image associated 
with that row (akin to the display in Figure 3).

F I G U R E  6   The Timelapse File Player
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7  | ISSUE: ENTERING DATA

Our example data schema illustrated in Figure 2 and composed as a 
data entry interface in Figure 3 has relatively few data entry fields. This 

contrasts with the actual number of data fields that analysts can en‐
counter in practice. For example, one of the agencies using Timelapse 
composed and regularly used a template defining 30 separate data 
entry fields that analysts had to fill in. Even if only a subset of those 

F I G U R E  7   The overview showing selection and the Find feature

F I G U R E  8   The Data Table view
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fields relevant to a particular image had to be filled in, data entry can 
quickly become tedious, error prone, and very time‐consuming when 
done over hundreds of thousands of images.

7.1 | Problem—Typing is time‐consuming and error‐
prone

Filling in data fields by typing is tedious. Fields have to be navigated, 
and typing takes time. Mis‐typing is common and introduces errors 
and inconsistencies in the data.

7.1.1 | Design pattern: Data entry controls should 
minimize or eliminate typing when possible

Selection (via the mouse or via tab/select/enter) should replace typ‐
ing whenever possible. Since much data entry is repetitious, previ‐
ously typed‐in entries should be offered as candidates for selection 
rather than requiring re‐entry.

7.1.2 | Timelapse example

Several data controls available through Timelapse (e.g., see top of 
Figure 3) favor selection via the mouse or through the keyboard's tab and 
arrow keys. An analyst selects a Flag's true or false value by clicking on its 
checkbox. She selects from a Choice's limited possibilities via a pop‐up 
menu. She can fill in Counters by clicking its up/down arrow buttons, or 
by clicking an entity in the image to count it (discussed shortly). She can 
edit the dates and times in the DateTime control by its up/down arrow 
buttons, or by directly selecting a date from a calendar. She can accept 
text predictions in Notes instead of typing an entry in full. Each Note 
tracks all previously typed text entries and uses those to predict the rest 
of the text as the analyst types. For example, Figure 9 illustrates the text 
prediction that appears after the analyst has typed the single letter “O.”

7.2 | Problem—Counting is difficult and error‐prone 
when there are many countable entities present in 
an image

As previously discussed, some cameras are positioned to capture a 
wide field of view. In turn, the resulting images can contain many enti‐
ties, perhaps of different types, that must be counted (e.g., Figure 1b). 
A wildlife monitoring example is a herd of animals present in the field 
of view, while a fisheries example is many anglers and nonanglers 
present on a popular lake's shoreline or in boats (Greenberg & Godin, 
2015). All entities must be categorized and counted. The problem is 
that mis‐counting is easy. Common errors include losing track of the 

current count number, double counting that counts an entity more 
than once, and omission errors where an entity is accidentally skipped.

7.2.1 | Design pattern: The system should allow one 
to visually mark the entities present in an image that 
have been counted along with its type

Visually marking entities as the analyst counts them can mitigate 
common counting errors: the analyst can discern what has been 
counted and what is yet to be counted. If different entities are pre‐
sent and being counted, the visual mark could also indicate how that 
entity was identified. Visual marking also affords validation, where a 
(perhaps different) analyst can later review the image and its marked 
entities for counting or classification errors.

7.2.2 | Timelapse example

The Counter data entry control supports interactive counting and 
visual marking and is illustrated in Figure 10. Here, the analyst has 
activated the “Goats” interactive counting mode by clicking its radio 
button. The analyst then counts goats simply by clicking next to each 
one: each click increments the count and adds a colored marker at 
that spot. Markers also work with the magnifying glass, where the 
analyst can inspect entities before marking them. Finally, markers 

F I G U R E  9   A note displaying a text prediction

F I G U R E  1 0   An activated Count control showing the visual 
marks next to the counted goats
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provide feedback as to which Counter button they are associated 
with. For example, hovering over a marker reveals that it was counted 
as a “Goat” (as in Figure 10). Conversely, hovering over the Goats 
Counter button will highlight only those marks in the image counted 
as a “Goat.”

7.3 | Problem—The analyst has to manually re‐enter 
image data even when it is available in a computer‐
readable form

Analysts find it particularly frustrating when they have to re‐enter 
information that is already available electronically. This problem 
usually arises when software does not try to read in that infor‐
mation, or cannot make sense of that information without some 
guidance.

7.3.1 | Design pattern: The system should 
automatically fill in data fields if the information 
is available

The system should try to automatically fill in useful and readily avail‐
able known information. This can include “standard” information 
such as file names, file location in folder, and the date and time the 
image was taken. As well, image files typically contain embedded 

metadata that describes attributes of the image, where some of these 
fields could be of interest and automatically imported. Yet metadata 
introduces its own problems. Most camera vendors embed a mix of 
standard and nonstandard (proprietary) metadata, which means that 
the information available is highly camera‐dependent. For example, 
some may include ambient temperature and GPS location of the sta‐
tion, but others may not. Another issue is that different venders may 
name fields differently, for example, the outside temperature may be 
recorded in one camera as “Ambient temperature,” and in another as 
“Temperature C.” Thus, the analyst should be able to specify what 
metadata fields of interest, if any, should be imported, and where that 
information should go.

7.3.2 | Timelapse example

Timelapse automatically fills in data fields in two ways.

1. Standard file information. Timelapse template schemas always 
include several default data fields representing standard file 
information: its name, its location (as a folder name and rel‐
ative path), and the date and time that image was taken (as 
a combined Date/Time Field). Figure 2, top, shows these data 
fields in the top rows: The grayed out cells are not editable. 
When the analyst first invokes Timelapse on an image set, 

F I G U R E  11   The metadata inspector. The analyst can see what metadata fields are available, and link a particular metadata field to a 
Timelapse data field to import the metadata value into that field across all images
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Timelapse scans every file for that information and fills in those 
corresponding data fields.

2. Metadata. Timelapse includes a metadata viewer, which the analyst 
can invoke on one of the images being analyzed and specify what 
data should be imported. We explain how this works by the example 
illustrated in Figure 11. The metadata viewer displays all the meta‐
data found in the image as a table. The analyst sees, in the first row 
of the table in Figure 11, that the camera has recorded some meta‐
data of interest: the “Ambient Temperature” field that records the 
temperature at the time the image was taken. As annotated in red in 
Figure 11, the analyst can link the Ambient Temperature metadata 
field to a Timelapse data entry Note field—in this case a field called 
“Temperature”—simply by selecting both of them. When the ana‐
lyst clicks the “Populate” button (bottom), the “Temperature” field 
for each and every image is automatically filled in with the Ambient 
Temperate metadata value recorded in each image. The process can 
be repeated for other metadata of interest.

7.4 | Problem—The analyst has to enter information 
that the computer should be able to recognize by 
image analysis

Analysts usually have experience using a variety of other image‐
based systems when doing day to day and recreational tasks. Many 
include capabilities that recognize aspects of an image, with perhaps 
face recognition, bar code reading, and text recognition being com‐
mon examples. Analysts may find it frustrating to enter data that 
they believe could be detected through image analysis and automati‐
cally filled in.

7.4.1 | Design Pattern. The system should, 
if plausible, use image analysis techniques to 
automatically fill in data fields

Generally speaking, image analysis is the extraction of meaning‐
ful data from a digital image. One form of image analysis is image 
recognition, where complex algorithms use models built upon prior 
human classification to identify features in an image, such as ob‐
jects, people, text, faces, and so on. As previously discussed, vari‐
ous researchers are now applying image analysis, and in particular 
image recognition techniques, to classify images from camera traps. 
A typical objective is to see how well various recognition algorithms 
identify animal species (e.g., Norouzzadeha et al., 2018; Schneider 
et al., 2018; Tabak et al., 2018; Yousif et al., 2019), and even in rec‐
ognizing individuals in particular species (e.g., Cheema & Anand, 
2017; Crouse et al., 2017). Simpler image analysis methods can also 
identify other image aspects, for example, differentiate between 
color versus monochrome images, light versus dark images, and so 
on. Because image analysis and recognition are not yet full proof, 
manual verification of the data will be required, at least for the near 
future. Thus, extracted data should be integrated into the analyst's 
workflow in a manner that allows the analysts to check and correct 
that data as needed.

7.4.2 | Timelapse example

1. Dark images. Some of the agencies we worked with used 
cameras set in Timelapse mode that periodically took images 
over a day's 24‐hr period. A good number of those images 
proved of little value because they were too dark (e.g, shots 

F I G U R E  1 2   Timelapse prototype 
incorporating recognition data: bounding 
boxes are drawn around each suspected 
species in the image when its detection 
confidence exceeds a user‐defined 
threshold
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taken at night time) and added clutter to the images being 
reviewed. To help identify overly dark images, Timelapse incor‐
porates an image analyser that automatically classifies images 
against a user‐configurable darkness threshold. Its classification 
is recorded in the “Image Quality” data field of every image 
as either “Dark” or “Ok.” Timelapse also includes the ability to 
filter the displayed images by its data, which we will discuss 
shortly. Analysts could apply a “Dark” image filter to display 
only dark images, where the analyst can quickly review and 
correct the classification if needed, and perhaps discard those 
night‐time shots. Alternately, the analyst could apply an “Ok” 
filter, which displays only the nondark images.

2. Animal detection and recognition. We are currently working with 
several vision researchers who specialize in automated animal de‐
tection (e.g., whether an animal is in an image) and species recog‐
nition (which species the animal is). (Microsoft, 2019; Schneider 
et al., 2018). Figure 12 illustrates a Timelapse prototype that im‐
ports and displays animal detection data produced by Microsoft's 
“Megadetector” model (Microsoft, 2019). Basically, Megadetector 
scans all provided images and outputs data to a file. For each 
image, Megadetector detects whether an animal, person, or vehicle 
is in an image, its confidence of correctness, and the coordinates of 
a bounding box outlining each entity's location. Timelapse imports 
that data and draws a bounding box atop each identified entity 

above a detection confidence threshold (set by the analyst). The 
analyst then uses the standard Timelapse features to select de‐
tected entities and review predictions at given confidence levels 
and accepts or rejects those predictions as needed.

7.5 | Problem—Cameras often record incorrect or 
ambiguous timestamps

We have observed many issues resulting from the way camera traps 
record date and time. While the software can automatically import 
and fill in date/time fields, analysts may have to correct those after 
the fact. The problem is that it is incredibly time‐consuming to man‐
ually correct every image's date and time. Common issues we have 
observed are as follows:

• The camera is not set to the correct date and time when deployed, 
meaning all date/times are off by a fixed amount.

• The camera does not take into account changes in daylight saving 
time, which means a large subset of images are off by an hour.

• The camera's internal clock drifts, for example, it runs slow or fast, 
which means that the date/time of successive images is increas‐
ingly inaccurate.

• The camera records dates ambiguously. For example, consider 
a date recorded as 02/10/2019. This date can be interpreted as 

F I G U R E  1 3   Dialog for correcting 
daylight savings time



13722  |     GREENBERG Et al.

either October 2, 2019 in day/month order, or as February 10 in 
month/day order. Even worse are cameras that record the year 
as only the last two digits, for example, 02/10/10 could be inter‐
preted many different ways. This issue is exacerbated by the way 
different countries set different format standards for encoding 
dates and times (e.g., see Wikipedia: Date format by country).

7.5.1 | Design pattern: The system should provide 
facilities to bulk‐correct common date/time errors

All the above errors care amenable to bulk‐correction, albeit with 
some manual guidance. For example, if the camera was not set to 
the correct date and time, the analyst would only have to enter 
the correct date for the first image. The system could calculate 
the difference between the two, and then use that difference to 
time‐shift the date and time for all subsequent images. Similarly, 
the analyst can specify where the daylight savings time change 
should occur and time‐shift previous or subsequent images by plus 
or minus an hour. To correct for internal clock drifts, the analyst 
can specify the correct time for the last image, where the system 
would then calculate a drift factor and adjust the times across all 
images. When the software detects a possibility for ambiguous 
dates, it can notify the analyst who can then indicate which date 
format to apply.

7.5.2 | Timelapse example

Because we expect analysts to have to correct dates only infre‐
quently, analysts can raise specialized dialogs for each type of 
date/time error mentioned above: each dialog includes full in‐
structions and an easy to use interface for specifying how the 
date should be corrected. For example, Figure 13 illustrates the 
Timelapse dialog for correcting standard/daylight savings time 
errors. The analyst navigates to the first image that should be 
corrected, and then specifies (via various checkboxes) how the 
correction should be applied. A preview of the corrected date and 
time is also displayed.

8  | ISSUE: ENTERING REPETITIOUS DATA

8.1 | Problem—Similar data are often entered and 
re‐entered over many images

Image sets often comprise subsets of very similar images. For example, 
a motion‐triggered camera may capture a sequence of multiple images 
of an animal moving through a scene. As another example, an image 
set can comprise a small set of recurrent but interspersed images, for 
example, images containing goats, or elk, or deer, or nothing at all. The 
data entered that describe these images are often highly similar. Even 
when the analyst recognizes these similarities, she still has to manually 
enter the same data per similar image over and over again. This leads 
to highly repetitious and very time‐consuming data re‐entry.

8.1.1 | Design pattern: It should be easy to re‐enter 
data previously entered elsewhere

Various general techniques are known in other domains for re‐enter‐
ing the same data efficiently. Examples include history lists, copying 
and pasting, predictions based on previous entries, data propaga‐
tion, and others.

8.1.2 | Timelapse example

Timelapse includes several techniques for easing the task of entering 
repetitive data across multiple images.

1. Text prediction in a single data field. As already discussed, 
Notes include auto‐completion capabilities. They maintain a 
history of previously typed text entries and use those to 
predict the rest of the text as the analyst types.

2. Propagating data across a single data field. Every data field includes 
a pop‐up menu that allows the analyst to propagate data across a se‐
quence of images (Figure 14). Propagate from the last nonempty value 
to here uses back‐filling. That is, it will copy the last nonempty value 
entered by the analyst in a data field (e.g., several images back in the 

F I G U R E  1 4   The data field's pop‐up 
menu for propagating data

F I G U R E  1 5   Copy Previous Values 
button, showing previews of the data to 
be copied
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sequence) to every intervening image up to the current image. For 
example, the analyst may enter an image's weather as “Sunny,” then 
navigate forward through the images until the weather changes, and 
then backfill the intervening empty fields with that value. Copy for‐
ward to end is somewhat similar, except it forward‐fills the current 
value to all remaining images in the sequence. It can be re‐applied at 
any time where it over‐writes existing values. For example, an ana‐
lyst may Copy forward Cloudy (as in Figure 14), then move through 
the sequence until the next non‐Cloudy day is noted, enter the new 
value, and then Copy that forward as well. Copy to all copies the cur‐
rent value to all images. For example, the analyst may just enter their 
name once in the “Analyst” field and copy that to all images.

3. Copy Previous Values. Image sets often contain runs of identical 
images, where some of the data entered over the next image are 
identical to what was entered in the previous image. Timelapse 
supplies a “Copy Previous Values” button, illustrated in Figure 
15. Pressing this button copies the previous image's values from 
particular data fields (those set as “Copyable” in the template: See 
Figure 2) to the current image's data fields. As illustrated in Figure 
15, previews of what fields are affected and the data that will be 
copied are displayed and highlighted in green when the analyst 
hovers the mouse over the Copy previous values button.

4. Quickpaste: Copying and pasting multiple data fields. Analysts 
typically recognize when they entering a small set of similar data 
patterns over and over again. Timelapse provides QuickPaste as a 
way for the analyst to capture and name these data entry patterns, 
where the analyst can then paste that pattern into an image's 
data field via a single mouse click. Figure 16 below illustrates this 
through a simple example. The analyst has raised the QuickPaste 

editor (left) to compose a QuickPaste entry: she has titled the 
entry “No goats, sunny” and has selected and filled in which 
data fields should be used (Goats, Weather, Analyst, Comments, 
Publicity) and the values to be pasted. This entry is then added 
to the list of other QuickPaste entries in the QuickPaste window 
(right side). The analyst can then use the QuickPaste window to 
select and paste particular patterns into the image's data entry 
fields. As illustrated in Figure 16, when she hovers over an entry, 
a preview of the values to be pasted appears in the affected data 
fields (highlighted in green). Clicking the entry pastes, those val‐
ues into the field. While requiring some initial setup to create 
these custom entries, QuickPaste becomes a very effective and 
efficient way for entering common data patterns.

8.2 | Problem—Reviewing and entering repetitive 
data image by image can be inefficient

Most image packages display a single image at a time, where the ana‐
lyst has to inspect and enter data for them individually. Bulk‐image 
inspection and data entry are not possible.

8.2.1 | Design pattern: Allow the analyst to 
inspect and bulk‐enter data for multiple images at 
a time

The system should provide facilities for displaying multiple images 
at a time (e.g., a table of large thumbnails). The analyst should be 
able to select particular images with common features, and then 
bulk‐entering data for those selected images all at once. The analyst 

F I G U R E  1 6   The QuickPaste editor 
(left) and the QuickPaste window (right)
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should also be able to choose the appropriate thumbnail size, as the 
features of interest need to be discernable.

8.2.2 | Timelapse example

The overview supplied in Timelapse, discussed above and previously 
illustrated in Figure 7, allows the analyst to review multiple images at 
the same time. The analyst can quickly trade‐off the number of images 
displayed versus the image size (to optimize just‐discernable features 
with the number of images shown) by zooming in or out of different 
overview levels with the scroll wheel. The analyst can then select and 
bulk‐edit data for one or more of those images. For example, Figure 7 
shows how the analyst selected only those images with a full view of 
a goat in it (the first five images), where she has entered a “1” in the 
Goats Counter field and “Full body view” in the Comment field. Those 
values are then applied to all the selected images. Interface subtleties 
are also addressed. As multiple selections are done, the data fields and 
their contents are adjusted to reflect that selection. For example, and 
as also shown in Figure 7, the DateTime data field is disabled as bulk‐
editing that field makes little sense. If a data field in the selected im‐
ages all share the same data value, that value is displayed. Otherwise a 
“…” symbol is displayed to indicate that their values differ.

9  | ISSUE: SORTING AND FILTERING THE 
IMAGE SEQUENCE

9.1 | Problem—Images are often presented in a single 
sort order, usually based on their file name, which may 
not reflect how the analyst wants to view them

Analysts usually inspect images as a sequence, one after the other. 
Thus, the way images are ordered (sorted) can affect what they 
see and how they interpret images as events unfolding over time. 
Consider the example of a motion‐triggered camera taking images 

of one or more animals moving through the scene. If the presenta‐
tion sequence is in time order, the analyst will recognize that those 
images relate to one another, as they are capturing a single event. 
As another example, the analyst may wish to review already classi‐
fied images ordered by a combination of criteria. For example, the 
analyst may want to get a sense of whether the number of goats 
using the pasture in Figure 3 is correlated to weather conditions. 
This can be done by ordering images by weather and then by the 
number of goats. The problem is that most systems typically order 
images only by its file name and do not allow any other sorting 
capabilities.

9.1.1 | Design pattern: Allow the analyst to sort 
images by one or more criteria

Providing the ability to sort by date/time rather than file name is per‐
haps the most fundamental sort capability that should be included. 
While cameras typically add a sequence number to a file name as 
images files are created, there is no guarantee that they will be pre‐
sented in time order for example, alphabetically sorted files named 
1.jpg, 2.jpg… 10.jpg would be presented as 1.jpg, 10.jpg, 2.jpg…, 
which breaks time ordering. Ideally, the software will also allow the 
analyst to sort on any data field or combination of fields and their 
data values.

9.1.2 | Timelapse example

Timelapse provides a sorting capability based on one or two data 
fields of the analyst's choosing. The analyst can quickly select (via 
a menu) common sorting criteria including image load order, date/
time order, how images are organized into folders, and by particular 
data entry field contents. The analyst can also raise a custom sort 
dialog (Figure 17 below), where she can choose primary and second‐
ary sorting criteria from a drop‐down menu that lists labels for the 

F I G U R E  1 7   The sorting dialog



     |  13725GREENBERG Et al.

data fields. In this case, she is sorting by weather and then by Goats. 
Images are then presented in that sort order. The rows in the data 
table in Figure 8 are also updated to that sort order.

9.2 | Problem—The analyst may need to view a 
particular subset of images

Analysts may, at times, be interested in only a subset of the available 
files. Yet finding and viewing the images in this subset can be prob‐
lematic, especially with large image sets comprising tens of thou‐
sands of files. As one example, the analyst may want to verify and 
possibly correct prior image classification category, for example, 
that all system‐classified dark images are indeed dark, that images 
classified by another analyst as “Goats” all contain goats, and so on. 
As another example, the analyst may be interested in only those 
files taken at a certain site and between particular dates. As yet 
another example, the analyst may want to review a particular image 
classification in order to choose an archetypical image, for example, 
an excellent image of a goat to be used for publicity purposes.

9.2.1 | Design pattern: Allow the analyst to specify 
criteria that filters which images are displayed

The system should provide the analyst with a query facility and search 
engine. The analyst should be able to specify a search query, where 
the system filters images so that it only displays images matching that 
query. Query criteria should include queries against the values recorded 
in the image data fields.

9.2.2 | Timelapse example

Timelapse incorporates a free database (SQLite: http://www.sqlite.
org) to store the data entered by the analyst. SQLite includes a query 
language for searching for matching records. Thus, Timelapse can per‐
form any standard database search against that data, where search 
results are returned as records describing the matching images. Those 
images are then displayed. However, it is unrealistic to expect ana‐
lysts to compose cryptic SQL query expressions. As a better alterna‐
tive, Timelapse displays a dialog box listing all data fields, as illustrated 
in Figure 18. The analyst then composes a query by selecting the 
data fields of interest, and then specifying the values that should be 
matched. The system translates that into an SQL query and returns 
only those images that match the query. For example, in Figure 18, 
the analyst is interested in the interaction between goats and hikers 
and wishes to see only those images that have both a goat and a hiker 
in it. The analyst selects the Goats and Hikers data fields for use (the 
“Select” column on the left) and has specified that both have values 
greater than 0 (the “Expression column”). The “AND” checkbox at the 
top indicates that both those constraints must be satisfied. Feedback 
(bottom right) indicates that three files match that query. After click‐
ing Okay, only those three images will be available for navigation and 
display. Had the analyst had clicked the “OR” checkbox instead, then 
all returned images would contain either one or more goats, or one or 
more hikers, or both. The Timelapse Sort function can also be applied 
to the results, for example, to show all images with both goats and 
hikers, but sorted by the number of goats and then by the number of 
hikers.

F I G U R E  1 8   The query dialog for 
filtering images from view

http://www.sqlite.org
http://www.sqlite.org
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9.3 | Problem—The analyst may need to consider 
images taken over a short time period as a unit

As previously mentioned, camera traps set in motion‐capture mode 
are often triggered when an animal or herd is moving through a scene. 
This can result in a burst of images that capture that activity, which we 
define as an episode. Episodes are sometimes treated differently than 
individual images. For example, we saw analysts manually determine 
which images fall into an episode (e.g., by examining their timestamp), 
count the unique wildlife seen in that episode, and enter that data into 
only a single image. They do this to avoid inflating the number of wildlife 
present. To illustrate, consider the analyst who has to count the number 
of hikers using a trail. A single hiker may appear on several images over 
time, perhaps due to motion triggering, or because the hiker is milling 
about in the camera's field of view. To avoid double counting, the ana‐
lyst would only count the hiker once in this series. The problem is that it 
is laborious for the analyst to recognize which images belong together 
in an episode.

9.3.1 | Design pattern: The system should 
identify and group episodes of time‐related images

Various strategies can be used to identify episodes. For example, 
some cameras include metadata that indicate whether an image is 
part of a motion‐capture sequence, as well its position in that se‐
quence (e.g.,1/5, 2/5, etc.). While useful, it is limited as an episode 
can easily comprise two or more back to back motion‐capture se‐
quences. Alternately, a reasonable heuristic is to have the system 

examine the time interval between time‐ordered images. If the in‐
terval is small, the system would group them together as part of an 
episode.

9.3.2 | Timelapse example

Timelapse uses the heuristic above, where the analyst can ask it to 
group together images separated by a small user‐configurable time in‐
terval. Timelapse then annotates each image to indicate how images 
relate to one another as an episode. Figure 19 is similar to Figure 7, 
except that it now illustrates how episode annotations appear in the 
overview. The first image in an episode is colored red (top left) so that 
the analyst can visually identify the start of the episode. That and sub‐
sequent images in the episode are given a sequence number (e.g., 1/3, 
2/3, and 3/3). A timestamp is also overlaid atop the image, so that 
the analyst can examine the time differences between those images 
if needed. If an image does not belong to an episode, it is marked as 
“Single” (not shown). In Figure 19, the first ten and the last five images 
are identified as two different episodes of a goat walking through the 
scene. In this case, the analyst does not want to double count the same 
goat. Consequently, she selects the best image in each episode (Img04 
and Img15), and increments the Goats counter of only that image.

10  | DISCUSSION

Decisions on what software is used to inspect and encode image 
data have consequences on how well an analyst can perform their 

F I G U R E  1 9   Episodes. Here, the analyst is using a strategy of entering data on only one image per episode
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job. Yet, we question how some agencies make their decision. 
We have seen some consider only the stock software available 
on typical computers: For example, Microsoft Photo Viewer to 
view images, and an Excel spreadsheet for data entry. This is inef‐
ficient. For example, we previously studied how analysts entered 
data using spreadsheets versus an earlier version of Timelapse. 
Timelapse provided time improvements of ~200% or more, which 
translates into significant cost savings (Greenberg & Godin, 2015). 
We saw other agencies use either researcher‐based software or 
the stock software that came bundled with their cameras without 
considering the consequences of that choice on the analyst. Some 
agencies may also make their choice based on other factors, such 
as how the software stores data in a format amenable to stand‐
ardization or later analysis versus how that data are actually en‐
tered by analysts. We advocate that decisions on which software 
is used should deeply consider how well they support the analysts' 
tasks. The design patterns described earlier should be part of that 
consideration. Poor system choices imply tedious data entry, are 
error‐prone (which affects the validity of the collected data), are 
morale‐sucking, and—in the long run—are very expensive in terms 
of analyst time.

While our design patterns mitigate various problems faced by 
analysts, we recognize that these problems range in seriousness, in 
frequency of occurrence, in applicability to particular projects, and in 
consequences if they are not addressed. We also recognize that our 
catalog of design patterns is just a starting point and future work is 
required: There are surely other problems and design patterns that 
could and should be articulated and considered in camera trap analysis 
design. For example, if image analysis is done through crowdsourcing 
and citizen science (Swanson, Kosmala, Lintott, & Packer, 2016), de‐
sign patterns specific to that audience would likely emerge. Design 
patterns can also extend beyond interface features. For example, they 
can recognize and address the problems related to data management 
issues (e.g., Ivan & Newkirk, 2016), data validation, and data standard‐
ization and scaling across the field (e.g., Steenweg et al., 2017).

We also stress that design patterns are not “feature list.” Rather, 
each design pattern suggests a design approach that can be adapted, 
refined, and specialized to best fit the project, the background and 
needs of the analysts, and the equipment available. Each design 
pattern can also inform decision‐making. If the problem and design 
approach is relevant, that should become a factor influencing the 
requirements analysis of the software being developed or for a man‐
ager deciding between available software systems.

We also show how our own Timelapse system implements the 
design pattern. These are intended to serve as concrete examples 
rather than prescriptions. Of course, the specific techniques used 
by Timelapse could be implemented “as is” in other camera trap 
systems. However, we recognize—and indeed encourage—future 
system designers to see beyond our own solutions, where they 
should seek solutions that implement the design pattern in even 
better ways. For example, Timelapse was intentionally designed 
to work on lowest common denominator computers typically 
available to analysts: Microsoft Windows running a keyboard and 

mouse on a conventional low‐cost computer as found in many 
agencies. Thus its design eschewed more modern interaction tech‐
niques, such as touch interaction, as we felt it would limit its de‐
ployment. If a system such as Timelapse was redesigned to run on 
(say) a touch‐based tablet, we would expect different design solu‐
tions that still follow the above design pattern recommendations. 
Similarly, Timelapse was designed to work off‐line so analysts 
could work in the field on disconnected laptops. If Timelapse was 
redesigned to work as a networked client or over the web, design 
solutions would have to account for performance aspects such as 
network bandwidth and latency that could affect responsiveness 
and rapid image display.

As mentioned, we recognize that our list of design patterns is 
incomplete, where future work should elicit other design patterns 
to produce a comprehensive catalog. Researchers should continu‐
ally conduct interviews and observation of analysts as they work to 
gain an even more nuanced understanding of their core tasks and 
problems. Because camera traps are broadly used for many quite 
different purposes, domain‐specific design patterns should be de‐
veloped. Other software systems should be reviewed and compared 
for how they address problems and deliver solutions not covered by 
Timelapse, and whether those can be encapsulated as useful design 
patterns. As well, our design patterns are limited to only the ana‐
lyst's interface for inspecting images and entering data. Future work 
should consider design patterns for other related tasks. One exam‐
ple concerns interface patterns that suggest how a project manager 
can view and manage data within and across projects. To illustrate, 
the Reconyx MapView software (Reconyx Inc, 2016) includes a map 
interface that lets the project manager or analyst geo‐locate study 
sites and stations onto it, and which lets them drill down into the 
captured data.

Finally, we recognize that elements of various design patterns 
are based on aspects well‐known within the field of human–com‐
puter interaction, information visualization, and experience de‐
sign. These fields have a rich literature of research, practitioner's 
guides, and texts relating to the design of systems for human use, 
including methodologies that describe how to test how well a per‐
son can use that system and its features (e.g., Shneiderman et al., 
2016; Spence, 2014). As well, various stock components and inter‐
action techniques are readily available in software development 
tools, where most are based upon best practices of user interac‐
tion. The catch is that decisions of what is relevant must still be 
made on the needs of the domain being considered. This is the 
purpose of this paper, where it identifies problems and solutions 
as design patterns relevant to the domain of camera trap image 
analysis.
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ENDNOTE S
1 Timelapse availability is described at the end of this paper. 
2 The cited paper concerns an earlier version of Timelapse. While it in‐

cludes descriptions of a subset of interface features explored in this 
paper, those descriptions tend to be more superficial, are not provided 

as design patterns, or discussed in that context. The current paper also 
covers design patterns of features not present in that earlier system or 
paper. 

3 A narrated video illustrating many of the Timelapse features de‐
scribed in this paper can be found at: http://grouplab.cpsc.
ucalgary.ca/grouplab/uploads/Publications/Publications/2019‐
DesigningCameraTrapSoftware.TechSymp.mp4 

4 An image set as the collection of images being analyzed by an analyst. 
The images that comprise an image set depends on how the project 
manager conceptualizes and manages images as a set. As one example, 
an image set can comprise only the images just extracted from the SD 
card at a particular camera station at the end of a servicing period. 
Alternately, an image set can comprise all images at a particular station, 
where new images extracted from a servicing period are added to the 
collection of older (perhaps already analyzed) images. As a further ex‐
ample, an image set can comprise all images taken from multiple cam‐
era stations at a particular study site. 

5 This paper uses a deliberately simple schema/template for illustration. In 
practice, schemas can be quite rich and complex. 
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