
Evaluation Strategies for HCI Toolkit Research
David Ledo1*, Steven Houben2*, Jo Vermeulen3*,

Nicolai Marquardt4, Lora Oehlberg1 and Saul Greenberg1

1 Department of Computer Science, University of Calgary, Canada {first.last}@ucalgary.ca
2 School of Computing and Communications, Lancaster University, UK s.houben@lancaster.ac.uk

3 Department of Computer Science, Aarhus University, Denmark jo.vermeulen@cs.au.dk
4 UCL Interaction Centre, University College London, UK n.marquardt@ucl.ac.uk

ABSTRACT
Toolkit research plays an important role in the field of HCI,
as it can heavily influence both the design and implementa-
tion of interactive systems. For publication, the HCI commu-
nity typically expects that research to include an evaluation
component. The problem is that toolkit evaluation is chal-
lenging, as it is often unclear what ‘evaluating’ a toolkit
means and what methods are appropriate. To address this
problem, we analyzed 68 published toolkit papers. From that
analysis, we provide an overview of, reflection on, and dis-
cussion of evaluation methods for toolkit contributions. We
identify and discuss the value of four toolkit evaluation strat-
egies, including the associated techniques each employs. We
offer a categorization of evaluation strategies for toolkit re-
searchers, along with a discussion of the value, potential bi-
ases, and trade-offs associated with each strategy.
Author Keywords
Toolkits; user interfaces; prototyping; design; evaluation.
ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.
INTRODUCTION
Within the field of HCI, Greenberg [27] defined toolkits as a
way to encapsulate interface design concepts for program-
mers, including widget sets, interface builders, and develop-
ment environments. Such toolkits are used by designers and
developers to create interactive applications. Thus, they are
best seen as generative platforms designed to create new ar-
tifacts, while simplifying the authoring process and enabling
creative exploration.
While toolkits in HCI research are widespread, researchers
experience toolkit papers as being hard to publish [72] due
to various biases. For example, some reviewers consider
toolkits as merely engineering, as opposed to research. An-
other bias occurs when reviewers demand toolkit evaluation
– often by a particular method – without considering whether
such an evaluation is in fact necessary or appropriate to the
particular toolkit contribution. Consequently, acceptance of
toolkits as a research contribution remains a challenge and a
topic of much recurrent discussion [27, 68, 77]. In line with

other areas of HCI [27, 77], we should expect HCI toolkit
research to use appropriate evaluation methods to best match
the particular research problem being considered [28]. How-
ever, while the current literature does use evaluation meth-
ods, there is little overall reflection on what methods are used
to evaluate toolkits, when these are appropriate, and how the
methods achieve this through different techniques.
The last two decades have seen an increase in HCI toolkit
papers [61]. Papers typically employ a range of evaluation
methods, often borrowing and combining techniques from
software engineering, design, and usability evaluation. We
can consider how toolkit researchers collectively derive what
evaluation methods are useful, when they are appropriate and
how they are performed.
Based on an analysis of 68 representative toolkit papers, this
paper contributes an overview and in-depth discussion of
evaluation methods for toolkits in HCI research. We identify
four types of evaluation strategies: (1) demonstration, (2) us-
age, (3) technical benchmarks, and (4) heuristics. We pre-
sent these four evaluation types and discuss the value and
biases associated with each strategy. Researchers can use this
synthesis of methods to consider and select appropriate eval-
uation techniques for their toolkit research.
WHAT IS A TOOLKIT?
Within HCI literature, the term ‘toolkit’ is widely used to de-
scribe various types of software, hardware, design and con-
ceptual frameworks. Toolkit research falls into a category of
constructive research, which Oulasvirta and Hornbæk define
as “producing understanding about the construction of an in-
teractive artefact for some purpose in human use of compu-
ting” [78]. They specify that constructive research is driven
by the absence of a (full) known solution or resources to im-
plement and deploy that solution. As constructive research,
toolkits examine new conceptual, design or technical solu-
tions to unsolved problems. To clarify the scope of our re-
view, we introduce a definition and summary of what is
meant by “toolkit” and “toolkit evaluation”, and why HCI
researchers build toolkits.
Defining a Toolkit
We extend Greenberg’s original definition [27] to define
toolkits as generative platforms designed to create new in-
teractive artifacts, provide easy access to complex algo-
rithms, enable fast prototyping of software and hardware in-
terfaces, or enable creative exploration of design spaces.

* Authors contributed equally to the work.

Technical Report (cite as):
Ledo, D., Houben, S., Vermeulen, J., Marquardt, N., Oehlberg, L., and
Greenberg, S. (2017). Evaluation Strategies for HCI Toolkit Research.
Report 2017-1096-03, Department of Computer Science, University of Cal-
gary, Calgary, AB, Canada, T2N 1N4. September.

mailto:%7bfirst.last%7d@ucalgary.ca
mailto:s.houben@lancaster.ac.uk
mailto:jo.vermeulen@cs.au.dk
mailto:n.marquardt@ucl.ac.uk

Hence, toolkits present users with a programming or config-
uration environment consisting of various defined permuta-
ble building blocks, structures, or primitives, with a sequenc-
ing of logical or design flow that defines a path of least re-
sistance. To simplify the workflow, toolkits may also include
automation (e.g. recognizing and saving gestures [62]) or
monitoring of real-time data (e.g. visualization tools [48,59])
to provide developers with a better understanding of their
own process and results.
Why Do HCI Researchers Build Toolkits?
Before discussing toolkit evaluation, we elaborate on what
they contribute to HCI research. Wobbrock and Kientz posi-
tion toolkits as an artifact contribution, where “new
knowledge is embedded in and manifested by artifacts and
the supporting materials that describe them” [106]. We sum-
marize discussions by Myers et. al [68], Olsen [77] and
Greenberg [27] on the value of HCI systems research into
five goals of toolkits:
G1. Reducing Authoring Time and Complexity. Toolkits
make it easier for users to author new interactive systems by
encapsulating concepts to simplify expertise [27,77].
G2. Creating Paths of Least Resistance. Toolkits define
rules or pathways for users to create new solutions, leading
them to right solutions and away from wrong ones [68].
G3. Empowering New Audiences. Given that toolkits reduce
the effort to build new interactive solutions, they can enable
new audiences to author these solutions. For example, Olsen
[77] discusses how interface builders opened interface de-
sign to artists and designers.
G4. Integrating with Current Practices and Infrastruc-
tures. Toolkits can align their ideas to existing infrastructure
and standards, enabling power in combination [77] and high-
lighting the value of infrastructure research for HCI [23]. For
example, D3 [12] integrated with popular existing standards,
which arguably contributed significantly to its uptake.

G5. Enabling Replication and Creative Exploration.
Toolkits allow for replication of ideas that explore a concept
[27], which collectively can create a new suite of tools that
work together to enable scale and create “larger and more
powerful solutions than ever before” [77].
Evaluating Toolkits
One common thread among HCI toolkit and system research-
ers is the difficulty in publishing [72]. This is partly due to
reviewers who require evaluation methods, whether or not
the method is necessary or appropriate to the toolkit’s contri-
bution. Part of the problem is a lack of clear methods [72] or
a definition of ’evaluation’ within the toolkit context. As
toolkit designers, our stance is that the evaluation of a toolkit
must stem from the claims of the paper. This means under-
standing and accepting that evaluation is in fact a means to
follow through with the proposed claims of the innovation,
and ask ourselves: what are we getting out of the evaluation?
Toolkits are fundamentally different from systems that per-
form one task (e.g., a system, algorithm, or an interaction
technique) as they provide generative, open- ended authoring
within a solution space. Toolkit users can create different so-
lutions by reusing, combining and adapting the building
blocks provided by the toolkit. Consequently, the trade-off
to such generative power is the large space that remains un-
der explored. Thus, evaluation methods that only examine a
small fragment of use are not fit to demonstrate a research
contribution, nor will define a toolkit’s success. As summa-
rized by Olsen [77] in his reflective paper on evaluating sys-
tems research: “simple metrics can produce simplistic pro-
gress that is not necessarily meaningful.” The central ques-
tion is thus: what is an evaluation? And, how do we reflect
and evaluate such complex toolkit research?
METHODOLOGY
This paper elucidates evaluation practices observed in mod-
ern toolkit research within the HCI community. To build up
an in-depth understanding of these evaluation practices, we

Table 1. Overview of all toolkits in the sample. Types: (1) Demonstration, (2) Usage, (3) Technical Performance and (4) Heuristics.

report the results of a meta-review that is based on an analy-
sis of a representative set of toolkit papers.
Dataset
To collect a representative set of HCI toolkit papers, we gath-
ered 58 papers that matched these inclusion criteria:
Publication Venue and Date: we selected toolkit papers that
were published since 2000 at the major ACM SIGCHI ven-
ues (e.g., CHI, UIST, DIS, Ubicomp, TEI, MobileHCI).
Keywords and Definition: we included papers containing
keywords: toolkit, design tool, prototyping tool, framework,
API. All papers comply with our proposed toolkit definition.
We identified 10 additional papers based on exemplary im-
pact (e.g., citations, uptake) such as D3 [12], Piccolo/Jazz
[6], and the Context Toolkit [85]. In total, the dataset in-
cludes 68 papers (Table 1). While the dataset does not en-
compass all toolkit papers, it is a representative sample from
which we could (1) gather insight and (2) initiate meaningful
discussion about evaluation.
Analysis and Results
The dataset was analyzed via several steps. One of the au-
thors conducted open-coding [14] on a subset of our sample,
describing the evaluation methods used in each publication.
Next, we collectively identified an initial set of evaluation
methods and their variations as used across papers. At this
point, four other co-authors performed focused coding [14]
on the entire sample. We continued to apply the codes to the
rest of the sample, iteratively refining and revisiting the cod-
ing schema. After coding all papers in our sample, we cre-
ated categories [14] to derive the overarching evaluation
strategies used by toolkit researchers, thus arriving at the four
evaluation strategies that we identify as (1) demonstration,
(2) usage, (3) technical evaluation, and (4) heuristic evalua-
tion. Table 1 summarizes the analysis.
In the following sections, we step through each of the four
evaluation types. For each type, we discuss their value, spe-
cific evaluation techniques, challenges and opportunities to
further strengthen the evaluation based on our experience,
the challenges and our own insights from the data.
TYPE 1: DEMONSTRATION
The now famous “mother of all demos” by Douglas Engel-
bart [24] established how demonstrating new technology can
be a powerful way of communicating, clarifying and simply
showing new ideas and concepts. The transferability of an
idea to neighbouring problem spaces is often shown by
demonstrating application examples [78]. In our sample, 65
out of 68 papers used demonstrations of what the toolkit can
do, either as the only evaluation method (19/68) or in com-
bination with other methods (46/68). Demonstrations show
what the toolkit might support, as well as how users might
work with it, ranging from showing new concepts [29,85], to
focused case studies [4,90] to systematic design space explo-
rations [40,50,59].

Why Use Demonstrations?
The goal of a demonstration is to use examples and scenarios
to clarify how the toolkit's capabilities enable the claimed ap-
plications. A demonstration is an existence proof showing
that it is feasible to use and combine the toolkit’s components
into examples that exhibit the toolkit’s purpose and design
principles. These examples can explain different aspects of
the toolkit, such as using the basic building blocks, demon-
strating the workflows, or discussing the included tools.
Since toolkits are a ‘language’ to simplify the creation of new
interactive systems [27], demonstrations describe and show
how toolkits enable paths of least resistance for authoring.
In its most basic form, a demonstration consists of examples
or case studies exploring the expressiveness of the toolkit by
showing a range of different applications. More systematic
approaches include explorations of the threshold, ceiling or
design space supported by the toolkit. The threshold is the
user’s ability to get started using the toolkit, while ceiling
refers to how much can be achieved using the toolkit [68].
While demonstrations may not show the full ‘height’ of the
ceiling, they are an indicator of the toolkit’s achievable com-
plexity and potential solution space. The principles and goals
of the toolkit can also be demonstrated through a design
space exploration which enumerates design possibilities
[101] and gives examples from different points in that space.
Evaluation Techniques as Used in Demonstrations
From our sample, we observed several techniques to demon-
strate the toolkit. These techniques are not mutually exclu-
sive and can be combined in different ways.
1. Novel Examples. Demonstration of a toolkit can be done
by showing the implementation of novel applications, sys-
tems or interaction techniques. The Context Toolkit [85] is a
classic case of how example applications are used to demon-
strate the underlying concepts of context-awareness [91]. A
more recent example is WorldKit [108], which demonstrates
projection-based touch interfaces on everyday surfaces in
four different environments. Similarly, in DiamondSpin
[92], the authors explore the capabilities of their multi-touch
table toolkit by showing five different tabletop designs. Pe-
ripheral Displays Toolkit [63] uses three applications to
demonstrate how the toolkit enables new peripheral displays.
A last example is Sauron [87], which describes three proto-
types that demonstrate the range of interactive components
offered by the toolkit. What is important for these examples
is that they detail exactly how the features, design principles,
and building blocks enable application novelty.
2. Replicated Examples. Toolkits often facilitate authoring
of systems that were previously considered difficult to build.
Recreating prior applications, systems or interaction tech-
niques shows how the toolkit supports and encapsulates prior
ideas into a broader solution space. For instance, Prefuse [35]
explicitly states that they “reimplemented existing visualiza-
tions and crafted novel designs to test the expressiveness, ef-
fectiveness, and scalability of the toolkit”. In d.tools [34], the
authors recreated a classic iPod interface, while the TouchID

Toolkit [62] recreated prior work from multiple external
sources (e.g. Rock and Rails [103]) in bimanual interaction.
Similarly, SwingStates [2] and Prefab [18] illustrate the ex-
pressiveness and power of their toolkit by recreating existing
interaction techniques from the research literature (e.g., Bub-
ble Cursor [31], CrossY [1]). Importantly, these examples
demonstrate how toolkits support existing techniques and ap-
plications with less complexity, effort and development time.
Furthermore, replicating existing applications demonstrates
generalizability across a broad variety of examples.
3. Case Studies. Because toolkits often support complex ap-
plications, case studies (typically concurrent research pro-
jects) can help explore and elaborate the toolkit in greater
depth. Five of our 68 papers included case studies to reveal
what their toolkit can do. The iStuff toolkit [4] presents case
studies of other research projects that use the toolkit. Simi-
larly, the SoD toolkit [90] describes its use in complex case
studies: an oil and gas exploration application and an emer-
gency response system. Prefuse [35] reports on the design
of Vizster, a custom visualization tool for social media data.
Although case studies are less common than examples, they
convincingly demonstrate the toolkit’s application within
complex scenarios as opposed to small example applications.
4. Exploration of a Design Space. A design space explora-
tion exemplifies the breadth of applications supported by the
toolkit by fitting it into a broader research theme. Design
spaces often consist of dimensions with properties (categor-
ical or spectrum variables) [101] that examples can align to.
A toolkit author can create a collection of examples that each
examine different points in the design space. For example,
WatchConnect [40] describes a design space of how the
toolkit supports interaction across a watch prototype and a
second screen. By providing five examples, including both
replicated and novel techniques, the authors satisfy the
smartwatch + second screen design space by example. The
Proximity Toolkit [59] similarly describes the design dimen-
sions of proxemic interaction [5] (e.g. distance, orientation,
identity) and demonstrates through examples how the toolkit
enables new proxemic-aware applications. Pineal [50] ex-
plores different ways of using and repurposing mobile sen-
sors and outputs to author smart objects, using a combination
of novel examples and replication. DART [56] is a final ex-
ample of a toolkit supporting the exploration of a design
space through a range of ‘behaviors’ and examples. A design
space exploration is thus a systematic way of trying to map
out possible design boundaries. Although exploring the full
design space is often impossible, examples demonstrate the
breadth of designs enabled by the toolkit.
5. ‘How To’ Scenarios. Toolkit papers can demonstrate a
step-by-step breakdown of how a user creates an applica-
tion. Scenarios break down tasks into individual steps that
demonstrate the workflow and show the results of each step.
We observed three ways to describe scenarios. One way is to
dedicate a section to describe how an example is authored
(e.g. RetroFab [82], Pineal [50]). A second way is to use a

scenario throughout the paper to show how different parts of
an example come together (e.g. the Proximity Toolkit [59]).
Demo scenarios, as in VoodooSketch [10] and Circuitstack
[99] are common ways of explaining how users might expe-
rience the path of least resistance provided by the toolkit. A
third way to demonstrate toolkit use is by including code
samples. Examples like Prefuse [35] and Weave [15] use
code snippets explaining how certain design principles or
building blocks are supported directly in code.
Challenges
Using demonstrations to ‘evaluate’ a toolkit poses several
challenges. First is its rationale: although novel demonstra-
tions built atop the toolkit illustrate toolkit expressiveness, it
is sometime unclear who would use such applications and
why. Second, while creating demonstrations can describe
‘what if’ scenarios, the demonstration itself may not show
that it can indeed be used by other people beyond the
toolkit’s authors. Such lack of external validation may pose
issues depending on the claims made in the paper. Third, ex-
ample applications often aim to implement aspects of a po-
tential future today; however, the target audience might not
yet exist or simply be unclear. Speculating on the intended
audience creates the risk of an elastic user [16], where the
definition of the target audience is stretched to accommodate
implementation decisions and toolkit design. Finally, many
toolkit systems (e.g. [59, 83, 107]) work with specialized or
custom-built hardware. In creating these arrangements, the
authors could alienate the potential audience, as some end-
users would not be able to recreate these complicated setups.
Opportunities to Strengthen Evaluation
Provide Rationale for Toolkit Design and Examples. Within
every piece of technology lie assumptions, principles and ex-
periences that guide the design of that technology. Many of
these assumptions can come across as arbitrary when design-
ing toolkits. However, toolkit authors often rely on their ex-
perience even if they do not explicitly mention it. Discussing
the understanding of the challenges, perhaps informed by
earlier studies or experiences with other tools or toolkits, can
help address why different decisions were made. Nebeling et
al.’s XD toolkit suite [69,70,71] is a compelling example of
how several toolkits were constructed to structurally and sys-
tematically explore the large design space of cross-device
computing. The design and development of each toolkit is
clearly motivated by earlier experiences in designing toolkits
and systems. More generally, research by design [36] helps
explore concrete implementations of ideas.
First-Hand Experience. Toolkit authors often have experi-
ence creating applications that the toolkit will support, and
thus are genuinely familiar with the development challenges
and steps that need simplifying. This experience leads to au-
tobiographical design [73] informing the process. For in-
stance, Phidgets [29] discusses the authors’ frustrations au-
thoring hardware-based applications, which informed their
design and implementation. A toolkit may also leverage ex-
periences of building similar toolkits. For example, D3 [12]

evolved out of the authors’ earlier experiences with creating
visualization toolkits (e.g., Prefuse [35], ProtoVis [11]).
Prior Work. Challenges identified in previous research can
help motivate the design of toolkits. For instance, the Con-
text Toolkit [85] describes challenges in authoring context-
aware applications based on prior work (e.g. new types of
sensing from multiple distributed sources).
Formative Studies. Authors can perform formative studies to
understand their intended target audience. For instance, in
d.tools [34], the authors conducted interviews at product de-
sign companies. Understanding current practices can help
address challenges with the design of the toolkit.
Discuss Boundaries and Underlying Assumptions. Despite
including a ‘limitations’ section, toolkit authors often do not
discuss aspects of the toolkit that do not work well. Critically
discussing what does not work or the tasks that the toolkit
complicates might help steer away from the ‘sales pitch’.
TYPE 2: USAGE
While demonstrations answer the question of ‘what can be
built with the toolkit’, evaluating usage helps understand
‘who can use the toolkit’ under certain circumstances. To
evaluate if and how a user group can actually use the tool, it
is important to investigate how that user group uses and ap-
propriates the toolkit. Our sample shows that more than half
of the papers (35/68) include usage studies. Only one toolkit
paper uses a usage study as the only evaluation method [39].
Usage evaluations are commonly combined with demonstra-
tions (33/68) or technical evaluations (9/68).
Why Evaluate Usage?
The defining feature of usage evaluations is the involvement
of external users working with the toolkit. Much of usage
evaluation is informed by traditional user studies [22,49,76],
and can help verify whether the toolkit is (1) conceptually
clear, (2) easy to use, and (3) valuable to the audience.
Given the prevalence of usability studies in HCI (e.g.
[22,76]), many toolkit papers examine the toolkit’s usability
— i.e., how easy it is to use the toolkit. Common measures
are users’ opinions, preferences, completion time, the num-
ber of steps (e.g. lines of code), or number of mistakes. In
addition, given that toolkits often propose new workflows, or
enable creation of new kinds of artifacts, it is important to
know if it will be useful to the target audience. In looking for
utility, researchers inquire on the audiences’ interest or out-
comes. One way to assess utility is to look at the output of
the toolkit. This consists of investigating the artifacts that the
users authored with the toolkit. Lastly, a usage evaluation
might look to understand use of the toolkit: how the user ap-
propriates a toolkit, how it is used over time, and what kind
of workflows are developed. The processes together with the
end results can point towards paths of least resistance, some
which may differ from the ones the toolkit authors’ intended.

Evaluation Techniques as Used in Usage Studies
Given the involvement of external people in usage evalua-
tions, toolkit authors can perform a wide variety of evalua-
tions with users. The first four techniques refer to controlled
lab experiments, where participants are given consistent
tasks that can yield accurate measures, such as completion
time. The fifth technique is somewhat more aligned with ‘in
the wild’ studies, which provides more realism [64]. The last
two techniques are means of eliciting user feedback.
1. Usability Study. When toolkits claim that they facilitate a
process, authors may find it sensible to carry out usability
study. This can help identify issues with the toolkit, using
measures of participants’ performance (e.g. time, accuracy),
and further qualitative feedback. Participants are typically
given programming tasks that can exploit various aspects of
the toolkit. These programming tasks tend to be closed-
ended, though some may include a small degree of open-end-
edness (e.g. [33]). To increase control, some tasks may in-
corporate pre-written skeleton code (e.g. [69]). Many toolkit
usability aspects can be examined. In Papier-Mache [48], the
authors evaluated the usability of the toolkit’s API, which
revealed inconsistency in naming of software components
and aspects of the toolkit that were insufficiently docu-
mented. Hartmann et al. coined the term “first-use study”
[34] in which participants are exposed to a toolkit for the first
time and assigned different tasks. In d.tools [34], the study
aimed at determining the threshold [68] of the system, while
in Exemplar [33] the focus was on critically determining the
successes and shortcomings of the tool. The study in Exem-
plar [33] started with close-ended tasks and then moved on
to a more open-ended task. Some toolkit authors report mod-
ifying the toolkit to address issues identified in a usability
study [48,55], which Greenberg and Buxton suggest is the
predominant goal of most usability studies [28].
2. A/B Comparisons. One way to suggest improvement over
existing work is to compare the new toolkit to a baseline.
Baselines include not having a toolkit, or working with a dif-
ferent toolkit. In MAUI [37], the authors compare different
platforms to measure what they defined as effort: number of
classes, total lines of code, lines written for feedthrough and
development time. By comparing it to GroupKit (a prior
toolkit that supports a similar task [84]) and Java (no toolkit),
the authors can show the degree of improvement from the
current state-of-the-art. A/B comparisons could test for vari-
ations within the toolkit. Lin and Landay [54] compared a
full version of their prototyping tool to one without the key
features (patterns and layers) to determine the improvement
and preference. Finally, both Paperbox [102] and XDStudio
[70] compare different configurations of their toolkit.
3. Walkthrough Demonstrations. A walkthrough demon-
stration consists of showing the toolkit to a potential user and
gathering their overall impressions. Unlike cognitive
walkthroughs [80], walkthrough demonstrations are not
about the user working directly with the tool to identify usa-

bility problems. In a walkthrough demonstration, the experi-
menter has full control and explains the workflow to partici-
pants, together with examples and even limitations. This ap-
proach is particularly suitable when toolkit creators want to
get feedback on the utility of their toolkit, as it removes the
focus from using the toolkit (as one might find in a usability
study) and shifts it towards the value of having the toolkit.
While the walkthrough technique has not been explored ex-
tensively, RetroFab [82] is one example of this approach.
While this technique is useful to gather feedback on the idea
rather than the specific toolkit implementation, it could also
serve well for toolkits that are not mature enough for usabil-
ity testing deployment.
4. Observation. Direct observation helps inform how users
approached the toolkit to solve problems ranging from closed
tasks requiring a specific solution to a given problem, to open
tasks where the participants can formulate the problem and
use the toolkit to create their own solution. While our ana-
lyzed papers rarely presented any in-depth discussion of such
processes or workflows, they did provide examples of its use.
HapticTouch [51] tested participants’ ability to transfer con-
cepts about haptics, which were provided at varying levels of
abstraction, into an interactive application: its authors as-
sessed the paths of least resistance the toolkit afforded to
solve both open and close-ended tasks. Our analysis also saw
observational studies used within short-term [79] and long-
term [47,98] workshop settings involving multiple partici-
pants. For example, Pfeiffer et al. [79] asked workshop par-
ticipants to brainstorm ideas and create Wizard-of-Oz proto-
types using the toolkit. Their video analysis discusses not
only the applications created, but the in-depth details of how
their creations were made. In C4 [47], participants attended
3-week sessions of workshops, with some staying further for
a 4-week artist residency: observation informed its creators
on how design decisions held up in the implementation.
5. Take Home Studies. Some external validity [64] can be
acquired by conducting experiments outside lab settings.
While it is difficult to deploy a toolkit before it has gained
broader acceptance, researchers can provide their toolkit to
“early adopter” participants. Participants receive the toolkit
(and all necessary components and documentation) to create
any applications of their liking within a given timeframe (e.g.
a week). Phidgets [29], XDStudio [70] and the Proximity
Toolkit [59] are iconic examples where students in an ad-
vanced HCI class were given access to the toolkits and nec-
essary hardware components to create interesting examples
as a prompt. They all demonstrate how students could easily
work with the proposed constructs, where they focused on
design aspects of the assignment versus low-level coding.
6. Likert Scale Questionnaires. Likert scales provide a non-
parametric value pertaining to a question. The questions can
later be analyzed either through non-parametric tests or by
examining the median values. In toolkit research, while often
acting as validation of claims (e.g. ease of use), Likert scales
can formalize the results to clarify a hypothesis. For instance,

in Exemplar [33], the authors were unsure as to whether the
system empowered both experts and non-experts, as the per-
formance between these two can differ considerably. By us-
ing Likert scale questionnaires, participant responses con-
firmed that both experts and non-experts felt empowered,
thus validating their hypothesis. Other examples like Dam-
ask [54], d.tools [34], Paperbox [102] and Panelrama [109]
use Likert scales to quantify user feedback on their system.
This feedback often complements other usability results.
7. Open-Ended Interviews. Twelve papers from our sample
ask participants about their experiences or challenges per-
forming their tasks, which in turn provided the authors with
insight in terms of processes, successes and shortcomings of
the toolkit [35,39,109]. Interview questions can start from a
script, but the openness allows to further inquire in oppor-
tunistic, interesting, and/or unclear aspects as they arise. Par-
ticipant responses are quoted to give life and add strength to
the claims and findings [15,55,89]. Interviews help expose
how features of the toolkit are perceived by users, but also
help contextualize other usage data.
Challenges
Evaluating the implementation through usability tests could
distract from the conceptual ideas as well as the opportunities
of the toolkit. Olsen [77] warns against falling into “the usa-
bility trap”, as the three underlying assumptions for usability
evaluation: walk up and use, standardized tasks, and problem
scalability – are rarely met for systems research. Addition-
ally, toolkits in HCI research are still prototypes. It is diffi-
cult for a small team to create a toolkit with the quality of a
commercial product (fatal flaw fallacy [77]). Controlled ex-
periments measuring usability are limited in scope and only
evaluate a very small subset of what the toolkit can accom-
plish, making it difficult to generalize usage results. Further-
more, the selected experimental tasks might favour elements
that the toolkit can accomplish. In achieving control of the
tasks, researchers may optimize for these tasks, or only cre-
ate what a usability test can measure [77].
While observations of people using the toolkit provide infor-
mation about use, they may not really assess how the toolkit
might fare in the real world. McGrath [64] discusses this as
the trade-off between realism, precision and control. Even in
“take home” studies, realism is compromised: participants
are given all necessary components, instruction, access to re-
sources (e.g. documentation, direct access to the toolkit cre-
ators), which creates an idealistic scenario not present in real
adoption. Furthermore, it is difficult to find the right partici-
pants for usage evaluations, especially as toolkits propose
new ways to solve a problem. The specialized target audi-
ence may not even exist yet [72]. Given the academic con-
text, it is often easiest to find student populations. Students
can be an appropriate stand-in for the target audience, in that
if students can use the toolkit then professionals might too.
However, the results may not always transfer to the intended
target audience. Toolkits might require extensive use before

familiarity. Thus, a premature evaluation can set up the
toolkit for an unfair comparison.
Opportunities to Strengthen Evaluation
Bringing Utility into the Picture. A central challenges of us-
ability evaluation is its focus on toolkit usability vs. utility
[28]: while a toolkit may be usable, it may not be useful.
Walkthroughs and interviews can help here, where questions
about utility can be raised and responses explored in depth.
Selecting Tasks and Measures Carefully. While more con-
trol, more measures and more quantifiable results seemingly
provide rigour, that rigour is only of value if truly representa-
tive tasks and appropriate measures are used. Rigour should
come from a careful selection of the method, technique, and
means of executing the technique. Publications should
clearly articulate why the chosen tasks and measures support
the claims made in the paper.
Recognizing the Consequences of Audience Choice. Toolkit
authors should critically reflect and understand the implica-
tions of their choice of audience to study. As mentioned, the
audience can be a close approximation or a starting point, but
authors need to articulate the implications of this choice.
TYPE 3: TECHNICAL PERFORMANCE
While demonstrations and usage studies evaluate what a
toolkit can do and who might use that toolkit, researchers can
evaluate the technical performance of the toolkit to find out
how well it works. From our sample of 68 toolkit papers,
about one third of the papers (18/68) include technical per-
formance studies. Technical studies are complementary to
demonstration and usage evaluations, as they convey addi-
tional information on the technical capabilities of the toolkit.
Why Analyze the Technical Performance?
The goal of studying technical performance is to benchmark,
quantify or analyse the toolkit or its components to verify or
validate the performance. Technical performance can be
measured in terms of efficiency (e.g., speed of the algorithm,
throughput of a network protocol), precision (e.g., accuracy
of an algorithm, fault tolerance), or comparison against prior
techniques. Overall, the purpose is, thus, to measure some
form of system performance. These measures show whether
it meets basic standards to be used (threshold), or if there are
improvements over the current state of the art. Furthermore,
technical benchmark can push the boundaries of the toolkit
and show when it no longer works as expected. Given that
toolkits aim to simplify workflows, authors may turn to soft-
ware engineering metrics such as lines of code or number of
classes to demonstrate improvement over existing practices.
Techniques as Used in Technical Performance
Although the Software Engineering community has a rich set
of tools to evaluate the performance of systems [81], within
HCI toolkit research the use of those Software Engineering
techniques is not common. Our dataset showed that toolkit
authors examine a wide variety of benchmarks (e.g. website
loading time [12], spatial resolution [30], framerate [25,47],
GPU usage [47], memory allocation [11,47], load time [11],

lines of source code [1,85], size of binary [1]). The selection
of metric to benchmark is tied directly to the claims of the
paper, and the needs that must be satisfied for the toolkit to
be operational or an improvement from the state-of-the-art.
1. Benchmarking Against Thresholds. For certain types of
applications, systems and algorithms, there are known, tested
or desirable thresholds that are used as a baseline to verify
the precision or accuracy of a system to show that it meets a
commonly accepted standard of use. For example, a frame
rate of 24 fps is common in media and animation, so it is
often used as a standard by commercial tools (e.g., Adobe
Premiere). Another often used threshold is 30fps for real-
time tracking systems [74]. Both KinectArms [25] and Ea-
gleSense [106] present new tracking system and describe
how their systems perform at a rate of 30fps. A final example
is PolyChrome [3] where time delay of event casting across
devices was measured to ensure it adhered to user expecta-
tion. These thresholds can be either empirically, technically
or heuristically derived from experience with using the tools.
2. Benchmarking Against State-of-the-Art. Benchmarking
often looks for improvements over existing state-of-the-art
software solutions. Again, this comparison approach often
follows the pattern of algorithm contributions in HCI (e.g.
[105]) in which a capability of the toolkit (e.g. tracking or
recognition) is compared against well-known baselines, or
what is the best algorithm for that purpose. For instance, in
OpenCapSense [30], the authors compared the toolkit’s per-
formance to CapToolKit [104], an earlier capacitive sensing
toolkit. While not a toolkit (and thus not part of our dataset),
the $1 Gesture Recognizer [105] is an excellent example of
describing benchmarking against the state-of-the-art: while
it was not more accurate, the benchmarks showed that it was
considerably close to the state-of-the-art, yet it was much
simpler to implement (about 100 lines of code). D3 [12] com-
pared page load time to a prior toolkit and to Adobe Flash.
Page load time was deemed important given their use-case:
viewing visualizations created with the toolkit on the web.
Challenges
Technical benchmarks are often used as a complement to
demonstrations or usage studies. Measuring technical bench-
marks in isolation may give an indication of human aspects
of using a toolkit (e.g., frame rate, latency), but do not nec-
essarily account for what it is like to use the toolkit. For in-
stance, representative examples may still be difficult to pro-
gram, even if requiring few lines of code. Authors may also
use benchmarks without justifying or communicating their
real-world implications. Toolkit papers may include one or
two comments on their benchmarking (e.g. 30 fps in [106])
without motivating the benchmark’s importance or why it is
essential for usage. Benchmark testing relies on comparisons
to an existing baseline. If analogous performance specifica-
tions have not already been published, authors must access
state-of-the-art systems to measure benchmark performance.
Given the prototypical nature of HCI toolkits and the fast-

moving targets of technology [68], many pre-existing base-
lines may already be deprecated or require extensive reim-
plementation by the toolkit authors. Also, a baseline may not
currently exist, as the technical challenge may not have been
solved before [77].
Opportunities to Strengthen Evaluation
Contextualize and State Technical Limitations. HCI toolkit
researchers often have quite different goals from commercial
toolkit developers. For example, researchers may want to
show how particular interaction concepts can be packaged
within an easy-to-program toolkit (e.g., its API), where the
underlying – and perhaps quite limited – infrastructure is de-
veloped only to serve as a proof of concept. Significant lim-
itations should be stated and contextualized to explain why
they do not (or do) matter.

Risky Hypothesis Testing. Toolkit authors should openly dis-
cuss the rationale behind the tests performed and whether
they intend for the tests to be a form of stress testing. Similar
to some of Greenberg and Buxton’s arguments [28], perhaps
the best approach is to actively attempt to break the toolkit’s
proposed technical claims from a technological standpoint
(e.g., the ability to accurately track up to four people in real-
time [106]) and truly understand the toolkit’s technical
boundaries. One easy way to test for technical boundaries is
to explore the scalability of the system for a chosen metric.
Open Source and Open Access. As toolkit researchers, we
can mitigate some of these challenges by making our work
available online to help future researchers (e.g., [12,59, 89]).
Ideally, this goes beyond the academic publication or the
toolkit source code and documentation, but also includes the
benchmarking data so that others can run the tests (e.g. on
different computers or as baselines for future studies).
Discuss Implicit Baselines. While a toolkit paper may as-
sume standard metrics to determine that a system works (e.g.
24 frames per second, or few lines of code to accomplish a
task), sometimes it is necessary to at least briefly mention
why this metric is relevant. That way, less familiar readers
can better understand the findings of the toolkit.
TYPE 4: HEURISTICS
Heuristics in HCI are typically associated with Nielsen et
al.’s (e.g., [67,76]) discount method to informally assess in-
terface usability. Given the challenges of toolkit evaluation,
toolkit researchers have devised toolkit-centric heuristics
(guidelines) to assess the end-result of a toolkit [8,77]. The
toolkit is then inspected against these heuristics, which in
turn serves to inform strengths, weaknesses, and reflection of
the toolkit’s potential value. The heuristics have been ex-
tracted from tried and accepted approaches to toolkit design
and have been used by others (e.g., Blackwell and Green’s
heuristics [8] as used by [11,33], Olsen’s heuristics [77] as
used by [40,53,65,66,69,90]). In our sample, heuristics al-
ways complemented other methods.

Why Use Heuristics?
Heuristics are used as a discount method that does not require
human participants to gather insight, while still exposing as-
pects of utility. Olsen’s ideas of expressive leverage and ex-
pressive match [77] resonate with Greenberg’s view of
toolkits as a language that facilitates creation [68], or Myers’
themes of successful systems helping where needed and cre-
ating paths of least resistance [68]. Heuristics are based on
tried success [67] or theories (e.g. cognitive dimensions [8]).
Blackwell and Green’s Cognitive Dimensions of Notation
(CDN) [8] was initially offered as a set of discussion points
that designers could also use as heuristics to verify system
usability. Their primary goal was to create a vocabulary for
experts to make early judgements when designing, and to ar-
ticulate decisions later. The authors describe it as a synthesis
of several sources that can partially address elements of the
interface design process. CDN also included a questionnaire
approach [9] to structure user feedback sessions.

Olsen’s heuristics [77] aimed to bring the focus of toolkit
evaluation back to what he saw as the value of UI systems
research, which corresponds to our aforementioned reasons
why HCI researchers build toolkits. Olsen provided termi-
nology and means to support common claims made in toolkit
papers. Interestingly, Olsen states that given a set of claims,
one can demonstrate how the toolkit supports them, which
may explain why our data shows prevalent combinations of
Type 4 evaluations together with Type 1 (demonstrations).

Following a comprehensive list of heuristics can help iden-
tify areas not addressed by the toolkit. Some heuristics might
be more crucial (e.g. problem not previously solved [77]).
Conversely, some may not be relevant for the proposed
toolkit (e.g. secondary notations [8]). Heuristics can and
should be omitted when appropriate [67].
Evaluation Techniques for Heuristics
We identified three ways to carry out a heuristic evaluation:
checklists, discussion, and as a basis for usage studies.
1. Checklists. The checklist approach consists of selecting a
heuristic evaluation approach and going through individual
heuristics one at a time. In doing so, authors can reflect on
whether the toolkit satisfies the heuristic or not, and the ex-
tent of meeting it. For instance, Hartmann et al. [33] followed
Blackwell and Green’s CDN through a questionnaire [9]. In
evaluating each item, they found that many the limitations of
the system were due to the inability to show many sensor
visualizations at once. Similarly, Meskens et al. [65] follow
Olsen’s heuristics to determine which elements of the inter-
face are lacking (e.g. ability to generalize and reuse).
2. Discussion. In contrast to the checklist approach, Olsen’s
heuristics [77] are also used as reflection points in the dis-
cussion of a toolkit paper. This reflection allows the authors
to better understand the limitations and whether there are is-
sues in the toolkit that are not addressed. Both Gummy [66]
and WatchConnect [40] are examples of this approach,

where authors reflect on shortcomings (and ways to address
them) as well as compare their toolkits to the state of the art.
3. Basing Usage Studies on Heuristics. Heuristics can help
determine what is useful to evaluate. XDKinect [69] tailored
their usage study to some of Olsen’s guidelines [77], such as
reducing solution viscosity and ease of combination.
Challenges
A danger of heuristic evaluations is falling into self-fulfilling
prophecies, where authors stretch definitions of the heuristics
to justify their claims. Alternatively, authors might choose to
only focus on (1) heuristics that their toolkit addresses or (2)
how the toolkit addresses them without acknowledging the
negative aspects or compromises (e.g., increasing flexibility
at the expense of expressive match). Sometimes the heuris-
tics may not be relevant to the current toolkit. For example,
given the breadth of applications covered by CDN [8], some
heuristics only apply to one group of applications (e.g. visual
programming environments). Blindly omitting heuristics can
lead readers into thinking that the authors are cherry picking
their heuristics. Given the expertise involved in creating a
toolkit, heuristic evaluation tends to be done by the authors
themselves, who may have an implicit bias favouring the
toolkit. While the heuristic evaluation methodology in HCI
suggests that external evaluators add value [67,76], this may
prove very difficult for toolkits given their complex nature.
None of the papers in our dataset used external evaluators.
Opportunities to Strengthen Evaluation
Using Heuristics as Design Guidelines. Heuristics can serve
complementary purposes: they can inform design as well as
help evaluate designs. Thus, toolkit authors can conceptually
consider how to support aspects of creation early on through
best practices (e.g. API practices [93]). As examples, the In-
telligibility Toolkit [53] and HapticTouch [51] both discuss
heuristics inspiring some of their design goals.

Using Heuristics to Inform Techniques from Prior Types.
Given the vocabulary provided by heuristics, authors can
consider how demonstrations or usage studies might stem
from the heuristics themselves. For example, Olsen [77] sug-
gests that one way to experimentally evaluate expressive
match is to perform a “design flaw test”, where participants
are asked to remedy a flaw using a regular design with “good
expressive match” (e.g. colour picker) and a deficient design
with “bad expressive match” (e.g. hex colour codes).

Transparency. Toolkit authors can disambiguate cherry
picking versus ignoring irrelevant heuristics by articulating
why a heuristic is or is not considered. This will increase
transparency and possibly expose gaps in the evaluation.
DISCUSSION
Our meta-review revealed 4 main strategies to evaluate a
toolkit: (1) demonstrations (what a toolkit can do), (2) usage
studies (who can use the toolkit and how), (3) technical eval-
uations (how well a toolkit works technically), and (4) heu-
ristics (how well the toolkit meets standard design guide-
lines). The supplemental materials provide a further analysis

that maps evaluation methods to the toolkit goals discussed
earlier. We reflect on our insights below.
Rethinking Evaluation
Rather than considering some methods as being better than
others, it is most important to use the methods that best match
the claims of the toolkit paper, and what that evaluation
method might yield. One way to determine this might be for
authors to ask themselves: if the evaluation technique were
to be removed, what is the impact to the paper? In answering
that question, authors might realize the essential methods,
and which ones are secondary or even unnecessary.
Evaluation by Demonstration?
One central observation in our review is that demonstrations
are by far the most common way to communicate the func-
tionality of the toolkit. Demonstrations vary in complexity,
ranging from small examples to complex interaction tech-
niques and systems. 19 toolkit papers used demonstration as
the only way to communicate or evaluate the toolkit’s capa-
bilities. While simple, novel and replicated examples are
quite common due to their easy implementation and descrip-
tion, it is rare to find more systematic explorations of the ca-
pabilities of toolkits through case studies concurrent to the
time of publication, or design space explorations. Moreover,
many toolkit papers combine examples with code snippets
and how-to scenarios to help the reader understand what the
toolkit supports. While demonstrations are often not consid-
ered a formal evaluation, they show evidence through ‘re-
search by design’ [12] and are highly effective in communi-
cating the principles, concepts and underlying ideas of the
toolkit. In fact, the process of using the toolkit to create pro-
totypes can lead to refinements in the toolkit itself, as was
done in SATIN [38]. When linked back to the five goals of
toolkit research, demonstrations consistently provide the
most complete and compelling evidence for achieving the
goals of designing the new toolkit. The wide adoption of
evaluation by demonstration indicates that such well ex-
plored examples can be a measure of success for the under-
lying concepts and ideas of a specific toolkit implementation.
Usability Studies (Still) Considered Harmful Some of the Time
Half of all toolkit papers in our sample conducted usage stud-
ies. These include compelling examples examining how us-
ers perform tasks using the toolkit; how a toolkit is used and
appropriated in realistic environment; or how toolkits ena-
bled creativity and exploration. Although usage studies play
a fundamental role in establishing who can use a toolkit, our
analysis shows that many authors still fall in what Olsen [77]
calls, the ‘usability trap’. Despite the warning by Greenberg
and Buxton [28] that usability studies can be ‘harmful’ if not
applied to the right problem, many papers in our sample con-
tinue to perform usability studies to evaluate complex toolkit
systems. Such studies employ artificial and narrow tasks, use
small samples sizes, and non-representative user groups to
evaluate a small subset of paths available through the toolkit.
While still yielding some results, these are limited to the spe-
cific task, and not generalizable to the entire toolkit.

Therefore, narrow usability studies often do not play a cen-
tral role in establishing or evaluating the novelty or signifi-
cance of the toolkit and its underlying ideas. This is sup-
ported by our finding that all papers (except one) combined
usage studies with demonstrations or technical evaluations.
Overall, we observe a widespread application of a weak
mixed method approach, where impoverished usage studies
are stacked on demonstrations or technical evaluations to
make generalized usability claims across the entire toolkit.
Careless evaluations can be costly, as they may evaluate the
wrong possible futures and lead to false conclusions [86].
Although usability studies can play a role in studying spe-
cific paths of least resistance, our analysis suggests good
demonstrations have far more value than weak usability eval-
uations. More problematic is what appears to be an absence
of well-conducted field- or in-the-wild studies that evaluate
toolkits in situ with a representative community over an ex-
tended period of time.
Successful Evaluation versus Successful Toolkit
In our dataset, we observed a diverse range of toolkits that
address various sub-fields within the HCI community, where
there is no indication that the success of the toolkit was nec-
essarily tied to the success of the evaluation. Some of these
toolkits have had enormous impact within the research com-
munity. For example, the Context Toolkit [85] has had a
transformative effect on research within the space of context
awareness, as evident from the 1326 citations. Other toolkits
have moved on to become successful outside of the research
community. For instance, D3 [12] has been widely adopted
for web-based interactive visualizations. Their paper already
suggested that the evaluation may not be indicative of suc-
cess: “while we can quantify performance, accessibility is far
more difficult to measure. The true test of D3’s design will
be in user adoption” [12]. Success can also lie in enabling
new research agendas. The Proximity toolkit [59] operation-
alized proxemic interaction concepts into concrete building
blocks and techniques. Many downloaded the toolkit for re-
search or to learn how to build proxemic-aware applications.
The Need for HCI Infrastructure Research
We started this paper by arguing that toolkits have pro-
foundly influenced HCI research and will continue to do so
in the future. Going back to the pioneering work of Engelbart
[24], Sutherland [94], or Weiser [100], we observe how in-
vention through building interactive systems, architectures
and frameworks enabled them to explore completely new
spaces. Since then, there has been an enormous growth in
toolkits exploring technical realizations of concepts, tech-
niques and systems in many emerging areas within the field
(e.g., physical computing, tangible interfaces, augmented re-
ality, spatial interactions, ubicomp) and demonstrating new
possible futures.

This HCI systems and toolkits research serves to further de-
velop and realize high-level interaction concepts (e.g., prox-
emic interactions [59]). Consequently, toolkits make these

conceptual ideas very concrete, and enable further conversa-
tions and follow-up research. For instance, the Context
Toolkit [85] was a very successful toolkit that moved re-
search in context-aware computing [91] forward by enabling
developers to rapidly prototype context-aware applications.
The toolkit provided a component-based architecture sepa-
rating context inference from the applications that used con-
text information and allowing developers to respond to con-
text changes in an event-driven way. By making these ideas
(and their realization in software) very concrete, the Context
Toolkit also fueled criticism from researchers who argued
that a computational representation of context, as encapsu-
lated in the toolkit, did not capture the complexity of how
people behave in the real world. Greenberg [26] argued that
many contextual situations are not stable, discernable, or pre-
dictable, and argued for context-aware applications to ex-
plain the inferred context and how they respond to it (what
Bellotti & Edwards refer to as “intelligibility” [7]). Interest-
ingly, these discussions led the toolkit authors to further de-
velop and integrate these ideas in future systems and toolkits,
such as the Situations framework [17] and the Intelligibility
Toolkit [53].
Limitations
We make no pretense that our overview of evaluation strate-
gies for toolkits is complete. First, to ensure that our meta-
review focused on forms of evaluation that are relevant to
currently accepted standards, we limited our sample to re-
cently published toolkit papers. Thus, we may have missed
forms of evaluation used in past toolkit research. Second,
many research projects make multiple contributions not cap-
tured in a single paper. Our analysis only reflects what is de-
scribed in that single paper. For some of the toolkits included
in our meta-review, additional evaluations of the technical
work were conducted and described in later publications
(e.g., Prefab [19]). Finally, the authors of this paper have all
built and designed toolkits. While our reflection of toolkit
evaluation strategies is likely strengthened by our experi-
ence, it may also have introduced bias.
CONCLUSIONS
Research toolkits have fundamentally influenced and shaped
the way interactive technology is built, and will continue to
do so in the future. Despite the impact and success of toolkits,
evaluating toolkits remains a challenge within the HCI com-
munity. This paper is a first attempt at clarifying what eval-
uation methods are used, when they are appropriate and how
they can be performed. By looking at 68 toolkit papers, we
derived four evaluation types and associated techniques to
conduct these evaluations. It is our hope that our reflection
on and categorization of toolkit evaluation strategies is an
important step towards strengthening methods for toolkit re-
search in HCI and moving technical HCI research forward.
REFERENCES
1. Georg Apitz and François Guimbretière. 2004. CrossY:

a crossing-based drawing application. In Proceedings
of the 17th annual ACM symposium on User interface
software and technology (UIST '04). ACM, New York,

NY, USA, 3-12.
http://dx.doi.org/10.1145/1029632.1029635

2. Caroline Appert and Michel Beaudouin-Lafon. 2006.
SwingStates: adding state machines to the swing
toolkit. In Proceedings of the 19th annual ACM sympo-
sium on User interface software and technology (UIST
'06). ACM, New York, NY, USA, 319-322.
https://doi.org/10.1145/1166253.1166302

3. Sriram Karthik Badam and Niklas Elmqvist. 2014. Pol-
yChrome: A Cross-Device Framework for Collabora-
tive Web Visualization. In Proceedings of the Ninth
ACM International Conference on Interactive Tab-
letops and Surfaces (ITS '14). ACM, New York, NY,
USA, 109-118.
http://dx.doi.org/10.1145/2669485.2669518

4. Rafael Ballagas, Meredith Ringel, Maureen Stone, and
Jan Borchers. 2003. iStuff: a physical user interface
toolkit for ubiquitous computing environments. In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '03). ACM, New York,
NY, USA, 537-544.
http://dx.doi.org/10.1145/642611.642705

5. Till Ballendat, Nicolai Marquardt, and Saul Greenberg.
2010. Proxemic interaction: designing for a proximity
and orientation-aware environment. In ACM Interna-
tional Conference on Interactive Tabletops and Sur-
faces (ITS '10). ACM, New York, NY, USA, 121-130.
https://doi.org/10.1145/1936652.1936676

6. Ben Bederson, Jesse Grosjean and Jon Meyer. 2004.
Toolkit design for interactive structured graphics. IEEE
Transactions on Software Engineering, 30(8). IEEE
535-546. 10.1109/TSE.2004.44

7. Victoria Bellotti and Keith Edwards. 2001. Intelligibil-
ity and accountability: human considerations in con-
text-aware systems. Hum.-Comput. Interact. 16, 2 (De-
cember 2001), 193-212.
http://dx.doi.org/10.1207/S15327051HCI16234_05

8. Alan Blackwell, Carol Britton, Blackwell, A. Cox,
Thomas Green, Corin Gurr, Gada Kadoda, M.S. Kutar
et al. 2001. Cognitive dimensions of notations: Design
tools for cognitive technology. In Cognitive technol-
ogy: instruments of mind Springer, Berlin, Heidelberg.
325-341.
https://doi.org/10.1007/3-540-44617-6_31

9. Alan Blackwell and Thomas Green. 2000. A Cognitive
Dimensions questionnaire optimised for users. In pro-
ceedings of the twelfth annual meeting of the psychol-
ogy of programming interest group. 137-152.

10. Florian Block, Michael Haller, Hans Gellersen, Carl
Gutwin, and Mark Billinghurst. 2008. VoodooSketch:
extending interactive surfaces with adaptable interface
palettes. In Proceedings of the 2nd international con-
ference on Tangible and embedded interaction (TEI

'08). ACM, New York, NY, USA, 55-58.
http://dx.doi.org/10.1145/1347390.1347404

11. Michael Bostock and Jeffrey Heer. 2009. Protovis: A
Graphical Toolkit for Visualization. In IEEE Transac-
tions on Visualization and Computer Graphics, vol. 15,
no. 6. IEEE. 1121-1128.
 10.1109/TVCG.2009.174

12. Michael Bostock, Vadim Ogievetsky and Jeffrey Heer.
2011. D³ Data-Driven Documents. In IEEE Transac-
tions on Visualization and Computer Graphics, vol. 17,
no. 12. IEEE. 2301-2309.
 10.1109/TVCG.2011.185

13. Jorge Cardoso and Rui José. 2012. PuReWidgets: a
programming toolkit for interactive public display ap-
plications. In Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing sys-
tems (EICS '12). ACM, New York, NY, USA, 51-60.
https://doi.org/10.1145/2305484.2305496

14. Kathy Charmaz. 2014. Constructing grounded theory.
Sage.

15. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave: Script-
ing Cross-Device Wearable Interaction. In Proceedings
of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems (CHI '15). ACM, New
York, NY, USA, 3923-3932.
https://doi.org/10.1145/2702123.2702451

16. Alan Cooper. 2004. The inmates are running the asy-
lum: Why high-tech products drive us crazy and how to
restore the sanity. Sams Indianapolis.

17. Anind K. Dey and Alan Newberger. 2009. Support for
context-aware intelligibility and control. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '09). ACM, New York, NY,
USA, 859-868.
https://doi.org/10.1145/1518701.1518832

18. Morgan Dixon and James Fogarty. 2010. Prefab: im-
plementing advanced behaviors using pixel-based re-
verse engineering of interface structure. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI '10). ACM, New York, NY, USA,
1525-1534. https://doi.org/10.1145/1753326.1753554

19. Morgan Dixon, Alexander Nied, and James Fogarty.
2014. Prefab layers and prefab annotations: extensible
pixel-based interpretation of graphical interfaces.
In Proceedings of the 27th annual ACM symposium on
User interface software and technology (UIST '14).
ACM, New York, NY, USA, 221-230.
https://doi.org/10.1145/2642918.2647412

20. Pierre Dragicevic and Jean-Daniel Fekete. 2004. Sup-
port for input adaptability in the ICON toolkit. In Pro-
ceedings of the 6th international conference on Multi-
modal interfaces (ICMI '04). ACM, New York, NY,

http://dx.doi.org/10.1145/1029632.1029635
https://doi.org/10.1145/1166253.1166302
http://dx.doi.org/10.1145/2669485.2669518
http://dx.doi.org/10.1145/642611.642705
https://doi.org/10.1145/1936652.1936676
http://dx.doi.org/10.1207/S15327051HCI16234_05
https://doi.org/10.1007/3-540-44617-6_31
http://dx.doi.org/10.1145/1347390.1347404
https://doi.org/10.1145/2305484.2305496
https://doi.org/10.1145/2702123.2702451
https://doi.org/10.1145/1518701.1518832
https://doi.org/10.1145/1753326.1753554
https://doi.org/10.1145/2642918.2647412

USA, 212-219.
http://dx.doi.org/10.1145/1027933.1027969

21. Brian de Alwis, Carl Gutwin, and Saul Greenberg.
2009. GT/SD: performance and simplicity in a group-
ware toolkit. In Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing sys-
tems (EICS '09). ACM, New York, NY, USA, 265-
274. 10.1145/1570433.1570483
http://doi.acm.org/10.1145/1570433.1570483

22. Joseph Dumas and Janice Redish. 1999. A practical
guide to usability testing. Intellect books.

23. W. Keith Edwards, Mark W. Newman, and Erika
Shehan Poole. 2010. The infrastructure problem in
HCI. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI '10). ACM,
New York, NY, USA, 423-432.
https://doi.org/10.1145/1753326.1753390

24. Douglas C Engelbart (1968). The mother of all demos.
Presented at ACM/IEEE - Computer Society's Fall
Joint Computer Conference. San Francisco

25. Aaron M. Genest, Carl Gutwin, Anthony Tang, Mi-
chael Kalyn, and Zenja Ivkovic. 2013. KinectArms: a
toolkit for capturing and displaying arm embodiments
in distributed tabletop groupware. In Proceedings of
the 2013 conference on Computer supported coopera-
tive work (CSCW '13). ACM, New York, NY, USA,
157-166. https://doi.org/10.1145/2441776.2441796

26. Saul Greenberg. 2001. Context as a dynamic con-
struct. Hum.-Comput. Interact. 16, 2 (December 2001),
257-268.
http://dx.doi.org/10.1207/S15327051HCI16234_09

27. Saul Greenberg. 2007. Toolkits and interface creativ-
ity. Multimedia Tools and Applications, 32(2),
Springer, 139-159.
https://doi.org/10.1007/s11042-006-0062-y

28. Saul Greenberg and Bill Buxton. 2008. Usability evalu-
ation considered harmful (some of the time). In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '08). ACM, New York,
NY, USA, 111-120.
https://doi.org/10.1145/1357054.1357074

29. Saul Greenberg and Chester Fitchett. 2001. Phidgets:
easy development of physical interfaces through physi-
cal widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technol-
ogy (UIST '01). ACM, New York, NY, USA, 209-218.
http://dx.doi.org/10.1145/502348.502388

30. Tobias Grosse-Puppendahl, Yannick Berghoefer, An-
dreas Braun, Raphael Wimmer and Arjan Kuijper.
2013. OpenCapSense: A rapid prototyping toolkit for
pervasive interaction using capacitive sensing. In Proc.
IEEE International Conference on Pervasive Compu-
ting and Communications (PerCom). IEEE. San Diego,

CA, USA, 152-159.
 10.1109/PerCom.2013.6526726

31. Tovi Grossman and Ravin Balakrishnan. 2005. The
bubble cursor: enhancing target acquisition by dynamic
resizing of the cursor's activation area. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI '05). ACM, New York, NY, USA,
281-290. http://dx.doi.org/10.1145/1054972.1055012

32. Thomas E. Hansen, Juan Pablo Hourcade, Mathieu
Virbel, Sharath Patali, and Tiago Serra. 2009. PyMT: a
post-WIMP multi-touch user interface toolkit. In Pro-
ceedings of the ACM International Conference on In-
teractive Tabletops and Surfaces (ITS '09). ACM, New
York, NY, USA, 17-24.
https://doi.org/10.1145/1731903.1731907

33. Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring sensor-based inter-
actions by demonstration with direct manipulation and
pattern recognition. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI '07). ACM, New York, NY, USA, 145-154.
https://doi.org/10.1145/1240624.1240646

34. Björn Hartmann, Scott R. Klemmer, Michael Bern-
stein, Leith Abdulla, Brandon Burr, Avi Robinson-
Mosher, and Jennifer Gee. 2006. Reflective physical
prototyping through integrated design, test, and analy-
sis. In Proceedings of the 19th annual ACM symposium
on User interface software and technology (UIST '06).
ACM, New York, NY, USA, 299-308.
https://doi.org/10.1145/1166253.1166300

35. Jeffrey Heer, Stuart K. Card, and James A. Landay.
2005. prefuse: a toolkit for interactive information vis-
ualization. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '05).
ACM, New York, NY, USA, 421-430.
http://dx.doi.org/10.1145/1054972.1055031

36. Alan R. Hevner, Salvatore T. March, Jinsoo Park, and
Sudha Ram. 2004. Design science in information sys-
tems research. MIS Q. 28, 1 (March 2004), 75-105.

37. Jason Hill and Carl Gutwin. 2004. Computing Sup-
ported Cooperative Work, 13, Springer 539-571.
https://doi.org/10.1007/s10606-004-5063-7

38. Jason I. Hong and James A. Landay. 2000. SATIN: a
toolkit for informal ink-based applications. In Proceed-
ings of the 13th annual ACM symposium on User inter-
face software and technology (UIST '00). ACM, New
York, NY, USA, 63-72.
http://dx.doi.org/10.1145/354401.354412

39. Steven Houben, Connie Golsteijn, Sarah Gallacher,
Rose Johnson, Saskia Bakker, Nicolai Marquardt, Licia
Capra, and Yvonne Rogers. 2016. Physikit: Data En-
gagement Through Physical Ambient Visualizations in
the Home. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI '16).

http://dx.doi.org/10.1145/1027933.1027969
http://doi.acm.org/10.1145/1570433.1570483
https://doi.org/10.1145/1753326.1753390
https://doi.org/10.1145/2441776.2441796
http://dx.doi.org/10.1207/S15327051HCI16234_09
https://doi.org/10.1007/s11042-006-0062-y
https://doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1145/502348.502388
http://dx.doi.org/10.1145/1054972.1055012
https://doi.org/10.1145/1731903.1731907
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/1166253.1166300
http://dx.doi.org/10.1145/1054972.1055031
https://doi.org/10.1007/s10606-004-5063-7
http://dx.doi.org/10.1145/354401.354412

ACM, New York, NY, USA, 1608-1619.
https://doi.org/10.1145/2858036.2858059

40. Steven Houben and Nicolai Marquardt. 2015. Watch-
Connect: A Toolkit for Prototyping Smartwatch-Cen-
tric Cross-Device Applications. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI '15). ACM, New York, NY,
USA, 1247-1256.
https://doi.org/10.1145/2702123.2702215

41. Steven Houben, Nicolai Marquardt, Jo Vermeulen,
Clemens Klokmose, Johannes Schöning, Harald
Reiterer, and Christian Holz. 2017. Opportunities and
challenges for cross-device interactions in the wild. in-
teractions 24, 5 (August 2017), 58-63.
https://doi.org/10.1145/3121348

42. Scott E. Hudson, Jennifer Mankoff, and Ian Smith.
2005. Extensible input handling in the subArctic
toolkit. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '05).
ACM, New York, NY, USA, 381-390.
http://dx.doi.org/10.1145/1054972.1055025

43. Stéphane Huot, Cédric Dumas, Pierre Dragicevic, Jean-
Daniel Fekete, and Gérard Hégron. 2004. The Mag-
gLite post-WIMP toolkit: draw it, connect it and run it.
In Proceedings of the 17th annual ACM symposium on
User interface software and technology (UIST '04).
ACM, New York, NY, USA, 257-266.
http://dx.doi.org/10.1145/1029632.1029677

44. Martin Kaltenbrunner and Ross Bencina. 2007. reac-
TIVision: a computer-vision framework for table-based
tangible interaction. In Proceedings of the 1st interna-
tional conference on Tangible and embedded interac-
tion (TEI '07). ACM, New York, NY, USA, 69-74.
http://dx.doi.org/10.1145/1226969.1226983

45. Jun Kato, Daisuke Sakamoto, and Takeo Igarashi.
2012. Phybots: a toolkit for making robotic things.
In Proceedings of the Designing Interactive Systems
Conference (DIS '12). ACM, New York, NY, USA,
248-257. https://doi.org/10.1145/2317956.2317996

46. Bonifaz Kaufmann and Leah Buechley. 2010. Ama-
rino: a toolkit for the rapid prototyping of mobile ubiq-
uitous computing. In Proceedings of the 12th interna-
tional conference on Human computer interaction with
mobile devices and services (MobileHCI '10). ACM,
New York, NY, USA, 291-298.
https://doi.org/10.1145/1851600.1851652

47. Travis Kirton, Sebastien Boring, Dominikus Baur,
Lindsay MacDonald, and Sheelagh Carpendale. 2013.
C4: a creative-coding API for media, interaction and
animation. In Proceedings of the 7th International
Conference on Tangible, Embedded and Embodied In-
teraction (TEI '13). ACM, New York, NY, USA, 279-
286. http://dx.doi.org/10.1145/2460625.2460672

48. Scott R. Klemmer, Jack Li, James Lin, and James A.
Landay. 2004. Papier-Mache: toolkit support for tangi-
ble input. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '04).
ACM, New York, NY, USA, 399-406.
http://dx.doi.org/10.1145/985692.985743

49. Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hoch-
heiser. 2017. Research methods in human-computer in-
teraction. Morgan Kaufmann.

50. David Ledo, Fraser Anderson, Ryan Schmidt, Lora
Oehlberg, Saul Greenberg, and Tovi Grossman. 2017.
Pineal: Bringing Passive Objects to Life with Embed-
ded Mobile Devices. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Sys-
tems (CHI '17). ACM, New York, NY, USA, 2583-
2593. https://doi.org/10.1145/3025453.3025652

51. David Ledo, Miguel A. Nacenta, Nicolai Marquardt,
Sebastian Boring, and Saul Greenberg. 2012. The Hap-
ticTouch toolkit: enabling exploration of haptic interac-
tions. In Proceedings of the Sixth International Confer-
ence on Tangible, Embedded and Embodied Interac-
tion (TEI '12), Stephen N. Spencer (Ed.). ACM, New
York, NY, USA, 115-122.
https://doi.org/10.1145/2148131.2148157

52. Johnny C. Lee, Daniel Avrahami, Scott E. Hudson,
Jodi Forlizzi, Paul H. Dietz, and Darren Leigh. 2004.
The calder toolkit: wired and wireless components for
rapidly prototyping interactive devices. In Proceedings
of the 5th conference on Designing interactive systems:
processes, practices, methods, and techniques (DIS
'04). ACM, New York, NY, USA, 167-175.
http://dx.doi.org/10.1145/1013115.1013139

53. Brian Y. Lim and Anind K. Dey. 2010. Toolkit to sup-
port intelligibility in context-aware applications.
In Proceedings of the 12th ACM international confer-
ence on Ubiquitous computing (UbiComp '10). ACM,
New York, NY, USA, 13-22.
https://doi.org/10.1145/1864349.1864353

54. James Lin and James A. Landay. 2008. Employing pat-
terns and layers for early-stage design and prototyping
of cross-device user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '08). ACM, New York, NY, USA, 1313-
1322. https://doi.org/10.1145/1357054.1357260

55. James Lin, Mark W. Newman, Jason I. Hong, and
James A. Landay. 2000. DENIM: finding a tighter fit
between tools and practice for Web site design. In Pro-
ceedings of the SIGCHI conference on Human Factors
in Computing Systems (CHI '00). ACM, New York,
NY, USA, 510-517.
http://dx.doi.org/10.1145/332040.332486

56. Blair MacIntyre, Maribeth Gandy, Steven Dow, and
Jay David Bolter. 2004. DART: a toolkit for rapid de-
sign exploration of augmented reality experiences.

https://doi.org/10.1145/2858036.2858059
https://doi.org/10.1145/2702123.2702215
https://doi.org/10.1145/3121348
http://dx.doi.org/10.1145/1054972.1055025
http://dx.doi.org/10.1145/1029632.1029677
https://doi.org/10.1145/2317956.2317996
https://doi.org/10.1145/1851600.1851652
http://dx.doi.org/10.1145/2460625.2460672
http://dx.doi.org/10.1145/985692.985743
https://doi.org/10.1145/3025453.3025652
https://doi.org/10.1145/2148131.2148157
http://dx.doi.org/10.1145/1013115.1013139
https://doi.org/10.1145/1864349.1864353
https://doi.org/10.1145/1357054.1357260
http://dx.doi.org/10.1145/332040.332486

In Proceedings of the 17th annual ACM symposium on
User interface software and technology (UIST '04).
ACM, New York, NY, USA, 197-206.
http://dx.doi.org/10.1145/1029632.1029669

57. Jennifer Mankoff, Scott E. Hudson, and Gregory D.
Abowd. 2000. Providing integrated toolkit-level sup-
port for ambiguity in recognition-based interfaces.
In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems (CHI '00). ACM, New
York, NY, USA, 368-375.
http://dx.doi.org/10.1145/332040.332459

58. Javier Marco, Eva Cerezo, and Sandra Baldassarri.
2012. ToyVision: a toolkit for prototyping tabletop tan-
gible games. In Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing sys-
tems (EICS '12). ACM, New York, NY, USA, 71-80.
https://doi.org/10.1145/2305484.2305498

59. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity
toolkit: prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th an-
nual ACM symposium on User interface software and
technology (UIST '11). ACM, New York, NY, USA,
315-326. https://doi.org/10.1145/2047196.2047238

60. Nicolai Marquardt and Saul Greenberg. 2007. Distrib-
uted physical interfaces with shared phidgets. In Pro-
ceedings of the 1st international conference on Tangi-
ble and embedded interaction (TEI '07). ACM, New
York, NY, USA, 13-20.
http://dx.doi.org/10.1145/1226969.1226973

61. Nicolai Marquardt, Steven Houben, Michel Beaudouin-
Lafon, and Andrew D. Wilson. 2017. HCITools: Strat-
egies and Best Practices for Designing, Evaluating and
Sharing Technical HCI Toolkits. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA '17). ACM,
New York, NY, USA, 624-627.
https://doi.org/10.1145/3027063.3027073

62. Nicolai Marquardt, Johannes Kiemer, David Ledo, Se-
bastian Boring, and Saul Greenberg. 2011. Designing
user-, hand-, and handpart-aware tabletop interactions
with the TouchID toolkit. In Proceedings of the ACM
International Conference on Interactive Tabletops and
Surfaces (ITS '11). ACM, New York, NY, USA, 21-30.
https://doi.org/10.1145/2076354.2076358

63. Tara Matthews, Anind K. Dey, Jennifer Mankoff, Scott
Carter, and Tye Rattenbury. 2004. A toolkit for manag-
ing user attention in peripheral displays. In Proceed-
ings of the 17th annual ACM symposium on User inter-
face software and technology (UIST '04). ACM, New
York, NY, USA, 247-256.
http://dx.doi.org/10.1145/1029632.1029676

64. Joseph McGrath. 1995. Methodology matters: Doing
research in the behavioral and social sciences. In Read-
ings in Human-Computer Interaction: Toward the Year
2000 (2nd ed). 152-169.

65. Jan Meskens, Kris Luyten, and Karin Coninx. 2010. D-
Macs: building multi-device user interfaces by demon-
strating, sharing and replaying design actions. In Pro-
ceedings of the 23nd annual ACM symposium on User
interface software and technology (UIST '10). ACM,
New York, NY, USA, 129-138.
https://doi.org/10.1145/1866029.1866051

66. Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin
Coninx. 2008. Gummy for multi-platform user inter-
face designs: shape me, multiply me, fix me, use me.
In Proceedings of the working conference on Advanced
visual interfaces (AVI '08). ACM, New York, NY,
USA, 233-240.
https://doi.org/10.1145/1385569.1385607

67. Rolf Molich and Jakob Nielsen. 1990. Improving a hu-
man-computer dialogue. Commun. ACM 33, 3 (March
1990), 338-348. 10.1145/77481.77486
http://doi.acm.org/10.1145/77481.77486

68. Brad Myers, Scott E. Hudson, and Randy Pausch.
2000. Past, present, and future of user interface soft-
ware tools. ACM Trans. Comput.-Hum. Interact. 7, 1
(March 2000), 3-28.
http://dx.doi.org/10.1145/344949.344959

69. Michael Nebeling, Elena Teunissen, Maria Husmann,
and Moira C. Norrie. 2014. XDKinect: development
framework for cross-device interaction using kinect.
In Proceedings of the 2014 ACM SIGCHI symposium
on Engineering interactive computing systems (EICS
'14). ACM, New York, NY, USA, 65-74.
http://dx.doi.org/10.1145/2607023.2607024

70. Michael Nebeling, Theano Mintsi, Maria Husmann,
and Moira Norrie. 2014. Interactive development of
cross-device user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '14). ACM, New York, NY, USA, 2793-
2802. https://doi.org/10.1145/2556288.2556980

71. Michael Nebeling and Moira Norrie. 2012. jQMulti-
Touch: lightweight toolkit and development framework
for multi-touch/multi-device web interfaces. In Pro-
ceedings of the 4th ACM SIGCHI symposium on Engi-
neering interactive computing systems (EICS '12).
ACM, New York, NY, USA, 61-70.
https://doi.org/10.1145/2305484.2305497

72. Michael Nebeling, M. Playing the Tricky Game of
Toolkits Research. In workshop on HCI.Tools at
CHI’2017.

73. Carman Neustaedter and Phoebe Sengers. 2012. Auto-
biographical design in HCI research: designing and
learning through use-it-yourself. In Proceedings of the
Designing Interactive Systems Conference (DIS '12).

http://dx.doi.org/10.1145/1029632.1029669
http://dx.doi.org/10.1145/332040.332459
https://doi.org/10.1145/2305484.2305498
https://doi.org/10.1145/2047196.2047238
http://dx.doi.org/10.1145/1226969.1226973
https://doi.org/10.1145/3027063.3027073
https://doi.org/10.1145/2076354.2076358
http://dx.doi.org/10.1145/1029632.1029676
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/1385569.1385607
http://doi.acm.org/10.1145/77481.77486
http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/2607023.2607024
https://doi.org/10.1145/2556288.2556980
https://doi.org/10.1145/2305484.2305497

ACM, New York, NY, USA, 514-523.
https://doi.org/10.1145/2317956.2318034

74. Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. 2011. KinectFusion: Real-time
dense surface mapping and tracking. In Proceedings of
the 2011 10th IEEE International Symposium on Mixed
and Augmented Reality (ISMAR '11). IEEE Computer
Society, Washington, DC, USA, 127-136.
http://dx.doi.org/10.1109/ISMAR.2011.6092378

75. Mark W. Newman, Shahram Izadi, W. Keith Edwards,
Jana Z. Sedivy, and Trevor F. Smith. 2002. User inter-
faces when and where they are needed: an infrastruc-
ture for recombinant computing. In Proceedings of the
15th annual ACM symposium on User interface soft-
ware and technology (UIST '02). ACM, New York,
NY, USA, 171-180. DOI:
https://doi.org/10.1145/571985.572009

76. Jakob Nielsen. 1994. Usability engineering. Elsevier.
77. Dan R. Olsen, Jr.. 2007. Evaluating user interface sys-

tems research. In Proceedings of the 20th annual ACM
symposium on User interface software and technol-
ogy (UIST '07). ACM, New York, NY, USA, 251-258.
https://doi.org/10.1145/1294211.1294256

78. Antti Oulasvirta and Kasper Hornbæk. 2016. HCI Re-
search as Problem-Solving. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Sys-
tems (CHI '16). ACM, New York, NY, USA, 4956-
4967. https://doi.org/10.1145/2858036.2858283

79. Max Pfeiffer, Tim Duente, and Michael Rohs. 2016.
Let your body move: a prototyping toolkit for wearable
force feedback with electrical muscle stimulation.
In Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and
Services (MobileHCI '16). ACM, New York, NY,
USA, 418-427.
https://doi.org/10.1145/2935334.2935348

80. Peter G. Polson, Clayton Lewis, John Rieman, and
Cathleen Wharton. 1992. Cognitive walkthroughs: a
method for theory-based evaluation of user inter-
faces. Int. J. Man-Mach. Stud.36, 5 (May 1992), 741-
773. http://dx.doi.org/10.1016/0020-7373(92)90039-N

81. Jenny Preece and H. Dieter Rombach. 1994. A taxon-
omy for combining software engineering and human-
computer interaction measurement approaches: to-
wards a common framework. Int. J. Hum.-Comput.
Stud. 41, 4 (October 1994), 553-583.
10.1006/ijhc.1994.1073
http://dx.doi.org/10.1006/ijhc.1994.1073

82. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. RetroFab: A Design Tool
for Retrofitting Physical Interfaces using Actuators,
Sensors and 3D Printing. In Proceedings of the 2016

CHI Conference on Human Factors in Computing Sys-
tems (CHI '16). ACM, New York, NY, USA, 409-419.
https://doi.org/10.1145/2858036.2858485

83. Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015.
PaperPulse: An Integrated Approach for Embedding
Electronics in Paper Designs. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI '15). ACM, New York, NY,
USA, 2457-2466.
https://doi.org/10.1145/2702123.2702487

84. Mark Roseman and Saul Greenberg. 1996. Building
real-time groupware with GroupKit, a groupware
toolkit. ACM Trans. Comput.-Hum. Interact. 3, 1
(March 1996), 66-106.
http://dx.doi.org/10.1145/226159.226162

85. Daniel Salber, Anind K. Dey, and Gregory D. Abowd.
1999. The context toolkit: aiding the development of
context-enabled applications. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems (CHI '99). ACM, New York, NY, USA, 434-
441. http://dx.doi.org/10.1145/302979.303126

86. Antti Salovaara, Antti Oulasvirta, and Giulio Jacucci.
2017. Evaluation of Prototypes and the Problem of
Possible Futures. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (CHI
'17). ACM, New York, NY, USA, 2064-2077.
https://doi.org/10.1145/3025453.3025658

87. Valkyrie Savage, Colin Chang, and Björn Hartmann.
2013. Sauron: embedded single-camera sensing of
printed physical user interfaces. In Proceedings of the
26th annual ACM symposium on User interface soft-
ware and technology (UIST '13). ACM, New York,
NY, USA, 447-456.
http://dx.doi.org/10.1145/2501988.2501992

88. Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn
Hartmann. 2015. Makers' Marks: Physical Markup for
Designing and Fabricating Functional Objects. In Pro-
ceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology (UIST '15). ACM,
New York, NY, USA, 103-108.
https://doi.org/10.1145/2807442.2807508

89. Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann.
2012. Midas: fabricating custom capacitive touch sen-
sors to prototype interactive objects. In Proceedings of
the 25th annual ACM symposium on User interface
software and technology (UIST '12). ACM, New York,
NY, USA, 579-588.
https://doi.org/10.1145/2380116.2380189

90. Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang,
and Frank Maurer. 2015. SoD-Toolkit: A Toolkit for
Interactively Prototyping and Developing Multi-Sen-
sor, Multi-Device Environments. In Proceedings of the
2015 International Conference on Interactive Tab-
letops & Surfaces (ITS '15). ACM, New York, NY,

https://doi.org/10.1145/2317956.2318034
http://dx.doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1145/571985.572009
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2858036.2858283
https://doi.org/10.1145/2935334.2935348
http://dx.doi.org/10.1016/0020-7373(92)90039-N
http://dx.doi.org/10.1006/ijhc.1994.1073
https://doi.org/10.1145/2858036.2858485
https://doi.org/10.1145/2702123.2702487
http://dx.doi.org/10.1145/302979.303126
https://doi.org/10.1145/3025453.3025658
http://dx.doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/2807442.2807508
https://doi.org/10.1145/2380116.2380189

USA, 171-180.
https://doi.org/10.1145/2817721.2817750

91. B. Schilit, N. Adams, and R. Want. 1994. Context-
Aware Computing Applications. In Proceedings of the
1994 First Workshop on Mobile Computing Systems
and Applications (WMCSA '94). IEEE Computer Soci-
ety, Washington, DC, USA, 85-90.
http://dx.doi.org/10.1109/WMCSA.1994.16

92. Chia Shen, Frédéric D. Vernier, Clifton Forlines, and
Meredith Ringel. 2004. DiamondSpin: an extensible
toolkit for around-the-table interaction. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI '04). ACM, New York, NY, USA,
167-174. http://dx.doi.org/10.1145/985692.985714

93. Jeffrey Stylos and Brad A. Myers. 2008. The implica-
tions of method placement on API learnability. In Pro-
ceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineer-
ing (SIGSOFT '08/FSE-16). ACM, New York, NY,
USA, 105-112.
http://dx.doi.org/10.1145/1453101.1453117

94. Ivan Edward Sutherland. 1980. Sketchpad: A Man-Ma-
chine Graphical Communication System. Garland Pub-
lishing, Inc., New York, NY, USA.

95. Bret Victor. 2014. Humane representation of thought: a
trail map for the 21st century. In Proceedings of the
27th annual ACM symposium on User interface soft-
ware and technology (UIST '14). ACM, New York,
NY, USA, 699-699.
https://doi.org/10.1145/2642918.2642920

96. Nicolas Villar, Kiel Mark Gilleade, Devina Ram-
dunyellis and Hans Gellersen. 2007. The VoodooIO
gaming kit: a real-time adaptable gaming control-
ler. Comput. Entertain. 5, 3, pages.
http://dx.doi.org/10.1145/1316511.1316518

97. Nicolas Villar, James Scott, Steve Hodges, Kerry Ham-
mil, and Colin Miller. (2012) .NET Gadgeteer: A Plat-
form for Custom Devices. In Pervasive Computing.
Pervasive 2012. Lecture Notes in Computer Science,
vol 7319. Springer, Berlin, Heidelberg. 216-233
https://doi.org/10.1007/978-3-642-31205-2_14

98. Akira Wakita and Yuki Anezaki. 2010. Intuino: an au-
thoring tool for supporting the prototyping of organic
interfaces. In Proceedings of the 8th ACM Conference
on Designing Interactive Systems (DIS '10). ACM,
New York, NY, USA, 179-188.
http://dx.doi.org/10.1145/1858171.1858204

99. Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen
Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung,
and Mike Y. Chen. 2016. CircuitStack: Supporting
Rapid Prototyping and Evolution of Electronic Cir-
cuits. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology (UIST '16).

ACM, New York, NY, USA, 687-695.
https://doi.org/10.1145/2984511.2984527

100. Mark Weiser, (1991). The Computer for the 21 st Cen-
tury. Scientific american, 265(3), 94-105.

101. Mikael Wiberg and Erik Stolterman. 2014. What
makes a prototype novel?: a knowledge contribution
concern for interaction design research. In Proceedings
of the 8th Nordic Conference on Human-Computer In-
teraction: Fun, Fast, Foundational (NordiCHI '14).
ACM, New York, NY, USA, 531-540.
https://doi.org/10.1145/2639189.2639487

102. Alexander Wiethoff, Hanna Schneider, Julia Küfner,
Michael Rohs, Andreas Butz, and Saul Greenberg.
2013. Paperbox: a toolkit for exploring tangible inter-
action on interactive surfaces. In Proceedings of the 9th
ACM Conference on Creativity & Cognition (C&C
'13), Ellen Yi-Luen Do, Steven Dow, Jack Ox, Steve
Smith, Kazushi Nishimoto, and Chek Tien Tan (Eds.).
ACM, New York, NY, USA, 64-73.
10.1145/2466627.2466635
http://doi.acm.org/10.1145/2466627.2466635

103. Daniel Wigdor, Hrvoje Benko, John Pella, Jarrod Lom-
bardo, and Sarah Williams. 2011. Rock & rails: extend-
ing multi-touch interactions with shape gestures to ena-
ble precise spatial manipulations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems(CHI '11). ACM, New York, NY, USA, 1581-
1590. https://doi.org/10.1145/1978942.1979173

104. Raphael Wimmer, Matthias Kranz, Sebastian Boring
and Albrecht Schmidt. 2007. A Capacitive Sensing
Toolkit for Pervasive Activity Detection and Recogni-
tion. In Proc. International Conference on Pervasive
Computing and Communications (PerCom'07), IEEE,
White Plains, NY., 171-180.
 10.1109/PERCOM.2007.1

105. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.
2007. Gestures without libraries, toolkits or training: a
$1 recognizer for user interface prototypes. In Proceed-
ings of the 20th annual ACM symposium on User inter-
face software and technology (UIST '07). ACM, New
York, NY, USA, 159-168.
https://doi.org/10.1145/1294211.1294238

106. Jacob O. Wobbrock and Julie A. Kientz. 2016. Re-
search contributions in human-computer interac-
tion. interactions 23, 3 (April 2016), 38-44.
https://doi.org/10.1145/2907069

107. Chi-Jui Wu, Steven Houben, and Nicolai Marquardt.
2017. EagleSense: Tracking People and Devices in In-
teractive Spaces using Real-Time Top-View Depth-
Sensing. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI '17).
ACM, New York, NY, USA, 3929-3942.
https://doi.org/10.1145/3025453.3025562

https://doi.org/10.1145/2817721.2817750
http://dx.doi.org/10.1109/WMCSA.1994.16
http://dx.doi.org/10.1145/985692.985714
http://dx.doi.org/10.1145/1453101.1453117
https://doi.org/10.1145/2642918.2642920
http://dx.doi.org/10.1145/1316511.1316518
http://dx.doi.org/10.1145/1858171.1858204
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/2639189.2639487
http://doi.acm.org/10.1145/2466627.2466635
https://doi.org/10.1145/1978942.1979173
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/2907069
https://doi.org/10.1145/3025453.3025562

108. Robert Xiao, Chris Harrison, and Scott E. Hudson.
2013. WorldKit: rapid and easy creation of ad-hoc in-
teractive applications on everyday surfaces. In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '13). ACM, New York,
NY, USA, 879-888.
https://doi.org/10.1145/2470654.2466113

109. Jishuo Yang and Daniel Wigdor. 2014. Panelrama: en-
abling easy specification of cross-device web applica-
tions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '14).
ACM, New York, NY, USA, 2783-2792.
http://dx.doi.org/10.1145/2556288.2557199

110. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: using GUI screenshots for search and au-
tomation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technol-
ogy (UIST '09). ACM, New York, NY, USA, 183-192.

https://doi.org/10.1145/2470654.2466113
http://dx.doi.org/10.1145/2556288.2557199

SUPPLEMENTAL MATERIALS
This section discloses some of the additional analyses that
we performed. Table 2 reveals the trends in evaluation types
and techniques, as mapped to the toolkit goals, as well as the
total distribution of techniques across the data.

We used focused coding [14] to map the contribution state-
ments of each paper to the 5 core toolkit goals (numbered G1
to G5) introduced earlier in this paper. Table 2 summarizes
what we found. The vertical axis represents the 5 core toolkit
goals, while the horizontal axis is the evaluation techniques.
The coloured bars show frequency counts of the papers in-
corporating those goals and methods. For example, 61
toolkit papers claimed G1 (reduced time and complexity). 59
of those used demonstrations (in particular, 55 included
novel examples and 18 included replicated examples). Eight
papers currently used heuristics. While novel examples ap-
pear throughout G1-G5, G1 and G2 often relied on ‘how-to’
scenarios (G1: 37, G2: 29) to show toolkit’s easier to use,

followed by usability studies (G1: 14, G2: 12) and bench-
mark thresholds (G1: 14, G2: 9). These choices seemed to
appropriately fit the claims. Few papers used heuristics (8),
and not often supported G4. This was a surprise to us con-
sidering that Olsen [77] includes discussion points pertaining
to architecture and its integration to current infrastructure or
ability to combine with others. This might be due to how re-
cent Olsen’s work [77] is within the community.
Releasing the Raw Data and our Visualizations
Together with our paper, we are releasing the data for down-
load on a public repository (e.g. GitHub), where we will in-
clude the raw data, as well as some of the C# scripts used to
further analyze the data. In opening access to our data, other
researchers can suggest new papers to add to this dataset so
that it continues to grow over time. Moreover, additional
analysis can be carried out to identify trends beyond the
scope of this paper (e.g. which techniques are most fre-
quently used together and trends over the years).

Table 2. Trends in Goals, Evaluation Types and Techniques

	Evaluation Strategies for HCI Toolkit Research
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	WHAT IS A TOOLKIT?
	Defining a Toolkit
	Why Do HCI Researchers Build Toolkits?
	Evaluating Toolkits

	METHODOLOGY
	Dataset
	Analysis and Results

	TYPE 1: DEMONSTRATION
	Why Use Demonstrations?
	Evaluation Techniques as Used in Demonstrations
	Challenges
	Opportunities to Strengthen Evaluation

	TYPE 2: USAGE
	Why Evaluate Usage?
	Evaluation Techniques as Used in Usage Studies
	Challenges
	Opportunities to Strengthen Evaluation

	TYPE 3: TECHNICAL PERFORMANCE
	Why Analyze the Technical Performance?
	Techniques as Used in Technical Performance
	Challenges
	Opportunities to Strengthen Evaluation

	TYPE 4: HEURISTICS
	Why Use Heuristics?
	Evaluation Techniques for Heuristics
	Challenges
	Opportunities to Strengthen Evaluation

	DISCUSSION
	Rethinking Evaluation
	Evaluation by Demonstration?
	Usability Studies (Still) Considered Harmful Some of the Time
	Successful Evaluation versus Successful Toolkit

	The Need for HCI Infrastructure Research
	Limitations

	conclusions
	REFERENCES
	Supplemental Materials
	Releasing the Raw Data and our Visualizations

