A Data-Efficient Collaborative Modelling Method using Websockets and the
BlobTree for Over-the Air Networks

Pourya Shirazian®
University of Victoria

Herbert Grasberger®
University of Victoria

User 1

ADD Red Cylinder | ADD White Cylinder
MOVE White Cylinder

MAKE Difference

User 2

ADD Red Torus

Brian Wyvillt
University of Victoria

Saul Greenberg?
University of Calgary

SCALE Torus
ROATE Torus
MOVE Toru

MAKE Blend

Figure 1: An example modelling session between two users.

Abstract

Collaborative modelling has become more important in the last few
years, especially now that mobile devices show processing power to
support 3D modelling in real-time. Current mobile networks, such
as 3G and LTE, unfortunately are not as fast as traditional wired
internet and have higher latency.

The problem with collaborative modelling using triangle meshes is
that complex models are slow to synchronize and require large net-
work resources depending on the amount of data needed to update a
model. Synchronizing thousands of triangles over the network be-
tween all participating users can introduce substantial lag between
the transactions, especially on over-the air networks, making fine
grained and rapid updates at interactive rates hard to achieve.

In contrast the BlobTree is based on combining skeletal primitives
and sketched-shapes using standard CSG and various blending op-
erators. Using this methodology complex models can be encoded
with a smaller memory footprint than mesh based systems, thus al-
lowing for less traffic across a network to synchronize two or more
workstations with one model. As a result fine grained and rapid
updates are possible, improving the visual communication between
all participating users.

CR Categories: 1.3.2 [Computer Graphics]: Distributed/network
graphics; 1.3.5 [Computer Graphics]: Modeling packages;

Keywords: Collaborative, Distributed Systems, BlobTree, Web-

*e-mail:grassi@cs.uvic.ca
te-mail:pouryash @cs.uvic.ca
fe-mail:blob@cs.uvic.ca
8¢-mail:saul @ucalgary.ca

Grasberger, H., Shirazian, P., Wyvill, B. and Greenberg, S. (2013)

sockets, Implicit Modelling

1 Introduction

This research is motivated by the desire to work collaboratively
and share highly complex models across the network. With the
introduction of touch-based tablet devices, a new way to share and
model objects collaboratively using touch and sketch-based input is
possible. Large models are very likely to be constructed by more
than one person, particularly for product design where designers of
different model-parts may be at disparate locations.

The frame of a bike for example is sketched by a designer, whereas
the linkages for the suspension are created by an engineer. Ad-
ditional parts are added by another designer to create a final pro-
duction rendering. Since network speed can be a limiting factor in
collaborative design, one of the main criteria for our system is its
small memory footprint and reduced amount of necessary synchro-
nization messages.

In the VRML/X3D strategy the majority of the 3D geometric data
shared and transmitted on the network is a polygon mesh. Mesh
compression approaches and progressive meshes try to reduce the
amount of information transferred, sometimes by reducing the over-
all quality of the mesh.

In comparison our proposed system minimizes network loads by
transmitting updates to the hierarchical structure known as the

A Data-Efficient Collaborative Modelling Method using Websockets and the BlobTree for Over-the Air Networks. In Proc. ACM International
Web3D Conference - Web3D 2013. (San Sebastian, Spain), 9 pages plus video, June 20-22.


saul
Text Box
Grasberger, H., Shirazian, P., Wyvill, B. and Greenberg, S. (2013) 
A Data-Efficient Collaborative Modelling Method using Websockets and the BlobTree for Over-the Air Networks. In Proc. ACM International Web3D Conference - Web3D 2013. (San Sebastian, Spain), 9 pages plus video, June 20-22.


BlobTree [Wyvill et al. 1999], where every participant receives the
most precise description of the model. Our design sends the infor-
mation as typed messages with their associated parameters repre-
senting user modifications to the model. This strategy keeps the
scene structures synchronized across multiple design stations. The
BlobTree data-structure is modified by each participant using the
commands and visualization of the model is performed locally on
each system using available processing resources.

The BlobTree is both a data structure and a modelling paradigm
similar to Constructive Solid Geometry, as in [Ricci 1973]. It
is based on the combination of skeletal implicit primitives with
boolean nodes, as well as more advanced operators to create com-
plex shapes, including warping, filleting and blending between the
nodes. The resulting BlobTree is a complete, and compact descrip-
tion of an implicit model.

Both, implicit models and the operators used in the BlobTree can
be described using a small set of parameters, thus the BlobTree is a
good choice for a compact data description to send across the net-
work. The BlobTree can be polygonised for fast visual feedback, or
if a high quality image is desired it can be rendered using a ray trac-
ing approach. Furthermore the BlobTree supports rapid prototyping
via sketching as described by [Schmidt and Wyvill 2005] where the
basic building block of a sketch primitive can be very small in terms
of memory.

The contribution of this work is a synthesis of existing techniques
from different disciplines. We minimize network traffic by using
a hierarchical implicit modelling system, we use a sketch based
metaphor for direct manipulation of a model, and a layered server-
less messaging system based on Websockets [W3C 2013] that does
not require locks for synchronization. Together these improvement
create a system contribution that could have impact on the way
models are built in a collaborative environment as shown in Fig-
ure 1. This also exposes a big advantage in using skeletal implicit
modelling, a previously little utilized approach. In real world sit-
uations where only 3G/4G networks are available over hand held
devices, this method shows a big advantage since fine grained and
rapid updates of the scene are possible due to the BlobTrees small
memory footprint, enabling the system to be highly interactive. Our
approach is lock free and enables ‘simultaneous modifications’.
When several users want to change the same feature of a model
in different ways, all of them can grab this feature and modify (e.g.
translate or rotate it) at the same time.

The remainder of this paper is organized as follows: related work in
distributed collaborative modelling is found in section 2, the Blob-
Tree and its basic operators are described in section 3. Our system
of network messages is explained in section 4.1, with an in-depth
discussion of each message layer in section 4.1.1, 4.1.2 and 4.1.3.
Synchonization issues are discussed in section 5 and our unique
user interface features are explained in section 6. The work con-
tinues with some example objects modelled using our system in-
cluding a discussion on the of data transmitted in section 8. Finally,
conclusion and future work is given in section 9.

2 Related work

Mouton [Mouton et al. 2011] provides an in-depth analysis of cur-
rent collaborative environments, mainly targeted to handle visual
data sets. They suggest that new applications should try to re-
duce their usage of bandwidth by using local client resources to
increase an applications interactive performance. They advocate a
focus of new applications towards transferring less data and calcu-
lating more information. In addition they suggest that developers
of new applications should try to use given standards instead in-
venting their own. Our approach conforms with this idea, in that

it uses low bandwidth and uses HTML Websockets for transferring
the information.

One early distributed virtual environment for engineering and man-
ufacturing was CollabCAD [Mishra et al. 1997]. In this system a
mesh model is shared across the network amongst multiple design-
ers. Previously designed models are imported for further manipu-
lation, and detailed modifications. Concurrent access to a common
design is enabled for viewing and modification.

Nishino [Nishino et al. 1999] created a collaborative modelling en-
vironment to enable the design of implicit models. Each participant
in the system can login to a session server to gain access to the part
of the object being designed by other participants on that server. All
session servers are managed by a centralized world server, which
controls access rights and updates done by all participants. To
make a modification to the model each participant requests an up-
date right which is acknowledged by the session server. Each client
holding an update right sends updated parameters to all other partic-
ipants connected to the same session server, then it releases the up-
date right and saves the tree data to the session server, not allowing
simultaneous input from several nodes. Our work uses the same ba-
sic idea of an implicit modelling system. We improve on Nishino’s
system by using the BlobTree, giving us a variety of primitives in-
cluding sketch-based shapes, CSG and different types of blending
and deformations [Sugihara et al. 2010]. We avoid problems asso-
ciated with having a central session server handling update rights
(e.g. when the server fails), by offering a server less system that
allows multiple designers to make changes to the model simultane-
ously.

Many mesh-based approaches, such as the ones by Han [Han et al.
2003], Ramani [Ramani et al. 2003] and Kim [Kim et al. 2006],
also employ client-server architectures. Meshes are transferred be-
tween the clients and the server, never in between clients. All of
these approaches use different ways to control access to parts of
the model, all controlled by the central server. Some approaches
try to compensate for the lack of synchronization speed the mesh
approach creates, by adding a mesh hierarchy or a level of detail
method, such as the one presented by Chu [Chu et al. 2009]. One
of the problems is that as the detail and therefore the complexity of
a model increases, updating the mesh hierarchy, rapidly becomes
the bottleneck in the system. This is in addition to the issues of
client-server based approaches.

Our work is based on Websocket [W3C 2013] which is a stan-
dardized protocol to transfer messages across the internet, based
on HTTP. Marion [Marion and Jomier 2012] uses a Websocket im-
plementation to transfer the scientific data to and between their vi-
sualizer clients. At program startup only the data set is transferred
and only once this is finished the collaboration process starts, where
users can then work on the data set concurrently, however the data
set cannot be changed interactively. They highlight that their Web-
socket implementation can achieve lower latency and a higher syn-
chronization rate than a comparable AJAX implementation.

Distributed sketching has been a topic of long interest in the Com-
puter Supported Cooperative Work (CSCW) and groupware com-
munity. While most reported systems are for simple 2D sketches,
the human and social factors underlying distributed interaction ap-
ply equally to 3D modelling. These are perhaps best summarized
by the mechanics of collaboration that cover the basic communi-
cation and coordination operations of teamwork - the small-scale
actions and interactions that group members must carry out in or-
der to collaborate within a shared workspace [Pinelle et al. 2003].
In brief:

e Explicit communication occurs not only through spoken and
written messages, but by gestural messages, deictic refer-



&)

S

Figure 2: An example BlobTree. Primitives are combined to form
a mug.

ences and actual actions that accompany talk (e.g., indicat-
ing, demonstrating, pointing, moving a pen to initial drawing,
drawing actions).

e Information gathering includes fine-grained knowledge of
what others are doing. This includes basic awareness (who is
in the workspace, what they are doing, where they are work-
ing), feedthrough (changes to objects made by others), con-
sequential communication (body position and location, gaze
awareness).

o Shared access describes how people access tools and draw-
ing objects, which covers how they reserve and obtain such
resources, and how they protect their work by (for example)
monitoring others’ actions in an area and negotiating access.

e Transfer covers how people physically handoff objects to oth-
ers, and how they place objects in a space so others can use
them.

Technically, we require a few factors for the above to work in a
real-time collaborative situation. First, people need to communi-
cate through talk. This means a rich communication channel is
necessary: in our case, we expect people to use existing systems
(e.g., telephones, VOIP, video conferencing) alongside our system.
Second, people need to see rapid and fine-grained updates of the
3D sketch as it evolves, including transitional states that accom-
pany object addition, deletion, movement, transformation, and so
on. If delays are excessive, or if objects just ‘shift’ from one state
to another without displaying in-between states, people have dif-
ficulty tracking what is going on, and have problems coordinating
their talk with their sketching actions. This is the main motivator
for our work: by using and transmitting only a small set of param-
eters, fine-grained and rapid updates are possible. Third, people
need to be embodied in the system in a way where others can see
where they are, where they are attending, and what they are about
to do. As common in most groupware, we do this through multi-
ple cursors, implemented as arrows in 3D space and camera items
implemented to show a miniature of the remote users view of the
scene.

3 Representing the Model

Our choice of the underlying data-structure was motivated by the
two main criteria, as stated by [Mouton et al. 2011]:

e small memory footprint and resulting little bandwidth use

e efficient use of local client resources to visualize.

The BlobTree fits these two criteria in that it extends existing skele-
tal implicit surface modelling techniques [Bloomenthal 1997]. It
combines these skeletal implicit surfaces with a unified structure
in which nodes can represent arbitrary blends between objects as
well as Boolean operations, and warping at a local and global level.
See Figure 2 for an example of the construction of a simple model.
To visualize a model, whether by polygonization or ray-tracing,
requires traversal of the BlobTree for a large number of points in
space. The BlobTree simply returns a field-value and a gradient for
each point p.

Much work has been done on improving the speed at which the
BlobTree can be traversed to produce a triangle mesh. There is a
long history of polygonization algorithms starting with the uniform
voxel grid method of [Wyvill et al. 1986]. Bloomenthal published a
popular implementation of the uniform grid method in [Bloomen-
thal 1994], which in addition, overcame ambiguities using tetrahe-
dral decomposition. A more efficient algorithm was published in
[Akkouche and Galin 2001].

The sketch-based system of [Schmidt et al. 2005a], for efficiency
trades accuracy for speed by storing cache nodes in the BlobTree
[Schmidt et al. 2005b]. For accurate visualization but in general
non-interactive applications, ray tracing can be employed using
interval analysis [Snyder 1992], or Lipschitz approaches such as
[Kalra and Barr 1989].

3.1 Skeletal Primitives and Blend Operators

Most of the primitives used in the BlobTree are built from geometric
skeletons, which are incorporated in many implicit modelling soft-
ware packages such as BlobTree.net [de Groot 2008] or ShapeShop
[Schmidt et al. 2005a]. They are ideally suited to prototype shapes
of arbitrary topology [Bloomenthal 1997]. In general these works
conclude that the use of skeletal primitives can lead to a simple and
intuitive user modelling methodology.

The basic building block of a skeletal primitive is a skeleton S.
To create a skeletal primitive the distance-field ds of the volume
encapsulating the shape has to be computed as described in [Barbier
and Galin 2004]. The distance field is a volume of scalar values
which is not bounded as the distance itself can be infinitely large.

By modifying ds with a field function g, it can be bound to a finite
range. Usually the function maps the distances to the range [0, 1],
where the field has values of 1 at the skeletons and 0 after a certain
distance to the skeleton (usually at distance 1). A discussion of field
function appears in [Shirley and Marschner 2009].

Skeletal implicit primitives are combined using binary operators,
which are applied pair wise to field-values f, and represented by a
node in the BlobTree, whose children are either primitives or oper-
ators themselves.

Field values are computed for the child-nodes and combined to
yield a new value according to the operator type. This makes it
possible to go beyond the classical Boolean operators, and define
general blend operators that e.g. create smooth transitions between
shapes. The most common operator that creates a smooth transition
between several values is called the summation blend [Bloomenthal
1997]:

fr(p) = fa(p)

neN

where the resulting field-value at a point p in space fr(p) is the
sum of the field-values of all the objects involved.

More complex operators, such as those described in [Barthe et al.
2003] and [Barthe et al. 2004] or the blending functions that are



based on R-functions [Shapiro 1994], [Pasko et al. 1995] and
[Pasko and Savchenko 1994], allow for a fine control on the re-
sulting blend shape. By using them it is possible to create com-
plex blended shapes similar to the ones proposed for CSG in [Elber
2005].

3.2 Sketching

One big advantage of the BlobTree compared to other modelling
approaches is its seamless integration with sketched objects, where
2D sketches are used to create 3D objects. The implementation
of sketching follows the approach described by Schmidt et. al.
[Schmidt and Wyvill 2005]. In this method the 2D shape sketched
by the user is sampled and an implicit approximation is created
from the sample points. This is done by fitting a thin-plate spline as
a base shape to the sampled points using variational interpolation
[Savchenko et al. 1995] [Turk and O’Brien 1999] . One advantage
of creating the base shape using variational interpolation is that the
resulting implicit field is C* continuous, a property needed when
the shape is involved in several blending operations [Barthe et al.
2004].

A continuous 2D scalar field is created from several distance value
samples (p;, d; ), where p; describes the position of the sample and
d; its distance to the skeleton formed by the sketched polygon. The
thin-plate spline used to create the variational implicit field f(p) is
defined in terms of these points weighted by corresponding coeffi-
cients w; combined with a polynomial P(p) = c1pz + capy + c3.

f) =>_willlp = pil)*In(llp — pill) + P(p)

i€EN

The resulting thin plate spline can then be used as the basis of sev-
eral different 3D objects:

e sweep along a line
e revolving around an axis
e inflation.

These sketched objects can then be used in the same way as the
standard skeletal implicit primitives to create unique 3D shapes.
Such unique shapes were not possible to create in previous collab-
orative environments, especially given this technique’s small mem-
ory footprint needed to transfer the information.

4 Implementation

Other groupware systems [Greenberg and Roseman 1999] have
dealt with the ‘large model’ problem in several ways. One com-
mon approach is screen sharing of single user applications: instead
of sending the model, only the screen visuals are transmitted. Key
limitations are that users have to take turns (simultaneous input does
not really work[Nishino et al. 1999] ), and that the model would not
be available at all sites for offline use. Another approach transmits
only user input, such as mouse movement to keep the model syn-
chronized, since as long as the input across applications remain syn-
chronized, the models constructed at each site would be the same.
Such synchronization can be difficult to do in practice, and intro-
duces the ‘latecomer’ problem, i.e., if a model has already been
created ahead of time, either that entire model or the input stream
up to that point would have to be transmitted to bring the late en-
trant up to date. On the contrary, our underlying data structure, the
BlobTree, has the advantage of a compact representation even for a
large model (see the airplane model in Figure 6d), so even sending
the whole history does not involve a lot of data transfer.

There remains other cases (detailed below) where transmitting and
maintaining a true copy of the model across sites is still a best
choice in terms of flexibility and reliability.

4.1 Network Message Layers

To satisfy the aforementioned properties for efficient collaborative
systems, our approach maintains a true copy of the model(s) across
all the clients. It is for these cases that we advocate our param-
eterized approach that includes a protocol that can be categorized
into several layers, each of them dealing with separate parts of the
required communication:

e system messages, described in section 4.1.1
e actions described, described in section 4.1.2
e user interface messages, described in section 4.1.3

We chose a synthesis of techniques from different disciplines as the
basis to overcome problems present in several existing distributed
modelling environments. In our system, no node is a dedicated
server, thus the need for an election algorithm in case the server
loses connection is not present. Every node connects to every other
node and all messages are sent via multicast to all participating
members.

Each message apart from a system message, contains its sending
time stamp relative to the start time of the modeling session. These
time stamps are mainly needed for synchronization, but they also
directly provide one of the additional benefits of our message sys-
tem, described in section 8.1.

Message types differ in the way they are applied:

e System messages are executed right away when they are read
by each host.

e Actions and user interface messages are buffered in between
the rendered frames. The buffers are updated at the start of
each frame to avoid unnecessary work between frames, and
potentially not having the data changed while rendering is in
progress. This reduces the computation workload, since the
program polygonizes at maximum once every frame.

4.1.1 System Messages

Our system uses Lamport timestamps [Lamport 1978] to provide
concurrency between all nodes, as described in section 5. One main
objective of the system messages is that all users use the same time
base in the messages sent. These time stamps are assumed to be in
coordinated universal time (UTC) and we assume that every node
in the system has consistent time due to a connection to a local time
server.

When a new node A connects to one of the nodes B currently in
the modeling session, B sends the start time of the session to A.
In case node A already has modeled something, the local model is
reset and the remote one is to be loaded.

The other main objective of the system messages are handling of
all connected users. After A connects to B, B gathers the IP ad-
dresses of all its connected nodes and forwards them to A. A starts
connections with all the nodes whose data it receives, and confirms
to B when this is achieved. Only then A receives the action history
(see below) of the current modeling session to create the model and
participate in the session.

If one single node loses connection to the system and reconnects,
the same procedure applies. The reconnection is handled as if it



is a new node connecting, discarding the old information on the
reconnected node.

4.1.2 Actions

In our system the term action is used for any network message that
changes the current shared model. This means that after an action is
received and applied the actual model has been changed, compared
to a user interface message which is used for immediate feedback
and only shows an approximation of the change to be.

Since actions modify the actual model, the following different types
of BlobTree data objects were defined:

e primitive objects with their parameters (e.g. colour),

e sketched objects with the parameters (as above) plus the sam-
ple points,

e operator objects, with optional parameters e.g. the Ricci
Blend Operator [Ricci 1973] and

e transformations (standard affine transformation or warps
(bends and taper nodes)).

Both, primitive objects and sketch objects are leaf nodes in the
BlobTree, whereas transformations have one child node and oper-
ators can usually have two child nodes. For primitives, sketched
objects and operators, there is only a limited set of potential values
(e.g. a sphere or a cube primitive, etc.), thus the main information
can be given by setting the exact data objects using its explicit type
information. If needed, a limited set of additional unique param-
eters (such as transformation values) will be transmitted as well.
Every action creating a new node in the BlobTree gets a unique
time stamp, which is part of the message, and actions operating on
the existing nodes (operators and transformations), take these IDs
as parameters as well. This information can be seen as the minimal
representation needed to describe an arbitrary BlobTree found in
our system: Node type information, IDs and additional parameters.

When a model is created it can be thought of as a series of seman-
tically different tasks:

e add primitive and set its parameters,

skech object based on a given control polygon.

e add operator combining several nodes of the tree that have
parameters depending on the operator,

e move, scale, rotate and delete a BlobTree node and all its
underlying children if present,

e undo and redo of any action

The actions defined above are independent of their actual imple-
mentation in a user interface. For example the delete action can be
either triggered by a button click in an application having a CAD
like interface or it can be triggered by the user directly using a ges-
ture, in this case crossing out the object in a sketch interface (as in
[Schmidt and Wyvill 2005]).

4.1.3 User Interface Messages

A major advantage of our approach is that the BlobTree data struc-
tures transmitted is small, enabling fine-grained and rapid updates
of the scene. This approach also allows us to describe what the users
are doing when they are not applying changes to the BlobTree. In
order to achieve this immediate feedback of what is going to hap-
pen after the remote user finishes his current task, we incorporated
several messages which only describe user input.

We use these messages to update several distinct, non -BlobTree-
related data:

e camera parameters to have information about everybody’s
point of view,

e cursor positions to show where remote users are pointing at in
3D space and

e immediate feedback showing the result of a geometric trans-
formation

The BlobTree itself is only changed and re-polygonized when the
action for the final modification is sent, to avoid unnecessary im-
mediate steps.

Without these messages, changes to the model would just appear
at every participant when they are applied to the tree, without any
previous feedback. One example of this behaviour would be an ob-
ject being transported from one location to another. This feedback
is needed to communicate changes between all participants in the
modelling session. When a user adds a new shape to the scene using
sketching, the control points of the sketched shape are transmitted
as they are drawn, so the other users are informed at any stage of
the drawing process.

The information transmitted in the user interface messages is not
used to modify the final tree, but the necessary transformation data
is sent separately. This is done, so it is possible to discard all the
user interface messages when saving the final model actions, and
still have all the necessary data to reconstruct the model.

5 Synchronisation

Our synchronization approach is based on optimistic time stamp
ordering as described by Kung et. al. [Kung and Robinson 1981].
The timestamps used are transferred in relative time in microsec-
onds since the session start time, assuming that all the participating
users have working clocks that are synchronized via their operating
systems. Every action is assigned a time stamp by the host system
where it originates and at every participant the actions are applied
to the tree in the order of the timestamps.

In case a latecomer message arrives and messages with a later
timestamp have already been applied, those are rolled back, the
latecomer message is applied and all following are redone.

As defined in optimistic time stamp ordering there is a chance of
actions conflicting, which in our case can be:

e A node that is already a child node in the tree, cannot be made
a child node again, as it would have two parent nodes. If such
an action occurs, it will be ignored by our system and the
originating user informed about this fact.

e A node that has been deleted cannot be altered. Similar to
above such a message will be ignored too.

e In case different users modify the same part of the model our
system decides if a potential collision has occurred. A global
parameter to the modelling session is, how close in time ac-
tions can be applied to the same node by different users. In
case actions are too close, they are chosen on a first-come-first
served basis, and others are discarded. In our use of the sys-
tem, a time frame of 1 second has proved to work well, since
it can be assumed that an action will be applied at all the other
nodes within this time and can be visually registered by all
participants.

Every new node in our system is assigned a unique ID using the
standard UNIX uuid generator. This generator uses a combination



(a) iPad

(b) OSX

Figure 3: An example modelling session between three users. Both, the iPad (left) and the desktop (right) application show the users, and

the modification about to happen (initiated on the desktop).

of the local mac address and the timestamp to generate a 128bit
wide ID, that is considered unique [ISO 1996]. An action creating
a new node contains this ID and as a result it is easy to identify the
same nodes across the network.

Our system uses a minimum amount of messages as response to
actions. There is no need to acknowledge actions, only when they
need to be ignored due to a conflict, a message is sent to make
sure all other nodes ignore this action too. In these cases, changes
are not applied to the model as requested, and users see the model
automatically roll back the late change.

6 A Collaborative User Interface

The 3 types of user interface messages (camera parameters, cursor
positions, intermediate transformations), are detailed below:

e Camera parameters are used to present the model from the
point of view of other users. We use these parameters to ren-
der the scene, as seen by the other users into a texture. This
texture is then used as the interactive avatar for the specific
user, displayed as a screen aligned quad at the 3D position
of the remote camera. If the remote users camera is outside
the current viewing frustum, then the screen aligned quad is
clipped to the frustum borders, so it is always present. This
virtual camera view can be enlarged if necessary by clicking
on the avatar. This approach has also proven itself when mul-
tiple views of the same model are required.

e The 3D cursor positions of the users are visualized within our
scene. If the user is not pointing at any object in the scene,
the 3D position is at a constant distance along the view ray of
the remote user. An arrow is used to visualize this 3D cursor,
with the tip of the arrow being the position transmitted. It
is oriented according to the orientation of the corresponding
camera.

In case the remote user is currently sketching a new shape,
the transmitted 3D sketch control points are visualized, de-
scribing the control polygon of the part of the sketch already
drawn.

When the message to end the sketch action is received, this
control polygon is removed from the screen, since it will soon
be replaced by the actual sketched object.

e The intermediate transformation results are displayed using
the same visuals that are used for transformations, done by
the local user. Depending on the type of transformations, cer-
tain widgets are displayed at the centre of the current BlobTree
node. Widgets used locally display an active transformation
mode, depending on the chosen motion. Since the desired mo-
tion for incoming remote transformations is set by the remote
user, only a shadow of the widget is displayed, to illustrate
that the current user has no control over the motion. A shadow
of the node is also displayed as it is moved, which is used to
convey the end position of the object, to every participating
member of the modelling session, as soon as the transforma-
tion is complete. Otherwise the object would simply be ported
from one spot to another, without actually illustrating who did
it, and when the transformation was started.

Figure 3 illustrates the above mentioned features, shown for both
the desktop and the mobile application. There are two additional
users present in the modelling session. On the desktop, both the
yellow and the green users look at the scene from their view points,
the mouse cursors hidden from the model in the main view. The
desktop user interacts with the rotation widget (circles in grey),
transforming the rotation of the highlighted object. On the main
display on the mobile device the feedback of the translation of the
main part of the coffeemaker (highlighted in pink) is transformed
via the translation widget (original position in grey, the actual posi-
tion shown in colour).

7 Access Control

Building a complex model, such as a car, often involves creating
several disjoint parts, that might be built by different specialists.
In the example of the car, the body would be built by a designer,
whereas the engine would be created by an engineer. In some cases
it is desirable to have both of the models displayed together, to see
if they fit.

For this reason we decided to support several BlobTrees in our mod-
elling system. We use the same unique identifiers for identifying
the trees in our system as we do for each single node (see section
5). In order to assign each action to the proper tree, these IDs are
transmitted with each action. If no tree with the given ID is found
in the local modelling session, a new one is created and gets this



BlobTree Statistics (Log Scale)
100000

10000

1000

100

Mug Monkey Robot
Il Number of actions [l Total size [kbytes] Time[ms] [l Time per action [ms]

Coffeemaker Airplane

Figure 4: The network usage characteristics for the BlobTree ap-
proach. The y axis has a logarithmic scale

ID assigned. Each user chooses his current active tree and he is
allowed to switch it at any time in the session. Any action the user
takes can only apply to the current selected BlobTree, resulting in a
lightweight access control system.

Assuming a working communication channel is in place, the de-
signers and engineers can coordinate, which BlobTree can be al-
tered by whom. New BlobTrees can be added as needed and are
displayed as half transparent until selected by the local user. This
is done so that they don’t obstruct the view of the current active
BlobTree and to illustrate clearly which objects can be altered.

This lightweight access control system can be extended if needed,
by introducing formal access control based on users and user
groups, similar to the systems described in section 2. Every node
in the BlobTree stores ownership information, that can be used to
restrict access to the specific node or subtree in the BlobTree to ei-
ther a single user or a group. Whereas the previous work described
(e.g. [Han et al. 2003]) uses a central server managing access con-
trol, our distributed system would potentially cause problems with
a similar mechanism. If, for example, a user/group locks specific
parts of the scene to itself, and disconnects, then the locked part will
still be locked. Normally an unlock can only be done by the party
that did the lock, but if the party is not present anymore, it will
continue being locked. Potentially this problem can be solved by
introducing timeouts to every lock, but this would mean that locks
have to be renewed regularly, resulting in potentially unnecessary
communication overhead. Because of this problem we don’t use
centralized locking and we leave a better locking mechanism as an
option to enforce access control to future work.

As mentioned above a lightweight access control mechanism is im-
plemented by splitting the whole scene into several smaller Blob-
Trees, which fortuitously results in an decrease of visualization
time, since a change requires repolygonization of only the changed
BlobTree. If the same scene consisted of a single BlobTree with
disjoint parts, then a change in one disjoint part would require re-
polygonizing all other disjoint parts. This specific problem has been
solved by Schmidt et. al. [Schmidt et al. 2005b], so a combination
of both approaches can still result in fast visualisation times. This
forms another example of the advantage of maintaining a true copy
of the BlobTree.

8 Results

To provide quantitative data of our proposed approach we compared
the modelling characteristics against a mesh based synchronization
method. The mesh based method sends the mesh at every modelling

Mesh Statistics (Log Scale)
100000

10000

1000

100

Mug Monkey Robot
[l Number of actions [l Total size [Mbytes] Time [s]

Coffeemaker Airplane
[l Time per action [s]

Figure 5: The network usage characteristics for the mesh ap-
proach. The y axis has a logarithmic scale

step to each participant, that requires the model to be changed, thus
transmitting the current state of the model, which together with the
previous states form the construction history in mesh form. In this
evaluation we do not include user interface messages, which are
assumed to be equivalent in both approaches. We compared sev-
eral different modelling sessions of different complexity, shown in
Figure 6. For these use cases, we measure the total size of data
transferred, time spent transferring this data (latency) and the aver-
age time to send a message updating the model. In our test case we
simulated an average case 3G network, with 420 kbps uplink and
850 kbps downlink speed.

Figure 4 shows a logarithmic graph for the BlobTree case, whereas
Figure 5 illustrates the mesh case. Both graphs have logarithmic
scale in the y axis, however time for the BlobTree case is measured
in milliseconds and the data transferred is measured in kilobytes.
The mesh graph on the other hand uses seconds and megabytes
for the same cases, in order to keep the scale of the graph within
a range that can be fit on the page. For the mesh case, there are
usually less messages sent, since the mesh will be regenerated at
maximum once per frame, thus reflecting the changes of several
BlobTree actions. Nevertheless, the mesh approach uses a signifi-
cantly higher amount of data, thus resulting in longer transfer times
between the participants. As a result interactivity slows down sig-
nificantly, given that the average time between meshes is in the 100
second range, whereas the BlobTree approach is in the 5 millisec-
ond range for the worst case. The larger the model, the greater the
size of the mesh, which increases the average transfer time. In the
case of the BlobTree the size of a message is independent of the size
of the model, as it encodes only the changes in the tree. Sketched
objects can have a larger message size due too the variable number
of control points (see the monkey model Figure 4, which has many
sketch actions and fewer geometric primitives).

8.1 Construction History

There are several advantages of storing the whole construction his-
tory over storing only the final model. First of all, by having the
construction history of the different parts of the model on hand, the
model can be recreated at each step. If a model is highly complex
the actions building certain parts can be filtered out, to simplify the
model, or in case unnecessary parts were inserted. It is also rela-
tively small and keeping it does not degrade the system.

Since our approach also transmits user input and time stamps, it is
possible to playback the whole construction of the model, either in
real time, or similar to a video player with changed speed. Sev-
eral modelling communities teach modelling by using video tutori-



(a) Coffeemaker (41 nodes)

(b) Monkey (64 nodes) (¢) Robot (119 nodes)

Figure 6: The four models used for comparisons in Figure 4 and 5.

(d) Airplane (810 nodes)

als, that usually require considerable storage space and bandwidth.
Compared to videos our approach needs significantly less storage,
even if accompanied by an audio stream, commenting the construc-
tion history. If the maker of such a tutorial realizes that he has done
something undesired during recording the tutorial, he would need
to edit the video using a video editing software. If, in comparison,
our approach is used, the undesired messages can be removed using
a text editor.

If errors or undesired changes in the final model are found, our
approach provides a simple way to determine the user responsible
for that part of the model. Since every message can be tracked to its
origin, all that needs to be done is to find the appropriate message,
resulting in the undesired model, in the history and determining its
sender.

9 Conclusion & Future Work

We developed a system based on the BlobTree that allows collabo-
rative sketch-based modelling across a network. The network traffic
is minimized by using a hierarchical implicit modelling system. We
use a sketch based metaphor for direct manipulation of a model, and
a layered server-less messaging system that does not require locks
for synchronization. This distributed system uses different layers of
messages to distinguish between synchronisation and setup (system
messages), immediate user interface feedback (Ui messages) and
messages that alter the model(s) under construction (actions).

Our application based on the paradigms described in this paper was
used to build the four models presented in Figure 6 to illustrate the
advantages of our approach: reduced size of transmitted data be-
tween all users and optimistic time stamp ordering to avoid a lock-
based synchronization approach. Our future work will explore the
relationship between model complexity and the use of the message
system as described, as well as a detailed comparison with a mesh
approach. We did not find a collaborative approach in the literature,
that only transfers the change in the mesh, although this idea would
reduce the bandwidth for communications, we maintain that a large
BlobTree can efficiently encode details that would require far more
data even in the incremental mesh case.

We have shown, that actions can be recorded for training purposes
and also for reviewing the steps that have been done to design a
specific part of an object. To control access, we developed a light
weight system where disjoint parts of the model can be separated,
and every person can only work on one tree, not several at the same
time. This reduces the chance of people adding model informa-

tion to the wrong parts during the session. Apart from the ability
to allow for fine grained and rapid updates between all users in the
current modelling session our proposed system has several other
advantages. We improve on the system most similar to ours, see
[Nishino et al. 1999], in that we include a wider variety of prim-
itives and operators. Moreover our approach does not require a
centralized server managing the scene and access rights thus not
having the problems imposed by this approach. This enables all
users to simultaneously access a variety of alternative shape modi-
fications and collaboratively choose the most appropriate result.

Our future work targets a more complex access control mechanism,
similar to the one described in [Han et al. 2003], where the amount
of details revealed per each participant can be controlled by roles
defined in the system.

Acknowledgments

The authors would like to thank NSERC and GRAND for support-
ing this work.

References

AKKOUCHE, S., AND GALIN, E. 2001. Adaptive Implicit Surface
Polygonization Using Marching Triangles. Computer Graphics
Forum 20, 2, 67-80.

BARBIER, A., AND GALIN, E. 2004. Fast Distance Computation
Between a Point and Cylinders, Cones, Line-Swept Spheres and
Cone-Spheres. Journal of Graphics, GPU, and Game Tools 9, 2,
11-19.

BARTHE, L., DODGSON, N. A., SABIN, M. A., WYVILL, B.,
AND GAILDRAT, V. 2003. Two-dimensional potential fields
for advanced implicit modeling operators. Computer Graphics
Forum 22, 1, 23-33.

BARTHE, L., WYVILL, B., AND DE GROOT, E. 2004. Control-
lable binary csg operators for soft objects. International Journal
of Shape Modeling (Dec.).

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In
Graphics Gems 1V, P. S. Heckbert, Ed. Academic Press Profes-
sional, Inc., San Diego, CA, USA, 324-349.

BLOOMENTHAL, J. 1997. Introduction to Implicit surfaces. Mor-
gan Kaufmann.



CHu, C.-H., Wu, P.-H., AND Hsu, Y.-C. 2009. Multi-agent
collaborative 3D design with geometric model at different levels
of detail. Robotics and Computer-Integrated Manufacturing 25,
2,334-347.

DE GROOT, E. 2008. BlobTree Modelling. PhD thesis, The Uni-
versity of Calgary, University of Calgary.

ELBER, G. 2005. Generalized filleting and blending operations to-
ward functional and decorative applications. Graphical Models
67,3 (Dec.), 189-203.

GREENBERG, S., AND ROSEMAN, M. 1999. Groupware Toolk-
its for Synchronous Work. In Computer-Supported Cooperative
Work (Trends in Software 7), M. Beaudouin-Lafon, Ed. John Wi-
ley & Sons Ltd, 135-168.

HAN, J. H., Kim, T., CERA, C., AND REGLI, W. 2003. Multi-
resolution modeling in collaborative design. Computer and In-
formation SciencesISCIS 2003, 397-404.

ISO. 1996. Information technology — Open Systems Interconnec-
tion — Remote Procedure Call (RPC). Internatioal Organization
of Standardization ISO/IEC 11578.

KALRA, D., AND BARR, A. 1989. Guaranteed ray intersections
with implicit surfaces. SIGGRAPH ’89: Proceedings of the 16th
annual conference on Computer graphics and interactive tech-
niques (July).

KiMm, T., CERA, C. D., REGLI, W. C., CHOO, H., AND HAN, J.
2006. Multi-Level modeling and access control for data sharing
in collaborative design. Adv. Eng. Inform. 20, 1, 47-57.

KUNG, H. T., AND ROBINSON, J. T. 1981. On Optimistic Meth-
ods for Concurrency Control. ACM Transactions on Database
Systems 6,2 (June), 213-226.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM 21 (July),
558-565.

MARION, C., AND JOMIER, J. 2012. Real-time collaborative sci-
entific WebGL visualization with WebSocket. In Proceedings of
the 17th International Conference on 3D Web Technology, ACM,
New York, NY, USA, 47-50.

MISHRA, P., VARSHNEY, A., AND KAUFMAN, A. 1997. Collab-
CAD: A Toolkit for Integrated Synchronous and Asynchronous
Sharing of CAD Applications. In Proceedings TeamCAD:
GVU/NIST Workshop on Collaborative Design, Atlanta, GA,
USA, State University of New York at Stony Brook.

MOUTON, C., SONS, K., AND GRIMSTEAD, I. 2011. Collabo-
rative visualization: current systems and future trends. In Pro-
ceedings of the 16th International Conference on 3D Web Tech-
nology, ACM, New York, NY, USA, 101-110.

NiIsHINO, H., UTsuMiya, K., KORIDA, K., SAKAMOTO, A.,
AND YOSHIDA, K. 1999. A method for sharing interactive
deformations in collaborative 3D modeling. In Proceedings of
the ACM symposium on Virtual reality software and technology,
ACM, New York, NY, USA, 116-123.

PASKO, A. A., AND SAVCHENKO, V. V. 1994. Blending Oper-
ations for the Functionally Based Constructive Geometry. CSG
94 Set-Theoretic Solid Modeling: Techniques and Applications,
Information Geometers, 151-161.

PASKO, A. A., ADZHIEV, V., SOURIN, A., AND SAVCHENKO, V.
1995. Function Representation in Geometric Modeling: Con-

cepts, Implementation and Applications. The Visual Computer
11, 8 (Oct.), 429-446.

PINELLE, D., GUTWIN, C., AND GREENBERG, S. 2003. Task
analysis for groupware usability evaluation: Modeling shared-
workspace tasks with the mechanics of collaboration. ACM
Trans. Comput.-Hum. Interact. 10 (Dec.), 281-311.

RAMANI, K., AGRAWAL, A., BABU, M., AND HOFFMANN, C.
2003. CADDAC: Multi-Client Collaborative Shape Design Sys-
tem with Server-based Geometry Kernel. Journal of Computing
and Information Science in Engineering 3,2, 170-173.

Riccr, A. 1973. A constructive geometry for computer graphics.
The Computer Journal 16, 2, 157-160.

SAVCHENKO, V. V., PASKO, A. A., OKUNEV, O. G., AND KUNII,
T. L. 1995. Function Representation of Solids Reconstructed
from Scattered Surface Points and Contours. Computer Graphics
Forum 14, 4, 181-188.

SCcHMIDT, R., AND WYVILL, B. 2005. Generalized sweep tem-
plates for implicit modeling. In Proceedings of the 3rd inter-
national conference on Computer graphics and interactive tech-
niques in Australasia and South East Asia, ACM, New York, NY,
USA, 187-196.

SCcHMIDT, R., WYVILL, B., COSTA-SOUSA, M., AND JORGE,
J. A. 2005. ShapeShop: Sketch-Based Solid Modeling with the
BlobTree. In Proc. 2nd Eurographics Workshop on Sketch-based
Interfaces and Modeling, Eurographics, Eurographics, 53—62.

SCHMIDT, R., WYVILL, B., AND GALIN, E. 2005. Interactive
implicit modeling with hierarchical spatial caching. SMI ’05:
Proceedings of the International Conference on Shape Modeling
and Applications 2005, 104-113.

SHAPIRO, V. 1994. Real Functions for Representation of Rigid
Solids. Computer Aided Geometric Design 11,72.

SHIRLEY, P., AND MARSCHNER, S. 2009. Fundamentals of Com-
puter Graphics. A. K. Peters, Ltd., Natick, MA, USA.

SNYDER, J. 1992. Interval Analysis for Computer Graphics.
SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques (July), 121-130.

SUGIHARA, M., WYVILL, B., AND ScHMIDT, R. 2010.
WarpCurves: A tool for explicit manipulation of implicit sur-
faces. Computers and Graphics 34, 3 (June).

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation us-
ing variational implicit functions. In Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 335-342.

W3C, 2013. Websockets API specification. W3C, Feb.

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data
structure for soft objects. The Visual Computer 2, 4 (Feb.), 227—
234.

WYVILL, B., GUY, A., AND GALIN, E. 1999. Extending the CSG
tree. Warping, blending and Boolean operations in an implicit
surface modeling system. Computer Graphics Forum 18, 2, 149—
158.





