

The HAPTICTOUCH Toolkit:
Enabling Exploration of Haptic Interactions

David Ledo1, Miguel A. Nacenta2, Nicolai Marquardt1, Sebastian Boring1, Saul Greenberg1
1Department of Computer Science

University of Calgary, 2500 University Drive NW
Calgary, AB, T2N 1N4, Canada

2Department of Computer Science
University of St. Andrews, Jack Cole Bldg.
St. Andrews, Fife KY16 9SX, Scotland, UK

[dledomai, nicolai.marquardt, sebastian.boring, saul.greenberg]@ucalgary.ca, mans@st-andrews.ac.uk

ABSTRACT
In the real world, touch based interaction relies on haptic
feedback (e.g., grasping objects, feeling textures). Unfortu-
nately, such feedback is absent in current tabletop systems.
The previously developed Haptic Tabletop Puck (HTP)
aims at supporting experimentation with and development
of inexpensive tabletop haptic interfaces in a do-it-yourself
fashion. The problem is that programming the HTP (and
haptics in general) is difficult. To address this problem, we
contribute the HAPTICTOUCH toolkit, which enables devel-
opers to rapidly prototype haptic tabletop applications. Our
toolkit is structured in three layers that enable programmers
to: (1) directly control the device, (2) create customized
combinable haptic behaviors (e.g., softness, oscillation),
and (3) use visuals (e.g., shapes, images, buttons) to quickly
make use of these behaviors. In our preliminary exploration
we found that programmers could use our toolkit to create
haptic tabletop applications in a short amount of time.

Author Keywords
Haptics, Tabletop, Touch Interface, Haptic Tabletop Puck,
API, Toolkit, Rapid Prototyping, Enabling Technologies.
ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces – haptic I/O, input devices and strategies; D.2.2
[Software Engineering]: Design Tools and Techniques.
General Terms
Design, Human Factors.

INTRODUCTION
Touch based interfaces let users interact with computers
through touch. In the vast majority of these systems, the
communication back from the computer happens exclusive-
ly through visual and auditory channels. This represents a
lost opportunity in human-computer interaction, as we
know that haptics can provide a rich bi-directional channel
that goes beyond the homogeneous and unchanging rigid
plane offered by most interactive touch surfaces. Despite
the enormous development of the field of haptics, develop-
ing hardware and software that provides a compelling hap-

tic experience unfortunately is still expensive and requires
specialized knowledge making programming this kind of
interfaces difficult.
As one promising approach for exploring haptic feedback
within tabletop interaction, Marquardt et al. introduced an
open source haptic platform called the Haptic Tabletop
Puck (or HTP) [14]. It uses inexpensive do-it-yourself
(DIY) hardware and low-level software. The HTP offered
(1) a single-point rod providing haptic output via height, (2)
the same rod reacting to finger pressure, and (3) controlla-
ble friction as the puck was moved across the surface. Col-
lectively, the HTP enables users and programmers to expe-
rience and experiment with a rich haptic channel in a multi-
user tabletop environment, where it enables research in a
broad range of haptic applications.

The problem is that programming even this simple haptic
device requires the programmer to learn complex haptics
models (e.g., the interaction between input pressure and
output force). In addition, programmers have to understand
low-level details of the multiple underlying hardware com-
ponents (i.e. pressure sensor and servo motors).
To encourage research in tabletop haptics, we contribute the
HAPTICTOUCH toolkit, which simplifies the development of
haptic-enabled applications for surface-based interfaces via
a multi-level API and an interactive Behavior Lab. Our
work offers four contributions:

 a working downloadable toolkit that simplifies haptic
programming on a DIY platform (the HTP platform);

 a series of abstractions and an application programming
interface (API) organization to enable programming sur-
face-based (2D) haptic interfaces (Figure 3), some of
which may be generalizable to other haptic devices;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
TEI 2012, Feb 19-22, 2012, Kingston, Ontario, Canada.
Copyright 2012 ACM 978-1-4503-0541-9/11/08-09....$10.00.

Figure 1. Behavior Lab lets developers explore, combine

and feel diverse haptic behaviors before writing code.

Saul
Text Box
Ledo, D., Nacenta, M. , Marquardt, N., Boring, S. and Greenberg, S. (2012) The HapticTouch Toolkit: Enabling Exploration of Haptic Interactions. In Proceedings of the ACM 6th International Conference on Tangible, Embedded and Embodied Interaction - TEI'2012. (Kingston, Ontario, Canada), ACM Press, 10 pages, February 19-22. Includes Video Figure, Duration: 4:01.

 the Behavior Lab (Figure 1) that lets
developers explore, combine and feel
diverse haptic behaviors before writing
any code; and

 a preliminary exploration on the usa-
bility of the API and its abstractions.

BACKGROUND
The toolkit and its API described in this
paper are extensions of the Haptic Tab-
letop Puck [14]. In this section, we revisit
the HTP and its functionality. We then review other rele-
vant haptic platforms, devices, and APIs.

The Haptic Tabletop Puck
The HTP is an active tangible device that works on a sur-
face that recognizes fiduciary markers, e.g., the Microsoft
Surface. It contains the following elements (see Figure 2).

a) Haptic output via a movable vertical rod. A movable
cylindrical rod comes out of a small brick-shaped cas-
ing. A small servo motor hidden inside the case controls
the up and down movement of the rod.

b) Haptic input, also via the rod. A pressure sensor atop
the rod measures a user’s finger pressure on it.

c) Friction. A friction brake at the bottom of the HTP is
implemented by a small rubber plate whose pressure
against the surface is controlled by another servo motor.

d) Location. The location of the HTP on the table is
tracked through a fiducial marker on its bottom.

Together, these enable three haptic information sources:

 Height. The vertical movement of the rod can represent
irregular surfaces and different heights.

 Malleability. The feedback loop between applied pres-
sure and the rod’s height can simulate the dynamic
force-feedback of different materials.

 Friction. The brake can modify the puck’s resistance to
movement in the horizontal plane.

These information sources can be controlled dynamically
according to different parameters, such as the puck’s posi-
tion and orientation on the table, time, and so on.

Haptic Platforms and Devices
Haptics and tactile interfaces are very active research areas.
In this section we focus on reviewing work that relates to
the facilitation of programming and prototyping of haptic
interfaces. Correspondingly, we do not cover comprehen-
sively tangible development APIs (e.g., [12]), since they
focus mostly on passive tactile experiences that do not have
programmable tactile behaviors. We also disregard hard-
ware prototyping APIs and toolkits (e.g., Phidgets [7]),
which are not focused on creating tactile experiences even
though they can be used to develop haptic hardware. In
addition, some haptic interactions go beyond physical de-
vices, such as transmitting electrical currents directly
through the display [2]. Our work differs in that we are fo-
cusing on active tangibles as opposed to the display itself.

Haptic interactive devices that have application building
and prototyping support available can be separated into two
largely distinct groups: one-dimensional haptic output de-
vices, and multi-dimensional haptic input-output devices.
The most common representatives of the first class are vi-
brotactile interfaces built into consumer devices such as
game controllers and mobile phones. These haptic devices
are relatively easy to program, since the haptic channel is
unidirectional (i.e., they serve only as output—it is a haptic
open-loop). Examples of output with this kind of haptic
channel are haptic icons [3], which can be designed with
the help of specific tools [5,25]. Further, the MOTIV SDK
[8] facilitates using vibrotactile feedback in mobile phones
and tablets. It provides functions translating sound and vis-
ual feedback into vibrotactile signals on touch-based mobile
interface platforms (e.g., Android phones).

In comparison, the HTP provides a bi-directional haptic
channel that is richer than the one present in these devices
and tools. The extended interactivity puts different require-
ments on the design of the HAPTICTOUCH toolkit. However,
our work resembles the work above, as we adopt a simple
and more familiar GUI paradigm (as in MOTIV), and pro-
vide a tool – the Behavior Lab – which is similar to existing
haptic icon and waveform design tools [5,25].

The second category of haptic devices are multi-
dimensional (usually > 3 DOF) closed-loop devices such as
Immersion’s PHANToM [15] or Novint’s Falcon [18]. Pro-
gramming these interfaces can require significant expertise
[16], and its difficulty has been identified as an obstacle in
the popularization of this type of interfaces [21,23]. Multi-
ple APIs exist that enable higher-level programming of
these haptic devices. Many are low-level and provide ac-
cess to specific haptic devices (e.g., Novint’s HDAL [19]),
although there are also ongoing efforts to provide general-
ized haptic libraries that work on several devices (e.g., H3D
[24], ProtoHaptic [6], and OpenHaptics [9]; also see survey
in [11]). Some introduced drag-and-drop interfaces for al-
lowing non-programmers to customize haptic systems (e.g.,
[23]). In general, these APIs assume a model of interaction
based on the simulation of physical objects and surfaces,
often directly linked to 3D virtual reality models.

The HTP is closer to these devices than to the first group
because it enables bi-directional communication and pro-
vides multi-dimensional haptic channels. However, the
HAPTICTOUCH toolkit was designed to avoid the program-

Figure 2. The HTP’s main components [14].

ming complexity inherent to 3D models and the simulation
of physics. Our 2D GUI-based programming model also
enables a more flexible relationship between haptic interac-
tion and graphical components because it is not constrained
to physical behavior such as objects colliding and moving
in 3D. This corresponds to the needs of flexible prototyping
tools advocated in [16,17]. Our approach is most similar to
tools such as HITPROTO [21], which make use of haptics
to represent abstract data or haptifications. Our approach
takes features from both groups of devices, yet avoiding
high development complexity.

Few devices exist that enable haptic feedback on tabletop
surfaces; most notably, shape displays (e.g., Lumen [22]
and Relief [13]), tangible actuators (e.g., Madgets [26]), or
ferro-magnetic tactile feedback devices (e.g., MudPad
[10]). As none of these haptic devices provide any devel-
opment support or prototyping tools yet, our concepts of the
HAPTICTOUCH toolkit design might be applied these and
similar platforms in order to facilitate haptics exploration.

API DESIGN OBJECTIVES AND DESIGN DECISIONS
When designing the HAPTICTOUCH API we set out to
achieve the following two major goals:
(1) enabling the creation of a wide range of application

prototypes and sketches for haptic tabletop environ-
ments (currently the HTP) without requiring program-
mers to understand 3D models or the physics of objects
and materials, and

(2) providing a simple programming interface for haptics
development.

These goals can be considered as specific instantiations of
Olsen’s general goals for interface systems research [20].
Based on these goals we designed an API architecture that
is different from existing haptic API approaches reviewed
in the previous section. Our design principles are summa-
rized as follows:

GUI Model. We base our architecture on a GUI model ra-
ther than the simulation of three dimensional physical be-
haviors. This leads to a more abstract and generic paradigm
with higher flexibility, which corresponds to our first gener-
ic goal. Furthermore, not only are programmers more famil-
iar with the GUI paradigm, but it also seems to better fit the
two-dimensional constraints of surface based systems.

3-Layered Architecture. We structure our architectural de-
sign in three abstraction levels. The raw layer provides ac-
cess to physical properties of the device. The behavior layer
enables haptic interactions packaged as behaviors. The
graphical layer allows creating two dimensional objects
(e.g., images) extending traditional GUI concepts to the
control of haptics. Programmers can choose and mix layers
to access functionality required for different projects, but
each layer can be learnt separately and used independently.

Although layering is not uncommon in the design of SDKs
and APIs, many tools decide to hide the details related to
the device (e.g., HITPROTO [21]). This has two conse-

quences: first, due to the higher level of abstraction, the
creation of new haptic interaction techniques can be con-
strained. And second, different programmers take different
approaches to a problem (e.g., bottom up and top down).
Forcing one style might make it harder for some. Our API
includes three levels of abstraction to enable both styles.

ARCHITECTURE AND PROGRAMMING INTERFACE
Each layer of the HAPTICTOUCH Toolkit is successively
closer to the underlying hardware. We expect the needs of
most programmers to require programming only at the
highest abstract level, as this will ease programming effort
while still being highly expressive [20]. For flexibility, pro-
grammers can work at lower layers when more direct or
nuanced control is required with only slightly more effort
[20]. Our current implementation uses a Microsoft Surface
device and its fiduciary markers as hardware platform; the
software is written in C# and WPF.

Figure 3 shows the toolkit’s structure. It contains a hard-
ware manager layer which accesses underlying commercial
APIs, three API layers accessible to programmers, and the
behavior lab utility. The toolkit’s layers build on top of
each other, with higher levels using lower level compo-
nents. In this section, we explain the architecture by review-
ing the function and main components of each layer.

Hardware Manager
The core of the HAPTICTOUCH toolkit is the hardware man-
ager, which merges the higher-level services of the Phidget
[7] servos and sensors of the HTP, and the interaction be-
tween the Microsoft Surface SDK and the HTP. The man-
ager takes care of hardware calibrations for each individual
HTP, and abstracts the HTP’s built-in Phidget components
to control its height, friction and pressure, where values are
normalized in a scale from 0 to 1. We use the Microsoft
Surface tag events to gather information about a HTP’s
location and orientation and detect when a puck is placed
down, moved or lifted up. An HTP is therefore character-
ized by pressure, friction, height, location, orientation and
id (i.e., the tag’s id). The hardware manager contains all the
HTP’s id and state information but this is not accessible to

Figure 3. The HAPTICTOUCH toolkit’s architecture.

programmers directly from the API. Calibration attributes
of the hardware can be modified through human-readable
XML configuration files.

The hardware manager is the only module that needs to be
substituted to recognize other hardware. For example, we
are replacing Phidgets with Arduino [1] through an alterna-
tive hardware manager so that HTPs can work wirelessly.

Raw Layer: Access to Device-Independent Hardware
This first layer is intended for experts: it allows direct con-
trol of the HTP physical properties and actuators. To avoid
conflict with higher layers, users have to enable manual
control in the HTPManager. Programmers can then access
the applied pressure returned by the pressure sensor, and
determine the height and friction values of the HTP. This is
all done in a device-independent manner; no knowledge of
the underlying Phidget hardware is required. As mentioned
before, friction, height and pressure are represented within a
range from 0 to 1 rather than (say) the angle of the servo
motor as implemented in the Phidget API.

As example, we illustrate how a programmer can create a
haptic loop that simulates malleability. It changes the height
of the HTP’s rod to vary with the pressure applied to it.
That is, the more pressure applied, the lower the height of
the rod. We first initialize the HTP manager (line 1), and
then retrieve a specific HTP identified by the id of the fidu-
ciary marker attached to it (here: 0xEF; line 3). Then we
enable manual control (line 4). The remaining lines imple-
ment an infinite loop in which the height of the puck drops
linearly according to the applied pressure (lines 5-6).

Behavior Layer: Adding Haptic Behaviors
The Raw Layer requires low-level programming and does
not minimize the complexity of creating and managing hap-
tic loops. To facilitate haptics programming, the Behavior
Layer adds a higher level abstraction as a set of pre-defined
haptic behaviors. We define a haptic behavior as the change
in height or friction as a function and combination of: the
current height, friction, pressure, and external factors, such
as the puck’s location and orientation, and time.

Using Basic Haptic Behaviors
As a starting point for application developers, we included a
pre-defined set of behaviors that proved worthy in practice.
Each behavior has a specific parameter ranging from 0 to 1
that modifies the behaviors further. These behaviors are:
a) Softness: change of height or friction depending on ap-

plied pressure. Adjusting this behavior makes an object
under the puck feel softer (closer to 1) or harder (closer
to 0). That is, a hard object will offer considerable re-
sistance when a person presses on the HTP’s rod, while
a soft object will feel mushy and yielding.

b) Breakiness: a non-linear relationship between pressure
and height produces an irregular tactile sensation. A
configurable number of breakpoints are placed along a
linear softness response. At these points, the height does
not change within a certain range of pressure, contrib-
uting to a tactile sensation that can resemble a dual-press
button (as in photo-camera shutter buttons – with a sin-
gle break point); poking a finger on sand (with many
breaking points); or coarse salt (with fewer points).

c) Oscillation: change of height or friction depending on
time. The behavior follows a sinusoidal change of height
with an adjustable frequency (with 1 being maximum
frequency). Oscillation can be used to notify the user, or
to simulate tactile noise.

d) Static: change of height or friction to a specific pre-
defined value (1 representing maximum height).

These behaviors represent only a small set of the possibili-
ties. For example, each behavior is also invertible, resulting
in interesting alternatives. Inverted softness provides a “re-
sistant” behavior where the height of the puck increases
with the pressure applied.

These behaviors can be used individually, or can be easily
combined (i.e., stacked) to allow for even more expressive-
ness. If combined behaviors are used, programmers can
specify weights for each behavior that define the proportion
of the movement of the rod used for that behavior relative
to others. The weight of each haptic behavior is initially set
to 1. Different weights and the order in which the behaviors
are added create a wide variety of expressive outputs. Hap-
tic behaviors are assigned to a list, either to the set of be-
haviors belonging to the height rod, or the ones belonging
to the brake. The following example shows how to add two
haptic behaviors, each with different weights.

In the example, we set up the HTP as in the previous exam-
ple (lines 1-2), add a softness behavior in line 4 and an os-
cillation with a weight of 2 in lines 5 and 7. This creates 3
partitions of the rod range, with 2 assigned to oscillation
and 1 assigned to softness. Both behaviors also need to be
created (with a parameter indicating their strength – lines 4
and 5), and added to the height rod (lines 4-8). The code
results in a haptic behavior that is mostly oscillation, with
some give for softness.

The Behavior Lab
To explore our predefined haptic behaviors, their parame-
ters, and varying weights without the need to write code, we
designed the Behavior Lab (see Figure 1). Through this
tool, developers can design arbitrary haptic behaviors (and

1. HTPManager manager = HTPManager.Instance;
2. HTP h = manager.GetHTP(0xEF);
3. // Add the first behavior
4. h.AddHeightBehavior(new SoftnessBehavior(0.5));
5. OscillationBehavior osc
 = new OscillationBehavior(0.03);
6. // Give twice the weight for the oscillation
7. osc.Weight = 2;
8. h.AddHeightBehavior(osc);

1. HTPManager manager = HTPManager.Instance;
2. // Retrieve HTP
3. HTP htp = manager.GetHTP(0xEF);
4. manager.ManualControl = true;
5. while(true)
6. htp.Height = 1.0 – htp.Pressure;

combinations of such respectively). Once satisfied, they can
save them using a unique, textual identifier to later reuse
them in a single line of code.

As shown in Figure 1, the tool is divided in two regions.
The top region contains separate controls for each of our
predefined behaviors. Developers can modify the behav-
ior’s weight (0 meaning the behavior is absent from the
combination) and the specific parameter that corresponds to
that behavior (e.g. softness, oscillation speed, number of
breakpoints, static values), each through a slider. In the
bottom region the user places an HTP device in order to
feel the customized behaviors in real time. The settings for
the newly created behavior can be saved by entering a name
as unique identifier on the designated textbox on the top
corner and hitting the save button. These behaviors can then
be accessed quickly and seamlessly by the HTP Manager
and added to the HTPs in code. The combination of behav-
iors is stored as a list of behaviors in an XML file which
can be accessed by the HAPTICTOUCH toolkit. If developers
want to access these custom behaviors, they have to load
the XML file through the HTPManager and add the list of
behaviors to either an HTP directly or to a haptic shape to
influence all HTPs present (see next section).

Graphical Haptics Layer
The highest level of abstraction defines haptic shapes, im-
ages, and widgets. These allow for rapid programming of
haptics in a GUI-like fashion. The general idea is to com-
plement existing shapes, images and graphical widgets with
a set of haptic behaviors. This level also incorporates events
within visuals (fired when an HTP is down, changed or up),
which allows further customization of currently embedded
visuals. We provide three haptic visual classes: haptic
shapes, haptic images and haptic buttons, which we de-
scribe in the following subsections. We then introduce hap-
tic transparency, which allows combining them.

Haptic Shapes
Haptic shapes are basic graphical shapes (e.g., rectangles,
ellipses, or paths). The programmer can associate one or
more behaviors to the shape. When the shape is on the
screen, an HTP anywhere within its bounds will reproduce
the shape’s assigned haptic behavior. For example, a pro-
grammer can create an ellipse that produces oscillations
when the HTP is within its bounds, and a line that causes
friction when the HTP is moved across.

To illustrate how haptic shapes are used consider a devel-
oper who wants a rectangle on the screen to cause the puck
to resist horizontal movement in an oscillatory manner
equivalent to shuddering. The developer creates a rectangle
and adds it to the window (not shown), creates a haptic
shape that encapsulates the rectangle (line 1), and registers
that shape with the HTPManager (line 2). He then assigns
the oscillation and the resistance (softness) to friction with-
in that shape (lines 4-5). The rectangle will now produce
those responses when the HTP passes over it, even if that
rectangle is scaled, rotated or translated at runtime.

Haptic Images
Haptic images contain one or several image maps which
define haptic behaviors; some these maps may be invisible
to the user. The main difference between shapes and images
is that, in images, the haptic behavior parameter can change
according to the particular grey-level pixel values of a map
in the image where the HTP points. We refer to this as spa-
tial behavior mapping. The programmer constructs a grey-
scale image (e.g., using a bitmap editor), where the level of
each pixel determines the parameter of the haptic behavior
produced from it. These pixel-based haptic image maps
allow creating more sophisticated and complex mappings of
haptic behaviors. For example, Figure 4 illustrates using
image maps for haptic behavior mapping. Image 4a (a satel-
lite image) is the normal graphic visible to users. The other
images, which are invisible to the user, represent actual
haptic mappings. Image 4b encodes a relief as a static be-
havior; 4c represents the softness of different terrains; and
4d the ocean depth as different oscillation speeds. Because
images are stacked, behaviors are automatically combined
in a location-dependent manner.

In the example below, the programmer uses the images
shown in Figure 4a (i.e., the visible image), and Figure 4b
(i.e., relief image map) to map the height of the HTP’s rod
as a function of the terrain relief. The developer uses a set
of pre-existing or self-designed images and adds them to
the canvas. Three main objects are created: a HTPImage,
which receives the visible image as its construction parame-

1. HTPShape shape = new HTPShape(rectangle);
2. this.manager.RegisterWidget(shape);
3. // Add behaviors to the shape
4. shape.AddFrictionBehavior(
 new OscillationBehavior(0.5));
5. shape.AddFrictionBehavior(
 new SoftnessBehavior(1.0));

Figure 4. Haptic Image and the corresponding Behavior Mappings: a) visible haptic image, b) image mapping for

static behavior, c) image mapping for softness behavior, and d) image mapping for oscillation behavior.

ter (line 1); a StaticBehavior (line 4); and a SpatialBehav-
iorMapping, which belongs to the static behavior and is
passed the reliefImage as its constructor parameter (line 5).
The image is finally associated to the height produced by
the mapping (line 6). As with all graphical haptics, registra-
tion with the HTP Manager is required (line 2). Similarly,
the programmer can add more behaviors to an image for
height or friction (e.g. Figures 4c and d).

Haptic Buttons
Haptic buttons are graphical widgets with pre-assigned hap-
tic behaviors. While we foresee many haptic widgets, we
have currently only programmed a haptic button whose
haptics depend on how it is pressed. A button implements
three haptic images representing the three basic states (i.e.,
inactive, hover and pressed), with each of them having in-
dividual haptic behavior mappings. The button state transi-
tions from normal to highlighted (and vice versa) occur
when the HTP enters or leaves the button. The pressure
sensor determines whether a button has been pressed or
released. By applying certain haptic behaviors, a button
may need more pressure to activate it (e.g., signaling the
user of a critical operation). Likewise, if the action is im-
possible at the moment, the button would not allow itself to
be pressed. Buttons allow developers to subscribe to events
when a button is pressed or released. A pressure value to go
from pressed to released and vice versa is initially set to the
default value of 0.5, but can be adjusted at runtime.

To create a customizable haptic button, the developer first
creates three haptic images for each of the button’s states
and their corresponding behaviors (here: inactive, hover and
pressed) as described previously. She then creates the hap-
tic button with these as parameters (line 1), and registers it
with the HTPManager (line 2). Finally, she registers event
handlers to the button (lines 4-5). Pre-packaged versions of
button behaviors can be supplied so that the programmer
does not have to supply these image maps.

Haptic Transparency
Overlapping graphical widgets can be simultaneously visi-
ble on a given area through transparency. Similarly, several
haptic graphics can share the same space on the tabletop
surface and still contribute to the haptic behavior through

what we call haptic transparency. This mechanism allows
programming complex behaviors by combining haptic
shapes, haptic images, and haptic buttons atop each other.
Haptic transparency is implemented as an extension of the
haptic behavior stacking mechanism in the behavior layer.

PRELIMINARY EXPLORATION
We conducted a preliminary exploration with three devel-
opers (one undergraduate and one graduate student, plus
one developer from industry) who used our toolkit. While
this does not represent a formal evaluation, it allowed us to
see whether programmers understand the abstractions in our
toolkit, and whether they are able to create simple haptic
applications in a short amount of time.

Participants attended a one-hour tutorial workshop. None
had worked with the toolkit before. We demonstrated the
toolkit, and illustrated code samples required to access each
level. We then asked them to perform a series of pre-
defined tasks. Later, participants were asked to create an
application of their own design using the HAPTICTOUCH
toolkit entirely on their own, where we limited them to 3
hours of programming. This section summarizes our results:
the findings from the pre-defined tasks, the applications
they created, and the overall observations that we made.

Simple Tasks to Explore the Abstraction Levels
Participants were given six pre-defined tasks, each an exer-
cise to explore the higher two layers. We did not test raw
layer programming, as we consider that to be appropriate
only for experts. In the first task, participants were asked to
use the HTP’s up, down and changed events to make the
HTP’s softness vary linearly as a function of moving left or
right across the screen (e.g., soft at the left, hard at the right
side of the screen). On average, participants needed ~15
minutes to complete this first task, most of which we as-
cribe to the programmers familiarizing themselves with the
programming environment and the HTP in particular.

For the second task, participants were asked to create two
haptic shapes (the top one with opacity of 0.5): one shape
with a breakiness behavior, the other one with an oscillation
behavior. Shapes would intersect at a certain point to com-
bine these behaviors. This task took participants on average
~7 minutes. In task three, participants were provided with
two images: a visual image, and one representing a haptic
mapping for that image. Their task was to program these to
create a haptic image. They did this in ~5 minutes.

The next three tasks were more complex. They had to simu-
late an invisible cloth on the table containing a hidden cube.
We asked them to recreate this example using the HTP
through three different methods.

We observed the different levels they chose, how long they
took and what their preferences were. All participants chose
the same methods, but in different order according to their
preferences: a shape with opacity 0 (avg. 6.2 min); an invis-
ible image (avg. 3.3 minutes); and haptic events (avg. 3.1
minutes). We observed that the reasons for the rather long

1. HTPButton button =
 new HTPButton(inactive, hover, pressed);
2. this.manager.RegisterWidget(button);
3. // add events
4. button.ButtonPressed +=
 new BeingPressedHandler(BecomesPressed);
5. button.ButtonReleased +=
 new BeingPressedHandler(BecomesReleased);

1. HTPImage hapticImage = new HTPImage(mapImage);
2. this.manager.RegisterWidget(hapticImage);
3. // Create, modify, and add the behavior
4. StaticBehavior behavior = new IntensityBehavior();
5. behavior.IntensityMapping =
 new SpatialBehaviorMapping(reliefImage);
6. hapticImage.AddHeightMapping(behavior,
 behavior.IntensityMapping);

time for shapes were that developers forgot to set a fill for
the shape causing it not to fire any events, or that the shape
can have a transparent fill. These issues relate more to un-
familiarity with the nuances of graphical programming.

Overall, we found (as expected) that participants completed
their tasks more quickly when working with pre-defined
shapes and images vs. working at the lower layer.

Example Applications
By using the toolkit, participants created diverse and rich
haptic applications while being able to spend a significant
amount of the time on the application’s visual appearance
rather than having coding haptic behaviors from scratch.

Haptic Vet
In the Haptic Vet application (Figure 5a), the goal is to find
one or more areas where a dog is injured within a 30 second
period. People can “scan” the displayed image of a dog by
moving the HTP over it, where injured parts makes them
feel an oscillation haptic feedback. When an injury is dis-
covered, players press on the HTP to heal the dog, after
which the dog’s facial expression changes. Healing injuries
increases the score of the player until all injuries are healed.

To create this application, the participant made use of a
haptic image with assigned behavior mappings. These map-
pings simulated the dog’s texture, the oscillation behavior
of injured areas, and an additional soft texture for the inju-
ry. The participant used events to determine the pressure
applied in different locations, as well as to start the game
(triggered by placing down an HTP). The participant stated
that the idea came from a similar childhood board game.

Ouija Board
In the Ouija Board application (Figure 5b), a person can
reveal messages of the board (i.e., a sequence of letters). As
the user moves over the characters of the board, certain
letters vibrate (via changing the oscillation speed) when the
HTP is moved over them. The player then presses the HTP
to select the letter; and moves on to discover the next letter.
Once all letters are correctly selected, he or she can spell
the answer to the question by rearranging the letters.

The developer of this application made use of the behavior
layer events to derive the HTP’s location and set the oscilla-
tion frequency, as well as the softness values of the HTP’s
height rod. Alternatively, one could implement this using an
oscillating haptic shape under the next letter. Similarly to
the developer of the first application, the participant based
his idea on an existing board game.

Haptic Music
Haptic Music is an application that used a variety of tex-
tures to create a new approach to music (Figure 5c). It in-
troduces various musical instruments, each of them having
a different haptic texture to best represent that particular
instrument. Cymbals and tuba are represented by softness,
and require different amounts of pressure to play. Softness
corresponds to how easy the instruments are to be played in
real life. The piano had varying pressure levels depending
on the key underneath the HTP. Maracas used friction and
the sound made by the servo motors when being pressed. A
center box serves as a haptic metronome: when the player
places the HTP atop different tempo values, the rod’s height
is varied to let the player feel that tempo.

The participant creating this application only used haptic
shapes. Each shape was filled with a transparent brush and
had associated haptic behaviors matched to the various in-
struments and its parts. The participant preferred haptic
shapes as they are easy to track in the program.

Observed Problems
While participants were able to create rich applications in a
short amount of time and with very little training, we did
note several elements that caused confusion:

1. Haptics and haptic behaviors are a new domain for most
programmers. Some of our participants initially strug-
gled to understand haptic behaviors, and how they are
controlled by their 0 to 1 parameter range.

2. Individuals did neither fully understand the distribution
of weights for combined behaviors nor the importance
of the order when combining them. They interpreted
weights as percentages, rather than proportions of the
rod height used to implement a particular behavior.

Both problems likely occur because people are trying to
associate a physical phenomenon (haptics) with an abstrac-
tion (programming). We believe our Behavior Lab will mit-
igate both of these problems, where people can directly
experiment with and feel the effects of adjusting parameters
as well as how they are combined.

CONCLUSIONS AND FUTURE WORK
Haptics can be useful in many situations as they introduce
an additional sensorial layer to interaction. They can reduce
the cognitive load and the amount of visual and auditory
cues [4]. They enhance the interaction experience by mak-
ing it more realistic and close to the physical world. They
can be used to make current computer technology accessi-
ble to people with visual disabilities.

Figure 5. Applications created in our preliminary exploration: a) Haptic Vet, b) Ouija Board, and c) Haptic Music.

With the haptic puck and our HAPTICTOUCH toolkit, we
facilitate programming of simple haptic interfaces for sur-
faces by providing a DIY haptic device [14] and a set of
pre-programmed building blocks (this paper). We intro-
duced meaningful abstractions and concepts to make hap-
tics accessible to developers. Based on our initial explora-
tion with three developers, we believe that our toolkit can
help in the exploration of the design space of haptics as it
allows a new level of expressiveness for developers.

We layered the toolkit to promote flexibility and expressivi-
ty while minimizing the programming burden for common
tasks. The raw layer allows unconstrained hardware access.
The behavior layer introduces contact events for HTP de-
vices, and contributes pre-defined haptic behaviors. The
graphical haptics layer uses shapes, images and widgets to
associate haptic behaviors to graphical objects. The three
layers give developers the possibility to choose the layer
most suitable for the particular haptics programming task at
hand. These layers are augmented with our Behavior Lab,
which lets developers interactively explore, combine and
feel diverse haptic behaviors before writing any code.

While the HTP is limited in input and output, it serves as a
good starting point that may allow a wider set of research-
ers to explore haptics until more affordable and richer tech-
nology becomes available. While designed for the HTP, its
notion of encapsulating haptics as combinable behaviors is
a new contribution. Also new is the use of shapes and im-
age maps to specify very fine-grained haptic behaviors. Our
Behavior Lab also points the way for how we can let pro-
grammers explore and ‘feel’ available forms of haptic feed-
back even before they write a single line of code. These
ideas can be applied to other haptic devices and APIs.

ACKNOWLEDGMENTS
This work is partially funded by the AITF/NSERC/
SMART Chair in Interactive Technologies, Alberta Inno-
vates Tech. Futures, NSERC, and SMART Technologies.

REFERENCES
1. Arduino. Open-source Electronics Prototyping Platform.

http://www.arduino.cc (access 9/2/2011).
2. Bau, O., Poupyrev, I., Israr, A., and Harrison, C. TeslaTouch:

electrovibration for touch surfaces. Proc. of UIST '10, ACM
(2010), 283–292.

3. Brewster, S. and Brown, L.M. Tactons: structured tactile
messages for non-visual information display. Proc. of
AIUC,Australian Comp. Soc., (2004), 15–23.

4. Chang, A., Gouldstone, J., Zigelbaum, J., and Ishii, H. Prag-
matic haptics. Proc. of TEI, ACM (2008).

5. Enriquez, M.J. and MacLean, K.E. The hapticon editor: a
tool in support of haptic communication research. Porc. of
HAPTICS'03. IEEE (2003).

6. Forrest, N. and Wall, S. ProtoHaptic: Facilitating Rapid In-
teractive Prototyping of Haptic Environments. Proc. of HAID
'06, Springer (2006), 18–21.

7. Greenberg, S. and Fitchett, C. Phidgets: easy development of
physical interfaces through physical widgets. Proc. of UIST
’01, ACM (2001), 209–218.

8. Immersion. MOTIV Development Platform.
http://www.immersion.com/products/motiv (access
9/2/2011).

9. Itkowitz, B., Handley, J., and Zhu, W. The OpenHaptics

Toolkit: A Library for Adding 3D Touch Navigation and
Haptics to Graphics Applications. Proc. of WHC' 05, (2005).

10. Jansen, Y., Karrer, T., and Borchers, J. MudPad: localized
tactile feedback on touch surfaces. Adj. Proc. of ITS '10,
ACM (2010), 11–14.

11. Kadlecek, P. A Practical Survey of Haptic APIs. BSc Thesis,
Charles University in Prague (2010).

12. Klemmer, S.R., Li, J., Lin, J., and Landay, J.A. Papier-
Mache. Proc. of CHI ’04, ACM (2004), 399-406.

13. Leithinger, D. and Ishii, H. Relief: a scalable actuated shape
display, Proc. of TEI, ACM (2010), 221–222.

14 Marquardt, N., Nacenta, M.A., Young, J.E., Carpendale, S.,
Greenberg, S., and Sharlin, E. The Haptic Tabletop Puck:
tactile feedback for interactive tabletops. Proc. of ITS, ACM
(2009), 85–92.

15. Massie, T. and Salisbury, K. PHANToM haptic interface: a
device for probing virtual objects. Proc. of ASME Symp. on
Haptic Interfaces for Virt. Envi-ronments and Teleoperator
Systems, (1994), 295-299.

16. Moussette, C. and Banks, R. Designing through making:
exploring the simple haptic design space. Proc. of TEI, ACM
(2011), 279–282.

17. Moussette, C. Feeling it: sketching haptic interfaces. Proc. of
SIDeR ’09, (2009), 63.

18. Novint Technologies Inc. Falcon. http://www.novint.
com/index.php/products/novintfalcon (access 9/2/2011).

19. Novint Technologies Inc. Haptic Device Abstraction Layer
(HDAL). http://www.novint.com/index.php/

20. Olsen, J. Evaluating user interface systems research. Proc. of
UIST '07, ACM (2007), 251–258.

21. Panëels, S.A., Roberts, J.C., and Rodgers, P.J. HITPROTO: a
tool for the rapid prototyping of haptic interactions for haptic
data visualization. Haptics Symposium, 2010 IEEE, 261–268.

22. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and
Yamaji, Y. Lumen. SIGGRAPH '04 Emerging technologies,
ACM (2004), 17.

23. Rossi, M., Tuer, K., and Wang, D. A new design paradigm
for the rapid development of haptic and telehaptic applica-
tions. Proc. of CCA 2005, IEEE (2005).

24. SenseGraphics AB. H3DAPI. http://www.h3d.org (access
9/2/2011).

25. S Swindells, C., Maksakov, E., and MacLean, K.E. The Role
of Prototyping Tools for Haptic Behavior Design. Symp. on
Haptic Interfaces for Virtual Environment and Teleoperator
Systems, IEEE (2006), 25.

26. Weiss, M., Schwarz, F., Jakubowski, S., and Borchers, J.
Madgets: actuating widgets on interactive tabletops. Proc. of
UIST ’10, ACM (2010), 293.

