

1

Designing User-, Hand-, and Handpart-Aware Tabletop
Interactions with the TOUCHID Toolkit

ABSTRACT
Recent work in multi-touch tabletop interaction introduced
many novel techniques that let people manipulate digital
content through touch. Yet most only detect touch blobs.
This ignores richer interactions that would be possible if we
could identify (1) which hand, (2) which part of the hand,
(3) which side of the hand, and (4) which person is actually
touching the surface. Fiduciary-tagged gloves were previ-
ously introduced as a simple but reliable technique for
providing this information. The problem is that its low-
level programming model hinders the way developers
could rapidly explore new kinds of user- and handpart-
aware interactions. We contribute the TOUCHID toolkit to
solve this problem. It allows rapid prototyping of expres-
sive multi-touch interactions that exploit the aforemen-
tioned characteristics of touch input. TOUCHID provides an
easy-to-use event-driven API. It also provides higher-level
tools that facilitate development: a glove configurator to
rapidly associate particular glove parts to handparts; and a
posture configurator and gesture configurator for register-
ing new hand postures and gestures for the toolkit to recog-
nize. We illustrate TOUCHID’s expressiveness by showing
how we developed a suite of techniques (which we consid-
er a secondary contribution) that exploits knowledge of
which handpart is touching the surface.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Surfaces, tabletop, interaction, touch, postures,
gestures, gloves, fiduciary tags, multi user, toolkit

INTRODUCTION
The arrival of interactive multi-touch tabletop systems her-
alded the development of many novel and powerful ways
for people to manipulate digital content (e.g., [6,14,15,19]).
Yet most technologies cannot sense what is causing the
touch, i.e., they are unable to differentiate between the
touches of two different people, or between different hands,

or between different parts of the hand touching the surface.
This is a lost opportunity, as this knowledge could be the
basis of even more powerful interaction techniques.

Still, a few technologies do allow such differentiation, albe-
it in limited ways. The DiamondTouch surface identifies
which person is touching [6,40], but little else. Muscle-
sensing identifies fingers [2], and computer-vision approach-
es begin to infer similar information, though not robustly
(e.g., [4,32]). The Fiduciary-Tagged Glove [24] – which we
use in our own work – is perhaps the most promising. While
a wearable, it offers an inexpensive, simple, yet robust
tracking method for experimental development. It serves as
a good stand-in until non-encumbered technologies are
realistically available. As seen in Figure 1, fiduciary tags
(printed labels) are glued to key handparts of the glove.
When used by a person over a fiduciary tag-aware surface
(e.g., the Microsoft Surface), the location and orientation of
these tags can be tracked. Because the software associates
tags to particular handparts, it can return precise infor-
mation about one or more parts of the hand in contact with
the touch surface.

The problem is that the fiduciary-tagged glove still requires
low-level programming. The programmer has to track all
individual tags, calculate the spatial, motion and orientation
relations between tags, and infer posture and gesture infor-
mation from those relationships. While certainly possible
[24], this complexity limits the number of programmers
willing to use it, and demands more development time to
actually prototype rich interaction techniques.

Figure 1. Using the TouchID Posture Configurator to train a new
posture with the fiduciary-tagged glove.

Nicolai Marquardt, Johannes Kiemer, David Ledo, Sebastian Boring, Saul Greenberg

Department of Computer Science
University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

[nicolai.marquardt, jlkiemer, david.ledo, sebastian.boring, saul.greenberg]@ucalgary.ca

Cite as:

Marquardt, N., Kiemer, J., Ledo, D., Boring, S., Greenberg, S. (2011)
Designing User-, Hand-, and Handpart-Aware Tabletop Interactions
with the TouchID Toolkit.
Research Report 2011-1004-16, Department of Computer Science,
University of Calgary, Calgary, AB, Canada T2N 1N4, July.

2

Our goal is to mitigate this problem by developing the
TOUCHID (Touch IDentification) toolkit that provides the
programmer with knowledge of the person, hand, and hand-
part touching the surface. Our expectation is that by making
this information easily available, the programmer can rap-
idly develop interaction techniques that leverage this infor-
mation. Specifically, we contribute:

 The TOUCHID toolkit and API as a test bed for rapid ex-
ploration of person, hand, and handpart-aware tabletop in-
teraction techniques.

 Easy-to-use tools for registering both hand postures (Fig-
ure 1) and gestures for recognition by the toolkit.

 An evaluation-in-practice of this toolkit, where we illus-
trate how we used it to rapidly develop a suite of expres-
sive interaction techniques.

 The interaction techniques are themselves a secondary
contribution, for they seed a design space of expressive
multi-handpart, multi-hand and multi-user interaction
techniques that could inspire future tabletop applications.

We briefly review related work in the area of touch recogni-
tion and development tools, followed by an explanation of
the fiduciary-tagged gloves. We then introduce the TOUCHID
toolkit: we begin with its three high level tools and then de-
tail the toolkit’s API. Subsequently, we introduce a set of
novel interaction techniques that leverages the knowledge
provided by TOUCHID about individual touches.

BACKGROUND AND RELATED WORK
Multi-touch surfaces have been based on a variety of tech-
nologies, e.g., [8,14,21,40], each with their own strengths
and weaknesses. Touch has also been exploited in different
ways, ranging from touch alone, to multi-fingers [40], to
hand shape [9] and hand postures [10], and to gestures [38].
Because these and others are now familiar in the literature,
we concentrate our background on two factors: previously
developed techniques that identify particular users or hand-
parts, and development tools for prototyping multi-touch
applications on surfaces.

Identifying Users and Handparts Touching the Surface
Our basic assumption is that more powerful interaction
techniques can be built if a tabletop system knows which
person, hand, or part of the hand is touching the surface.
Some earlier work explored such identification; most nota-
bly computer vision approaches, specialized hardware, and
glove-based tracking.

In computer vision, some techniques recognize the position
of hands and identifying fingers [23]. Another approach uses
distance, orientation, and movement information of touch
blobs to identify fingers and distinguish if they are from the
same or different hands of a person [4]. Schmidt’s
HandsDown [32] system derives user information from
matching features of a person’s hand outline to the ones
stored in a database. Later, this technique was applied to
allow personalized workspaces and lenses for tabletop inter-
action [33]. Increasing the reliability and accuracy of the

computer vision recognition remains a challenge for all of
these systems.

Specialized hardware also distinguishes between handparts
and users. For example, the MERL DiamondTouch surface
identifies which of up to four people are touching the surface
[6]. It works through capacitive coupling, where a low cur-
rent running through a person’s body is detected by the sur-
face allowing the mapping of each touch contact to a particu-
lar person. DiamondTouch is notable as a development plat-
form: its unique ability to differentiate which person was
touching the surface was the basis of many user-aware tab-
letop explorations, including cooperative gestures [26],
shared vs. replicated controls [27], and multi-user coordina-
tion [28]. Other hardware approaches distinguish handparts.
For example, an EMG muscle sensing armband identifies a
person’s fingers touching a surface [2], while fingerprint
recognition could provide similarly precise touch infor-
mation and user identification [17].

Glove-based techniques, typically found within virtual real-
ity research, track augmented gloves in 3D space. Methods
include optical tracking, printed markers, silhouette analy-
sis, magnetic tracking, optical fibres, and so on [35]. Re-
turned information was exploited in a variety of ways. For
example, gestures made by the tracked glove in 3D allowed
a person to handle virtual objects in that augmented space
[3], and to drive gestural interaction in an augmented reali-
ty immersive environment [1]. Other techniques distinguish
a user’s hands by using coloured glove patterns to discrim-
inate parts of the hand as well as its posture in 3D space
[36], or through fiduciary markers attached to gloves [3].
Within the area of surface interaction, Marquardt et al. [24]
produced the previously mentioned fiduciary-tagged glove,
where tags were tracked by a Microsoft Surface.

Most prior work suffers in some regards. Some require
expensive or custom hardware, some are not particularly
robust, and some provide only a subset of the desired in-
formation. We decided to use Marquardt et al.’s fiduciary-
tracked glove as the TOUCHID toolkit initial sensing device.
The glove is cheap and easily crafted. It returns accurate
information identifying key handparts touching a surface,
and for differentiating between hands and users (details are
explained shortly) [24]. However, we stress that the
TOUCHID toolkit could incorporate other sensing technolo-
gies as well.

Development Tools for Creating Surface Application
While the above technologies provide low level information
about a touch and what caused it, the complexity of access-
ing and programming with that information often places
them out of reach to all but a few developers. Consequently,
researchers have built toolkits in order to facilitate the devel-
opment of tabletop applications. The idea is that software
engineers can then focus on exploring novel interactions
instead of low-level programming challenges [13].

LightTracker [12] and ReacTIVision [19] simplify access
to computer vision, filters, and calibration methods often

3

necessary when using tabletop hardware. TUIO [18], origi-
nally built for the Reactable hardware, now functions as a
universal low-level protocol to transmit and process touch
point information. TouchLib [7] introduced a layered archi-
tecture allowing multi-touch development independent of
the actual underlying tabletop hardware used (i.e., hardware
is decoupled from the developer API). Similarly, PyMT
[16] allows cross platform development; but further lowers
the threshold for rapid prototyping by using the dynamic
language Python. Our TOUCHID toolkit extends this previ-
ous work by providing complementary information about
which exact part of the hand, which hand, and which per-
son is actually causing a particular touch event.

A few toolkits integrate the identification of the person
touching the interactive surface. DiamondSpin [34], built
around the DiamondTouch hardware [5,6], supports the
development of orientation-aware multi-user applications.
idWidgets [31] are user-aware touch widgets, while
IdenTTop [30] added a framework approach to identity-
enabled multi-user applications, also through a set of widg-
ets. As we will see, our TOUCHID toolkit also deeply inte-
grates user identification. We differ in the way that user
information is combined with precise information about the
actual handparts touching the surface.

THE FIDUCIARY TAGGED GLOVE
As mentioned earlier, TOUCHID is based upon fiduciary-
tagged gloves [24], as these produce precise (albeit low-
level) information about handparts touching an interactive
surface. We chose these gloves as they differ from earlier
work through its simple and inexpensive design, yet relia-

ble identification of handparts in
contact with the surface.

The current glove design works
as follows. Fiduciary tags (infra-
red reflective markers with a
unique 8-bit identification pat-
tern) are glued to the glove on
positions representing key parts
of a person’s hand: fingertips,
knuckles, side of the hand, palm,
etc. (Figure 2). Once any of the
tagged handparts touch the tab-
letop, a Microsoft Surface [25]

accurately recognizes their positions and orientations. A
simple one-time calibration process associates the tags with
their position of the hand (details are described below).
Overall, the design of these gloves is simple, reasonably
cheap, and – through the tracking of the Microsoft Surface
– accurate and reliable. Even though this approach requires
people to wear one or two gloves when interacting with the
tabletop application, it is nevertheless a robust technique
that allows the exploration of novel interaction techniques
that leverage hand-part identification until more unencum-
bered methods are developed.

Yet the design and exploration of novel interaction tech-
niques using the glove’s information is still non-trivial. A
developer has to perform a series of low-level tasks: track-
ing individual markers touching the surface, looking up
user identification for each of the tags, and recognizing
gestures from the tag’s movements over time. Furthermore,
posture recognition is tedious: the programmer has to track
simultaneously recognized markers, and infer postures by
comparing their relative distance and orientation. Collec-
tively, these present a threshold preventing rapid and itera-
tive exploration of novel interactions [29].

THE TOUCHID TOOLKIT
We developed the TOUCHID toolkit to facilitate the devel-
opment of multi-touch interaction techniques leveraging
knowledge of user, hand, and hand-part identification. A
key part of the toolkit is an easy-to-use event driven API
(application programming interface) that makes the infor-
mation about touches, handparts, and users easily accessi-
ble to application developers. It also includes a set of high
level tools to configure gloves, and to train new hand pos-
tures and gestures. In the following, we detail all essential
parts of the toolkit.

Architecture
TOUCHID toolkit’s architecture is layered to allow for dif-
ferent technologies to be substituted as they become availa-
ble (see Fig. 3). Its bottom layer accesses the actual input
events (e.g., a tag’s id, location, and orientation) from the
underlying hardware. The next layer (the proxy) translates
these events into unified events that can be used by the
toolkit’s API. While we currently rely on the Microsoft
Surface, other hardware (e.g., another fiduciary marker
tracking system such as [19], or a fingerprint recognizer)
providing similar capabilities could be substituted by re-

Figure 2. The fiduciary-

tagged glove.

Figure 3. The TouchID toolkit layered architecture.

Figure 4. The glove configurator tool (similar to [18]).

4

writing this layer. The next high-
er level is responsible for associ-
ating the events with users and
handparts. This layer also in-
cludes the posture/gesture
recognition engine and corre-
sponding configuration tools.
The top layer is the actual API
seen by the developer. While the
lower layers are normally not
needed, the developer can – if
desired – access the raw infor-
mation held by those layers (e.g.,
the tag’s id if applicable).

Setup and Glove Configuration
A developer installs the
TOUCHID toolkit1 onto a stand-
ard PC attached to a Microsoft
Surface. The toolkit setup in-
stalls all required tools, the developer library with the API,
templates, examples, and documentation. Next, the devel-
oper starts the toolkit’s glove configurator tool (Figure 4) to
register each glove they built. This is done only once. This
tool shows images of a hand in 3 orientations. The person
simply places the three sides of the gloves on the corre-
sponding image, and each tag gets mapped to its corre-
sponding handpart. Each glove is assigned to a particular
person. This configuration process can then be repeated for
left and right hand gloves of that person, as well as for each
additional person. The toolkit and gloves are now ready to
use.

This configuration tool differs from previous work [24] in
two ways. First, it is tightly integrated into the toolkit so
that all configuration files (saved as XML files) are stored
in a central repository and are accessible by every other
TOUCHID tool and its API. Second, it is extended through a
compensation mechanism in order to support differently
sized gloves (and thus differing distances between the
tags). The configuration tool measures the distances be-
tween key pairs (e.g., finger tips to palm) and saves a com-
pensation factor associated to these pairs. This compensa-
tion is done implicitly by the toolkit, and does not require
any additional intervention by the developer.

Posture Training and Recognition
Hand postures – such as a flat hand placed on the surface or
an L-shaped posture formed with thumb and index finger –
can be an expressive and powerful form of input for tab-
letop applications. Here, we introduce TOUCHID’s Posture
Configuration tool and underlying algorithm that lets a de-
veloper train the system to seamlessly recognize new pos-
tures. A later section will describe the toolkit’s API.

1 Available as open-source download at

http://www.[anonymous].org. While the current version is re-
stricted to a Microsoft surface, it can be modified to work with
any surface that recognizes fiduciary markers.

Template-based Matching Algorithm
Our posture recognition works through a template-based
matching algorithm [22]. For each posture, the toolkit saves
one or more templates describing the configuration of in-
formation listed below.

 Number and identification of contact points (i.e.,
which handparts are included in the posture, such as
“right index finger”, “left knuckle of thumb”, etc.)

 The geometry between all identified contact points
captured as distance (in mm) and angle (in degrees)
measures. Because exact geometry matches are unlike-
ly, it also includes a tolerance threshold that indicates
how much a geometry can deviate from the template
and still be recognized as a given posture. A posture
template can also be set to ignore the angle and/or dis-
tance.

During application runtime, the template-matching algo-
rithm compares the currently recognized input to these
saved templates. If the recognized input matches any of the
saved templates within the configured tolerance range (e.g.,
such as 10%), the toolkit notifies the application about the
recognized posture. While other posture recognition algo-
rithms could be substituted, e.g., training of neural net-
works or using hidden markov models [22], our simple
template matching algorithm is, in practice, reliable and
powerful enough for our purposes of recognizing and dif-
ferentiating between a variety of postures.

Posture Configuration Tool
The posture configuration tool, illustrated in Figure 5, al-
lows a developer to (optionally) train TOUCHID to recog-
nize new hand postures. In Figure 5, the upper left corner
(a) displays thumbnail images of previously trained pos-
tures. The upper center (b) shows any currently recognized
posture, which is useful as continuous feedback about any
recognized postures (i.e., knowing if a new posture con-
flicts with any previously trained posture). The right side of
the screen (c) shows controls to ‘freeze’ the current recog-

Figure 5. The posture configurator tool: (a) saved postures, (b) currently recognized posture,
(c) controls, (d) contact points of handparts touching the surface, and distance/angle between.

5

nized contact points on the screen even when the hand is
lifted off the surface, where that captured posture can then
be saved.

To begin training a new posture, the developer simply puts
her gloved hand onto the tool’s center area (Figure 5d) and
performs the desired posture. For example, for the posture
shown in Figure 6a, the person placed three fingers on the
surface: the thumb, index, and middle finger. The posture is
visualized underneath (Fig. 6b) as the recognized touch
points and the angle and distance between them. For exam-
ple, the labels of Figure 6b states that the angle between
thumb and index finger is 99 degrees, and that they are
134mm apart. Figure 6c/d illustrates how tolerance to these
measures can be added by touching the handles and modi-
fying the tolerance range for the given distance and angle
values. The larger the tolerance value, the more relaxed the
recognizer is when matching input to this template. If de-
sired, the developer can ignore distance and/or angle
measures for certain pairs of contact points by touching the
‘Ignore Distance’ or ‘Ignore Angle’ buttons below the vis-
ualization (Fig 6e). This can be useful to identify chording;
for example, if both distance and angles are ignored, the
mere placement of particular handparts on the surface (e.g.,
thumb and forefinger vs. thumb and pinkie) will trigger the
posture event. Configured postures are saved as an XML
file in the posture repository accessible by other parts of the
toolkit. The posture training can then be repeated for any
additional postures.

Besides single-hand postures, the toolkit also supports reg-
istration of bi-manual hand postures. Figure 7 illustrates
this: when two hands touch the surface, the posture config-
urator tool now not only visualizes the contact points of
both hands, but also the distance and angle between the two
hands (and the two posture’s centers respectively).

Gesture Configuration Tool
A developer can also configure gestures performed with
any handpart or posture. TOUCHID recognizes gestures as
performed movements, e.g., a ‘circle’, ‘triangle’ or ‘C’
movement made by (say) a pinched thumb and forefinger.
It captures gestures by demonstration. For example, to train
a circle gesture, the developer simply places the handpart or
hand posture on the tabletop and performs the circle gesture
movement. Internally, our toolkit uses a modified version
of Wobbrock’s gesture recognizer [39] to create one or

multiple gesture templates. The toolkit later compares new
input to the saved set of trained gestures. While our recog-
nizer is simple, it differs from most other systems as ges-
tures can be associated to a particular handpart or posture.
For example, a flicking gesture performed with (say) a
forefinger is considered different from a flicking gesture
performed with the palm (e.g., the first is used to throw an
object; the second is used to erase something). Alternately,
a gesture can be saved as a universal template so that it is
recognized regardless of the handpart performing it.

The API – Rapid and Expressive Programming
The programming API gives developers easy access to the
information about people’s touch interaction with the sur-
face. Through a subscription-based event driven architec-
ture familiar to most software engineers, developers can
receive notifications about any handpart touching the sur-
face, the person that touch belongs to, and any hand pos-
tures or performed gestures.

Walkthrough example
We illustrate the API with a deliberately simple
walkthrough example that includes almost everything re-
quired to develop a first tabletop application that differenti-
ates between handparts, postures, and people. To begin
prototyping an application, the developer opens up the Vis-
ual Studio IDE, and selects the TOUCHID C# development
template. The template is the starting point for new pro-
jects, containing the basic code required for all TOUCHID
applications. This includes the base class (TouchIDWin-
dow), a statement to initialize gloves (loading all the glove
configuration XML files), and a statement to initialize a
new posture recognizer and loading the posture configura-
tions from the standard repository.

Figure 7. Bi-manual posture configuration (four fingers down

with the left hand, and two fingers with the right hand).

Figure 6. Using the posture configurator: (a) placing hand posture on the surface, (b) handparts get visualized with angles and distance be-
tween contact points, (c) person changes tolerance threshold for angle and (d) distance, or (e) sets to ignore these values.

6

public partial class Application:TouchIDWindow {
 public Application() {
 this.LoadGloves();
 this.PostureRecognizer = new PostureRecognizer();
 this.PostureRecognizer.LoadPostures(PostureRepository);
}

The developer adds two event callbacks to receive events
when handparts (HandpartDown) and recognized postures
(PostureDown) touch down onto the surface.

this.HandpartDown +=
 new EventHandler<TouchEventArgs>(HandpartDown);
this.PostureRecognizer.PostureDown +=
 new EventHandler<PostureEventArgs>(PostureDown);

While not illustrated, the toolkit also includes equivalent
‘Changed’ and ‘Up’ events triggered when a person moves
the handpart or posture over the surface, and when the per-
son lifts the hand up off the surface respectively.

Next, the developer adds the corresponding callback meth-
ods to the application that are called when the Hand-
partDown or PostureDown events occur.

void HandpartDown(object sender, TouchEventArgs e) {
 String e.User.Name; // e.g. "John"
 HandSide e.Hand.Side; // e.g. HandSide.Left
 String e.Handpart.Identifier; // e.g. "Thumb"
 Point2D e.Handpart.Position; // e.g. x:20, y:53
 // do something with this information
}
void PostureDown(object sender, PostureEventArgs e) {
 String e.User; // e.g. "Chris"
 String e.Posture.Identifier; // e.g. "StraightHand"
 Point2d e.Posture.Position; // e.g. x:102, y:79
 // do something with this information
}

The above callbacks illustrate use of the event property ‘e’
that contains detailed information of the recognized hand-
part or posture. Depending on the callback, this includes:

 Name of the user performing the action [e.User.Name]
 Which hand: left or right [e.Hand.Side]
 Part of the hand [e.Handpart.Identifier] and its

position [e.Handpart.Position]
 Name of recognized posture [e.Posture.Identifier]

and its center position [e.Posture.Position]

Gesture recognition events are handled similarly to posture
recognition. The developer initializes a gesture recognition
object, loads the gesture configuration files from either the
default repository or a custom folder, and then subscribes
and adds matching event handlers to particular Ges-
tureRecognized events. The callback method gives the
developer precise information about the gesture that trig-
gered the event including the identifier of the recognized
gesture, the user and handpart(s) performing the gesture.

this.GestureRecognizer = new GestureRecognizer();
this.GestureRecognizer.LoadGestures(GestureRepository);
this.GestureRecognized +=
 new EventHandler<GestureEventArgs>(GestureRecogn);

void GestureRecogn(object sender, GestureEventArgs e) {
 String e.Gesture.Identifier; // e.g. "circle"
 List e.Gesture.Handparts; // e.g. [IndexFinger]
 // do something with this information
}

The event handlers introduced so far subscribe to all hand-
part/posture/gesture events. They are global handlers as
they receive all events no matter which person is perform-
ing them. In some cases, the developer may want to restrict
callbacks to a particular user, or particular hand, or particu-
lar handpart. The code fragments below illustrate by exam-
ple how this is done.

// Initialize user: name is a parameter to constructor.
// That name is associated with a glove in the glove
// configurator tool.
User john = new User("John") ;

// Subscribe to any of John’s handpart down events
john.HandpartDown +=
 new EventHandler<TouchEventArgs>(JohnHandpartDown);

// Subscribe to any of John’s left hand
// postures appearing on the surface
Hand johnslefthand = john.LeftHand;
johnslefthand.PostureDown +=
 new EventHandler<PostureEventArgs>
 (JohnLeftHandPostureDown);

// Subscribe to activities specific to John’s thumb
Handpart thumb = john.HandParts.Thumb;
thumb.GestureRecognized += ...
thumb.HandpartDown += ...
thumb.HandpartUp += ...

EXPLORING INTERACTION TECHNIQUES
The last section contributed our API and its 3 configuration
tools (glove, posture and gesture). This section continues
by contributing (1) a diverse set of novel interaction tech-
niques, and by doing so (2) an evaluation by practice of the
API’s expressiveness. While we don’t include code, it
should be fairly self-evident how these techniques could be
implemented with TOUCHID. We describe several interac-
tion techniques that are hand-part and posture aware. If
applicable, we explain how we extended these techniques
to allow for multi-user interaction. While we make no
claims that the presented techniques represent the ‘best’
way to perform a particular action, we do believe our tech-
niques serve as both an exploration of what is possible as
well as a validation of the toolkit’s expressiveness.

Identifying Individual Parts of the Hand
We now introduce several techniques that leverage this
knowledge of the handpart associated with the owner (i.e.,
the user), location and orientation of a touch event.

Tool fingers. A typical GUI allows only one ‘tool’ or
‘mode’ to be activated at a time. The user selects the tool
(e.g. via a tool palette), which assigns it to the mouse point-
er. Our idea of ‘tool fingers’ changes this: for each user,
their individual handpart can be its own tool, each with its
own function. For example, consider the generic cut/paste
operation: with tool fingers, touching an object with (say)
the pinkie ‘cuts’ it, while the middle finger pastes it. We
can also constrain visual transform actions: touching an
object with the index finger allows moving, but the ring
finger only allows rotating. As the toolkit further knows
which glove (and thus which user) is touching the surface,
we can manage left vs. right-handed people. The only in-
formation needed is whether a person is right or left hand-

7

ed. With this, the application can assign functions to the
dominant/non-dominant hand in a way that best matches
that person’s handedness.

Assigning tools. Tool fingers are flexible and user-aware: a
person can associate a tool to a handpart simply by touch-
ing an icon in a tool palette with a particular handpart. Each
individual user can choose their own tools (as we differen-
tiate between users and their hands respectively), and also
assign different tools to left and right hand. When a tool is
assigned to a certain handpart, we also track which user
owns that glove. Thus (say) the index finger of two persons
can be easily distinguished. This gives a person the possi-
bility to configure actions and tools according to their pref-
erences, without interfering with other people using the
surface. As discussed later in this section, this technique
can be combined with a preview function of the tools as-
signed to handparts.

Preview and context menu. In a standard GUI, a context
menu reveals the capabilities of an object. With tool fin-
gers, we can use a different part of the finger to reveal a
finger’s function. For example, consider the case where
each finger-tip is assigned a tool. When that finger’s knuck-
le is placed on an empty part of the surface, a preview of
the finger’s tool appears (Fig. 8a). Alternately, a tool pal-
ette could be displayed around the finger’s knuckle, and a
new tool chosen by crossing over it with the knuckle.

Finger clipboard. Similar to the above, a different part of
the finger can assign content to that finger. Consider a mul-
ti-finger clipboard, where a user can temporarily store and
retrieve an object on a finger. Placing a finger’s knuckle
atop a graphical object will assign that object to its fingertip
(either copied or cut). Touching the surface with that finger
now pastes that object onto the surface at that location.
When used as a context tool (i.e., the knuckle is placed on
an empty location), the clipboard contents associated with
that fingertip is shown.

Chorded Handparts
Besides individual handparts, TOUCHID can identify chords
of two or more recognized handparts. This offers further
powers, as different handpart combinations (of the same
user) can be recognized as unique commands.

Combining tool effects. When tool fingers are assigned
with mixable functions, their chording effect can be quite
intuitive. Consider a finger-painting application, where a
person assigned different colors to their fingers. Color mix-

ing happens when different fingers
are placed within an object. For
example, if a person places the blue
and yellow fingers inside a rectan-
gle, it is filled with solid green. In-
teresting effects can be done by lift-
ing up or placing down other fingers
with associated colors, where a per-
son can quickly alternate different
color combinations without the need

to remix the color in traditional color choosers.

Chorded modifiers. In the first section, we described how a
knuckle can reveal aspects of its associated fingertip (i.e.,
its content or tool). An alternate approach is to use a chord
combination to modify the behaviour of the tool finger. For
example, the thumb (or the hand’s wrist) can activate the
preview function of the finger(s) on the surface.

Single-Hand Postures
Instead of chorded handparts, multiple handparts touching
the surface can have certain meanings based on their rela-
tionship to each other. Even the same handparts may repre-
sent different commands based on their distance and angle
(e.g., a fist, versus the side of the hand). We created several
techniques that make use of static and dynamic postures
using the posture configuration tool of TOUCHID.

Tool Postures. As with our previous examples, each pos-
ture can invoke a tool or function. For example, we can use
the ‘back of the hand’ or ‘back of fingers’ posture as a con-
text tool revealing all tools and/or clipboard contents as-
signed to all fingers. Figure 8b shows the tools assigned to
a person’s hand, and Figure 8c displays thumbnail images
of clipboard data associated to the fingers. As another ex-
ample, a fist posture raises a user’s personal files that can
be brought into the application. The interaction with these
files can be restricted to its owner. For example, only the
owner can make it public by dragging it from the personal
menu to an empty area on the surface (Fig. 8d). Likewise,
users other than the original owner may then not delete or
modify someone else’s data from the public area on the
surface.

Dynamic postures: Grab’n’Drop. Postures can be dynam-
ic, where changes in the posture can invoke actions. Our
first example is grab ‘n’ drop, where users ‘grabs’ digital
content with their hand, and place the content back onto the

Figure 8. Preview functions: (a) knuckle shows tool assigned to this finger, (b) back of hand
shows all assigned tools or (c) clipboard, (d) dragging items from a personal menu.

Figure 9. Grab’n’Drop: (a) spreading between fingers of flat hand
defines selection area, (b) closing fingers and lifting hand up ‘grabs’

data, and (c) placing flat hand back down on surface and moving
layouts files along the movement path of the person’s hand.

8

surface at another location. The posture we designed re-
quires the fingertips of all five fingers to be present on the
surface. Spreading the fingers of the flat hand changes the
selection area (Fig. 9a). Moving the fingers closer to the
palm is then similar to ‘grabbing’ objects on a surface (i.e.,
making a fist, Fig. 9b). Once users grabbed objects, they
are associated with their hand until they drop them. We
designed two ways of dropping objects: first, as inverse
operation, users put their five fingers down and move them
further apart. Second, they can use their flat hand to draw a
path along which the objects are aligned (Fig. 9c).

Dynamic postures: Interacting with piles. Our second ex-
ample of a dynamic posture illustrates manipulations of
piles of digital objects. We use the flat hand (i.e., five fin-
gertips plus palm and wrist) and calculate the spread of
fingers (i.e., the average distance of all fingers). When a
user places the hand with spread fingers and then reduces
this spread, items within a given radius around the hand are
‘contracted’ ultimately forming a pile (Fig. 10a). Likewise,
the inverse operation (i.e., increasing the hand’s spread)
can be performed on an already existing pile to see its items
(Fig. 10b). Both operations rely on the fingers’ spread: the
larger the spread, the larger the radius of the operation’s
influence.

Two-handed Interaction
The previous examples made use of handparts from only
one hand. However, TOUCHID also recognizes both hand-
parts and postures coming from two different hands and
thus enables easy exploration of two-handed interactions,
i.e., actions detected by two different gloves worn by the
same user. Distinguishing users has high importance in
such interactions to avoid accidental interference. Through
our toolkit we are able to determine whether the two gloves
belong to the same user. If this is not the case, multiple
users may perform different actions. In the following we
describe several techniques that use such interactions.

Precise Manipulations. The purpose of this technique is to
allow precise object manipulations, e.g., scaling along the
x-axis only, or rotating an object. Similar to Rock and Rails
[37], we used the non-dominant hand to define the opera-
tion (i.e., scale, rotate) and the dominant one to perform it.
However, we use the palm of the non-dominant hand to
define the object the user wants to manipulate, while the
finger of the dominant hand both defines and executes the
operation. For example, dragging the index finger rotates
the object, the middle finger scales along the x-axis (Fig.
11a), and the ring finger scales along the y-axis. Thus, the
system is always aware of the user’s intent without the need
of separating operations. Naturally, chording multiple fin-
gers combines actions. For example, using both middle and
ring finger scales the object along both axes.

Level of manipulation. Applications may require users to
manipulate single objects or all at once (i.e., manipulating
all objects at the same time). Two-handed interaction can
distinguish between these two cases, e.g., (1) using one or
multiple fingers for object manipulations, and (2) using
both hands (i.e., each of them with all five fingers down) to
manipulate the canvas and its contained objects.

Object alignment. We also used two-handed interaction to
align content by modifying Grids & Guides, a technique
that allows for both linear and radial alignment [11]. The
original method requires an intermediate step, namely de-
fining grids and guides. Our technique allows both linear
and circular alignment of objects using both hands. By us-
ing the sides of both hands, objects are aligned between
them in a linear fashion (Fig. 11b). Changing the hands’
distance increases/decreases the objects’ spacing. Using the
side of one hand while the other forms a fist results in cir-
cular placement around the fist’s center (Fig. 11c). Here,
the distance between both postures defines the circle’s ra-
dius. In addition, both techniques rotate items accordingly.

Source and destination. Dragging objects can have two
different meanings: move versus copy the object to a de-
fined location. We designed a technique that allows both
operations: fingertip equals move, and knuckle equals copy.
The operation can affect either a single item (using the in-
dex finger) or a pile of objects (using the middle finger
instead). For example, if users want to copy all items from
a certain location, they place down the knuckle of the mid-
dle finger (Fig 11d). For all operations, the destination is
given through the index finger of the second hand. This
technique further allows rapidly reorganizing objects on the

surface by repeatedly
tapping at destina-
tions.

Select by frame. A
common operation in
traditional desktops
is the rubber band
selection. Such inter-
actions, however,

Figure 11. Two-handed interaction: (a) precise manipulations, (b) linear alignment, (c) circular alignment, and (d)

shortcuts for copying objects by placing knuckle down on the object and index finger of second hand at destination.

Figure 10. Interacting with piles: (a) fingers close together form pile
and (b) spreading fingers reveals content.

9

normally requires that the user starts the operation on an
empty part of the workspace, which may be cumbersome or
even impossible if there are many objects present. We
overcome this by a two-handed selection technique. Form-
ing an L-shape with both hands (Fig. 12) allows for precise
location (i.e., intersection of index finger and thumb) and
orientation of a rectangular frame. The index finger of the
second hand additionally defines width and height of the
selection (Fig. 12). We then extended this technique to give
different meanings to such selection frames by using a
combination of the thumb and different fingers for the L-
shape: selection (index finger), copy (middle finger), cut
(ring finger), and paste (pinkie). Additionally, we decided
to use different fingers for defining the frame’s size. While
all fingers have the same effect, they act as a multi-finger
clipboard as described before (i.e., what has been copied by
the pinkie can only be pasted by the pinkie). Alternately,
such frames could invoke different lenses and filters [20] to
view the information contained between the hands.

Person-Aware Interaction Techniques
Because the DiamondTouch [6] could distinguish between
people, the literature is replete with examples of how this
information can be leveraged. TOUCHID provides similar
information, and thus all techniques proposed in earlier
work could be done with it as well. However, TOUCHID
goes beyond that: as we revealed in our previous examples,
user identification can be combined with knowledge of the
particular user’s handpart and hand, something that cannot
be done easily with, e.g., the DiamondTouch. With
TOUCHID, programmers can furthermore easily develop
applications that make use of rules and roles (e.g., in games
or educational applications) [6,28], cooperative gestures
(e.g., collaborative voting through the same postures of
each user) [26], or personalized widgets (e.g., users ‘call’ a
customized widget through a personalized posture) [31].
Additionally, actions can be reverted on a per-user level, as
the application is aware of which user is doing what [40].

DISCUSSION
The interaction techniques described above serve as an
evaluation-in-practice of our toolkit and its expressive
powers. The exposed methods and events in the API along
with the three configuration tools – while simple and easy-
to-use – provide all the required information in enough
level of detail for designing all of the techniques above.
While we don’t describe how these were coded, a reasona-
ble programmer using our toolkit should be able to repli-
cate and extend any of these techniques without too much
difficulty. Indeed, the techniques above are just an initial
exploration. As we were developing these systems, we saw
many other variations that could be easily created. Overall,
the above examples emphasize the potential of how hand-
part aware techniques – as enabled by our toolkit - can lead
to more expressive tabletop interactions.

Of course, some of the techniques could be (or have been)
implemented without the gloves or toolkit. Yet in many
cases it would require complex programming (e.g., com-

puter vision and machine learning algorithms) to detect
certain postures. In some other cases (such as robust identi-
fication of fingertips) it would not be possible at all. Over-
all, the toolkit allowed rapid exploration of handpart aware
techniques, in order to find adequate and expressive forms
of tabletop interaction.

Caveat. While we frame the particular interaction tech-
niques as a secondary contribution in their own right, we do
not argue that the techniques we presented are necessarily
the best mapping of handparts to a particular action. In
many cases there is more than one possible solution for
assigning handparts, postures, or gestures to a particular
action. Future qualitative and quantitative studies will help
in answering the question of how far we can or should go
with these techniques. Such questions are: How many func-
tions assigned to handparts are too much? What are the
personal preferences of users? What kind of single- or mul-
ti-handed postures are easy or difficult to perform?

What we do claim strongly is that the TouchID toolkit can
help us explore this design space. This is why it is our pri-
mary contribution. Rapidly prototyping handpart-aware
applications will allows us to compare and evaluate the
benefits, performance, and problems of particular tech-
niques.

CONCLUSION
TouchID is a downloadable toolkit that (currently) works
atop a Microsoft Surface, where it provides the program-
mer with what handpart, what hand, and what user is touch-
ing the surface, as well as what posture and what gesture is
being enacted. Its API is simple yet powerful. We illustrat-
ed its expressiveness by several novel tabletop interaction
techniques that exploit this extra information: individual
functions for each handpart, pairing handparts, and using
single- or multi-handed postures and gestures, and distin-
guishing between multiple users.

Overall, we believe that distinguishing the handparts that
are causing the touches on an interactive surface can lead to
novel and expressive tabletop interaction techniques. We
offer TouchID – currently based on the very affordable but
reliable fiduciary glove – as a way for the community to

Figure 12. Frame selection: l-shape posture performed with
thumb and different fingers allows selection of mode
(e.g., select, copy, paste, cut); finger of second hand

define second corner of selection frame.

10

work in this exciting area. Instead of struggling with low-
level implementation details such as computer vision and
machine learning algorithms, we (and others) can quickly
explore a large set of alternative techniques – many of which
can be seen as pointers to possible future explorations.

ACKNOWLEDGMENTS
This research is partially funded by the iCORE/NSERC/
SMART Chair in Interactive Technologies, Alberta Inno-
vates Technology Futures, NSERC, and SMART Technol-
ogies Inc.

REFERENCES
1. Benko, H., Ishak, E.W., and Feiner, S. Cross-dimensional

gestural interaction techniques for hybrid immersive environ-
ments. Proc. of VR '05, IEEE (2005), 209-216.

2. Benko, H., Saponas, T.S., Morris, D., and Tan, D. Enhancing
input on and above the interactive surface with muscle sens-
ing. Proc. of ITS '05, ACM (2009), 93-100.

3. Buchmann, V., Violich, S., Billinghurst, M., and Cockburn, A.
FingARtips: gesture based direct manipulation in Augmented
Reality. Proc. of GRAPHITE '04, ACM (2004).

4. Dang, C.T., Straub, M., and André, E. Hand distinction for
multi-touch tabletop interaction. Proc. of ITS '09, ACM
(2009), 101-108.

5. Diaz-Marino, R.A., Tse, E., and Greenberg, S. Programming
for Multiple Touches and Multiple Users: A Toolkit for the
DiamondTouch Hardware. Companion Proc. of UIST’03,
ACM (2003).

6. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch
technology. Proc. of UIST '01, ACM (2001), 219-226.

7. Echtler, F. and Klinker, G. A multitouch software architecture.
Proc. of NordiCHI '08, ACM (2008), 463–466.

8. Echtler, F., Huber, M., and Klinker, G. Shadow tracking on
multi-touch tables. Proc. of AVI '08, ACM (2008), 388-391.

9. Epps, J., Lichman, S., and Wu, M. A study of hand shape use
in tabletop gesture interaction. CHI ’06 extended abstracts,
ACM (2006), 748-753.

10. Freeman, D., Benko, H., Morris, M.R., and Wigdor, D. Shad-
owGuides: visualizations for in-situ learning of multi-touch
and whole-hand gestures. Proc. of ITS '09, ACM (2009).

11. Frisch, M., Kleinau, S., Langner, R., and Dachselt, R. Grids &
guides: multi-touch layout and alignment tools. Proc. of CHI
'11, ACM (2011), 1615–1618.

12. Gokcezade, A., Leitner, J., and Haller, M. LightTracker: An
Open-Source Multitouch Toolkit. Comput. Entertain. 8, 3
(2010), 19:1–19:16.

13. Greenberg, S. Toolkits and interface creativity. Journal of
Multimedia Tools and Applications (JMTA) 32, 2, Springer
(2007), 139-159.

14. Han, J.Y. Low-cost multi-touch sensing through frustrated
total internal reflection. Proc. of UIST '05, ACM (2005).

15. Hancock, M., Carpendale, S., and Cockburn, A. Shallow-
depth 3d interaction: design and evaluation of one-, two- and
three-touch techniques. Proc. of CHI '07, ACM (2007).

16. Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S., and Serra,
T. PyMT: a post-WIMP multi-touch user interface toolkit.
Proc. of ITS '09, ACM (2009), 17–24.

17. Holz, C. and Baudisch, P. The generalized perceived input
point model and how to double touch accuracy by extracting
fingerprints. Proc. of CHI '10, ACM (2010), 581-590.

18. Kaltenbrunner, M., Bovermann, T., Bencina, R., and Costan-
za, E. TUIO: A Protocol for Table-Top Tangible User Inter-
faces. Proc. GW '05, (2005).

19. Kaltenbrunner, M. and Bencina, R. reacTIVision: a computer-
vision framework for table-based tangible interaction. Proc. of
TEI '07, ACM (2007), 69–74.

20. Käser, D.P., Agrawala, M., and Pauly, M. FingerGlass: effi-
cient multiscale interaction on multitouch screens. Proc. of
CHI '11, ACM (2011), 1601–1610.

21. Krueger, M.W., Gionfriddo, T., and Hinrichsen, K.
VIDEOPLACE - An Artificial Reality. SIGCHI Bull. 16, 4
(1985), 35-40.

22. LaViola, J.J. A Survey of Hand Posture and Gesture Recogni-
tion Techniques and Technology. Tech. Report CS-99-11, De-
partment of Computer Science, Brown University, 1999.

23. Letessier, J. and Bérard, F. Visual tracking of bare fingers for
interactive surfaces. Proc. of UIST '04, ACM (2004), 119-122.

24. Marquardt, N., Kiemer, J., and Greenberg, S. What Caused
That Touch? Expressive Interaction with a Surface through
Fiduciary-Tagged Gloves. Proc. of ITS '10, ACM (2010).

25. Microsoft Inc. Tagged Objects. MSDN Library,
http://msdn.microsoft.com/en-us/library/ee804823
(v=Surface.10).aspx, Retrieved June 17, 2010.

26. Morris, M.R., Huang, A., Paepcke, A., and Winograd, T. Co-
operative gestures: multi-user gestural interactions for co-
located groupware. Proc. of CHI '06, ACM (2006).

27. Morris, M.R., Paepcke, A., Winograd, T., and Stamberger, J.
TeamTag: exploring centralized versus replicated controls for
co-located tabletop groupware. Proc. of CHI '06, ACM
(2006), 1273-1282.

28. Morris, M.R., Ryall, K., Shen, C., Forlines, C., and Vernier, F.
Beyond “social protocols”: multi-user coordination policies
for co-located groupware. Proc. of CSCW '04, ACM (2004).

29. Olsen, J. Evaluating user interface systems research. Proc. of
UIST '07, ACM (2007), 251–258.

30. Partridge, G.A. and Irani, P.P. IdenTTop: a flexible platform
for exploring identity-enabled surfaces. CHI '09 Extended Ab-
stracts, ACM (2009), 4411–4416.

31. Ryall, K., Esenther, A., Forlines, C., et al. Identity-
Differentiating Widgets for Multiuser Interactive Surfaces.
IEEE Comput. Graph. Appl. 26, 5 (2006), 56-64.

32. Schmidt, D., Chong, M.K., and Gellersen, H. HandsDown:
hand-contour-based user identification for interactive surfaces.
Proc. of NordiCHI '10, ACM (2010), 432–441.

33. Schmidt, D., Chong, M.K., and Gellersen, H. IdLenses: dy-
namic personal areas on shared surfaces. Proc. of ITS '10,
ACM (2010), 131–134.

34. Shen, C., Vernier, F.D., Forlines, C., and Ringel, M. Dia-
mondSpin: an extensible toolkit for around-the-table interac-
tion. Proc. of CHI '04, ACM (2004), 167–174.

35. Sturman, D.J. and Zeltzer, D. A Survey of Glove-based Input.
IEEE Comput. Graph. Appl. 14, 1 (1994), 30-39.

36. Wang, R.Y. and Popović, J. Real-time hand-tracking with a
color glove. Proc. of SIGGRAPH '09, ACM (2009), 1-8.

37. Wigdor, D., Benko, H., Pella, J., Lombardo, J., and Williams,
S. Rock & rails: extending multi-touch interactions with shape
gestures to enable precise spatial manipulations. Proc. of CHI
'11 ACM (2011), 1581–1590.

38. Wobbrock, J.O., Morris, M.R., and Wilson, A.D. User-defined
gestures for surface computing. Proc. of CHI '09, ACM (2009).

39. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures without
libraries, toolkits or training: a $1 recognizer for user interface
prototypes. Proc. of UIST '07, ACM (2007), 159-168.

40. Wu, M. and Balakrishnan, R. Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop dis-
plays. Proc. of UIST '03, ACM (2003), 193-202.

