

Designing User-, Hand-, and Handpart-Aware Tabletop
Interactions with the TOUCHID Toolkit

ABSTRACT
Recent work in multi-touch tabletop interaction introduced
many novel techniques that let people manipulate digital
content through touch. Yet most only detect touch blobs.
This ignores richer interactions that would be possible if we
could identify (1) which part of the hand, (2) which side of
the hand, and (3) which person is actually touching the sur-
face. Fiduciary-tagged gloves were previously introduced
as a simple but reliable technique for providing this infor-
mation. The problem is that its low-level programming
model hinders the way developers could rapidly explore
new kinds of user- and handpart-aware interactions. We
contribute the TOUCHID toolkit to solve this problem. It
allows rapid prototyping of expressive multi-touch interac-
tions that exploit the aforementioned characteristics of
touch input. TOUCHID provides an easy-to-use event-driven
API as well as higher-level tools that facilitate develop-
ment: a glove configurator to rapidly associate particular
glove parts to handparts; and a posture configurator and
gesture configurator for registering new hand postures and
gestures for the toolkit to recognize. We illustrate

TOUCHID’s expressiveness by showing how we developed
a suite of techniques that exploits knowledge of which
handpart is touching the surface.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Surfaces, tabletop, interaction, touch, postures,
gestures, gloves, fiduciary tags, multi user, toolkit

INTRODUCTION
The arrival of interactive multi-touch tabletop systems her-
alded the development of many novel and powerful ways
for people to manipulate digital content (e.g., [5,14,15,18]).
Yet most technologies cannot sense what is causing the
touch, i.e., they are unable to differentiate between the
touches of two different people, or between different hands,
or between different parts of the hand touching the surface.

This is a lost opportunity, as this knowledge could be the
basis of even more powerful interaction techniques.

Still, a few technologies do allow such differentiation, albe-
it in limited ways. The DiamondTouch surface identifies
which person is touching [5,39], but little else. Muscle-
sensing identifies fingers [2], and computer-vision approach-
es begin to infer similar information, though not robustly
(e.g., [4,31]). The Fiduciary-Tagged Glove [22] – which we
use in our own work – is perhaps the most promising. While
a wearable, it offers an inexpensive, simple, yet robust
tracking method for experimental development. It serves as
a good stand-in until non-encumbered technologies are
realistically available. As seen in Figure 1, fiduciary tags
(printed labels) are glued to key handparts of the glove.
When used by a person over a fiduciary tag-aware surface
(e.g., the Microsoft Surface [23]), the location and orienta-
tion of these tags can be tracked. Because the software as-
sociates tags to particular handparts, it can return precise
information about one or more parts of the hand in contact
with the touch surface.

The problem is that the fiduciary-tagged glove still requires
low-level programming. The programmer has to track all
individual tags, calculate the spatial, motion and orientation
relations between tags, and infer posture and gesture infor-
mation from those relationships. While certainly possible
[22], this complexity limits the number of programmers
willing to use it, and demands more development time to
actually prototype rich interaction techniques.

Our goal is to mitigate this problem by developing the
TOUCHID (Touch IDentification) toolkit that provides the

Figure 1. Using the TouchID Posture Configurator to train a new
posture with the fiduciary-tagged glove.

Nicolai Marquardt, Johannes Kiemer, David Ledo, Sebastian Boring, Saul Greenberg
Department of Computer Science

University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
[nicolai.marquardt, jlkiemer, david.ledo, sebastian.boring, saul.greenberg]@ucalgary.ca

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ITS 2011, November 13-16, Kobe, Japan.
Copyright 2011 ACM 978-1-4503-0871-7/11/11....$10.00.

Saul
Text Box
Marquardt, N., Kiemer, J., Ledo, D., Boring, S. and Greenberg, S. (2011) Designing User-, Hand-, and Handpart-Aware Tabletop Interactions with the TOUCHID Toolkit. In ACM International Conference on Interactive Tabletops and Surfaces-ITS'2011. (Kobe, Japan), ACM Press, 10 pages, November 13-16. Include video figure, duration 3:42 minutes.

programmer with knowledge of the person, hand, and hand-
part touching the surface. Our expectation is that by making
this information easily available, the programmer can rap-
idly develop interaction techniques that leverage this infor-
mation. Specifically, we contribute:

 The TOUCHID toolkit and API as a test bed for rapid ex-
ploration of person, hand, and handpart-aware tabletop in-
teraction techniques.

 Easy-to-use tools for registering both hand postures (Fig-
ure 1) and gestures for recognition by the toolkit.

 A demonstration of the toolkit in practice, where we illus-
trate how we used it to rapidly develop a suite of expres-
sive interaction techniques. The interaction techniques are
themselves a secondary contribution, for they seed a de-
sign space of expressive multi-handpart, multi-hand and
multi-user interaction techniques that could inspire future
tabletop applications.

We briefly review related work in the area of touch recogni-
tion and development tools, followed by an explanation of
the fiduciary-tagged gloves. We then introduce the TOUCHID
toolkit: we begin with its three high level tools and then de-
tail the toolkit’s API. Subsequently, we introduce a set of
novel interaction techniques that leverages the knowledge
provided by TOUCHID about individual touches.

BACKGROUND AND RELATED WORK
Multi-touch surfaces have been based on a variety of tech-
nologies, e.g., [14,39], each with their own strengths and
weaknesses. Touch has also been exploited in different
ways, ranging from touch alone, to multi-fingers [39], to
hand shape [7] and hand postures [9], and to gestures [37].
Because these and others are now familiar in the literature,
we concentrate our background on two factors: previously
developed techniques that identify particular users or hand-
parts, and development tools for prototyping multi-touch
applications on surfaces.

Identifying Users and Handparts Touching the Surface
Our basic assumption is that more powerful interaction
techniques can be built if a tabletop system knows which
person, hand, or part of the hand is touching the surface.
Some earlier work explored such identification; most nota-
bly computer vision approaches, specialized hardware, and
glove-based tracking.

In computer vision, some techniques recognize the position
of hands and identifying fingers [21]. Another approach uses
distance, orientation, and movement information of touch
blobs to identify fingers and distinguish if they are from the
same or different hands of a person [4]. Schmidt’s
HandsDown [31] system derives user information from
matching features of a person’s hand outline to the ones
stored in a database. Later, this technique was applied to
allow personalized workspaces and lenses for tabletop inter-
action [32]. Increasing the reliability and accuracy of the
computer vision recognition remains a challenge for all of
these systems.

Specialized hardware also distinguishes between handparts
and users. For example, the MERL DiamondTouch surface
identifies (through capacitive coupling) which of up to four
people are touching the surface [5]. DiamondTouch is nota-
ble as a development platform: its unique ability to differen-
tiate which person was touching the surface was the basis of
many user-aware tabletop explorations, including coopera-
tive gestures [24], shared vs. replicated controls [25], and
multi-user coordination [26]. Other hardware approaches
distinguish handparts. For example, an EMG muscle sensing
armband identifies a person’s fingers touching a surface [2],
while fingerprint recognition could provide similarly precise
touch information and user identification [17].

Glove-based techniques, typically found within virtual real-
ity research, track augmented gloves in 3D space. Methods
include optical tracking, printed markers, silhouette analy-
sis, magnetic tracking, and so on [34]. Returned infor-
mation was exploited in a variety of ways. For example,
gestures made by the tracked glove in 3D allowed a person
to handle virtual objects in that augmented space [3], and
to drive gestural interaction in an augmented reality immer-
sive environment [1]. Other techniques distinguish a user’s
hands by using coloured glove patterns to discriminate
parts of the hand as well as its posture in 3D space [35], or
through fiduciary markers attached to gloves [3]. Within
the area of surface interaction, Marquardt et al. [22] pro-
duced the previously mentioned fiduciary-tagged glove,
where tags were tracked by a Microsoft Surface.

Most prior work suffers in some regards. Some require
expensive or custom hardware, some are not particularly
robust, and some provide only a subset of the desired in-
formation. We decided to use Marquardt et al.’s fiduciary-
tracked glove as the TOUCHID toolkit initial sensing device.
The glove returns accurate information identifying key
handparts touching a surface, and for differentiating be-
tween hands and users (details are explained shortly) [22].
However, we stress that the TOUCHID toolkit could incor-
porate other sensing technologies as well.

Development Tools for Creating Surface Application
While the above technologies provide low level information
about a touch and what caused it, the complexity of access-
ing and programming with that information often places
them out of reach to all but a few developers. Consequently,
researchers have built toolkits in order to facilitate the devel-
opment of tabletop applications. The idea is that software
engineers can then focus on exploring novel interactions
instead of low-level programming challenges [12].

LightTracker [11], ReacTIVision [18], and CCV [27] sim-
plify access to computer vision, filters, and calibration
methods often necessary when using tabletop hardware.
TUIO [19], originally built for the Reactable hardware,
now functions as a universal low-level protocol to transmit
and process touch point information. Higher level pro-
gramming frameworks (e.g., MT4J [8], TouchLib [6],
PyMT [16]) allow cross platform development and lower
the threshold for rapid prototyping of multi-touch applica-

tions. Our TOUCHID toolkit extends this previous work by
providing complementary information about which exact
part of the hand, which hand, and which person is actually
causing a particular touch event.

A few toolkits integrate the identification of the person
touching the interactive surface. DiamondSpin [33], built
around the DiamondTouch hardware [5], supports the de-
velopment of orientation-aware multi-user applications.
idWidgets [30] are user-aware touch widgets, while
IdenTTop [29] added a framework approach to identity-
enabled multi-user applications, also through a set of widg-
ets. As we will see, our TOUCHID toolkit also deeply inte-
grates user identification. We differ in the way that user
information is combined with precise information about the
actual handparts touching the surface.

THE FIDUCIARY TAGGED GLOVE
As mentioned earlier, TOUCHID is based upon fiduciary-
tagged gloves [22], as these produce precise (albeit low-
level) information about handparts touching an interactive
surface. The current glove design works as follows. Fiduci-

ary tags (2x2 cm infra-red reflective
markers with a unique 8-bit identi-
fication pattern) are glued to the
glove on positions representing key
parts of a person’s hand: fingertips,
knuckles, side of the hand, palm,
etc. (Figure 2). Once any of the
tagged handparts touch the tabletop,
a Microsoft Surface [23] accurately
recognizes their positions and ori-
entations. A simple one-time cali-
bration process associates the tags

with their position of the hand (details are described be-
low). Although this approach requires people to wear one
or two gloves when interacting with the tabletop, it is nev-
ertheless a robust technique that allows the exploration of
novel interaction techniques leveraging hand-part identifi-
cation until more unencumbered methods are available. We
expect that further developments in computer vision and
tabletop hardware will enable systems recognize people,
their hands, and handparts touching the surface without
requiring wearing gloves. Overall, the design of these
gloves is simple, reasonably cheap, and – through the track-
ing of the Microsoft Surface – accurate and reliable.

Yet the design and exploration of novel interaction tech-
niques using the glove’s information is still non-trivial. A
developer has to perform a series of low-level tasks: track-
ing individual markers touching the surface, looking up
user identification for each of the tags, and recognizing
gestures from the tag’s movements over time. Furthermore,
posture recognition is tedious: the programmer has to track
simultaneously recognized markers, and infer postures by
comparing their relative distance and orientation. Collec-
tively, these present a threshold preventing rapid and itera-
tive exploration of novel interactions [28].

THE TOUCHID TOOLKIT
We developed the TOUCHID toolkit to facilitate the devel-
opment of multi-touch interaction techniques leveraging
knowledge of user, hand, and hand-part identification. A
key part of the toolkit is an easy-to-use event driven API
(application programming interface) that makes the infor-
mation about touches, handparts, and users easily accessi-
ble to application developers. It also includes a set of high
level tools to configure gloves, and to train new hand pos-
tures and gestures. In the following, we detail all essential
parts of the toolkit.

Architecture
TOUCHID toolkit’s architecture is layered to allow for dif-
ferent technologies to be substituted as they become availa-
ble (see Figure 3a-d). The toolkit’s bottom layer (3a) ac-
cesses the actual input events (e.g., a tag’s id, location, and
orientation) from the underlying hardware. The next layer
(the proxy, 3b) translates these events into unified events
that can be used by the toolkit’s API. While we currently
rely on the Microsoft Surface, other hardware (e.g., another
fiduciary marker tracking system such as [18]) providing
similar capabilities could be substituted by re-writing the
proxy layer. The next higher layer is responsible for associ-
ating the events with users and handparts (3c). This layer
also includes the posture/gesture recognition engines (3d)
and corresponding configuration tools (3e). The top layer
(3f) is the actual API seen by the developer. While the low-
er layers are normally not needed, the developer can – if
desired – access the raw information held by those layers
(e.g., the tag’s id if applicable).

Setup and Glove Configuration
A developer installs the TOUCHID toolkit (available for
download at [13]) onto a standard Windows PC attached to
a Microsoft Surface. The toolkit setup installs all required
tools, the developer library with the API, templates, exam-
ples, and documentation. Next, the developer starts the
toolkit’s glove configurator tool (Figure 4) to register each
glove they built. This is done only once. This tool shows
images of a hand in 3 orientations. The person simply plac-
es the three sides of the gloves on the corresponding image,
and each tag gets mapped to its corresponding handpart.
Each glove is assigned to a particular person. This configu-

Figure 2. The fiduciary-
tagged glove.

Figure 3. The TouchID toolkit layered architecture.

ration process can then be repeated for left and right hand
gloves of that person, as well as for each additional person.
The toolkit and gloves are now ready to use.

This configuration tool differs from previous work [22] in
two ways. First, it is tightly integrated into the toolkit so
that all configuration files (saved as XML files) are stored
in a central repository and are accessible by every other
TOUCHID tool and its API. Second, it is extended through a
compensation mechanism in order to support differently
sized gloves (and thus differing distances between the
tags). The configuration tool measures the distances be-
tween key pairs (e.g., finger tips to palm) and saves a com-
pensation factor associated to these pairs. This compensa-
tion is done implicitly by the toolkit, and does not require
any additional intervention by the developer.

Posture Training and Recognition
Hand postures – such as a flat hand placed on the surface or
an L-shaped posture formed with thumb and index finger –
can be an expressive and powerful form of input for tab-
letop applications. Here, we introduce TOUCHID’s Posture
Configuration tool and underlying algorithm that lets a de-
veloper train the system to seamlessly recognize new pos-
tures. A later section will describe the toolkit’s API.
Template-based Matching Algorithm
Our posture recognition works through a template-based
matching algorithm [20]. For each posture, the toolkit saves
one or more templates describing the configuration of in-
formation listed below.

 Number and identification of con-
tact points (i.e., which handparts are
included in the posture, such as
“right index finger”, “left knuckle of
thumb”, etc.)

 The geometry between all identified
contact points captured as distance
(in mm) and angle (in degrees)
measures. Because exact geometry
matches are unlikely, it also includes
a tolerance threshold that indicates
how much a geometry can deviate
from the template and still be recog-
nized as a given posture. A posture
template can also be set to ignore the
angle and/or distance.

During application runtime, the template-matching algo-
rithm compares the currently recognized input to these
saved templates. If the recognized input matches any of the
saved templates within the configured tolerance range (e.g.,
such as 10%), the toolkit notifies the application about the
recognized posture. While other posture recognition algo-
rithms could be substituted, e.g., training of neural net-
works or using hidden markov models [20], our simple
template matching algorithm is, in practice, reliable and
powerful enough for our purposes of recognizing and dif-
ferentiating between a variety of postures.
Posture Configuration Tool
The posture configuration tool, illustrated in Figure 5, al-
lows a developer to (optionally) train TOUCHID to recog-
nize new hand postures. In Figure 5, the upper left corner
(a) displays thumbnail images of previously trained pos-
tures. The upper center (b) shows any currently recognized
posture, which is useful as continuous feedback about any
recognized postures (i.e., knowing if a new posture con-
flicts with any previously trained posture). The right side of
the screen (c) shows controls to ‘freeze’ the current recog-
nized contact points on the screen even when the hand is
lifted off the surface, where that captured posture can then
be saved.

To begin training a new posture, the developer simply puts
their gloved hand onto the tool’s center area (Figure 5d)
and performs the desired posture. For example, for the pos-
ture shown in Figure 6a, the person placed three fingers on
the surface: the thumb, index, and middle finger. The pos-
ture is visualized underneath (Figure 6b) as the recognized
touch points and the angle and distance between them. For
example, the labels of Figure 6b states that the angle be-
tween thumb and index finger is 99 degrees, and that they
are 134mm apart. Figure 6c/d illustrates how tolerance to
these measures can be added by touching the handles and
modifying the tolerance range for the given distance and
angle values. The larger the tolerance value, the more re-
laxed the recognizer is when matching input to this tem-
plate. If desired, the developer can ignore distance and/or

Figure 5. The posture configurator tool: (a) saved postures, (b) currently recognized posture,
(c) controls, (d) handparts touching the surface, and distance/angle between.

Figure 4. The glove configurator tool (similar to [18]).

angle measures for certain pairs of contact points by touch-
ing the ‘Ignore Distance’ or ‘Ignore Angle’ buttons below
the visualization (Figure 6e). This can be useful to identify
chording; for example, if both distance and angles are ig-
nored, the mere placement of particular handparts on the
surface (e.g., thumb and forefinger vs. thumb and little fin-
ger) will trigger the posture event. Configured postures are
saved as an XML file in the posture repository accessible
by other parts of the toolkit. The posture training can then
be repeated for any additional postures.

Besides single-hand postures, the toolkit also supports reg-
istration of bi-manual hand postures. Figure 7 illustrates
this: when two hands touch the surface, the posture config-
urator tool now not only visualizes the contact points of
both hands, but also the distance and angle between the two
hands (and the two posture’s centers respectively).

Gesture Configuration Tool
A developer can also configure gestures performed with
any handpart or posture. TOUCHID recognizes discrete ges-
tures as performed movements, e.g., a ‘circle’, ‘triangle’ or
‘C’ movement made by (say) a thumb. It captures gestures
by demonstration. For example, to train a circle gesture, the
developer simply places the handpart or hand posture on
the tabletop and performs the circle gesture movement.
Internally, our toolkit uses a modified version of Wob-
brock’s gesture recognizer [38] to create one or multiple
gesture templates. The toolkit later compares new input to
the saved set of trained gestures. For these discrete gestures
an event is triggered after the gesture is completed, (e.g.,
when finishing a circle motion). Our toolkit allows the im-
plementation of continuous gestures (e.g., performing a
pinching gesture with two fingers) by monitoring the rela-

tive distance and orientation changes between all handparts
involved in that particular gesture.

While our recognizer is simple, it differs from most other
systems as gestures can be associated to a particular hand-
part or posture. For example, a flicking gesture performed
with the forefinger is considered different from a flicking
gesture performed with the palm (e.g., the first is used to
throw an object; the second to erase something). Alternate-
ly, a gesture can be saved as a universal template so that it
is recognized regardless of handparts performing it.

The API – Rapid and Expressive Programming
The programming API gives developers easy access to the
information about people’s touch interaction with the sur-
face. Through a subscription-based event driven architec-
ture familiar to most software engineers, developers can
receive notifications about any handpart touching the sur-
face, the person that touch belongs to, and any hand pos-
tures or performed gestures.
Walkthrough example
We illustrate the API with a deliberately simple
walkthrough example that includes almost everything re-
quired to develop a first tabletop application that differenti-
ates between handparts, postures, and people. To begin
prototyping an application, the developer opens up the Vis-
ual Studio IDE, and selects the TOUCHID C# development
template. The template is the starting point for new pro-
jects, containing the basic code required for all TOUCHID
applications. This includes the base class (TouchIDWin-
dow), a statement to initialize gloves (loading all the glove
configuration XML files), and a statement to initialize a
new posture recognizer and loading the posture configura-
tions from the standard repository.
public partial class Application:TouchIDWindow {
 public Application() {
 this.LoadGloves();
 this.PostureRecognizer = new PostureRecognizer();
 this.PostureRecognizer.LoadPostures(PostureRepository);
}

The developer adds two event callbacks to receive events
when handparts (HandpartDown) and recognized postures
(PostureDown) touch down onto the surface.
this.HandpartDown +=
 new EventHandler<TouchEventArgs>(HandpartDown);
this.PostureRecognizer.PostureDown +=
 new EventHandler<PostureEventArgs>(PostureDown);

Figure 7. Bi-manual posture configuration (four fingers down

with the left hand, and two fingers with the right hand).

Figure 6. Using the posture configurator: (a) placing hand posture on the surface, (b) handparts get visualized with angles and distance be-
tween contact points, (c) person changes tolerance threshold for angle and (d) distance, or (e) sets to ignore these values.

While not illustrated, the toolkit also includes equivalent
‘Changed’ and ‘Up’ events triggered when a person moves
the handpart or posture over the surface, and when the per-
son lifts the hand up off the surface respectively.

Next, the developer adds the corresponding callback meth-
ods to the application that are called when the Hand-
partDown or PostureDown events occur.
void HandpartDown(object sender, TouchEventArgs e) {
 String e.User.Name; // e.g. "John"
 HandSide e.Hand.Side; // e.g. HandSide.Left
 String e.Handpart.Identifier; // e.g. "Thumb"
 Point2D e.Handpart.Position; // e.g. x:20, y:53
 // do something with this information
}
void PostureDown(object sender, PostureEventArgs e) {
 String e.User; // e.g. "Chris"
 String e.Posture.Identifier; // e.g. "StraightHand"
 Point2d e.Posture.Position; // e.g. x:102, y:79
 // do something with this information
}

The above callbacks illustrate use of the event property ‘e’
that contains detailed information of the recognized hand-
part or posture. Depending on the callback, this includes:

 Name of the user performing the action [e.User.Name]
 Which hand: left or right [e.Hand.Side]
 Part of the hand [e.Handpart.Identifier] and its

position [e.Handpart.Position]
 Name of recognized posture [e.Posture.Identifier]

and its center position [e.Posture.Position]

Gesture recognition events are handled similarly to posture
recognition. The developer initializes a gesture recognition
object, loads the gesture configuration files from either the
default repository or a custom folder, and then subscribes
and adds matching event handlers to particular Ges-
tureRecognized events. The callback method gives the
developer precise information about the gesture that trig-
gered the event including the identifier of the recognized
gesture, the user and handpart(s) performing the gesture.
this.GestureRecognizer = new GestureRecognizer();
this.GestureRecognizer.LoadGestures(GestureRepository);
this.GestureRecognized +=
 new EventHandler<GestureEventArgs>(GestureRecogn);

void GestureRecogn(object sender, GestureEventArgs e) {
 String e.Gesture.Identifier; // e.g. "circle"
 List e.Gesture.Handparts; // e.g. [IndexFinger]
 // do something with this information
}

The event handlers introduced so far subscribe to all hand-
part/posture/gesture events. They are global handlers as
they receive all events no matter which person is perform-
ing them. In some cases, the developer may want to restrict
callbacks to a particular user, or particular hand, or particu-
lar handpart. The code fragments below illustrate by exam-
ple how this is done.
// Initialize user
User john = new User("John") ;

// Subscribe to any of John’s handpart down events
john.HandpartDown +=
 new EventHandler<TouchEventArgs>(JohnHandpartDown);

// Subscribe to any of John’s left hand
// postures appearing on the surface
Hand johnsLeftHand = john.LeftHand;
johnSleftHand.PostureDown +=
 new EventHandler<PostureEventArgs>
 (JohnLeftHandPostureDown);

// Subscribe to activities specific to John’s thumb
Handpart thumb = john.HandParts.Thumb;
thumb.GestureRecognized += ...
thumb.HandpartDown += ...
thumb.HandpartUp += ...

EXPLORING INTERACTION TECHNIQUES
The last section contributed our API and its 3 configuration
tools (glove, posture and gesture). This section continues
by contributing a diverse set of novel interaction tech-
niques, illustrating the API’s expressiveness. While we
don’t include code, it should be fairly self-evident how
these techniques could be implemented with TOUCHID. We
describe several interaction techniques that are hand-part
and posture aware (see overview in Table 1). If applicable,
we explain how we extended these techniques to allow for
multi-user interaction. While we make no claims that the
presented techniques represent the ‘best’ way to perform a
particular action, we do believe our techniques serve as
both an exploration of what is possible as well as a valida-
tion of the toolkit’s expressiveness.

Identifying Individual Parts of the Hand
We now introduce several techniques that leverage this
knowledge of the handpart associated with the owner (i.e.,
the user), location and orientation of a touch event.

Tool fingers. A typical GUI allows only one ‘tool’ or
‘mode’ to be activated at a time. The user selects the tool
(e.g. via a tool palette), which assigns it to the mouse point-
er. Our idea of ‘tool fingers’ changes this: for each user,
their individual handpart can be its own tool, each with its
own function. For example, consider the generic cut/paste
operation: with tool fingers, touching an object with (say)
the little finger ‘cuts’ it, while the middle finger ‘pastes’ it.
We can also constrain visual transform actions: touching an
object with the index finger allows moving, but the ring
finger only allows rotating. A person can associate a tool to
a handpart simply by touching an icon in a tool palette with
that particular handpart. As the toolkit further knows which
glove (and thus which user) is touching the surface, we can
manage left vs. right-handed people. The only information
needed is whether a person is right or left handed. With
this, the application can assign functions to the domi-
nant/non-dominant hand in a way that best matches that
person’s handedness.

Preview and context menu. In a standard GUI, a context
menu reveals the capabilities of an object. With tool fin-
gers, we can use a different part of the finger to reveal a
finger’s function. For example, consider the case where
each finger-tip is assigned a tool. When that finger’s knuck-
le is placed on an empty part of the surface, a preview of
the finger’s tool appears (Figure 8a). Alternately, a tool
palette could be displayed around the finger’s knuckle, and

a new tool chosen by moving the knuckle
over one of the tool icons.

Finger clipboard. Similar to the above, a
different part of the finger can assign
content to that finger. Consider a multi-
finger clipboard, where a user can tem-
porarily store and retrieve an object on a
finger. Placing a finger’s knuckle atop a
graphical object will assign that object to
its fingertip (either copied or cut).
Touching the surface with that finger
now pastes that object onto the surface at
that location. When used as a context
tool (i.e., the knuckle is placed on an
empty location), the clipboard contents
associated with that fingertip is shown.

Chorded Handparts
Besides individual handparts, TOUCHID
can identify chords of two or more rec-
ognized handparts. This offers further
powers, as different handpart combina-
tions (of the same user) can be recog-
nized as unique commands.

Combining tool effects. When tool fingers are assigned
with mixable functions, their chording effect can be quite
intuitive. Consider a finger-painting application, where a
person assigned different colors to their fingers. Color mix-
ing happens when different fingers are placed within an
object. For example, if a person places the blue and yellow
fingers inside a rectangle, it is filled with solid green. Inter-
esting effects can be done by lifting up or placing down
other fingers with associated colors, where a person can
quickly alternate different color combinations without the
need to remix the color in traditional color choosers.

Chorded modifiers. In the first section, we described how a
knuckle can reveal aspects of its associated fingertip (i.e.,
its content or tool). An alternate approach is to use a chord
combination to modify the behaviour of the tool finger. For
example, the thumb (or the hand’s wrist) can activate the
preview function of the finger(s) on the surface.

Single-Hand Postures
Instead of chorded handparts, multiple handparts touching
the surface can have certain meanings based on their rela-
tionship to each other. Even the same handparts may repre-
sent different commands based on their distance and angle
(e.g., a fist, versus the side of the hand). We created several
techniques that make use of static and dynamic postures
using the posture configuration tool of
TOUCHID.

Tool Postures. As with our previous exam-
ples, each posture can invoke a tool or func-
tion. For example, we can use the ‘back of
the hand’ or ‘back of fingers’ posture as a
context tool revealing all tools and/or clip-
board contents assigned to all fingers. Figure
8b shows the tools assigned to a person’s

hand, and Figure 8c displays thumbnail images of clipboard
data associated to the fingers. As another example, a fist pos-
ture raises a user’s personal files that can be brought into the
application. The interaction with these files can be restricted
to its owner. For example, only the owner can make it public
by dragging it from the personal menu to an empty area on
the surface (Figure 8d). Likewise, users other than the origi-
nal owner may then not delete or modify someone else’s data
from the public area on the surface.

Dynamic postures: Grab’n’Drop. Postures can be dynam-
ic, where changes in the posture can invoke actions. Our
first example is grab ‘n’ drop, where users ‘grabs’ digital
content with their hand, and place the content back onto the
surface at another location. The posture we designed re-
quires the fingertips of all five fingers to be present on the
surface. Spreading the fingers of the flat hand changes the
selection area (Figure 9a). Moving the fingers closer to the
palm is then similar to ‘grabbing’ objects on a surface (i.e.,
making a fist, Figure 9b). Once users grabbed objects, they
are associated with their hand until they drop them. We
designed two ways of dropping objects: first, as inverse
operation, users put their five fingers down and move them
further apart. Second, they can use their flat hand to draw a
path along which the objects are aligned (Figure 9c).

Figure 8. Preview functions: (a) knuckle shows tool assigned to this finger, (b) back of hand
shows all assigned tools or (c) clipboard, (d) dragging items from a personal menu.

Interaction technique Example(s)

Identifying
parts of the
hand

Tool fingers

• Little finger ‘cuts’, middle finger ‘pastes’ digital objects

• Custom assignments for individual people

• Constrain visual transformations (e.g., scale) to handpart

Preview and context menu
• Knuckle previews tool assigned to fingertip

• Display tool or context menu when knuckle on surface

Finger clipboard • Assign cut or copied objects to individual fingers

Chorded
handparts

Combining tool effects
• Different colors assigned to each finger; mixing colors by

placing fingers down simultaneously

Chorded modifiers
• Chord combination (e.g., finger + thumb) previews assigned

tool of that finger

Single-
hand
postures

Tool postures
• Back of hand previews clipboard items assigned to

individual fingers of the hand

• Fist shows personal menu (restricting access)

Dynamic postures:
grab’n’drop

• Person grabs digital content from table to their hand

• Dropping objects back to table

Dynamic postures:
pile interaction

• Spreading of fingers can be used to form piles or
reveal pile items

Two-
handed
interaction

Precise manipulations
• One hand selects object; fingers of second hand select

modifier: index finger rotates, middle finger scales, etc.

• Chording fingers for simultaneous operations

Object alignment
• Allowing linear alignment (using both sides of the hand) or

circular alignment (using fist and side of the other hand) of
items through combination of hand postures

Source and destination
• First hand: fingertip ‘moves’, knuckle ‘copies’ objects. Index

finger of second hand determines destination

Select by frame
• L-shape posture with thumb and different fingers allows

selection of mode (e.g., copy, paste); finger of second hand
defines second corner of selection frame.

Table 1. Overview of novel interaction techniques leveraging the knowledge about which
person, hand, and handpart is touching the surface.

Dynamic postures: Interacting with piles. Our second ex-
ample of a dynamic posture illustrates manipulations of
piles of digital objects. We use the flat hand (i.e., five fin-
gertips plus palm and wrist) and calculate the spread of
fingers (i.e., the average distance of all fingers). When a
user places the hand with spread fingers and then reduces
this spread, items within a given radius around the hand are
‘contracted’ ultimately forming a pile (Figure 10a). Like-
wise, the inverse operation (i.e., increasing the hand’s
spread) can be performed on an already existing pile to see
its items (Figure 10b). Both operations rely on the fingers’
spread: the larger the spread, the larger the radius of the
operation’s influence.

Two-handed Interaction
The previous examples made use of handparts from only
one hand. However, TOUCHID also recognizes both hand-
parts and postures coming from two different hands and
thus enables easy exploration of two-handed interactions
(i.e., actions detected by two different gloves worn by the
same user). Distinguishing users has high importance in
such interactions to avoid accidental interference. Through
our toolkit we are able to determine whether the two gloves
belong to the same user. If this is not the case, multiple
users may perform different actions. In the following we
describe several techniques that use such interactions.

Precise Manipulations. The purpose of this technique is to
allow precise object manipulations, e.g., scaling along the
x-axis only, or rotating an object. Similar to Rock and Rails
[36], we used the non-dominant hand to define the opera-
tion (i.e., scale, rotate) and the dominant one to perform it.
However, we use the palm of the non-dominant hand to
define the object the user wants to manipulate, while the
finger of the dominant hand both defines and executes the
operation. For example, dragging the index finger rotates
the object, the middle finger scales along the x-axis, and the
ring finger scales along the y-axis. Thus, the system is al-
ways aware of the user’s intent without the need of separat-
ing operations. Naturally, chording multiple fingers com-
bines actions. For example, using both middle and ring
finger scales the object along both axes.

Object alignment. We also used two-handed interaction to
align content by modifying Grids & Guides, a technique
that allows for both linear and radial alignment [10]. The
original method requires an intermediate step, namely de-
fining grids and guides. Our technique allows both linear

and circular alignment of objects using both hands. By us-
ing the sides of both hands, objects are aligned between
them in a linear fashion (Figure 11a). Changing the hands’
distance increases/decreases the objects’ spacing. Using the
side of one hand while the other forms a fist results in cir-
cular placement around the fist’s center (Figure 11b). Here,
the distance between both postures defines the circle’s ra-
dius. In addition, both techniques rotate items accordingly.

Source and destination. Dragging objects can have two
different meanings: move versus copy the object to a de-
fined location. We designed a technique that allows both
operations: fingertip equals move, and knuckle equals copy.
The operation can affect either a single item (using the in-
dex finger) or a pile of objects (using the middle finger
instead). For example, if users want to copy all items from
a certain location, they place down the knuckle of the mid-
dle finger (Fig 11c). For all operations, the destination is
given through the index finger of the second hand. This
technique further allows rapidly reorganizing objects on the
surface by repeatedly tapping at destinations.

Select by frame. A common operation in traditional desk-
tops is the rubber band selection. Such interactions, howev-
er, normally requires that the user starts the operation on an
empty part of the workspace, which may be cumbersome or
even impossible if there are many objects present. We
overcome this by a two-handed selection technique. Form-
ing an L-shape with both hands (Figure 12) allows for pre-
cise location (i.e., intersection of index finger and thumb)
and orientation of a rectangular frame. The index finger of
the second hand additionally defines width and height of
the selection (Figure 12). We then extended this technique
to give different meanings to such selection frames by us-
ing a combination of the thumb and different fingers for the
L-shape: selection (index finger), copy (middle finger), cut
(ring finger), and paste (little finger). Additionally, we de-
cided to use different fingers for defining the frame’s size.
While all fingers have the same effect, they act as a multi-
finger clipboard as described before (i.e., what has been

Figure 11. Two-handed interaction: (a) linear alignment, (b) circular
alignment, and (c) shortcuts for copying objects by placing knuckle
down on the object and index finger of second hand at destination.

Figure 9. Grab’n’Drop: (a) spreading between fingers of flat hand
defines selection area, (b) closing fingers and lifting hand up ‘grabs’

data, and (c) placing flat hand back down on surface and moving
layouts files along the movement path of the person’s hand.

Figure 10. Interacting with piles: (a) fingers close together

form pile and (b) spreading fingers reveals content.

copied by the little
finger can only be
pasted by this finger).

Person-Aware Inter-
action Techniques
Because the Dia-
mondTouch [5] could
distinguish between
people, the literature
is replete with exam-
ples of how this in-
formation can be lev-
eraged. TOUCHID
provides similar in-
formation, and thus all techniques proposed in earlier work
could be done with it as well. However, TOUCHID goes
beyond that: as we revealed in our previous examples, user
identification can be combined with knowledge of the par-
ticular user’s handpart and hand, something that cannot be
done easily with, e.g., the DiamondTouch. With TOUCHID,
programmers can furthermore easily develop applications
that make use of rules and roles (e.g., in games or educa-
tional applications) [5,26], cooperative gestures (e.g., col-
laborative voting through the same postures of each user)
[24], or personalized widgets (e.g., users ‘call’ a custom-
ized widget through a personalized posture) [30].

DISCUSSION
The interaction techniques described above serve as a
demonstration of our toolkit’s expressive power. The ex-
posed methods and events in the API along with the three
configuration tools – while simple and easy-to-use – pro-
vide all the required information in enough level of detail
for designing all of the techniques. While we don’t describe
how these were coded, a reasonable programmer using our
toolkit should be able to replicate and extend any of these
techniques without too much difficulty. Indeed, the tech-
niques above are just an initial exploration. As we were
developing these systems, we saw many other variations
that could be easily created. Overall, the above examples
emphasize the potential of how handpart aware techniques
– as enabled by our toolkit – can lead to more expressive
tabletop interactions.

Of course, some of the techniques could be (or have been)
implemented without the gloves or toolkit. Yet in many
cases it would require complex programming (e.g., com-
puter vision and machine learning algorithms) to detect
certain postures. In some other cases (such as robust identi-
fication of fingertips) it would not be possible at all. Over-
all, the toolkit allowed rapid exploration of handpart aware
techniques, in order to find adequate and expressive forms
of tabletop interaction.

Limitations of tagged gloves. Requiring people to wear our
tagged gloves may have implications on the user experi-
ence – e.g., gloves might feel uncomfortable, or restrict the
movement of fingers. While this is less suitable for walk-
up-and-use tabletop systems (e.g., museums), we see it as

an acceptable trade-off for systems exploring novel interac-
tion techniques. As mentioned before, we believe that fu-
ture developments of tabletop systems will allow detecting
the same accurate information of handparts touching the
surface without requiring gloves. Before such systems be-
come available, the tagged gloves and our TOUCHID toolkit
already enable the exploration of the design space of hand-
part aware interaction techniques.

Learnability of interaction techniques. Some of the pro-
posed handpart-aware interaction techniques require more
complex combinations of fingers, handparts, or postures
compared to traditional tabletop interfaces. Therefore, these
systems need to integrate mechanisms allowing people dis-
covering and learning possible types of interactions. Pre-
view methods for tool functions assigned to handparts and
postures – such as the ones we described earlier of using
knuckles or the back of the hand – are one possibility that
facilitates learnability. Also, the mentioned personalized
assignments of functions to handparts or postures let people
choose settings they are most comfortable with. Some of
the techniques might require people to invest time into
training (e.g., through videos or animations demonstrating
postures, finger chords, etc. [9]). Some of the benefits justi-
fying this investment are faster access to commonly used
tools (e.g., tool fingers) and stored information (e.g., finger
clipboards), or more expressive forms of interacting with
content (e.g., grab’n’drop or the L-shape selection frames).

Caveat. We do not argue that the techniques we presented
are necessarily the best mapping of handparts to a particu-
lar action. In many cases there is more than one possible
solution for assigning handparts, postures, or gestures to a
particular action. Future qualitative and quantitative studies
will help in answering the question of how far we can or
should go with these techniques. Such questions are: How
many functions assigned to handparts are too much? What
are the personal preferences of users? What kind of single-
or multi-handed postures are easy or difficult to perform?

What we do claim strongly is that the TOUCHID toolkit can
help us explore this design space. Rapidly prototyping
handpart-aware applications will allow us to compare and
evaluate the benefits, performance, and problems of partic-
ular techniques in a short period of time.

CONCLUSION
TOUCHID is a downloadable toolkit [13] that (currently)
works with a Microsoft Surface, where it provides the pro-
grammer with what handpart, what hand, and what user is
touching the surface, as well as what posture and what ges-
ture is being enacted. Its API is simple yet powerful. We
illustrated its expressiveness by several novel tabletop in-
teraction techniques that exploit this extra information:
individual functions for each handpart, pairing handparts,
and using single- or multi-handed postures and gestures,
and distinguishing between multiple users.

Overall, we believe that distinguishing the handparts that
are causing the touches on an interactive surface can lead to
novel and expressive tabletop interaction techniques. We

Figure 12. Frame selection: L-shape
posture with thumb and different fingers

allows selection of mode (e.g., copy,
paste); finger of second hand defines

second corner of selection frame.

offer TOUCHID – currently based on the very affordable but
reliable fiduciary glove – as a way for the community to
work in this exciting area. Instead of struggling with low-
level implementation details such as computer vision and
machine learning algorithms, we (and others) can quickly
explore a large set of alternative techniques – many of which
can be seen as pointers to possible future explorations.

ACKNOWLEDGMENTS
This research is partially funded by the iCORE/NSERC/
SMART Chair in Interactive Technologies, Alberta Inno-
vates Technology Futures, NSERC, and SMART Technol-
ogies Inc.

REFERENCES
1. Benko, H., Ishak, E.W., and Feiner, S. Cross-dimensional

gestural interaction techniques for hybrid immersive envi-
ronments. Proc. of VR '05, IEEE (2005), 209-216.

2. Benko, H., Saponas, T.S., Morris, D., and Tan, D. Enhancing
input on and above the interactive surface with muscle sens-
ing. Proc. of ITS '09, ACM (2009), 93-100.

3. Buchmann, V., Violich, S., Billinghurst, M., and Cockburn,
A. FingARtips: gesture based direct manipulation in Aug-
mented Reality. Proc. of GRAPHITE '04, ACM (2004).

4. Dang, C.T., Straub, M., and André, E. Hand distinction for
multi-touch tabletop interaction. Proc. of ITS '09, ACM
(2009), 101-108.

5. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch
technology. Proc. of UIST '01, ACM (2001), 219-226.

6. Echtler, F. and Klinker, G. A multitouch software architec-
ture. Proc. of NordiCHI '08, ACM (2008), 463–466.

7. Epps, J., Lichman, S., and Wu, M. A study of hand shape
use in tabletop gesture interaction. CHI ’06 extended ab-
stracts, ACM (2006), 748-753.

8. Fraunhofer IAO. Multitouch for Java (MT4J).
http://www.mt4j.org/.

9. Freeman, D., et al. ShadowGuides: visualizations for in-situ
learning of multi-touch and whole-hand gestures. Proc. of
ITS '09, ACM (2009).

10. Frisch, M., Kleinau, S., Langner, R., and Dachselt, R. Grids
& guides: multi-touch layout and alignment tools. Proc. of
CHI '11, ACM (2011), 1615–1618.

11. Gokcezade, A., Leitner, J., and Haller, M. LightTracker: An
Open-Source Multitouch Toolkit. Comput. Entertain. 8, 3
(2010), 19:1–19:16.

12. Greenberg, S. Toolkits and interface creativity. Journal of
Multimedia Tools and Applications (JMTA) 32, 2 (2007).

13. GroupLab. TouchID toolkit. http://grouplab.cpsc.ucalgary.ca
/Projects/ProjectTouchID.

14. Han, J.Y. Low-cost multi-touch sensing through frustrated
total internal reflection. Proc. of UIST '05, ACM (2005).

15. Hancock, M., Carpendale, S., and Cockburn, A. Shallow-
depth 3d interaction: design and evaluation of one-, two- and
three-touch techniques. Proc. of CHI '07, ACM (2007).

16. Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S., and Ser-
ra, T. PyMT: a post-WIMP multi-touch user interface
toolkit. Proc. of ITS '09, ACM (2009), 17–24.

17. Holz, C. and Baudisch, P. The generalized perceived input
point model and how to double touch accuracy by extracting
fingerprints. Proc. of CHI '10, ACM (2010), 581-590.

18. Kaltenbrunner, M. and Bencina, R. reacTIVision: a comput-
er-vision framework for table-based tangible interaction.
Proc. of TEI '07, ACM (2007), 69–74.

19. Kaltenbrunner, M., Bovermann, T., Bencina, R., and Cos-
tanza, E. TUIO: A Protocol for Table-Top Tangible User In-
terfaces. Proc. GW '05, (2005).

20. LaViola, J.J. A Survey of Hand Posture and Gesture Recog-
nition Techniques and Technology. Tech. Report CS-99-11,
Department of Computer Science, Brown University, 1999.

21. Letessier, J. and Bérard, F. Visual tracking of bare fingers
for interactive surfaces. Proc. of UIST '04, ACM (2004).

22. Marquardt, N., Kiemer, J., and Greenberg, S. What Caused
That Touch? Expressive Interaction with a Surface through
Fiduciary-Tagged Gloves. Proc. of ITS '10, ACM (2010).

23. Microsoft MSDN. Tagged Objects. 2010. http://msdn
.microsoft.com/en-us/library/ee804823(v=Surface.10).aspx.

24. Morris, M.R., Huang, A., Paepcke, A., and Winograd, T.
Cooperative gestures: multi-user gestural interactions for co-
located groupware. Proc. of CHI '06, ACM (2006).

25. Morris, M.R., Paepcke, A., Winograd, T., and Stamberger, J.
TeamTag: exploring centralized versus replicated controls
for co-located tabletop groupware. Proc. of CHI '06, ACM
(2006), 1273-1282.

26. Morris, M.R., Ryall, K., Shen, C., Forlines, C., and Vernier,
F. Beyond “social protocols”: multi-user coordination poli-
cies for co-located groupware. Proc. of CSCW, ACM (2004).

27. NUI Group Community. Community Core Vision (CCV).
http://ccv.nuigroup.com/.

28. Olsen, J. Evaluating user interface systems research. Proc. of
UIST '07, ACM (2007), 251–258.

29. Partridge, G.A. and Irani, P.P. IdenTTop: a flexible platform
for exploring identity-enabled surfaces. CHI '09 Extended
Abstracts, ACM (2009), 4411–4416.

30. Ryall, K., Esenther, A., Forlines, C., et al. Identity-
Differentiating Widgets for Multiuser Interactive Surfaces.
IEEE Comput. Graph. Appl. 26, 5 (2006), 56-64.

31. Schmidt, D., Chong, M.K., and Gellersen, H. HandsDown:
hand-contour-based user identification for interactive surfac-
es. Proc. of NordiCHI '10, ACM (2010), 432–441.

32. Schmidt, D., Chong, M.K., and Gellersen, H. IdLenses: dy-
namic personal areas on shared surfaces. Proc. of ITS '10,
ACM (2010), 131–134.

33. Shen, C., Vernier, F.D., Forlines, C., and Ringel, M. Dia-
mondSpin: an extensible toolkit for around-the-table interac-
tion. Proc. of CHI '04, ACM (2004), 167–174.

34. Sturman, D.J. and Zeltzer, D. A Survey of Glove-based In-
put. IEEE Comput. Graph. Appl. 14, 1 (1994), 30-39.

35. Wang, R.Y. and Popović, J. Real-time hand-tracking with a
color glove. Proc. of SIGGRAPH '09, ACM (2009), 1-8.

36. Wigdor, D., Benko, H., Pella, J., Lombardo, J., and Wil-
liams, S. Rock & rails: extending multi-touch interactions
with shape gestures to enable precise spatial manipulations.
Proc. of CHI '11 ACM (2011), 1581–1590.

37. Wobbrock, J.O., Morris, M.R., and Wilson, A.D. User-defined
gestures for surface computing. Proc. of CHI, ACM (2009).

38. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures without
libraries, toolkits or training: a $1 recognizer for user inter-
face prototypes. Proc. of UIST '07, ACM (2007), 159-168.

39. Wu, M. and Balakrishnan, R. Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop dis-
plays. Proc. of UIST '03, ACM (2003), 193-202.

