
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011), pp. 1–8
T. Hammond and A. Nealen (Editors)

Sketch-based Collaborative Interactive Implicit Modelling at
a Distance

H. Grasberger 1 and P. Shirazian1and B. Wyvill1 and S. Greenberg2

1Department of Computer science, University of Victoria, Canada 2Department of Computer science, University of Calgary, Canada

Abstract
With the increased complexity in state of the art models created using common digital content creation applica-
tions, such as AutoCAD, Maya or XSI, the need to have more than one person work on a single model is common.
Ideally people would work on the same model at the same time, from several workstations possibly at distant lo-
cations. Using a mesh based modelling approach requires synchronizing thousands of triangles over the network
between all participating workstations.
In contrast the BlobTree is based on combining skeletal primitives using standard CSG and various blending
operators. Using this methodology complex models can be encoded with a smaller memory footprint than mesh
based systems, thus allowing for less traffic across a network to synchronize two or more workstations with one
model. In this paper we propose a network protocol to allow collaborative, sketch-based implicit modelling using
the BlobTree.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling—Constructive solid geometry (CSG)**

1. Introduction

The origin of our proposed technique lies in the desire
to work collaboratively and share highly complex models
across the network. Large models are very likely to be con-
structed by more than one person, particularly for product
design where experts in the design of a specific part may be
at a different location to designers of adjoining parts.
The frame of a bike for example is sketched by a designer,
whereas the linkages for the suspension are created by an
engineer. Additional parts are added by another designer to
create a final production rendering. Since network speed can
be a limiting factor one of the main criteria for our system is
its small memory footprint.

Unlike the VRML strategy, where the majority of the 3D
geometric data format shared and transmitted on the network
is a polygon mesh, our proposed system minimizes network
loads by transmitting updates to the hierarchical structure
known as the BlobTree. Our design sends the information
as transparent commands with their associated parameters
representing user modifications to the model. This strategy
keeps the scene structures synchronized across multiple de-
sign stations. The BlobTree data-structure is re-built from the

commands and visualization of the model is performed lo-
cally on each system using available processing resources.

The BlobTree by Wyvill et. al. [WGG99] is a paramet-
ric approach whose modelling paradigms are very similar
to Constructive Solid Geometry as first described by Ricci
in [Ric73]. It is based on the combination of skeletal implicit
primitives with boolean nodes, as well as more advanced op-
erators to create complex shapes, including warping, filleting
and blending between the nodes. The resulting BlobTree is a
complete description of an implicit model.

Both, implicit modes and all the operators that can be used
in the BlobTree can be described using a small set of param-
eters, thus being the ideal choice for sending the information
across the network. The BlobTree can be polygonised for fast
visual feedback, or if a high quality image is desired they
can easily be rendered using a ray tracing approach. Further-
more the BlobTree supports a rapid prototyping approach via
sketching as described by Schmidt et. al. [SW05] where the
basic building block of a sketch primitive can be very small
in terms of memory.

The main contribution of this work, is to propose an action
based protocol to support co-operative sketch based mod-

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling
(2011)

Saul
Text Box
Grasberger, H., Shirazian, P., Wyvill, B. and Greenberg, S. (2011) Sketch-based collaborative interactive implicit modelling at a distance. Research report 2011-1002-14, Department of Computer Science, University of Calgary, Calgary, Alberta, Canada, May. Includes video figure, duration ~1:19.

Saul
Text Box

2 H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching

User 2

ADD Red Cylinder ADD White Cylinder
MOVE White Cylinder

MAKE Di�erence ADD Red Torus SCALE Torus
ROATE Torus
MOVE Torus

MAKE Blend

User 1

Figure 1: An example modelling session between two users.

elling using the BlobTree as shown in figure 1. A second
contribution is to introduce a better algorithm for handling
concave sketch input in a more robust fashion.

The remainder of this paper is organized as follows: re-
lated work in distributed collaborative modelling is found
in section 2, the BlobTree and its basic operators are de-
scribed in section 3. This is followed by the description of
sketching using variational implicit surfaces including some
improvements done in the context of this paper in section
4. We then present the methodology we used to design our
protocol in section 5, followed by the advantages over mesh
methods in section 6. Finally in section 7 we show some ex-
ample objects created using our collaborative sketch-based
approach together with some performance graphs followed
by our conclusions and future work in section 8.

2. Related work

During the past two decades interesting work can be found
on concurrent engineering and collaborative design, espe-
cially in the field of distributed virtual environments for en-
gineering and manufacturing. Systems such as CollabCAD
[MVK97] enables dynamic sharing of the designs across the
network amongst multiple designers. Concurrent access to
a common design is enabled for viewing and modification.
In this system previously designed models are imported into
such systems for further manipulation and detailed modifi-
cations. The system described in this paper is designed to
fill the need for early prototype designs using collaborative
sketches.

In a closely related work Nishino et. al. [NUK∗99] cre-
ated a collaborative modelling environment to enable design
of implicit objects. Each participant in the system can lo-
gin to a session server to gain access to the part of the ob-
ject being designed by other participants on that server. All
session servers are managed by a centralized world server

which controls access rights and updates done by all partic-
ipants. To make a deformation on the model each partici-
pant should request an update right which is acknowledged
by the session server. Each client holding an update right
sends updated parameters to all other participants connected
to the same session server, then it releases the update right
and saves tree data to the session server. The major prob-
lem with this system is that only one designer can access the
model for modifications at any given time.

Han et. al. [HKCR03] proposed a collaborative design
framework which enables CAD engineers to work on models
concurrently. The entire assembly design is partitioned into
security features which can be grouped together. An access
matrix defines what activities can be accomplished on each
security feature or group and to what extent that entity is vis-
ible to different engineering roles. Per each security feature,
a multi-resolution mesh hierarchy is created.This way the
rate of details exposed to different participants can be con-
trolled. One of the problems is that as the detail and therefore
the complexity of a model increases, updating the mesh hi-
erarchy, rapidly becomes the bottleneck in the system.

Distributed sketching has been a topic of long interest
in the Computer Supported Cooperative Work (CSCW) and
groupware community. While most reported systems are of
simple 2d sketches, the human and social factors underlying
distributed interaction apply equally to 3d drawings. These
are perhaps best summarized by the mechanics of collabo-
ration that cover the basic communication and coordination
operations of teamwork - the small-scale actions and inter-
actions that group members must carry out in order to col-
laborate within a shared workspace [PGG03]. In brief:

• Explicit communication occurs not only through spoken
and written messages, but by gestural messages, deictic
references and actual actions that accompany talk (e.g.,
indicating, demonstrating, pointing, moving a pen to ini-
tial drawing, drawing actions).

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching 3

• Information gathering includes fine-grained knowledge
of what others are doing. This includes basic awareness
(who is in the workspace, what they are doing, where they
are working), feedthrough (changes to objects made by
others), consequential communication (body position and
location, gaze awareness).
• Shared access describes how people access tools and

drawing objects, which covers how they reserve and ob-
tain such resources, and how they protect their work by
(for example) monitoring others’ actions in an area and
negotiating access.
• Transfer covers how people physically handoff objects to

others, and how they place objects in a space so others can
use them.

Technically, we require a few factors for the above to work
in a real-time collaborative situation. First, people need to
communicate through talk. This means a rich communica-
tion channel is necessary: in our case, we expect people to
use existing systems (e.g., telephones, VOIP, video confer-
encing) alongside our system. Second, people need to see
rapid and fine-grained updates of the 3d sketch as it evolves,
including transitional states that accompany object addition,
deletion, movement, transformation, and so on. If delays are
excessive, or if objects just ‘shift’ from one state to another
without displaying in-between states, people have difficulty
tracking what is going on, and have problems coordinating
their talk with their sketching actions. This is the main mo-
tivator for our work: by using and transmitting only a small
set of parameters, fine-grained and rapid updates are possi-
ble. Third, people need to be embodied in the system in a
way where others can see where they are, where they are
attending, and what they are about to do. As common in
most groupware, we do this through multiple cursors, im-
plemented as a cubes in 3d space and camera items, imple-
mented as arrows to show their location and orientation (see
the accompanying video).

3. The BlobTree

The BlobTree extended existing skeletal implicit surface
modelling techniques [Blo97] by introducing a unified struc-
ture in which nodes could represent arbitrary blends between
objects as well as Boolean operations and warping at a local
and global level. Geometric transformation matrices are also
stored in the tree so the data structure also represents a scene
graph. When the tree is traversed, the operations, including
visualization only depend on a field-value and a gradient re-
turned for an arbitrary point in space.

Much work has been done on improving the speed at
which the BlobTree can be traversed to produce a triangle
mesh. There is a long history of polygonization algorithms
starting with the uniform voxel grid method of [WMW86].
Bloomenthal published a popular implementation of the uni-
form grid method in [Blo94], which in addition, overcame

ambiguities using tetrahedral decomposition. A more effi-
cient algorithm was published in [AG01].

The sketch-based system of [SWCSJ05], for efficiency
trades accuracy for speed by storing cache nodes in the
BlobTree [SWG05]. For accurate visualization but in general
non-interactive applications, ray tracing can be employed us-
ing interval analysis [Sny92], or Lipschitz approaches such
as [KB89].

3.1. Skeletal Primitives

Most of the primitives used in the BlobTree are built from ge-
ometric skeletons which are incorporated in many implicit
modelling software packages such as BlobTree.net [dG08]
or ShapeShop [SWCSJ05]. They are ideally suited to proto-
type shapes of arbitrary topology [Blo97]. In general these
works conclude that the use of skeletal primitives can lead
to a simple and intuitive user modelling methodology.

The basic building block of a skeletal primitive is a skele-
ton S. Usually the skeleton itself is a very simple shape such
as a point or a line, but also more complex skeletons can be
used. To create a skeletal primitive the distance-field has to
be computed as described in [BG04]. This is done by com-
puting the distance to the skeleton for each point in the vol-
ume encapsulating the final shape. The distance function is
defined as dS : R3 → R. As a result the distance field is a
volume of scalar values which is not bounded as the distance
itself can be infinitely large.

In the next step the distance field dS has to be modified by
a field function bound to a finite range. This field function
is defined as g : R→ R and as a result the skeletal primitive
is formed by applying this function to the given distance ds.
Usually the function maps the distances to the range [0,1].
The implicit function of one skeletal primitive is f(p) =
g(dS(p)). The most widely used field function was de-
veloped as a simplification of the original Soft Objects
[WMW86] field function called the Wyvill field function. It
maps a distance d to the field value g(d) by the following for-

mula g(d) =
(

1− d2

r2

)3

. In this formula r is a constant value

that states the distance where the field value equals zero. The
main advantage of this field function is that it is C2 continu-
ous. A discussion of field function appears in [SM09].

After applying the field function to the distance field we
call the resulting field the potential field. The surface is de-
fined as the locus of points that have a field-value equal
to some chosen iso-value. By defining an iso-value c it is
possible to construct the surface of the shape and classify
the surrounding space into those points inside the surface
(f (p) > c) and outside (f (p) < c). The chosen iso-value
depends on the exact form of G(d), for example c = 0.5
see [Blo97].

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

4 H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching

3.2. Blend Operators

When an operator is applied to skeletal primitives, it is ac-
tually performed on the field-values f . This makes it possi-
ble to go beyond the classical Boolean operators, and define
general blend operators that e.g. create smooth transitions
between shapes.

The most common operator that creates a smooth tran-
sition between several values is called the summation blend
[Blo97]: fR(p) =∑n∈N fn(p) where the resulting field-value
at a point p in space fR(p) is the sum of the field-values of all
the objects involved. More complex operators, such as those
described in [BDS∗03, BWdG04] or the blending functions
that are based on R-functions [Sha94, PASS95, PS98], allow
for a fine control on the resulting blend shape. By using them
it is possible to create complex blended shapes similar to the
ones proposed for CSG in [Elb05].

4. Sketching

The implementation of sketching follows the approach de-
scribed by Schmidt et. al. [SW05]. In this method the shape
sketched by the user is sampled at a lower resolution and
an implicit approximation is created from the sample points.
This is done by fitting a thin-plate spline to the sampled
points (see figure 2a) using variational interpolation [TO99].
A continuous 2D scalar field is created from several dis-
tance value samples (pi,di), where pi describes the position
of the sample and di its distance to the skeleton formed by
the sketched polygon. If the sample points are on the con-

(a) Control Polygon and Sample
Points

(b) Normals at each Vertex

Figure 2: The polygon formed by the sample points and the
normals at the actual length for displacement.

trol polygon the distance is the set iso-distance (the distance
where our field function g(d) = iso_value). The thin-plate
spline used to create the variational implicit field f (p) is
defined in terms of these points weighted by correspond-
ing coefficients wi combined with a polynomial P(p) =
c1 px + c2 py + c3.

f (p) = ∑
i∈N

wi(‖p− pi‖)2ln(‖p− pi‖)+P(p) (1)

One advantage of creating the base shape using variational
interpolation is that the resulting implicit field is C2 continu-
ous, a property needed when the shape is involved in several
blending operations [BWdG04]. In order to create the thin-
plate spline, additional points have to be computed, both in-
side and outside the basic shape, in order to bound the im-
plicit field. According to Schmidt et. al these additional sam-
ple points are taken by displacing the control polygon along
the vertex normals, in both outside (figure 2b) and inside di-
rections with their distance values di being the length of the
displacement along the normal. This can lead to problems in
situations involving concave polygons, since the displaced
polygon could intersect with a polygon notch, thus produc-
ing sample points with wrong polygon distances. In addition
it can happen that the inside displaced points actually lie out-
side the original polygon as well.

(a) Control Polygon and Convex
Decomposition

(b) All Sample Points

Figure 3: The convex decomposition and the final sample
points used to build the thin-plate spline.

For the above reasons we take a different approach to cre-
ate the boundary points. In order to support base shapes of
very high concave detail (e.g. sketching the tentacles of an
octopus, or branches of a tree), it is necessary to compute
the maximum distance, the sample points can be displaced
to the outside, without producing self intersections. In or-
der to achieve this, we compute an estimate of the minimum
distance dmin between all pairs of vertices of the original
polygon, to find an approximate distance between notches.
We can assume that neighbouring vertices cannot be part of
two notches at once, but could be closer than two notches
(see the tip of the top left notch in figure 2a), so we dis-
card the direct neighbourhood of each vertex in the distance
computation. Although this algorithm is O(n2), the number
of points is relatively small so there is no loss in interactive
performance.

The outside offset curve is now produced by displacing
each control point along its normal (figure 2b):

pio = pi +ni ∗
dmin

2
(2)

The displacement is half of dmin ensuring that the offset

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching 5

curve is not self intersecting and as a result does not inter-
sect the original control polygon as well. One criteria for
BlobTree primitives is that they are bounded, meaning the
implicit field reaches 0 at a given distance (in most cases
d = 1) from the skeleton. To satisfy this criteria, we place
additional control points on the border of our sketch area,
that have distances d > 1.

A different technique is used to generate the sample points
inside the sketch perimeter. If the control polygon is convex,
then the centre point of it is chosen as the only sample point,
with its distance being d = 0, meaning it lies directly on the
skeleton. It is not guaranteed that the centre point of a con-
cave polygon lies within the polygon boundaries, thus it is
not a candidate for a sample point. Furthermore, if only an
offset curve is used for sampling the interior of the polygon,
it is not guaranteed that the resulting field reaches field val-
ues f = 1. For these reasons we decided to spend additional
computation on concave polygons.

The medial axis [Blu67] of a polygon describes a set of
points which can be interpreted as the skeleton of our control
polygon. A sample point on the skeleton has the correspond-
ing distance d = 0. Since it is not trivial to find points along
the medial axis of a concave polygon we first of all compute
its Approximate Convex Decomposition as described by Lien
et. al. [LA06] which can be seen in figure 3a. After comput-

Figure 4: The implicit field created using a thin plate spline
multiplied by a cosine function.

ing the convex sub-polygons of the desired shape, we calcu-
late their centroids, which we use as an approximation to the
medial axis of the shape.

The skeletal primitives in our system yield a field value
of unity on the skeleton and drop to zero at the limit of their
influence on the field. For our case it proved to be beneficial
to compute the minimum distance from each of the centroids
to the control polygon, and assign the distance d = 0 to the

centroid with the maximum distance in order to normalize
the distance in the range [0:1]. The other centroid distances
are weighted according to dicorr =

di
dmax
∗0.5. This ensures that

there is at least one sample point that has the distance value
0 resulting in the fieldvalue 1. Figure 3b shows all sample
points: on the control polygon in black, outside in blue and
inside in red and figure 4 shows the resulting 2D field.

5. Methodology

Other groupware systems have dealt with the ‘large model’
problem in several ways (e.g. [GR99]). One common ap-
proach is screen sharing of single user applications: instead
of sending the model, only the screen visuals are transmitted.
Key limitations are that users have to take turns (simultane-
ous input does not really work), and that the model would
not be available at all sites for offline use. Another approach
uses replicated applications where only users’ input actions
are transmitted between them: as long as the input actions
across applications remain synchronized, the models con-
structed at each site would be the same. However, such syn-
chronization can be difficult to do in practice. It also intro-
duces the ‘latecomer’ problem, i.e., if a model has already
been created ahead of time, either that entire model or the
input stream up to that point would have to be transmitted to
bring the late entrant up to date. While other methods exist,
there remains many cases where transmitting and maintain-
ing a true copy of the model across sites is still a best choice
in terms of flexibility and reliability. It is for these cases that
we advocate our paramaterized approach.

5.1. Structure of the BlobTree

The first step to designing the underlying protocol used for
our system was to identify the different classes of data that
are stored in the BlobTree:

• primitive objects with their object colours,
• sketched objects with their object colour and the sample

points,
• operator objects, with optional parameters e.g. the Ricci

Blend Operator [Ric73] and
• transformations (standard affine transformation, warps,

bends and taper nodes).

Both, primitive objects and sketch objects are leaf nodes in
the BlobTree, whereas transitions have one child node and
operators can usually have two or more child nodes. Adding
child information to the types of objects creates the over-
all tree structure. This information can be seen as the mini-
mal representation needed to describe an arbitrary BlobTree
found in our system.

5.2. Interactions on the BlobTree

In the next step of designing the protocol we identified the
possible interactions involved with modifying the BlobTree.
This resulted in several actions:

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

6 H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching

• add primitive and set its colour,
• skech object based on a given control polygon.
• add operator combining several nodes of the tree that

have parameters depending on the operator,
• move, scale, rotate and delete a BlobTree node and all its

underlying children if present,
• change parameters of a node (e.g.. colour, Ricci Blend pa-

rameters, add/remove/change a control point of a sketched
object) and
• delete a node and its subtree if present.

In order to provide functionality to assign ownership of
certain parts of the tree to users we added the actions lock
and unlock which are triggered by selection and deselection
through the user interface (see section 5.3).

The actions defined above are independent of their actual
implementation in a user interface. For example the delete
action can be either triggered by a button click in an appli-
cation having a CAD like interface or it can be triggered by
the user directly crossing out the object in a sketch interface
(as in [SW05]). Selection on the other hand could be done
either via a click, or circling the desired object.

As a result actions create an additional layer between the
data representation and the user interface. Only this layer
needs to be unified to enable programs, that differ in both,
user interface and internal data representation, to communi-
cate.

In addition to the actions effectively changing the Blob-
Tree we incorporated a set of actions only describing user
input for immediate feedback. This type of action is used to
update camera and cursor positions, and transmit the inter-
mediate transformation results, a user sees on his local ma-
chine across the network. The BlobTree is only changed and
repolygonized when the non-UI action for the final modifi-
cation is sent.

5.3. Synchronisation

Actions sent across the network have to be acknowledged
by each receiving participant if the execution of the action
was successful. If an action cannot be acknowledged by one
of the participants, a pre defined error code is sent to all re-
maining users, which then have to undo the action. This en-
sures, that all participants work with the same state of the
BlobTree.

Every primitive, sketch or operator node has a unique id
assigned at the time of creation which is sent in the action
message. To avoid the situation, where the created id does
not match the received, the receiving participant of an action
creating a new BlobTree node only acknowledges this action,
if the ids match.

In order to avoid multiple participants changing the same
nodes simultaneously, nodes are locked when selected on
one host. If the selected node and all child-nodes are not

locked, the lock message gets sent. The lock message fails
with an error code, if this node, or a child-node is already
locked at a different participant. This triggers unrolling of
the lock action at each participant that was able to execute
it. If the lock was successful then the participant sending the
lock is allowed to change it until an unlock message is sent.

6. Advantages

6.1. Construction History

Actions describe all the interaction on the BlobTree. This
includes the current structure and also how the BlobTree
evolved over time. The construction history supports undo
actions, either as a direct result of an undo command but also
for automatic rollback to restore the state of the BlobTree in
the case of some action failing.

Furthermore action chains can be used to show how a
model was created. In several communities it is very com-
mon to record a so called video tutorial, which usually re-
quires considerable storage space and bandwidth. Compared
to videos our actions need less storage, and could be accom-
panied by an audio stream, thus allowing for teaching mod-
elling to novice users.

Lastly, if an error is to be found in a model, having the his-
tory enables designers to find out, when that error occurred
and potentially who is responsible for it as well.

6.2. Size compared to Mesh Approaches

In our approach we do not need to store the mesh of a highly
complex model, but sufficient information to construct the
BlobTree. This is the description of the primitives and how
these are combined to the final model. Figure 5 shows a com-
parison of the number of nodes, the size of the whole action
history, the size of a polygonised mesh and the number of
vertices found in this mesh. It should be noted that the y axis
of the graph is a logarithmic scale.

Furthermore, changing the BlobTree is easier to describe
in terms of command size than changing a mesh, e.g. remov-
ing one primitive from the BlobTree compared to removing
300 vertices from the mesh.

Previously we mentioned the construction history, which
can take up a little more space than the actual structural de-
scription of the final model. In theory it would be possible to
have a similar history for mesh models, but for the same rea-
son that the space requirements for mesh models are larger,
a construction history on mesh models would increase the
storage requirements by the same relative amount.

These features could become very interesting in the fu-
ture with the advent of web based 3D games using WebGL.
Depending on the game there will be a large need to trans-
port content across the net, which could potentially save a lot
of bandwidth if our technology was used. Similar to meshes

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching 7

1

10

100

1000

10000

100000

1000000

10000000

100000000

Mug Key Engine Donkey

799850727345425
14104572762928

107376424548
2138443140

5857
38355

1605360
20

302
128

Comparison between Mesh and BlobTree

[BlobTree] Number of Nodes [BlobTree] Size of transferred Actions (bytes)
[Mesh] Number of Vertices [Mesh] Size of transferred vertices and normals (bytes)

Figure 5: Comparison between the number of nodes, the number of vertices, the size of the actions and the size of the mesh of
several models, shown below.

the actions described in our system can be compressed. large
savings can be achieved when the whole construction history
is sent across the network in a compressed format, which
for example for the our engine model decreases the size by
about a factor of 6 (38,355 vs 6,497 bytes) using standard
zip compression.

6.3. Action Concept is Format Independent

For several reasons our action format is not encapsulated in a
container format, but it mainly follows the syntax of a simple
human command: do what how, e.g. ADD SPHERE 0
VEC3(1.0, 1.0, 1.0). Since a container format only
describes how messages are stored or sent it is very easy to
build a version of our protocol, that could be integrated into
several model format standards such as Collada or X3D.

A possible way to describe the same action as above using
XML can be seen in listing 1.

Listing 1: An example of how an action could be realized in
XML

<add t y p e =" s p h e r e " i d =0>
< c o l o u r r = 1 . 0 , g = 1 . 0 , b =1 .0 / >

< / add>

7. Results

Figure 5 compares four models (see figure 6) created in
our system to their corresponding mesh representation. The
mesh representations were extracted from finished the mod-
els and stored as an obj file. Actions are saved as human
readable text similar to an obj file storing mesh components
in formatted text.

The green columns show the sizes of the actions sent
across the network for each model; these values are com-
parable to the sizes of the polygon meshes transferred (red
columns). It has to be pointed out that our mesh data mea-
surement only reflects the final product, not all of the inter-
mediate steps involved. On the contrary the blue columns
show the complexity of the model measured in terms of

number of tree nodes, which can be compared to the num-
ber of vertices (orange). These graphs show, that our com-
pact action mechanism results in less bytes transferred, to
describe a model in greater detail.

(a) Mug (8 nodes) (b) Key (12 nodes)

(c) Donkey (20 nodes) (d) Engine (302 nodes)
Figure 6: Our 4 models used for comparisons in figure 5.

8. Conclusion & Future Work

Actions can be recorded for training purposes and also for
reviewing the steps that have been done to design a spe-
cific part of an object. The sketching mechanism incorpo-
rated in our system using variational implicit objects enables
designers to create a wider range of shapes as compared to
Nishino’s collaborative Modelling technique [NUK∗99].

Our future work targets a more complex access con-
trol mechanism, similar to the one described in [HKCR03],
where the amount of details revealed per each participant
can be controlled by roles defined in the system. One issue

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

8 H. Grasberger & P. Shirazian & B. Wyvill & S. Greenberg / Collaborative Distance Sketching

with synchronization not dealt with in this paper is the case
when a participant loses the connection and reconnects after
a couple of actions are sent. In addition we plan to include
less pessimistic concurrency control to avoid possible delays
due to our locking mechanism.

We are planning to introduce sketched objects that allow
for holes in the sketches for more flexibility when doing
rapid prototyping. Furthermore we want to extend our list
of actions to incorporate warp, taper and bend operators to
have a wider variety of possible object deformations.

Acknowledgments

The authors would like to thank NSERC and GRAND for
supporting this work and Jyh-Ming Lien for providing the
source code for the ACD algorithm.

References
[AG01] AKKOUCHE S., GALIN E.: Adaptive implicit surface

polygonization using marching triangles. Computer Graphics
Forum 20, 2 (2001), 67–80. 3

[BDS∗03] BARTHE L., DODGSON N. A., SABIN M. A.,
WYVILL B., GAILDRAT V.: Two-dimensional potential fields
for advanced implicit modeling operators. Computer Graphics
Forum 22, 1 (2003), 23–34. 4

[BG04] BARBIER A., GALIN E.: Fast distance computation be-
tween a point and cylinders, cones, line-swept spheres and cone-
spheres. Journal of Graphics, GPU, and Game Tools 9, 2 (2004),
11–19. 3

[Blo94] BLOOMENTHAL J.: An implicit surface polygonizer.
Academic Press Professional, Inc., San Diego, CA, USA, 1994,
pp. 324–349. 3

[Blo97] BLOOMENTHAL J.: Introduction to Implicit Surfaces.
Morgan Kaufmann, ISBN 1-55860-233-X, 1997. Edited by
Jules Bloomenthal With Chandrajit Bajaj, Jim Blinn, Marie-
Paule Cani-Gascuel, Alyn Rockwood, Brian Wyvill, and Geoff
Wyvill. 3, 4

[Blu67] BLUM H.: A Transformation for Extracting New De-
scriptors of Shape. In Models for the Perception of Speech and
Visual Form, Wathen-Dunn W., (Ed.). MIT Press, Cambridge,
1967, pp. 362–380. 5

[BWdG04] BARTHE L., WYVILL B., DE GROOT E.: Control-
lable binary CSG operators for soft objects. International Jour-
nal of Shape Modeling (Dec 2004). 4

[dG08] DE GROOT E.: BlobTree Modelling. PhD thesis, The Uni-
versity of Calgary, 2008. 3

[Elb05] ELBER G.: Generalized filleting and blending operations
toward functional and decorative applications. Graphical Models
67, 3 (Dec 2005), 189–203. 4

[GR99] GREENBERG S., ROSEMAN M.: Groupware Toolkits for
Synchronous Work, vol. ISBN 0471 96736 X. John Wiley & Sons
Ltd, 1999, ch. 6, pp. 135–168. 5

[HKCR03] HAN J., KIM T., CERA C., REGLI W.: Multi-
resolution modeling in collaborative design. Computer and In-
formation Sciences-ISCIS 2003 (2003), 397–404. 2, 7

[KB89] KALRA D., BARR A.: Guaranteed Ray Intersections with
Implicit Functions. Computer Graphics (Proc. SIGGRAPH 89)
23, 3 (July 1989), 297–306. 3

[LA06] LIEN J.-M., AMATO N. M.: Approximate convex de-
composition of polygons. Computational Geometry 35, 1-2
(2006), 100 – 123. Special Issue on the 20th ACM Symposium
on Computational Geometry. 5

[MVK97] MISHRA P., VARSHNEY A., KAUFMAN A.: Collab-
CAD: A Toolkit for Integrated Synchronous and Asynchronous
Sharing of CAD Applications. In Proceedings TeamCAD:
GVU/NIST Workshop on Collaborative Design, Atlanta, GA,
USA (1997), pp. 131–137. 2

[NUK∗99] NISHINO H., UTSUMIYA K., KORIDA K.,
SAKAMOTO A., YOSHIDA K.: A method for sharing interactive
deformations in collaborative 3D modeling. Proceedings of the
ACM symposium on Virtual reality software and technology -
VRST ’99 (1999), 116–123. 2, 7

[PASS95] PASKO A., ADZHIEV V., SOURIN A., SAVCHENKO
V.: Function Representation in Geometric Modeling: Concepts,
Implementation and Applications. The Visual Computer 11, 8
(Oct 1995), 429–446. 4

[PGG03] PINELLE D., GUTWIN C., GREENBERG S.: Task
analysis for groupware usability evaluation: Modeling shared-
workspace tasks with the mechanics of collaboration. ACM
Transactions on Human Computer Interaction - ACM TOCHI 10,
4 (December 2003), 281–311. 2

[PS98] PASKO A. A., SAVCHENKO V. V.: Blending Operations
for the Functionally Based Constructive Geometry. CSG 94 Set-
Theoretic Solid Modeling: Techniques and Applications, Infor-
mation Geometers (Dec 1998), 151–161. 4

[Ric73] RICCI A.: A constructive geometry for computer graph-
ics. The Computer Journal 16, 2 (1973), 157–160. 1, 5

[Sha94] SHAPIRO V.: Real Functions for Representation of Rigid
Solids. Computer-Aided Geometric Design 11, 2 (1994). 4

[SM09] SHIRLEY P., MARSCHNER S.: Fundamentals of Com-
puter Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2009. 3

[Sny92] SNYDER J.: Interval analysis for computer graphics.
SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques (Jul 1992). 3

[SW05] SCHMIDT R., WYVILL B.: Generalized sweep templates
for implicit modeling. In Proceedings of the 3rd international
conference on Computer graphics and interactive techniques in
Australasia and South East Asia (New York, NY, USA, 2005),
GRAPHITE ’05, ACM, pp. 187–196. 1, 4, 6

[SWCSJ05] SCHMIDT R., WYVILL B., COSTA-SOUSA M.,
JORGE J. A.: Shapeshop: Sketch-based solid modeling with the
blobtree. In Proc. 2nd Eurographics Workshop on Sketch-based
Interfaces and Modeling (2005), Eurographics, Eurographics,
pp. 53–62. Dublin, Ireland, August 2005. 3

[SWG05] SCHMIDT R., WYVILL B., GALIN E.: Interactive im-
plicit modeling with hierarchical spatial caching. In SMI ’05:
Proceedings of the International Conference on Shape Model-
ing and Applications 2005 (Washington, DC, USA, 2005), IEEE
Computer Society, pp. 104–113. 3

[TO99] TURK G., O’BRIEN J. F.: Shape transformation us-
ing variational implicit functions. In Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1999), SIGGRAPH ’99, ACM
Press/Addison-Wesley Publishing Co., pp. 335–342. 4

[WGG99] WYVILL B., GUY A., GALIN E.: Extending the CSG
tree. warping, blending and boolean operations in an implicit sur-
face modeling system. Computer Graphics Forum 18, 2 (Jan
1999), 149–158. 1

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.: Data
Structure for Soft Objects. The Visual Computer 2, 4 (February
1986), 227–234. 3

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)

