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ABSTRACT 
People naturally understand and use proxemic relationships 
(e.g., their distance and orientation towards others) in every-
day situations. However, only few ubiquitous computing 
(ubicomp) systems interpret such proxemic relationships to 
mediate interaction (proxemic interaction). A technical prob-
lem is that developers find it challenging and tedious to ac-
cess proxemic information from sensors. Our Proximity 
Toolkit solves this problem. It simplifies the exploration of 
interaction techniques by supplying fine-grained proxemic 
information between people, portable devices, large interac-
tive surfaces, and other non-digital objects in a room-sized 
environment. The toolkit offers three key features. 1) It fa-
cilitates rapid prototyping of proxemic-aware systems by 
supplying developers with the orientation, distance, motion, 
identity, and location information between entities. 2) It in-
cludes various tools, such as a visual monitoring tool, that 
allows developers to visually observe, record and explore 
proxemic relationships in 3D space. (3) Its flexible architec-
ture separates sensing hardware from the proxemic data 
model derived from these sensors, which means that a variety 
of sensing technologies can be substituted or combined to 
derive proxemic information. We illustrate the versatility of 
the toolkit with proxemic-aware systems built by students. 

ACM Classification: H5.2 [Information interfaces]: User 
Interfaces – input devices and strategies, prototyping.  
General terms: Design, Human Factors  
Keywords: Proximity, proxemics, proxemic interactions, 
toolkit, development, ubiquitous computing, prototyping. 

INTRODUCTION 
Ubicomp ecologies are now common, where people’s access 
to digital information increasingly involves near-
simultaneous interaction with multiple nearby digital devices 
of varying size, e.g., personal mobile phones, tablet and 
desktop computers, information appliances, and large inter-
active surfaces (Figure 1). This is why a major theme in 
ubiquitous computing is to explore novel forms of interaction 
not just between a person and a device, but also between a 
person and their set of devices [32]. Proxemic interaction is 
one strategy to mediate people’s interaction in room-sized 
ubicomp ecologies [2,9]. It is inspired by Hall’s Proxemic 
theory [11] about people’s understanding and use of inter-
personal distances to mediate their interactions with others. 
In proxemic interaction, the belief is that we can design sys-
tems that will let people exploit a similar understanding of 
their proxemic relations with their nearby digital devices, 
thus facilitating more seamless and natural interactions.  

A handful of researchers have already explored proxemic-
aware interactive systems. These range from spatially 
aware mobile devices [17], office whiteboards [15], public 
art installations [28], home media players [2], to large pub-
lic ambient displays [31]. All developed novel interaction 
techniques as a function of proxemic relationships between 
people and devices. 

Building proxemic-aware systems, however, is difficult. 
Even if sensing hardware is available, translating low-level 
sensing information into proxemic information is hard 
(e.g., calibration, managing noise, calculations such as 3D 
math). This introduces a high threshold for those wishing 
to develop proxemic interaction systems. As a result, most 
do not bother. Of the few that do, they spend most of their 
time with low-level implementation details to actually 
access and process proxemic information vs. refining the 
interaction concepts and techniques of interest. 
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Figure 1. Left: three entities – person, tablet and vertical surface; Center: proxemic relationships between entities, e.g., 
orientation, distance, pointing rays; Right: visualizing these relationships in the Proximity Toolkit’s visual monitoring tool. 
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To alleviate this problem, we built the Proximity Toolkit. 
Our goal was to facilitate rapid exploration of proxemic 
interaction techniques. To meet this goal, the Proximity 
Toolkit transforms raw tracking data gathered from various 
hardware sensors (e.g., infra-red motion capturing systems, 
depth sensing cameras) into rich high-level proxemic in-
formation accessible via an event-driven object-oriented 
API. The toolkit includes a visual monitoring tool that dis-
plays the physical environment as a live 3D scene and 
shows the proxemic relationships between entities within 
that scene. It also provides other tools: one to record events 
generated by entities for later playback during testing; an-
other to quickly calibrate hardware and software. Thus our 
work offers three contributions:  
1. The design of a toolkit architecture, which fundamen-

tally simplifies access to proxemic information.  
2. Interpretation and representations of higher-level prox-

emic concepts (e.g., relationships, fixed/semi-fixed fea-
tures) from low-level information. 

3. The design of complementary visual tools that allow 
developers to explore proxemic relationships between 
entities in space without coding. 

The remainder of the paper is structured as follows: we 
recap the concepts of proxemic interaction and derive chal-
lenges for developers. We then introduce the design of our 
toolkit; we include a running example, which we use to 
illustrate all steps involved in prototyping a proxemic in-
teraction system. Subsequently, we introduce our visual 
monitor and other tools, and explain the toolkit’s API. 
Next, we discuss the flexible toolkit architecture and im-
plementation. This is followed by an overview of applica-
tions built by others using our toolkit. Finally, we discuss 
related toolkit work in HCI. 

BACKGROUND: PROXEMIC INTERACTION 
Proxemics – as introduced by anthropologist Edward Hall in 
1966 [11] – is a theory about people’s understanding and use 
of interpersonal distances to mediate their interactions with 
other people. Hall’s theory correlates people’s physical dis-
tance to social distance. He noticed zones that suggest certain 
types of interaction: from intimate (6-18”), to private (1.5-
4’), social (4-12’), and public (12-25’). The theory further 
describes how the spatial layout of rooms and immovable 
objects (fixed features) and movable objects such as chairs 
(semi-fixed features) influence people’s perception and use 
of personal space when they interact [11]. 

Research in the field of proxemic interaction [2,9,31] in-
troduces concepts of how to apply this theory to ubicomp 
interaction within a small area such as a room. In particu-
lar, such ubicomp ecologies mediate interaction by exploit-
ing fine-grained proxemic relationships between people, 
objects, and digital devices. The design intent is to leverage 
people’s natural understanding of their proxemic relation-
ships to manage the entities that surround them.  

Proxemic theories suggest that a variety of physical, social, 
and cultural factors influence and regulate interpersonal 

interaction. Not all can be (or needs to be) directly applied 
to a proxemic ubicomp ecology. Thus the question is: what 
information is critical for ubicomp proxemics? Greenberg 
et al. [9] identified and operationalized five essential di-
mensions as a first-order approximation of key proxemic 
measures that should be considered in ubicomp. 
1. Orientation: the relative angles between entities; such 

as if two people are facing towards one another. 
2. Distance: the distance between people, objects, and 

digital devices; such as the distance between a person 
and a large interactive wall display. 

3. Motion: changes of distance and orientation over time; 
such as a person approaching a large digital surface to 
interact with it directly. 

4. Identity: knowledge about the identity of a person, or a 
particular device. 

5. Location: the setup of environmental features; such as 
the fixed-feature location of walls and doors, and the 
semi-fixed features including movable furniture.  

Previous researchers have used a subset of these five di-
mensions to build proxemic-aware interfaces that react 
more naturally and seamlessly to people’s expectations of 
proxemics. Hello Wall [29] introduced the notion of ‘dis-
tance-dependent semantics’, where the distance of a person 
to the display defined the possible interactions and the in-
formation shown on the display. Similarly, Vogel’s public 
ambient display [31] relates people’s presence in four dis-
crete zones around the display to how they can interact 
with the digital content. Snibbe [28] investigated people’s 
use of proxemics in the Boundary Functions public interac-
tive art installation, where they also noticed cultural differ-
ences in people’s implicit use of proxemics (similar to 
Hall’s observations). Ju [15] explored transitions between 
implicit and explicit interaction with a proxemic-aware 
office whiteboard: interaction from afar is public and im-
plicit, but becomes more explicit and private when closer. 
Ballendat et al. [2] developed a variety of proxemic-aware 
interaction techniques, illustrated through the example of a 
home media player application. Their system exploits al-
most all of the 5 dimensions: it activates when the first per-
son enters, reveals more content when approaching and 
looking at the screen, switches to full screen view when a 
person sits down, and pauses the video when the person is 
distracted (e.g., receiving a phone call). If a second person 
enters, the way that the information displays is altered to 
account for two viewers in the room [2].  

This previous research in proxemic interaction opened up a 
promising direction of how to mediate people’s interaction 
with ubicomp technology based on proxemic relationships. 
The caveat is that they are really just starting points of how 
we can integrate proxemic measures into interaction de-
sign. Further explorative research – including the develop-
ment and evaluation of actual proxemic-aware systems – 
will help to refine our understanding of how proxemic the-
ories apply to ubicomp. 



 

 

DERIVED CHALLENGES FOR DEVELOPERS 
Building proxemic-aware systems such as the ones de-
scribed previously is difficult and tedious. This is mostly 
due to the serious technical challenges that developers face 
when integrating proxemic information into their applica-
tion designs. Several challenges are listed below. 
1. Exploring and observing proxemic measures between 

entities in the ecology. Developers need to do this to 
decide which measures are important in their scenario. 

2. Accessing proxemic measurements from within soft-
ware that is developed to control the ubicomp system. 
Developers currently do this through very low-level 
programming against a particular tracking technology, 
requiring complex 3D transformations and calculations, 
and often resulting in brittleness. 

3. Support for proxemic concepts is created from scratch 
by developers, e.g., when considering distance of spa-
tial zones or the properties of fixed and semi-fixed fea-
tures (e.g., the spatial arrangement) in applications. 

4. Debugging and testing of such systems is difficult due 
to a lack of sensing and/or matching monitoring tools. 

THE PROXIMITY TOOLKIT 
The Proximity Toolkit directly addresses these challenges. 
It facilitates programmers’ access to proxemic information 
between people, objects and devices in a small ubicomp 
environment, such as the room shown in Figure 3 and visu-
alized in Figure 2. It contains four main components. 

a) Proximity Toolkit server is the central component in 
the distributed client-server architecture, allowing mul-
tiple client devices to access the captured proxemic in-
formation. 

b) Tracking plug-in modules connect different tracking / 
sensing systems with the toolkit and stream raw input 
data of tracked entities to the server.  

c) Visual monitor-
ing tool visualizes 
tracked entities 
and their proxe-
mic relationships.  

d) Application pro-
gramming inter-
face (API) is an 
event-driven pro-
gramming library 
used to easily ac-
cess all the avail-
able proxemic in-
formation from 
within developed ubicomp applications. 

We explain each of these components in more detail below, 
including how each lowers the threshold for rapidly proto-
typing proxemic-aware systems. Also see the video figure. 

However, we first introduce a scenario of a developer creat-
ing a proxemic interaction system (also in video figure). 
Through this scenario, we will illustrate how the Proximity 
Toolkit is used in a real programming task to create a proto-
type of a proxemic-aware ubicomp application. The example 
is deliberately trivial, as we see it akin to a Hello World illus-
trating basic programming of proxemic interaction. Still, it 
shares many similarities with more comprehensive systems 
built for explorations in earlier research, e.g., [2,15,31].  

Scenario. Developer Steve is prototyping an interactive 
announcement board for the lounge of his company. In 
particular, Steve envisions a system where employees pass-
ing by the display are: attracted to important announce-
ments as large visuals from afar; see and read more content 
as they move closer; and post their own announcements 

Figure 2. Proximity toolkit monitoring tool. (a) tracked ubicomp environment; (b-g) visual representation of tracked enti-
ties in Figure 3; (h) list of available input modules; (i,k) list of all tracked entities; and (l,m) relation visualizer. 

Figure 3. The Proximity Toolkit 
captures proxemic relationships 
between: people (b’ and c’), de-
vices (d’ and e’), and fixed- and 
semi-fixed features (f’). 



 

 

(typed into their mobile phones) by touching the phone 
against the screen. To create a seamless experience for in-
teracting with the large ambient display, Steve plans to 
recognize nearby people and their mobile devices. Steve 
builds his prototype to match the room shown in Figure 3.  

Proximity Toolkit Server 
The Proximity Toolkit Server is the central component 
managing proxemic information. It maintains a hierarchical 
data model of all fixed features (e.g., walls, entranceways), 
semi-fixed features (e.g., furniture, large displays), and 
mobile entities (e.g., people or portable devices). This 
model contains basic information including identification, 
position in 3D coordinates, and orientation. The server and 
toolkit API then perform all necessary 3D calculations on 
this data required for modeling information about higher-
level proxemic relationships between entities. 

The server is designed to obtain raw data from various at-
tached tracking systems. For flexibility, each of the track-
ing systems is connected through a separate plugin module 
loaded during the server’s start-up. These plugins access 
the captured raw input data and transfer it to the server’s 
data model. The current version of our toolkit contains two 
plugins: the marker-based VICON motion capturing system, 
which allows for sub-millimeter tracking accuracy 
[www.vicon.com], and the KINECT sensor, which allows 
tracking of skeletal bodies [www.kinect.com]. In a later sec-
tion we discuss the implementation, integration, and com-
bination of these tracking technologies, and how to setup 
the server to match the environment. Importantly, the serv-
er’s unified data model is the basis for a distributed Model-
View-Controller architecture [3], which in turn is used by 
the toolkit client API, the monitoring tool, and to calculate 
proxemic relationships between entities.  

Scenario. Developer Steve begins by starting the server. 
The server automatically loads all present tracking plugins. 
Based on the information gathered from these plugins, it 
populates and updates the unified data model in real-time. 
By default, our toolkit already includes a large pre-
configured set of tracked entities with attached markers 
(such as hats, gloves, portable devices) and definitions of 
fixed and semi-fixed features (large interactive surface, 
surrounding furniture). To add a new tracked object, Steve 
attaches markers to it and registers the marker configura-
tion as a new tracked entity. This process takes minutes. 

Visual Monitoring Tool: Tracked Entities 
The visual monitoring tool helps developers to see and un-
derstand what entities are being tracked and how the data 
model represents their individual properties. Figure 2 is a 
screenshot of this tool: the visualized entities in (b-f) corre-
spond to real-world entities captured in Figure 3 (b’-f’). 

Specifically, the visual monitoring tool connects to the 
server (through TCP) and presents a 3D visualization of the 
data model (Figure 2 centre). This view is updated in real-
time and always shows: 
 the approximate volume of the tracked space as a rec-

tangular outline box (Fig. 2a) 
 position and orientation of people (Fig. 2bc) 
 portable digital devices, such as a tablet pc (Fig. 2d) 
 digital surfaces, such as the large wall display (Fig. 2e) 
 fixed and semi-fixed features, such as a table, couch 

(Fig. 2f), and entranceway (Fig. 2g). 

The left side of the monitoring window shows a list of the 
activated input tracking plugins (Figure 2h) and another list 
with an overview of all currently tracked entities (Figure 
2i). Clicking on any of the items in this list opens a hierar-

Property name Description Data type

.A.
Individual 
entity

I1 Name Identifier of the tracked entity string █
I2 IsVisible True if entity is visible to the tracking system bool █
I3 Location Position in world coordinates Point3D █
I4 Velocity Current velocity of the entity’s movement double █
I5 Acceleration Acceleration double █
I6 RotationAngle Orientation in the horizontal plane (parallel to the ground) of the space double █
I7 [Roll/Azimuth/Incline]Angle The orientation angles (roll, azimuth, incline) double █
I8 Pointers Access to all pointing rays (e.g., forward, backward) Array [ ] █
I9 Markers/Joints Access individual tracked markers or joints Array [ ] █

.B.
Relationships 
between 
two entities
A and B

R1 Distance Distance between entities A and B double █

R2 ATowardsB, BTowardsA Whether entity A is facing B, or B is facing A bool █

R3 Angle, HorizontalAngle, ... Angle between front normal vectors (or angle between horizontal planes) double █

R4 Parallel, ATangentalToB, ... Geometric relationships between entities A and B bool █

R5 [Incline/Azimuth/Roll]Difference Difference in incline, azimuth, or roll of A and B double █

R6 VelocityDifference Difference of A’s and B’s velocity double █

R7 AccelerationDifference Difference of A’s and B’s acceleration double █

R8 [X/Y/Z]VelocityAgrees True if X/Y/Z velocity is similar between A and B bool █

R9 [X/Y/Z]AccelerationAgrees True if X/Y/Z acceleration is similar bool █

R10 Collides, Contains True if the two volumes collide, or if volume A contains volume of B bool █ █

R11 Nearest The nearest point of A’s volume relative to B Point3D █ █

.C.
Pointing 
Relationships 
between 
A and B

P1 PointsAt Pointing ray of A intersects with volume of B bool █

P2 PointsToward A points in the direction of B (w/ or w/o intersection) bool █

P3 IntersectionDegree Angle between ray and front facing surface of B double █

P4 DisplayPoint Intersection point in screen/pixel coordinates Point2D █ █

P5 Intersection Intersection point in world coordinates Point3D █ █

P6 Distance Length of the pointing ray double █

P7 IsTouching A is touching B (pointing ray length ~ 0) bool █  
Table 1. Accessible proxemic information in the Proximity Toolkit: individual entities, relationships between two entities, 
and pointing relationships. This information is accessible through the toolkit API and the toolkit monitor visualization.  



 

 

chical list of properties showing the item’s current status 
(e.g., its location, or orientation). When Steve selects any 
of these properties, the monitoring window shows the cor-
responding value (e.g., the current position as a 3D Vector, 
or the velocity; Fig 2k). Part A of Table 1 shows an over-
view of the most important available properties. 

Scenario. Before Steve starts to program, he explores all 
available proxemic information through the visual monitor-
ing tool. He inspects the currently tracked entities (Figure 2 
left, also displayed in the center), as well as which entity 
properties are available for him to use.  Steve finds this visu-
al overview particularly important to his initial design, as he 
is still investigating the possible mappings of proxemic rela-
tionship to system behaviour. In later stages, he will also use 
this monitoring tool to test and debug his program.  

Visual Monitoring Tool: Relationships  
Another major feature of the visual monitoring tool is to let 
people set and observe particular proxemic relationships 
between entities, where developers will use these relation-
ships to define particular proxemic interaction behaviours. 
Specifically, the Relation Visualizer panel (Fig. 2, l-m) al-
lows a developer to select a type of relationship between 
entities, and then to observe the values of all related proper-
ties. The complete list of proxemic relationships that are 
available to observe are summarized in part B/C of Table 1. 

Scenario. Steve wants to observe a relationship between Per-
son1 (representing the first person entering the space) and the 
Smartboard display. Steve drags the two entries from the list 
of tracked entities (Fig. 2i) to the top of the Relation Visual-
izer panel (Fig. 2l). Next, Steve selects one of the following 
relationship categories from a drop down menu. 

 Orientation (e.g., angles between entities) 
 Location (e.g., changes in distance between the person 

and the smartboard) 
 Direction (e.g., if the front of the person’s body faces 

towards the screen) 
 Movement (e.g., acceleration or velocity) 
 Pointing (e.g., the display intersection point of the right 

arm pointer of the person) 
 Collision (e.g., if the volumes of two tracked entities 

are so close that they collide) 

Steve can now observe how those entities relate to each 
other. The panel in Fig. 2m shows the numeric values of 
any properties belonging to this category. The categories 
plus the properties within them operationalize the five es-
sential elements of proximity mentioned previously.  

With his public announcement application in mind, Steve is 
interested in knowing when a person is in close distance to 
the display. He selects the Location category, and looks at 
the values of the Distance property, which – in this case – 
measures the distance of the person’s body to the board 
(Fig. 2m). Next, he wants to know when the person is fac-
ing towards the screen. He selects the Direction category 
from the menu, and immediately sees the related proxemic 

properties with their current values 
and their graphical appearance in 
the visualization. He is particularly 
interested in the ATowardsB prop-
erty, which is true if the person [A] 
is facing towards the smartboard 
[B]. He decides to use the infor-
mation about direction and distance 
to adapt the content shown on the 
announcement board.  

Steve continues exploring other 
proxemic relationship categories 
and makes note of the types of rela-
tionships that he will integrate into 
his application. As he selects these 
other categories (Fig. 2l), the 3D 
visual representation changes ac-
cordingly. Figure 4 illustrates three 
other visualizations of proxemic 
relationships that Steve explored: 
the distance between the person and 
the display (Fig. 4a), the forward 
pointer of the left arm and its inter-
section point with the smartboard 
(Fig. 4b), and the collision volumes 
(Fig. 4c). 

SIMPLIFIED API ACCESS TO 
PROXEMIC INFORMATION 
We now take a closer look at the development API, offered 
via an object-oriented C# .NET development library. We 
designed it to be fairly easy to learn and use (1) by taking 
care of and hiding low-level infrastructure details and (2) 
by using a conventional object-oriented and event-driven 
programming pattern.  Essentially, the API lets a developer 
programmatically access the proxemic data previously ob-
served in the monitoring tool. We explain how this works 
by continuing our scenario.  

Scenario. Steve adds the Proximity Toolkit API library to 
his own PC-based software project. The only criterion is 
that his PC needs network access to the proximity server. 
Steve begins by initializing his software. To set up his 
software to use the server, he adds three lines of code (lines 
1-3 in Figure 5). First, he creates a new client connection 
object, then starts the connection to the server (at the given 
IP address and port), and finally creates a ProximitySpace 
object, which provides a high-level framework for monitor-
ing the interaction of tracked presences, such as people and 
objects. The ProximitySpace object maintains a list of all 
available tracked entities, and is used to create instances of 
entities or for initializing event handlers to monitor rela-
tionships. Next, Steve initializes three of the entities he is 
interested in (lines 4-6): the person representing the first 
person entering the space, the smartboard, and a tablet 
(PresenceBase is a special object that represents individual 
tracked or static objects).  

Figure 4. Visualizing 
proxemic relation-
ships: (a) distance, 
(b) pointing and  
(c) collision. 



 

 

The following describes how Steve then monitors the rela-
tionships between these entities. We go through each of the 
five proxemic dimensions introduced earlier (albeit in a 
slightly different order), explaining how Steve writes his 
application to monitor changes in each of these dimensions, 
and how he uses that information to mediate interaction 
with his interactive announcement board. 

1. Orientation 

Monitoring orientation changes allows (1) 
accessing the exact angle of orientation be-
tween two entities and/or (2) determining 
whether two entities are facing each other. 
Steve is mostly interested in the relationship 
between a person and the smartboard display. He adds line 
7, which creates a relationship between these two as indi-
cated by their parameters. The system is now tracking both 
entities relative to each other. Steve is also interested in 
knowing when the orientation and location between these 
two changes. For orientation, he initializes an event handler 
to receive updates of the Direction relationship between the 
person and the smartboard (line 8). The OnDirectionUpdat‐
ed method is invoked when the system recognizes any 
changes in orientation between the person and the smart-
board (line 10). While Steve could access each entity’s 
precise orientation values (e.g., angles of orientation), he is 
only really interested in knowing whether a person is fac-
ing towards the smartboard. Consequently, he writes the 
event handler callback method (lines 10-12) to access the 
ATowardsB property in the event arguments: it is true if the 
person is facing the smartboard (line 11). 

Entries R2-R5 and P1-P3 in Table 1 give an overview of 
further orientation relationships that can be monitored. As 
well, the programmer can access the absolute orientation of 
an individual entity at any time (see entries I6 – I7 in Table 
1). For example, the following 
property returns the current 
yaw angle of the tablet:  
tablet.Orientation.Yaw; 

2. Distance, including Location, 
Pointing and Touching 

Similarly, Steve 
can monitor 
changes of dis-
tance between 
entities. We illus-
trate how Steve can receive 
updates about distance changes 
by adding another event 
callback for OnLocationUpdated 
events (line 9). This callback 
method (line 13-15) is invoked 
whenever the location of at 
least one of the two entities 
changes. In line 14 Steve ac-
cesses the current distance be-
tween the person and the 

smartboard, and uses this distance value to make the visual 
content on the announcement board vary as a function of the 
distance between the person and the display. The closer the 
person, the more content is revealed.  

Other available properties relate to distance. First, the actual 
location property of each entity, i.e, its position within the 
space, is accessible at any time. For example Steve can ac-
cess the current coordinates of the person by accessing 
this.person.Location. Second, pointing relationships moni-
tor orientation and distance simultaneously. Pointing is simi-
lar to ray-casting. Each entity can have one or multiple point-
ers. Each pointer has a pointing direction, and the callback 
returns the intersection of that direction with the other entity. 
It also returns the length of the pointing ray between entities, 
which may not be exactly the same as distance. To illustrate, 
Steve tracks not only the close distance of a tablet computer 
to the smartboard, but where that tablet raycasts onto the 
smartboard. He initializes a second RelationPair between the 
tablet and the smartboard  (line 16). He subscribes for 
OnPointingUpdated events that are triggered whenever any of 
the pointers of the tablet changes relative to the board (line 
17). In the event callback method (lines 18 to 22) Steve first 
checks if the tablet’s forward pointer faces the display 
(PointsTowards) and if the ray length between tablet and 
board is smaller than 50 cm (line 19). If this is the case, he 
shows an icon on the ray’s intersection point (line 20) on the 
smartboard to let the person know they can touch the surface 
to initiate a transfer.  

Third, Steve checks if the tablet is touching the surface - 
(IsTouching, line 21) – a distance of ~0. If so, he initiates 
transfer of the content on the tablet to the large display. By 
using the intersection point of the tablet with the screen 
Steve can show the transferred content at the exact position 
where the tablet touches the board.  

 

01 ProximityClientConnection client = new ProximityClientConnection();
02  client.Start("192.168.0.11", 888);

03  ProximitySpace space = client.GetSpace();
04  PresenceBase person     = space.GetPresence("Person1");
05  PresenceBase smartboard = space.GetDisplay("SmartBoard");
06  PresenceBase tablet     = space.GetDisplay("Tablet");

07  RelationPair relation = space.GetRelationPair(person, smartboard);
08  relation.OnDirectionUpdated += new DirectionRelationHandler(OnDirectionUpdated);
09  relation.OnLocationUpdated += new LocationRelationHandler(OnLocationUpdated);

10 void OnDirectionUpdated(ProximitySpace space, DirectionEventArgs args) {
11 if (args.ATowardsB) { [... person is facing the display, show content ...] } else { [...hide…] }
12  }
13 void OnLocationUpdated(ProximitySpace space, LocationEventArgs args) {
14 double distance = args.Distance; [... change visual content as a function of distance ...]
15  }

16  RelationPair relationTablet = space.GetRelationPair(tablet, smartboard);
17  relationTablet.OnPointingUpdated += new PointingRelationHandler(OnPointingUpdated);

18 void OnPointingUpdated(ProximitySpace space, PointingEventArgs args) {
19 if (args["forward"].PointsToward && (args["forward"].Distance < 500.0)) {
20  Point intersection = args["forward"].DisplayPoint;

[... show awareness icon on smartboard display ...]
21  if (args["forward"].IsTouching) {

[... transfer content from the tablet to the large display ...]
22  }}}

E
ven

ts
C

allb
ac

ks
C

allb
ack

S
etu

p
E

ven
t

 

Figure 5. Partial source code for the proxemic-aware announcement board application. 



 

 

3. Identity 

The toolkit allows access to the identity in-
formation of all tracked entities. The Name 
property provides the identifier string of each 
entity, and IsVisible is true if the entity is 
currently tracked by the system. A developer can subscribe 
to events notifying about any new tracked entities that enter 
the ubicomp space through the space.OnPresenceFound event. 
In the associated event callback method, the event argu-
ments give information about the type and name of the 
detected entity. For example, Steve could have his system 
track and greet a previously unseen person with a splash 
screen on first appearance, and dynamically initialize any 
necessary event callbacks relating that person to other enti-
ties in a scene.  

4. Motion 

Motion events describe the changes of dis-
tance and orientation over time, e.g., to receive 
updates of changes in acceleration and veloci-
ty of any entity. For example, Steve can have 
his application ignore people moving quickly 
by the display, as he thinks they may be annoyed by any 
attempts to attract their attention. To receive such velocity 
updates, Steve would add an event handler (similar to lines 
8 and 9) through OnMotionUpdated and then simply access 
the value of the args.Velocity property. Based on that val-
ue, he would activate the display only if the velocity was 
less than a certain threshold. Of course, Steve could have 
determined a reasonable threshold value by observing the 
velocity value of a person rushing by the display in the visual 
monitoring tool. 

5. Location: Setup of Environment  

Using location, the toolkit lets one track the 
relationships of people and devices to the 
semi-fixed and fixed features in the physical 
environment. For example, the model may 
contain the fixed-feature position of the en-
tranceway to a room, allowing one to know if someone has 
crossed that threshold and entered the room. It may also 
contain the location of semi-fixed features, such as the 
chairs and table seen in Figure 3. Monitoring event han-
dlers for fixed and semi-fixed features can be initialized 
similarly to the ones we defined earlier.  

Steve sets up several fixed feature entities – the smartboard 
and the entrance-way – through several initial configura-
tion steps. This only has to be done once. Using a physical 
pointer (the stick in Figure 6a), he defines each entity’s 
volume by physically outlining them in space. Under the 
covers, the toolkit tracks the 3D tip location of this stick 
and builds a 3D model of that entity. Each location point of 
the model is confirmed by pressing a button (e.g., of a 
wirelessly connected mouse). Figure 6 illustrates how Ste-
ve defines the smartboard. After placing the pointer in the 
four corners of the display plane (Fig. 6a), the coordinates 
appear in the visualization (6b), and a control panel allows 
fine adjustments. He saves this to the Proximity Toolkit 

server as a model. Simi-
larly, Steve defines the 
entrance-way by outlin-
ing the door (Fig. 2g), 
and the couch by outlin-
ing its shape (Fig. 2f). 
Steve can now monitor 
proxemic relationships 
between all moving enti-
ties and these new de-
fined features. For ex-
ample, he can create an 
event handler to receive 
notifications when a per-
son passes through the 
entrance-way (by using the OnCollisionUpdated event) and 
when a person sits on the couch (using the Distance property 
of the OnLocationUpdated).  

Semi-fixed features differ. While they are part of the envi-
ronment, they are also movable. As with fixed features, a 
developer would model a shape by outlining it with the 
stick. Unlike fixed features, he would also add markers to 
that entity. The toolkit tracks those markers, and reposi-
tions the entity accordingly. For example, Steve could have 
modeled a chair, tracked where it is in the room, and ad-
justed the presentation if a person was sitting on it. 

We should also mention that we believe location should 
also include further contextual information about this par-
ticular environment, e.g., the meaning of that place.  Such 
contextual information is not yet included in the toolkit, but 
could be easily added as metadata. 

Scenario – next steps. Our walkthrough example illustrated 
the easy-to-use mechanisms of integrating proxemic meas-
urements into a ubicomp system. While simple, this start-
ing point allows Steve to further extend the system func-
tionality exploring proxemic interactions. Examples in-
clude: (1) subscribing to events of a second person to let 
the system react to both persons’ movement to the display. 
(2) Monitoring additional tablet computers, and enabling 
content-sharing between them as a function of the device’s 
distance.  Overall, the toolkit minimizes the effort neces-
sary for such extensions, and allows rapid exploration and 
alteration of interaction techniques. 

Additional Tools Facilitating Prototyping Process 
The toolkit is more than an API, as it offers additional tools 
to lower the threshold for developing proxemic-aware sys-
tems. The already-discussed visual monitoring tool is one of 
these. Several others are described below. 

Recording and playback of proxemic sequences. To test 
applications, developers would 
need actors to perform the proxe-
mic movements between entities every time. This is prob-
lematic for many reasons: it is tedious; the sensing equipment 
may not be available; and it is difficult to repeat particular 
test sequences.  To alleviate this, the toolkit provides a rec-

 
Figure 6. Defining new fixed and 
semi-fixed features (e.g., display) 
using a tracked physical pointer 
(a) and visual feedback (b). 



 

 

ord/playback tool within the visual monitoring tool. With the 
click of a button, developers can record events generated by 
entities moving in the environment. They can later play back 
these sequences for testing. Under the covers, each individu-
al sequence is recorded as an XML file, where the toolkit 
uses that record to recreate all events. Because the tracking 
hardware is not needed during playback, testing can be done 
anywhere, e.g., a desktop workstation located elsewhere. For 
example, Steve could have recorded test sequences such as: a 
person passing by the screen, a person approaching the dis-
play, or a device pointing towards the display. He would then 
replay these sequences while developing and testing his 
software at his desk. 

Component library, templates, and examples. We lever-
age developers’ existing practices by seamlessly integrating 
the toolkit into the familiar capabilities of a popular IDE, 
Microsoft Visual Studio (but our ideas are generalizable to 
other IDEs). First, the toolkit includes a library of drag-
and-drop components (compatible with both WPF and 
Windows Forms), where the programmer can view and set 
all their properties and generate event handlers for all 
available events via direct manipulation rather than coding. 
This not only reduces tedium and coding errors, but also 
reduces the threshold for inexperienced developers (such as 
students) as all properties and events are seen. Second, we 
reduce start-up effort by including a set of templates con-
taining the minimum required code. Third, to ease learning, 
we provide a large set of teaching applications illustrating 
standard programming patterns. Using a very simple exam-
ple, each of them illustrates the code required to implement 
a particular proxemic relationship.  

FLEXIBLE AND EXTENSIBLE ARCHITECTURE 
Our first version of the toolkit [5] was tightly linked to a 
particular tracking technology. This means that other tech-
nologies could not be exploited. The toolkit’s current version 
decouples the API from underlying tracking technologies.  

Plugin architecture. The data providers of raw tracking 
input data are implemented as separate plugin modules, 
which are dynamically loaded into the proximity server at 
start-up. We currently have plugins for two different track-
ing technologies – the VICON motion capturing system that 
tracks infrared reflective markers, and the Microsoft 
KINECT depth camera). We anticipate a variety of further 
plugins for tracking systems (e.g., other IR tracking). 

Templates, base classes, interfaces, and utility classes facili-
tate plugin development. Programmers begin with the plugin 
template, derived from the Plugin base class. This base class 
provides a set of utility methods, such as one for affine trans-
formations from the tracking system’s local coordinate sys-
tem to the Proximity Toolkit’s unified coordinate system. 
This affine matrix is calculated through a simple one time 
calibration process. Next, developers implement several 
mandatory methods, including OnStartup (to start and initial-
ize tracking hardware) and OnClose (to stop tracking hard-
ware). In our two plugin implementations, the OnStartup 

method causes the VICON plugin to initialize the underlying 
NEXUS software [30], and the KINECT plugin to initialize 
the OPENNI [24] software. Once initialized, plugins receive 
raw data of tracked people, objects, and/or devices in 3D 
space. The OnUpdate method of each plugin module is re-
sponsible to stream raw tracking data into the toolkit.  

Diverse tracking capabilities. In order to allow the integra-
tion of hardware with different tracking capabilities, the 
plugins specify the kinds of proxemic information they sup-
port. For example, a tracking system might gather infor-
mation about the position of an entity, but not its orientation. 
Following the decorator pattern [7], each plugin can specify 
exactly what kind of input data a particular tracking hard-
ware provides. The decorator pattern describes a mechanism 
to extend the functionality of objects at run-time. In our case, 
the plugin creates decorator objects for each proxemic di-
mension of input data it supports and calls the update method 
on these decorators. For example, the LocationDecorator 
updates location of an entity and the OrientationDecorator 
its orientation (plugins can add custom decorators for any 
proxemic information not yet supported by available decora-
tors). During each update cycle (i.e., when OnUpdate is 
called), the decorator objects update the proxemic infor-
mation in the server’s unified data model as proxemic in-
formation of each entity. No high-level calculations on raw 
input data are required for the plugin implementation, as the-
se are performed by the proximity server or API. 

The available dimensions of input data for each tracked enti-
ty are directly visible in the monitoring tool: a list view and 
3D view give direct feedback about the available proxemic 
dimensions. These dimensions can be also checked from the 
client API by using the IsVisible properties for each availa-
ble input dimension.  

Distributed data model. The server’s unified data model 
is a collection of hierarchical key-value pairs representing 
all currently tracked entities. The keys are structured ac-
cording to the following pattern: 
/[space]/[presence]/[proxemic‐dimension]/[identifier]  

For example, the following key-value pairs are part of the 
data model of a tracked person (i.e., location, motion, and 
orientation): 
/home/person/locationdecorator/location      = [12.4,3.7,8.2] 
/home/person/motiondecorator/velocity        = [0.1,0.6,20.5] 
/home/person/orientationdecorator/rollangle  = ‐95.5 

This data model is implemented through a shared hash ta-
ble that is accessible through TCP connections [3]. Thus, 
the data model is accessible from all computers linked in 
the same network. Usually the underlying data model is 
hidden from developers (though they can access and modi-
fy it if desired). The server and the toolkit API calculate 
necessary proxemic relationships for the entities present in 
the data model. To reduce computational overhead, the 
necessary 3D calculations are done only on demand, i.e., 
when a client subscribes to events for a particular relation-
ship between two entities. 



 

 

Substitution. Tracking systems/plugins can be substituted, 
providing that their hardware gathers similar tracking infor-
mation. For example, instead of using the depth camera for 
tracking people’s positions and postures, a programmer can 
use the IR motion capture system instead by attaching IR re-
flective markers to a person’s body. Due to the separation of 
tracking hardware and API, a programmer’s access to this 
proxemic information via the toolkit API remains unchanged, 
regardless of the underlying tracking mechanism used.  

Uncertainty. All 3D tracking systems provide input with 
some kind of uncertainty. As tracking systems differ in 
precision of tracking data they provide, plugins are re-
quired to provide additional information about this uncer-
tainty of tracking information. In particular, two values 
describe tracking uncertainty in our toolkit. First, the Pre‐
cision value specifies how accurate the system tracks enti-
ties (normalized between 0.0 and 1.0). Precision is defined 
as 1 / [minimum resolution], where the minimum resolu-
tion is measured in mm (e.g., minimum resolution is 1mm 
for the VICON system, and 20mm for KINECT). Thus, the 
lower the resolution, the higher the precision value is. Se-
cond, the Confidence value indicates the estimated accuracy 
of the provided tracking information. It ranges from 0.0-
1.0, where 0 is 0% confidence (i.e., lost tracking), and 1 is 
100% confidence. In our plugins, the VICON motion captur-
ing system provides estimated accuracy information for all 
tracked markers, and this value is mapped directly to our 
Confidence value. In contrast, the Confidence value of a 
person tracked by the OPENNI depth cameras is calculated 
by dividing the recognized parts of the body (e.g., arms, 
legs) to the total number of possible parts to recognize (i.e., 
the Confidence is 1.0 if the full body of a person is tracked). 
These confidence and precision values are applied to each 
individually tracked entity. Furthermore, the precision val-
ue can differ depending on where in the 3D space an entity 
is tracked (e.g., precision is higher when a person stands 
closer to the depth sensing camera).  

A developer can monitor the quality of input data with the 
visual monitor tool. A table view lists confidence and pre-
cision values, and the 3D view gives direct feedback of the 
precision (or absence) of tracking. Similarly, the API ex-
poses the Confidence and Precision values of each entity. It 
also includes the IsVisible (false if lost tracking) and 
LastUpdated (timestamp of the last update) properties.   

Combination. In cases where different plugins provide 
complementary tracking information of a single entity, the 
information can be combined in the proximity server’s data 
model. For example, the KINECT and VICON systems could 
both track a single person simultaneously: the KINECT sys-
tem provides information about the person’s body position in 
3D space, and the VICON system tracks a glove the person is 
wearing in order to retrieve fine-grained information of the 
person’s finger movements. Both plugins then update the 
entity’s data model in the server with their tracked infor-
mation. If two systems provide overlapping/conflicting track-
ing data (e.g., two systems provide information about an 

entity’s location), the information will be merged in the serv-
er’s data model. To do so, the server calculates a weighted 
average (taking the Confidence and Precision values) of all 
values received in a certain time frame (i.e., one update cycle) 
and updates the proxemic data model of that entity. This 
means, that the higher the confidence and precision value of a 
given entry, the more it affects the final merged value of that 
entity. 

Alternatively, other algorithms for tracking data fusion 
(e.g., [33]) could be seamlessly implemented on the server 
level (thus not requiring any changes to the plugins or the 
API). We could also extend the toolkit’s uncertainty infor-
mation via Schwarz et al.’s [27] framework for handling 
ambiguous input, where this could track ambiguous infor-
mation simultaneously and delay event triggers.    

Availability. Our toolkit including software and documenta-
tion facilitating development of custom plugins (or other 
possible extensions to the toolkit) are available as open 
source on the GroupLab Proximity Toolkit website [10]. 

APPLICATIONS OF PROXEMIC INTERACTION  
The Proximity Toolkit allowed our colleagues – most who 
were not involved in the toolkit design and coding – to rapid-
ly design a large variety of proxemic-aware ubicomp sys-
tems. The toolkit was invaluable. Instead of struggling with 
the underlying low-level implementation details, colleagues 
and students focused on the design of novel interaction tech-
niques and applications that considered people’s use of 
space. This includes comprehensive systems such as the 
proxemic media player by Ballendat et al. [2], and other ap-
plications presented in Greenberg et al. [9].   

Application Monitored relationships  LOC LOC proximity

Attention demanding 
advertisements 

2 people,  
1 large surface, 1 tablet 

284 32 

Spatial music  
experience 

2 people,  
4 objects 

181 64 

Proxemic-aware  
pong game 

2 people,  
1 large surface 

209 47 

Proxemic  
presenter 

1 person,  
1 large surface 

92 18 

ProxemiCanvas 
workspaces 

2 people,  
2 notebook computer 

393 58 

Table 2. Overview of built proxemic-aware applications, the 
proxemic relationships they monitor, the total lines of code 
(LOC), and the code for accessing proxemic information 
(LOC proximity). LOC are approximate. 

To stress the ease of learning and developing with our 
toolkit, we summarize a few projects built by students in a 
graduate ubicomp class in Fall 2010. They received a one-
hour tutorial presentation and a demonstration of two pro-
gramming examples. The students’ assignment was simply to 
create a proxemic interface of their choosing, where they had 
to demonstrate it in the next class.  Thus all examples (listed 
in Table 2 and briefly explained below) were built and 
demonstrated by the students within a week of the tutorial.  

Attention-Demanding Advertisements (Miaosen Wang) 
explores how future advertisement displays might try to grab 
and keep a person’s attention. A digital advertisement board: 



 

 

(a) attracts the atten-
tion of a passer-by 
by welcoming them 
by calling out their 
name; (b) shows 
items of interest to 
them as they look; (c) and persistently tries to regain the at-
tention of that person if they look or move away by playing 
sounds and flashing the background color.  

Spatial Music Ex-
perience (Matthew 
Dunlap) is an inter-
active music instal-
lation. The kinds of 
sounds generated 
and their volume is determined by the proxemic relation-
ships of people and physical objects in the space. Generat-
ed sounds react fluently as people move and perform ges-
tures in the space, and when they grab and move physical 
objects. 

Proxemic-aware Pong (Till Ballendat) is inspired by Ata-
ri’s Pong game. A person controls the paddle for bouncing 
the ball by physically moving left and right in front of a 
large screen. The game recognizes when a second person 
enters, and creates a second paddle for multiplayer play. To 
increase the game play difficulty over time, it increases the 
required physical distance to move the paddles. When 
players move close to the screen, they can adjust the paddle 
size through direct touch. When both sit down on the 
couch, the game pauses.  

Proxemic Presenter (Miaosen Wang) is a presentation con-
troller that reacts to the presenter’s position relative to a large 
display [9]. Presentation slides are displayed full screen on 
the large display. When the presenter stands at the side and 
turns his head towards the display, a small panel appears next 
to him, showing speaker notes, a timer, and buttons to navi-
gate the slides. If he switches sides, the panel follows him. 
When facing back to the audience, the panel disappears im-
mediately. When he moves directly in front of facing to-
wards the display, the system shows an overview of all slides 
as touch-selectable thumbnails. When he turns back to the 
audience, the presentation reappears.   

ProxemiCanvas 
(Xiang Anthony 
Chen) is an interac-
tive drawing appli-
cation in which 
drawing canvases 
displayed on people’s portable computers gradually merge as 
a function of proxemic relationships between people and 
devices. For instance, from close to far distance, this ranges 
from: (a) merged workspaces when very close, (b) awareness 
of other people’s work when sitting nearby, to no shared 
information when turning away (e.g., when people are sitting 
back to back). 

What is important in these examples is how the Proximity 
Toolkit lowered the threshold for these students to begin 
their exploration of proxemics in the ubicomp context (Ta-
ble 2). Easy access to proxemic information through the 
toolkit and API allowed them to rapidly prototype alterna-
tive system designs, all leading towards exploring the de-
sign space of future proxemic-aware ubicomp systems.  

RELATED WORK 
Our research is inspired by earlier toolkits enabling the rapid 
prototyping of ubicomp interactions. We sample and review 
related work in three areas: toolkit support in HCI, ubicomp 
development architectures, and 3D spatial tracking. 

Post-GUI Toolkits 
Several development toolkits facilitate the prototyping of 
physical and tangible user interfaces that bridge the connec-
tion between the digital and physical world [14]. Many of 
these toolkits focus on a low threshold, but simultaneously 
aim for maintain a relatively high ceiling [23]. For example, 
Phidgets [8] and the iStuff toolkit [1] provide physical build-
ing blocks (buttons, sensors) that programmers can easily 
address from within their software. Shared Phidgets took this 
concept further by simplifying the prototyping of distributed 
(i.e. remote located) physical user interfaces [21]. Hart-
mann’s visual authoring environment in dTools [12] brought 
similar concepts to interaction designers. Other toolkits sim-
plified the integration of computer vision techniques into 
novel user interfaces, such as Klemmer’s PapierMache [16].  

Ubicomp Development Architectures 
On a somewhat higher level of abstraction, Dey introduced 
an architecture to compose context-aware ubicomp systems 
with the Context Toolkit [4]. They provide context widgets as 
encapsulated building blocks, working in conjunction with 
generators, interpreters, or aggregators. The context toolkit 
allows the composition of new applications through a con-
catenation of the basic components – and thus facilitates 
scaffolding approaches. Matthews applied similar concepts 
to the programming of peripheral ambient displays [22]. 

Other systems facilitate access to location information of 
devices in ubicomp environments. For example, Hightower’s 
Location Stack [13] fuses the input data from various sources 
to a coherent location data model. Krumm and Hinckley’s 
NearMe wireless proximity server [18] derives the position 
of devices from their 802.11 network connections (without 
requiring calibration), and thus informs devices about any 
other devices nearby. Li’s Topiary [19] introduced prototyp-
ing tools for location-enhanced applications.  

3D Spatial Tracking  
Few development toolkits support the exploration of novel 
interfaces considering the presence, movements, and orienta-
tion of people, objects, and devices in 3D space. For exam-
ple, some toolkits allow development of augmented reality 
(AR) applications. To illustrate, Feiner’s prototyping system 
allows exploration of novel mobile augmented reality experi-
ences (e.g., with a head mounted 3D display, or a mobile 
tablet like device) [6]. This was developed further in Mac-



 

 

Intyre’s DART [20], Open Tracker [25], and Sandor’s proto-
typing environment [26] for handheld-based AR applica-
tions. These toolkits mostly focus on supporting augmented 
reality applications running on mobile devices, and not on 
ubicomp ecologies in small rooms. Some commercial sys-
tems track 3D data of objects. For example, the VICON Nex-
us software gives access to 3D spatial information of tracked 
objects. This information, however, only includes low level 
position data, which developers need to process manually in 
order to gain insights into proxemic relationships. 

Our Proximity Toolkit builds on this prior work. Like post-
GUI toolkits, it bridges the connection between the virtual 
and real world, but in this case by tracking proxemic in-
formation. Similarly, it extends ubicomp architectures and 
3D spatial tracking by capturing and providing fine-grained 
information about 3D proxemic relationships in small 
ubicomp spaces (i.e., not only location, but also orientation, 
pointing, identity, etc.). Like the best of these, it supplies 
an API that, in our case, makes the five essential proxemic 
dimensions [9] easily accessible to developers. Like the 
more advanced tools, it also provide additional develop-
ment tools, such as a monitoring tool for visualizing prox-
emic relationships, a record/playback tool to simplify test-
ing; templates, documentation, examples, and so on.  

CONCLUSION 
The Proximity Toolkit enables rapid prototyping and ex-
ploration of novel interfaces that incorporate the notion of 
proxemic relationships. Through hiding most of the under-
lying access to tracking hardware and complex 3D calcula-
tions, our toolkit lets developers concentrate on the actual 
design and exploration of novel proxemic interaction.  

We invite other researchers to use it. The Proximity Toolkit 
is available as open source [10].  
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