
UNIVERSITY OF CALGARY

The Social Nature of Issue Tracking in Software Engineering

by

Dane Bertram

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

DECEMBER, 2009

© Dane Bertram 2009

 ii

 iii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “The Social Nature of Issue Tracking in Software

Engineering” submitted by Dane Bertram in partial fulfillment of the requirements for the

degree of Master of Science.

__
Supervisor, Dr. Saul Greenberg

Department of Computer Science

__
Co-supervisor, Dr. Robert Walker
Department of Computer Science

__
Dr. Jonathan Sillito

Department of Computer Science

__
Dr. Yaoping Hu

Department of Electrical & Computer Engineering

Date

 iv

 v

Abstract

Issue tracking systems help organizations manage issue reporting, assignment, tracking,

resolution, and archiving. Traditionally, issue tracking systems have been largely viewed as

simple data stores where software defects are reported and tracked as “bug reports” within

an archival database. Yet, as issue tracking is fundamentally a social process, it is important

to understand the design and use of issue tracking systems from that perspective.

Consequently, I (and my colleagues) conducted a qualitative study of issue tracking

systems as used by small, collocated software development teams. We found that an issue

tracker is not just a database for tracking bugs, features, and inquiries, but also a focal point

for communication and coordination for many stakeholders within and beyond the

immediate software team. Customers, project managers, quality assurance personnel, and

programmers all contribute to the shared knowledge and persistent communication that

exists within the issue tracking system. These results were all the more striking because in

spite of the teams being collocated—and the frequent, face-to-face communication afforded

by such collocation—the issue tracker was still used as a fundamental communication

channel. Through my analysis of the interviews conducted during the study, I identified

five roles that issue tracking systems play within such teams, six areas where stakeholder

perceptions of various aspects of the issue tracker varied, and—as a direct result of those

differing perceptions—seven considerations for the design of future issue tracking and

software development coordination tools. I also presented a set of three interface design

sketches to a subset of my research participants and solicited their feedback.

 vi

 vii

Publications

Materials, ideas, and tables in this thesis have previously appeared in the following

publication (see Appendix B for co-author permission forms):

Bertram, D., Voida, A., Greenberg, S., and Walker, R. (2010). Communication,
Collaboration, and Bugs: The Social Nature of Issue Tracking in Small,
Collocated Teams. To appear in Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work (Savannah, GA, February 6 - 10, 2010).
CSCW 2010. ACM, New York, NY.

 viii

 ix

Acknowledgements

I would like to thank my supervisors Dr. Saul Greenberg and Dr. Robert Walker for their

guidance, patience, and encouragement. They allowed me the freedom to pursue my

interests as a professional developer while also providing me with the necessary resources

to translate them into this thesis. I would also like to thank Dr. Amy Voida for her guidance

and mentoring throughout the design, execution, analysis, and writing-up of my research

study. Without her help, that study—and as a result, this thesis—would simply not exist. I

would also like to thank the software companies and their employees that participated in

my research study for their time. This research was supported in part by the National

Sciences and Engineering Research Council of Canada, the Informatics Circle of Research

Excellence, Alberta Ingenuity, the NSERC/iCORE/Smart Technologies Chair in Interactive

Technologies, and by NSERC’s NECTAR Strategic Networks Grants Program.

 x

 xi

Table of Contents

Abstract ... v

Publications ... vii

Acknowledgements .. ix

Table of Contents ... xi

List of Figures ... xv

List of Tables .. xvii

List of Tables .. xvii

Chapter 1. Introduction ... 1

1.1 Background & Motivation ... 1

1.2 Problem Statement ... 3

1.3 Thesis Goals ... 3

1.4 Organizational Overview ... 4

Chapter 2. Background & Related Work .. 7

2.1 Issue Tracking 101 ... 7

2.1.1 What is issue tracking? ... 7

2.1.2 The lifecycle of an issue ... 9

2.2 Related Work ... 12

2.2.1 The social aspect of software development coordination 13

2.2.2 Examining issue trackers specifically ... 14

2.2.3 Where issue tracking and development coordination meet 15

2.3 Discussion & Framing of the Thesis .. 18

Chapter 3. Research Study .. 21

3.1 Description of the Experiment ... 21

3.1.1 High-level goals/questions .. 21

3.1.2 Subjects ... 22

3.1.3 Methods and materials .. 27

3.1.4 Problems and limitations .. 36

 xii

3.2 Data Collection & Analysis ... 38

3.2.1 Interview transcription .. 38

3.2.2 Data analysis ... 39

3.3 Summary .. 42

Chapter 4. Roles of the Issue Tracker ... 45

4.1 Conventional Definitions ... 45

4.2 Issue Tracker as Knowledge Repository .. 46

4.3 Issue Tracker as Stakeholders’ Boundary Objects ... 49

4.4 Issue Tracker as Communication & Coordination Hub ... 52

4.5 Issue Tracker as Communication Channel ... 54

4.6 Issue Tracker as Contextualization Repository .. 56

4.7 Summary .. 58

Chapter 5. Differing Views & Incompletely Met Needs .. 61

5.1 A Bug List, a Task List, a To-do List, or a...?.. 61

5.2 Full-fledged Bugs & Almost Bugs ... 64

5.3 A “Flurry of Fields” vs. Ease of Entry ... 65

5.4 Different Perceptions of Priority .. 69

5.5 Shades of Ownership: Yours, Mine, or Ours? ... 71

5.6 Privacy, Transparency, and the ‘In’ Crowd ... 73

5.7 Summary .. 75

Chapter 6. Design Sketches .. 79

6.1 Setting the Scene .. 79

6.2 Issue Tracking meets Internet Relay Chat ... 80

6.2.1 Participant feedback .. 84

6.3 Inline Wiki Conversations ... 85

6.3.1 Participant feedback .. 89

6.4 Recent Activity Feed .. 90

6.4.1 Participant feedback .. 93

6.5 Summary .. 94

Chapter 7. Conclusions, Contributions, & Future Work .. 97

 xiii

7.1 Discussion & Conclusions ... 97

7.2 Contributions .. 99

7.3 Future Work ... 104

References ... 107

Appendix A. Ethics Application ... 111

Appendix B. Co-author Permission .. 123

 xiv

 xv

List of Figures

Figure 2.1 – Simplified issue lifecycle ... 10

Figure 2.2 – Issue lifecycle supported by Bugzilla ... 11

Figure 3.1 – Questionnaire (page 1 of 2) .. 31

Figure 3.2 – Questionnaire (page 2 of 2) .. 32

Figure 3.3 – Sample design sketch ... 36

Figure 3.4 – First-pass data analysis artefacts .. 39

Figure 3.5 – Affinity diagram construction .. 41

Figure 3.6 – Theme and concept groupings extracted from interview data 41

Figure 3.7 – Close-up of in-progress concept clustering .. 42

Figure 6.1 – The Babble interface .. 82

Figure 6.2 – First design sketch (Babble + IRC) .. 83

Figure 6.3 – Case link mouseover preview... 86

Figure 6.4 – Second design sketch (inline wiki conversations) .. 88

Figure 6.5 – Annotation mouseover behaviour of second design sketch 89

Figure 6.6 – Facebook.com recent activity feed ... 91

Figure 6.7 – Third design sketch (recent activity feed) .. 92

 xvi

 xvii

List of Tables

Table 3.1 – Overview of participant population ... 27

Table 5.1 - Summary of design considerations... 77

 xviii

 1

Chapter 1. Introduction
In this thesis, I address the use of issue (or defect, or modification request) tracking systems

in small, collocated, software development teams. Specifically, I: investigate how these

systems fundamentally support the communicative and collaborative aspects of software

development; articulate the various roles played by these systems within such small,

collocated teams; and identify how these systems might be redesigned to better support

those identified roles in the future. To set the scene, I begin this chapter by motivating my

interest in the area and providing a brief overview of existing research that further clarifies

the niche addressed by this thesis. I then present the specific problem addressed by my

research and how I will solve it in this thesis. I conclude with an organizational overview of

the remainder of this document.

1.1 Background & Motivation

Commercial software development is by and large a group activity. Project managers create

specifications, developers implement features, and quality assurance (QA) teams find and

verify defects along with their associated fixes. Because of the large number and broad

range of stakeholders involved in this form of group work, communication and

collaboration become an integral part of the process, even within small, collocated teams.

In addition to requiring the efforts of many, the creation of quality software also

requires the careful management of many small, interrelated issues relating to the software,

where these issues appear and are (usually) resolved over the course of time. While features

and implementation tasks are borne out of specifications, they rarely result in perfect

software. Defects or “bugs” are inevitably found. These defects are often managed through

the use of an issue tracking system. The issue tracker helps software teams manage issue

 2

reporting, assignment, tracking, resolution, and archiving via a reliable, shared to-do list

that is used by numerous stakeholders throughout the lifecycle of the software and also

serves as an archive of completed work [Reis and de Mattos Fortes 2002].

Existing research examining the software development process in general has

repeatedly identified a deeply rooted social component. For example, LaToza et al. [2006]

found developers relied heavily on their social network for determining the rationale behind

a given piece of code, while Perry et al. [1994] found developers spent over half of their

time interacting with co-workers during day-to-day development tasks. Given how

frequently the social component of software development has been noted in the literature, it

suggests that the “tools of the trade” should attempt to directly support this social aspect of

creating software. Although not as well explored, the same argument applies to issue

trackers. A small body of work has examined the use of issue tracking systems within

distributed software development teams and has noted their use as a general purpose

communication and collaboration device [Carstensen et al. 1995, Halverson et al. 2006,

Sandusky and Gasser 2005].

However, none of this work has specifically examined small, collocated teams. This

is the niche explored by this thesis, i.e., how small, collocated teams use issue tracking

systems. This is important, for small development teams are still commonplace within

many small organizations today. As we shall see, despite the lower barrier to face-to-face

communication associated with these collocated teams, our study—described in detail

throughout the remainder of this thesis—uncovered that the issue tracker is still

fundamental in meeting these teams’ communication, collaboration, and coordination

needs.

To foreshadow what is to come, I will argue that the issue tracker for a software

team serves as much more than a simple bug database. The issue tracker serves as a key

knowledge repository, a communication and collaboration hub, and as a communication

channel in and of itself. I go on to identify and characterize several aspects of issue tracking

about which its many stakeholders hold differing and sometimes conflicting perspectives.

Finally, I provide considerations for the design of issue tracking and software development

 3

coordination tools. While some of the considerations presented in later chapters may

already be addressed by existing commercial tools, it is the interplay and tradeoffs that

must be made among them that I argue also need to be carefully explored and scrutinized.

1.2 Problem Statement

This thesis concerns the real-world usage of issue tracking systems in small, collocated

development teams and how these tracking systems fulfill the communicative,

collaborative, and coordinative needs of such teams. I address the following problem in this

thesis:

We do not know how small, collocated teams make use of issue tracking

systems in real-world, industrial settings from the perspective of supporting

communication, collaboration, and coordination both inside and outside the

team. Previous research (Sandusky and Gasser 2005, Halverson et al. 2006,

Carstensen et al. 1995, etc.) has examined or noted these aspects of issue tracking

systems, but only within the context of large, distributed teams. Examining how

issue tracking systems support these core components of the software development

process within small, collocated teams in spite of their intrinsic benefits of frequent,

low-cost face-to-face communication bears exploration.

1.3 Thesis Goals

In this thesis, I address the aforementioned problem with the following goals:

1. I investigate how small, collocated teams use issue tracking systems in day-

to-day software development tasks for the purpose of communication,

collaboration, and coordination both inside and outside the immediate

development team. I have designed, conducted, and evaluated the results of a

qualitative study aimed at exploring how issue tracking systems are currently

used in the above mentioned teams with a specific focus on how these tools fit

into the larger role of coordinating the development process, facilitating

 4

cooperation within the development team, and supporting the necessary

communication among its members. Through this exploration I have identified

five key roles fulfilled by the issue tracking system within these teams. Six areas

in which stakeholder perceptions of the issue tracker varied were also identified

and used as the direct basis for the development of seven design considerations.

2. I attempt to design new interfaces as well as enhancements to existing

systems with the intent of incorporating better communication and

awareness facilities into the issue tracking and overall software

development processes. To achieve this goal, I presented three interface design

sketches to real-world development teams and solicited their feedback. These

designs do not attempt to remedy all the limitations of current issue tracking

systems nor directly address the design considerations identified via the

previous thesis goal. Rather, these designs illustrate possible enhancements to

the communication tools used by developers so that they can better interoperate

with issue tracking systems, as well as enhancements to the issue trackers

themselves to better support and make use of the development team’s

communication surrounding issues.

1.4 Organizational Overview

This thesis is divided into seven chapters:

In Chapter 2, I contextualize the area examined in this thesis by providing

background information explaining what comprises an issue tracking system as well as

some of the usual characteristics of these systems. Next, I present a deeper discussion of the

existing literature as it pertains to the social aspects of software development and

coordination within the development team. This section also describes previous work that

has examined issue tracking systems specifically, and ends by describing the overlapping

area where issue tracking and software development coordination meet. This discussion

helps elucidate the specific niche addressed by the remainder of this thesis: the study of the

 5

communicative and collaborative aspects of issue tracking systems within small, collocated

development teams.

In Chapter 3, I describe the qualitative empirical study conducted as my primary

means of attaining the first goal set out previously in Section 1.3. This description begins

with the original high-level questions I set out to answer through my study and carries

through their evolution into the full-fledged qualitative study that was conducted with 15

participants spread across 4 different organizations. Details of my sampling method,

participant population stratification, development team profiles, participant demographics,

study materials and limitations, as well as the data collection process and analysis

methodology are also presented.

In Chapter 4, I present the results of my study pertaining to the many different

communication and collaboration roles taken on by the issue tracking system within the

small, collocated, industrial software teams interviewed. I begin by revisiting conventional

definitions of issue tracking systems. I then go on to articulate how these systems are

simultaneously seen as a knowledge repository, a boundary object, a communication and

coordination hub, a communication channel in and of itself, and as a contextualization

repository.

In Chapter 5, I describe the differing views that team members had of various issue

tracking facilities, as well as shortcomings and other incompletely met needs of the

software as relayed by study participants. The areas examined include the differences in

how the issue tracker itself was viewed by its clients (e.g., as a bug list, task list, or to-do

list); when an issue comes into being and when this should be reflected in the issue tracker;

the contention between many well-compartmentalized fields and the ease with which new

cases can be created; the different perceptions and origins of an issue’s priority; the various

shades of issue ownership and their related embodiments; and finally the tricky problem of

balancing the privacy of sensitive issue information with its customer-facing transparency.

Based on the frustrations expressed by our participants, I then formulate seven design

considerations, summarized in Table 5.1.

 6

In Chapter 6, I attempt to translate some of the aforementioned design considerations

into actual designs. This is done via interface design sketches that stress the incorporation

of communication and awareness within issue tracking. In particular, they illustrate

possible enhancements to communication tools so that they can better interoperate with

issue trackers; and to the issue tracking systems themselves so that they can better

incorporate the communication surrounding the issues they contain. These designs were

presented to a subset of our research participants with whom I discussed the designs’

envisaged functionality and solicited their feedback.

In Chapter 7, I review the primary conclusions drawn from thesis as a whole, and

then summarize the primary and secondary contributions of this research. I then briefly

present potential future directions suggested by this research.

 7

Chapter 2. Background & Related Work
This chapter sets the scene for the rest of this thesis and articulates how my thesis fits into

the larger research space. I present background information on issue tracking systems and

their associated workflows. This is followed by: a discussion of related work covering the

social aspects of software development and development team coordination that have

previously been explored; work examining issue tracking systems specifically; and a

closing discussion of where issue tracking systems and development coordination meet.

Through the exploration of this existing literature, this chapter will introduce the niche

addressed by the remainder of this thesis: the examination of the communicative and

collaborative aspects of issue tracking systems within small, collocated development teams.

2.1 Issue Tracking 101

A bug-tracking database is not just a memory aid or a scheduling tool. It
doesn’t make it easier to produce great software, it makes it possible to
create great software.

—Joel Spolsky, as quoted in the forward of Gunderloy [2007]

2.1.1 What is issue tracking?

There is a plethora of issue tracking software in existence today. While all of these systems

vary considerably in their interfaces and features, they all share the same core purposes and

functionality as described below.

If we look to textbooks for a definition of issue tracking, we find descriptions such

as the following:

Issue tracking, often called bug tracking (and sometimes request tracking),
is the process of keeping track of your open development issues. Bug
tracking is a misleading term in many ways and obviously depends on your

 8

definition of bug. “Issue” is a broad enough term to describe most of the
kinds of tasks you might need to track when developing [software], and so
drives our choice of terminology here.

—Henderson [2006]

And if we look further for a more technical description, we find definitions such as this:

A bug tracking system is some program or application that allows the
project team to report, manage, and analyze bug reports and bug trends.
Functionally, most bug tracking systems provide a form that allows us to
report and manage specific bugs, a set of stored reports and graphs that
allow us to analyze, manipulate, and output this bug data in various ways,
and a customizable workflow or life cycle that provides for orderly bug
management.

—Black [2002]

Issue trackers, bug trackers, modification request control systems—regardless of what

specific terminology is used—all roughly refer to the same class of software systems. In the

most general of terms, these systems are designed to manage electronic artefacts that: (a)

move from a starting state to an end state (and possibly visit several in-between states along

the way), and (b) accumulate information during their transitions between these states.

More specifically, issue tracking systems are databases that keep track of bodies of

information—outstanding issues—such as software defects or “bugs,” feature requests,

customer inquiries, etc. The variety in the types of information stored in issue tracking

systems has been acknowledged since their earliest incarnations. The following definition

by Knudsen et al. still applies over 30 years after it was coined.

A Modification Request (MR) is a request to those in charge of a system to
modify that system. The request might be to add, modify, or delete
capabilities, to fix a bug, to issue a new version of a system, or even to
create a system. Thus our definition of an MR includes trouble reports,
design change requests, enhancement requests, etc. A request may result in
changes to system hardware, software, or documentation or it may result in
no changes at all.

—Knudsen et al. [1976]

 9

All this information represents tasks that move from an opening state to a closed state over

time. Along the way, these information artefacts often accumulate additional information as

various people within the software team work on them. For example, a bug might gain

instructions on how to reproduce the problem, or a feature request might be refined with

additional specifications or sketches. Each of these items (or “modification requests” or

“issues”) can also have certain attributes associated with them. A bug, for example, might

include things like the time the issue was filed, who filed it, what version of the software

the bug applied to, and the severity of the bug (e.g., a critical bug that causes loss of data

versus a minor one such as an aesthetic imperfection).

My primary interest lies in issue tracking systems as applied to software

development. Given the relatively free and unconstrained usage of the term “issue

tracking,” there are also similar systems that I will not be examining in this thesis—in

particular, helpdesk trouble ticket trackers, and business issue management systems. While

these systems do represent a common manifestation of “issue tracking,” their primary

purpose is not targeted toward software development and are thus outside my focus.

2.1.2 The lifecycle of an issue

Within an issue tracking system, each item (or issue or case) generally follows one of a few

predefined paths from when it is first opened until it is eventually closed. Depending on the

type of issue, there may be various intermediate states as well as cycles within its path.

Each stage in the life of an [issue] is characterized by a status, or state. The
number of states may vary from system to system. In addition, within a
single [issue tracking] system, different [issues] will go through a different
succession of states.

—Knudsen et al. [1976]

This set of paths is often referred to as the “workflow” supported by an issue tracking

system [Bugzilla 2009, Atlassian 2009]. Workflows can vary from very simple and open-

ended to very detailed and complex. The state diagram in Figure 2.1 illustrates a minimal

set of states required for an issue tracking system’s workflow, namely, the “open” and

“closed” states and the transitions between them. When a new bug or feature request is

 10

created it starts in the “open” state. After work has been completed on this item it follows

the “resolve” transition to end up in the “closed” state. If the issue is later found to be

incomplete (e.g., a bug reappears or a feature is not fully implemented) it can follow the

“reopen” transition back to the “open” state.

Figure 2.1 – Simplified issue lifecycle

As eloquent and simple as this set of states is, there are a number of situations in

which such a simplified view of issue tracking falls apart. For example, many software

development teams require issues to be verified before officially being marked as closed:

When a bug is resolved, it gets assigned back to the person who opened it.
This is a crucial point. It does not go away just because a programmer
thinks it should. The golden rule is that only the person who opened the bug
can close the bug. The programmer can resolve the bug, meaning, “hey, I
think this is done,” but to actually close the bug and get it off the books, the
original person who opened it needs to confirm that it was actually fixed or
agree that it shouldn't be fixed for some reason.

—FogBugz Documentation [Fog Creek Software 2009b]

The state diagram illustrated in Figure 2.2 was reproduced from Bugzilla [Bugzilla 2009]—

an open-source issue tracking system—and shows a more complicated, albeit more

realistic, set of potential paths an issue may traverse on its journey toward being closed.

 11

Figure 2.2 – Issue lifecycle supported by Bugzilla [Bugzilla 2009]

As we can see, the workflow supported by an issue tracking system can quickly

escalate to something much more complicated than the rudimentary workflow illustrated

earlier in Figure 2.1. In addition to supporting a larger number of states and transition

options, the Bugzilla workflow shown in Figure 2.2 also reveals that some states may

comprise of multiple sub-states or “statuses.” The most common state to exhibit this is the

“resolved” state. This is because an issue can make the transition into the resolved state for

a variety of reasons—most of which are useful to record for future reference. For example,

 12

an issue can be resolved as “duplicate” if another issue exists representing the same

problem or feature request. Usually in such an instance the unique identification number of

the duplicate case would be stored along with the resolved issue. Alternatively, a bug could

be resolved as “worksforme” (i.e., works for me) to indicate that the person resolving it

could not reproduce the problem: he or she either needs more information detailing how to

reproduce it or perhaps the bug has already been fixed.

The key purpose of issue tracking software, therefore, is to support these detailed

workflows and catalogue information as it is appended to each issue during its traversal of

these paths. In addition to tracking a specific state of an issue within the workflow, other

relevant attributes are also recorded. For example, each issue is “owned” or “assigned” to a

specific person within the software team. Tracking such ownership of who is working on

what helps provide accountability for ensuring each issue in the system has someone

looking after it (this is discussed further in Section 5.5). The underlying database structure

of the issue tracker keeps track of all of these various attributes in such a way as to also

allow those who use the issue tracking system to search for issues and group them

according to various criteria (e.g., by priority, by who initially created the case, by current

owner, by date created, etc.).

2.2 Related Work

I now present a brief summary of existing research relating to the social aspects of software

development and its inherent communication and coordination challenges. Prior work

specifically examining issue tracking systems is also discussed as well as research looking

at the how specific software development tools address the communication and

coordination needs of a development team. This section’s goal is to frame the rest of this

thesis and elucidate the niche this work fills within the existing body of literature. While an

overview is presented here, specific theoretical literature as relevant to particular sub-topics

will be introduced in later chapters.

 13

My thesis is that issue tracking systems fundamentally support the communicative

and collaborative aspects of software development, even within small, collocated teams.

They do this by providing a robust, canonical, and well compartmentalized database of the

work items completed by the development team over time and additionally by storing the

discussions and decisions surrounding the issues they contain. In the first section below, I

review work that has observed, identified, or examined the social aspects of software

development coordination and communication in general and that hint toward the

importance of exploring the role of issue tracking systems. The following section then

presents the relatively scant literature that has addressed issue tracking systems specifically,

and is followed by an investigation of where these two areas overlap; that is, where issue

tracking and software development coordination meet. Through this process I will reveal

the niche that is explored by the remainder of my thesis: the communication, coordination,

and collaboration patterns, practices, and tools of small, collocated teams as they relate to

issue tracking systems.

2.2.1 The social aspect of software development coordination

Just as strong leadership is required to guide a team toward success, so too are strong

communication and collaboration tools essential in completing that journey. Much research

has been done in the field of computer-supported cooperative work (CSCW) and software

engineering to examine how software teams communicate with each other and coordinate

their work. Perry et al. [1994], for example, studied individual developers’ perceived and

actual time allocation for various activities throughout their day-to-day work. Their studies

found that over half of each developer’s time was spent interacting with co-workers.

In a similar vein, Kraut and Streeter’s [1995] examination of the formal and

informal aspects of the software development process found that while

technical problems continually arise in the process of creating software, and
while people can solve some of these problems themselves or by examining
relevant documents, other problems demand information or cooperation
from other people.

—Kraut and Streeter [1995]

 14

This led them to the realization that while personal communication is pivotal to

coordination, it may be “too expensive, too ephemeral, or too local to be an effective

communication mechanism” if not assisted via technological means. As will be shown in

later chapters, issue tracking systems often provide precisely the assistance necessary to

overcome these challenges, even when dealing with relatively small, collocated teams.

More recently, Ye [2006] argued that software development is both knowledge-

intensive and collaborative. His work identified not only the technical axis of knowledge

collaboration undertaken by software developers, but also its social axis. The deeply social

element of software development has also been illustrated by LaToza et al. [2006]: in

addition to noting developers’ reliance on their social network for determining code

rationale, their study found that developers at Microsoft “reported spending nearly half

their time fixing bugs.” If developers in a corporation as large and established as Microsoft

are spending such a significant portion of their time dealing with bugs, it stands to reason

that a thorough examination of issue tracking systems and their communicative properties

may be warranted. Unfortunately, this has not been the case within the fields of CSCW and

software engineering until recently.

2.2.2 Examining issue trackers specifically

Although much analysis has been done on software development in general, little if any of

this attention has been directed toward the in-depth study of how issue or bug tracking

systems fit into the role of facilitating communication and collaboration, especially within

the context of small, collocated teams that are still the norm in many organizations today.

Most existing work touching on this aspect of software development has focused primarily

on distributed teams within an organization, or distributed communities that work on open-

source development. For example, Sandusky and Gasser [2005] found that the issue tracker

used by an open-source development team was often a primary and logical location for

much of the distributed negotiation involved in resolving bugs. Similarly, Halverson et al.

[2006], while developing two prototype visualizations, found issue trackers provided a

locus for negotiation, “often through extended interactions that involve debate among

 15

developers, reaching consensus, or soliciting management input” within the teams they

studied.

If we look at issue tracking systems specifically, we see a body of work that has

primarily focused on improving the quality of bug reports [Bettenburg et al. 2008],

identifying who should work on a given issue [Anvik et al. 2006, Canfora and Cerulo

2006], visualizing various aspects of the issue tracker’s data [Halverson et al. 2006, Ellis et

al. 2007, D’Ambros et al. 2007], and improving developers’ ability to detect defects in their

systems [Fenton and Neil 1999]. In contrast, much of the broader software development

literature mentions issue tracking only in passing; few have specifically brought its

communication and collaboration aspects to the forefront. Examples of earlier work looking

specifically at issue tracking systems include that of Carstensen et al. [1995], where they

observed and examined the coordination aspects of issue tracking. However, this was using

earlier, paper-based workflow systems and again involved a distributed team.

2.2.3 Where issue tracking and development coordination meet

When looking for prior work that has specifically examined the coordination dynamics of

issue tracking systems, we unfortunately do not find much. If, however, we slightly

broaden our search to include other, closely-related development tools such as

configuration management systems, we have slightly better luck. Configuration

management tools aim to control developers’ ability to alter code. By doing so, these

systems provide (at least some) support for the collaborative work of software developers

by mitigating the inherent complications of multiple people making changes to the source

code of a project at the same time. By providing mechanisms that help regulate this process

and prevent one developer from unknowingly overwriting the work of another, they help

coordinate the team’s efforts in a productive direction. Grinter [1995], for example,

examined the use of configuration management tools for the coordination of software

development and found that while such tools helped, and “despite well-defined policies

surrounding tool usage and a good cognitive understanding of the tool, coordinating

software development remains difficult.”

 16

Tools such as configuration management systems help coordinate development

efforts at a low level—that of individual source code files. By regulating access to these

files, such tools make developers on a team immediately aware of the work of their

colleagues, especially if they both attempt to modify the same file at the same time. One of

the conclusions drawn by Grinter [1995] was that despite this assistance in coordinating

developers’ efforts, “the developers still use other communicative solutions to overcome

challenges of coordinating work”.

If we raise ourselves one level higher in the software development process from the

physical manipulation of source code files, we can see where issue tracking systems come

to play a role in developer coordination and communication. Most of the times when a

legitimate issue (i.e., not a duplicate) is filed in the issue tracking database, the likely

outcome will involve modifying the source code of the system under construction. In a

way, the issue tracker serves as an early warning system that code changes are likely to

follow, and by capturing changes at this earlier stage (in addition to the communication

tools provided by the tracker itself) can further improve the coordination and awareness of

software developers on the team.

In a somewhat similar vein, Fitzpatrick et al. [2006] attempted to help fill this

apparent gap between the coordination mechanisms provided by configuration management

systems and the additional communication means needed by developers to coordinate their

work. They developed a lightweight notification and chat system that they integrated with a

configuration management tool. Their tool consisted of a tickertape-style notification

window that scrolled the commit log messages submitted by developers along with their

code changes. Those using the system could open a chat dialogue in response to such

messages as they saw fit. After observing a team’s long-term use of this tool they found

that by augmenting the configuration management system with this tool the developers

were

 17

able to maintain an overview of what code changes are happening, engage
in social chit-chat, have a timely work discussion, engage in collaborative
problem solving, negotiate the flow of work, ... and promote team culture.

—Fitzpatrick et al. [2006]

Thus, this work also suggests that tools providing heightened awareness and the ability to

discuss the changes being made to the underlying source code are likely to be beneficial to

the development process.

If we look more recently, Aranda and Venolia’s work [2009] has finally started to

bridge the gap between broader CSCW research and the specific use of issue tracking

systems as a software engineering tool. Aranda and Venolia set out to verify the seemingly

rational assumption that bug tracking databases provide developers (and in turn,

researchers) with an accurate—or at the very least sufficient—account of the history of the

work items stored within them. They did so by tracing the complete lineage of 10 randomly

selected, recently closed bugs. After exhausting all available electronic breadcrumbs, they

proceeded to interview every person directly or indirectly involved in each bug’s “life”

until either a complete history was formed or the trail petered out. Through their detailed

examination of these bug histories they found that the assumption regarding the

completeness of histories stored within issue tracking databases was not founded as

“electronic repositories hold incomplete or incorrect data more often than not.” In addition,

they issued the following challenge:

If we want to understand and improve coordination dynamics we need our
bug histories to include the social, political, and otherwise tacit information
that is also part of the bread and butter of software development. This is
often subtle, not always apparent, and it must be read between the lines of
the evidence collected.

—Aranda and Venolia [2009]

As we shall see, this challenge is taken up in the remainder of this thesis.

 18

2.3 Discussion & Framing of the Thesis

The chapter so far, has revealed several aspects of issue trackers. First, it is portrayed as a

technical system that manages and records transitions—sometimes complex transitions—

about the state of an issue as it moves from an open to an ultimately closed state. Second,

we saw that software development in general, and issue tracking specifically, can be seen as

incorporating a social process, albeit one that is not explicitly supported by development

tools directly. This creates the following challenge: how do we understand and improve

coordination dynamics as part of our issue tracking systems?

It is precisely these hidden coordination dynamics that I set out to uncover in the

empirical study described in the following chapters of this thesis. I and my collaborators

conducted a qualitative study of issue tracking systems as used by small, collocated

software development teams. We found that an issue tracker is not just a database for

tracking bugs, features, and inquiries as described in Section 2.1, but also a focal point for

communication and coordination for many stakeholders within and beyond the immediate

software development team. Customers, project managers, quality assurance personnel, and

programmers all contribute to the shared knowledge and persistent communication that

exists within the issue tracking system. These results were all the more striking to us

because in spite of the teams examined being collocated—which afforded them frequent,

low-cost, face-to-face communication—the issue tracker was still used as a fundamental

communication channel.

In this chapter, I introduced the general terminology of issue tracking systems and

explained their basic functionality. Issue trackers generally serve as a database of records

that support the aggregation of data surrounding the contained records over time. These

records may be defects or “bugs,” feature requests, or customer inquiries and the data they

accumulate can include simple attributes (e.g., creation date, priority, owner, etc.) as well as

developer conversations in the form of comment histories. In addition to storing these

records and their respective attributes, issue trackers also facilitate a lifecycle workflow

which these issue records traverse on their way from being initially opened to eventually

 19

being closed. Both simple and complex workflows were presented to illustrate how the

intuitive and perhaps ideal differs from the practical and realistic. Finally, this chapter

presented a brief overview of literature related to this thesis and identified the niche within

the field that it addresses: the in-depth exploration and analysis of issue tracking systems

usage within small, collocated, industrial development teams.

 20

 21

Chapter 3. Research Study
The next three chapters detail a qualitative study that explores the communication and

collaboration aspects of professionals who perform issue tracking as part of their day-to-

day work. In this chapter, I describe the study methodology, the data collected, and how the

data was analyzed. The subsequent chapters detail and discuss the results.

3.1 Description of the Experiment

3.1.1 High-level goals/questions

As described in the previous chapter, issue tracking systems have matured over time, where

they have leveraged advances in technology and interface design to better support the

tracking of bugs, feature requests, and customer inquiries. While such systems are well

suited for tracking bugs within a database, we also know that development team members

communicate, coordinate, and collaborate with one another as they collectively delegate,

manage, and attempt to comprehend particular issues. Such team interaction—especially

for collocated teams—has not been rigorously nor directly examined. We do not have a

good understanding of how issue tracking system facilities are currently used to support—

directly or indirectly—the interactions of small, industrial, collocated software

development teams.

Consequently, I designed and executed a study to better understand the role of such

communication, collaboration, and coordination in the issue tracking systems used by such

teams. While I expected to uncover how professional developers used their particular tools,

my primary goal was to see how these tools fit into the larger role of coordinating the

development process, facilitating cooperation within the development team, and supporting

the necessary communication among its members. For each team examined in my study, I

 22

aimed to gain a holistic understanding of their software development and release cycle,

while also drilling down into the day-to-day practicalities of using issue trackers and how

they fit into each team’s custom-tailored processes and practices. Consequently, I studied

not only the use of the issue tracking systems themselves, but also the integration between

such systems and other development tools (source code repositories, code editors, email

systems, wikis, etc.). Usage frequency and motivation for a wide variety of communication

channels (email, chat, instant messaging, wikis, micro-blogging, verbal conversation, etc.)

were also investigated, with a specific interest in how these various channels poured into,

sprouted from, and interoperated with the issue tracking system and the team’s

development cycle.

3.1.2 Subjects

Target audience

Small, collocated, industrial software development teams made up the primary audience for

our study. This subset of the larger software development community was chosen for a

number of reasons. Small development teams consisting of 5–30 members were targeted

due to their increased likelihood for frequent, intimate communication episodes. Small

teams also allowed for a more holistic sampling of the development team and its composite

roles while keeping the necessary number of sampled participants low. Collocated teams

were selected to allow for the inclusion of questions pertaining to face-to-face

conversations including casual, serendipitous communication episodes such as those that

might occur around the lunch table, at the water cooler, or in the hallway. Because such

teams are readily able to communicate face-to-face, a collocated team’s use of technology

over face-to-face suggests a positive and/or significant role for that technology. Finally,

industrial development teams were selected, as these teams exhibited professional cultures

whose processes and practices had been developed and refined over time. An “industrial”

development team in this context refers to one which works directly on the production of a

software product that is used by a collection of clients in a professional or commercial

setting. For instance, this distinction includes roles such as technical staff at a university

 23

whose job is the maintenance and customization of a commercial software package used by

others within that university, but excludes laboratory settings such as researchers or

students producing prototype software as part of their research.

Recruiting process

Participants were recruited using a largely convenience-based snowball sampling method.

Existing relationships with software development teams established by me and my

colleagues within the Interactions Lab at the University of Calgary were used to identify

potential participant teams. For example, after speaking with various members of the IT

staff at the University of Calgary, I then broadened my search based on their

recommendations and referrals. Through my own work experience and that of other

students in the Interactions Lab (past and present), several additional potential development

teams were identified.

After contacting a variety of teams through these means, careful stratification of the

pool of development teams was considered to ensure as broad a coverage as possible given

the constraints of my study (time, travel expense, etc.). Each of the development teams

chosen (described below) belonged to a different organization and wrote software targeting

a different market within the broader software development field. Each team made use of at

least one formal issue tracking system in support of their day-to-day development tasks.

After selecting which teams to pursue, I then described the type of participants I

was hoping to interview (outlined in the following paragraph). Many of the participants in

our study volunteered to be interviewed, while others were asked by our contact person

(often a manager within the organization) to participate.

Study participants from each of the selected teams were recruited, with the

assistance of our primary contact person, in order to sample three primary roles within a

typical professional software team:

• Developer or Team Lead. This role consisted primarily of programmers, but

included those involved in the design and specification of the system under

development. This role included those acting as a “team lead” or “senior

 24

developer,” but excluded those in strictly management-type positions (see the PM

role below). All participants in this category wrote code as a significant portion of

their day-to-day activities.

• Quality Assurance or Tester. The quality assurance (QA) role included those whose

primary function was to test the software under development. This included not

only the physical act of testing the software itself, but also the design, refinement,

and maintenance of test scripts. Some participants in this category also served as

front-line usability test participants (e.g., thinking aloud while being asked to

exercise new program functionality in order to uncover usability and

implementation flaws). Additionally, some QA team members also wrote code as

part of their job responsibilities, but such coding was done to facilitate or automate

their testing work rather than to contribute directly to the customer-facing

functionality of the system under development.

• Project or Program Manager. The project or program manager (PM) role included

team members that either did not write code at all, or did so only on rare occasion

(e.g., email auto-filtering scripts). Such people primarily managed those in the roles

mentioned above. They also typically defined the high-level design of features, and

shaped the direction of the system under development. The majority of our PM

participants also spent a significant portion of their time dealing with customer

support issues either directly, or with the assistance of dedicated customer support

staff.

Because of their constant, intimate interaction with the issue tracker, we focused, in

particular, on the first two of these roles and the interplay between them. Gender balancing

did not play a role in the recruiting process; however, we were fortunate in having at least

one female participant in each of the roles of interest (see Participant demographics below).

Development team profiles

In total, four North American software development teams were selected for our study,

each belonging to a different organization. Three of the four teams studied produced

 25

commercial software while the other worked primarily on the customization and

maintenance of a commercial software product used by other departments within their

organization. A brief description of each of the development teams studied follows:

Team A: University IT Department

Team A was a development team within a large university’s IT department. At the

time of the study, the university had over 27,000 students enrolled including

undergraduate, graduate, and professional degree programs and over 5,000

academic and support staff. The development team itself was composed of five

developers, seven QA staff, and two PMs. All members of the team interviewed

were collocated on the same floor within a single building. The participant team’s

responsibilities included the maintenance, customization, and support of a third-

party commercial human resource management system used by a number of other

departments on campus.

Team B: Gaming Company

Team B was a product development team within a large gaming company. At the

time of the study, the company employed over 400 people across its multiple North

American offices. The participant team was responsible for the production of

portions of an upcoming role-playing game and was composed of approximately 20

developers, five QA staff, and three PMs. All members of the team interviewed

were collocated in the same building spread across several floors.

Team C: Issue Tracking System Vendor

Team C was part of a small commercial software company that produced issue

tracking and project management software as well as a remote desktop application.

At the time of the study, the company employed approximately 25 employees. The

development team interviewed was responsible for the production of the company’s

commercial issue tracking and project management product. The issue tracker used

by this team was the same issue tracking system they were developing. Six

 26

developers, two QA staff, and one PM made up the participant development team

with all members of the team collocated on the same floor within a single building.

Team D: Large Interactive Display Vendor

Team D formed a product development team writing software to accompany a large

interactive display hardware product. Team D’s organization employed over 1,000

people worldwide across multiple offices at the time of the study. The specific

development team interviewed was composed of eighteen developers, eight QA

staff, and six PMs. All members of the team were collocated in the same building

spread across two floors.

Participant demographics

In total, 15 individuals from the above described software development teams took part in

our research study (Table 3.1). The participants’ ages ranged from 25 to 51 years with a

mean of 33.4 and a median of 33. Their experience with issue tracking software ranged

from 2 to 16 years (including any gaps) with a mean of 5.6 years and a median of 4. As

mentioned earlier, gender balancing did not play a role in the recruiting process; however,

our participant pool did include at least one female participant in each of the roles of

interest. Table 3.1 reveals that the number of participants interviewed from each team

varied from two to five (two from Team A, four from Team B, five from Team C, and four

from Team D). It also reveals the diversity of issue trackers used: Team A used Microsoft

Excel [Microsoft Corporation 2009a] and Microsoft Sharepoint [Microsoft Corporation

2009b] (systems not designed explicitly for issue tracking), Team B used ExtraView

[ExtraView 2009] as well as its own proprietary software (an abstraction built on top of

ExtraView that is described in further detail in Section 5.3), while Teams C and D both

used the web-based FogBugz [Fog Creek Software 2009a] issue tracking system.

 27

Software Team

Participant Demographics

Issue Tracker
Used Developer/Lead Quality

Assurance/Tester
Project/Program

Manager

Male Female Male Female Male Female

Team A
University IT Dept. P01 P02 SharePoint &

Excel

Team B
Gaming Company P06 P04,

P05 P03 ExtraView &
proprietary

Team C
Issue Tracker Vendor

P08,
P09,
P11

 P07 P10
 FogBugz

Team D
Large Display Vendor P15 P13 P12 P14 FogBugz &

Excel

Table 3.1 – Overview of participant population

Table 3.1 also reveals that we were reasonably successful in recruiting a cross-

section of the various roles within the development team (excepting Team A, where we did

not interview a PM). This was important in helping us understand the interplay among the

three primary roles of interest (developer, QA, and PM), and in particular between the

developers and QA staff working “in the trenches.”

3.1.3 Methods and materials

We primarily used qualitative methods for our study, specifically, semi-structured

interviews. The interviews were conducted in-situ (i.e., in each participant’s regular office)

whenever possible to both preserve work context and facilitate the contextual interview

aspects of each study session (see Section 3.1.4) [Beyer and Holtzblatt 1997]. A variation

of the grounded theory approach to data analysis was later applied to our interview data

(described further in Section 3.2) [Corbin and Strauss 2008].

Initial study formulation

We began designing our study by thinking about the following research questions:

 28

1. What role does lightweight communication (email, chat, instant messaging, wikis,

twitter, verbal conversation, etc.) play in the day-to-day completion of software

development tasks?

2. How does such communication apply to, interoperate with, and sprout from issue

tracking tasks (filing software bugs, working on feature requests, handling customer

support problems, etc.)?

3. How might this communication be better leveraged and/or supported by software

development tools?

From these initial questions we iteratively expanded (and then later refined) the set of

questions we were interested in exploring. This list of questions later became the interview

protocol discussed below.

A questionnaire targeted at capturing participant experiences and practices with

lightweight communication in respect to issue tracking tasks—as well as basic experience

and demographic information—was also created. This questionnaire was administered prior

to the semi-structured interview portion of each participant’s session and served to help

frame each participant’s mind within the area(s) of their work we would later be

interviewing them about.

Some initial sketches of potential development and communication tools were also

drafted throughout the course of our study based on my own personal experience and

intuition as well as participant comments, ideas, and opinions obtained through interview

sessions.

Ethics approval and research activities

After developing the initial drafts of the questionnaire and interview protocol, we submitted

an ethics application to the University of Calgary’s Conjoint Faculties Research Ethics

Board (CFREB), which was approved after minor revisions (see Appendix A). This

application outlined the following set of research activities each participant could be asked

to partake in, where participants would be compensated $20 for their time.

 29

1. A questionnaire about the participant and their experiences and practices with

lightweight communication in respect to issue tracking tasks (see below).

2. A contextual interview during issue tracking tasks and related software development

tasks (whichever issue tracking tasks the participant may be working on or

preparing to work on as part of their regular work routine) for a period of time not

to exceed two hours. During these tasks a researcher will observe and make notes.

The participant may be asked to think aloud and clarifying questions may also be

asked by the researcher.

3. A semi-structured interview about their software development habits related to issue

tracking and their usage of lightweight communication channels. A series of open-

ended questions will be used to guide the general direction of the interview, but

emergent issues and ideas will be explored as they come up (both that arise during

the interview and that arise during the observations).

4. Sketching of their ideas for potential user interfaces and tools that would make use

of such communication (including design suggestions and potential requirements

for addressing their needs and wants).

5. Feedback on prototype systems and software development tools (sketches, computer

software, textual and verbal descriptions, etc). This task may be a recurring one in

order to facilitate an iterative design process.

I conducted a dry-run of my study with a post doctoral researcher at the University of

Calgary who had software development experience, and through this process, I improved

various aspects of the protocol and mechanics, (e.g., audio recording quality), and made

refinements and clarifications to both the questionnaire and interview questions. In practice,

due to time constraints most interview sessions followed an abbreviated agenda consisting

of the questionnaire and a combined contextual/semi-structured interview as described in

Activities 1–3. Only participants from Team C were explicitly involved in the sketching

feedback and brainstorming activities of Activities 4–5 (see below).

 30

Questionnaire

The questionnaire administered to participants (Figure 3.1 and Figure 3.2) was designed to

gather information about their experience and usage practices with issue tracking and

lightweight communication tools. As shown in Figure 3.1, we asked each participant about

the length of their experience developing software with the support of an issue tracking

system both continuously as well as in total (i.e., including any gaps). Primary uses for their

issue tracker were solicited along with approximate frequencies of use for various

communication channels (email, chat, instant messaging, verbal communication, etc.).

Basic demographic information such as age and sex were also requested (Figure 3.2).

 31

Figure 3.1 – Questionnaire (page 1 of 2)

 32

Figure 3.2 – Questionnaire (page 2 of 2)

 33

The questionnaire was administered after each participant completed the informed

consent process, but prior to the contextual/semi-structured interview. In addition to

following the procedure outlined in our ethics application, this ordering also primed our

participants for their interview by helping to both frame the context of our study and also

put them into the mindset of the types of stories, experiences, and problems we were

looking to explore.

Interview protocol

The contextual/semi-structured interview activity, which was audio-recorded, roughly

followed a list of fourteen guiding interview questions and requests (see below). Some of

these fell under a more contextual interview style (e.g., “Please walk me through the

process of adding a new bug into the issue tracker.”), while others followed a more

traditional question-and-answer format (e.g., “When working with bugs in the issue tracker,

what are the other software tools you use most frequently?”). Throughout this activity the

observer took notes of interesting, surprising, and/or unclear comments or actions made by

the participant to be followed up with later during the interview. Emergent issues were

explored in greater depth as time, relevance, and significance permitted.

Participants were asked to describe various aspects of their issue tracking system

and the processes and communication surrounding it. The interview protocol included

questions pertaining to workflow, coordination, issue lifecycle, information seeking habits,

and motivations for selecting specific communication channels as well as selecting among

multiple available channels. We also explored shortcomings and workarounds related to

their existing tools—both those related to communications as well as those targeting

general software development.

The basic interview protocol was as follows, with additional questions inserted

opportunistically based on observations made and participant responses:

1. Can you please give me a tour of the issue tracking system you use?

2. What issue tracking system do you use? Have you always used this system in your
current position, or have you switched recently?

 34

3. Can you please describe the primary purpose of issue tracking systems from your
perspective?

4. What are the different roles and responsibilities of the people working with the issue
tracking system in your department (including yourself)? Do certain people have
different levels of access to the issue tracking database than others?

a. Is there a QA process?

b. Do outside stakeholders (users) have the ability to enter bugs and/or feature
requests directly/indirectly into the issue tracker?

c. Does management make use of any reports or metrics from the issue
tracker?

5. What is your workflow for managing and resolving bugs/features? What are the
steps in the process? Who is/are responsible for each step?

6. What information is usually tracked with each issue?

7. Please walk me through the process of: (“Tell me about the last time you did X...”)

a. adding a new feature or bug into the issue tracker.

b. starting to work on resolving a bug

c. starting to work on implementing a new feature

8. When working with bugs/features in the issue tracker, what are the other software
tools you use most frequently? Why do you use these particular tools?

a. Integration with source code repositories, IDE, email?

9. What types of information do you frequently require from others in order to
complete your day-to-day issue tracking and related software development tasks?
How do you usually obtain this information? How frequently do you find yourself
looking for these kinds of information?

10. What communication channels do you use to communicate with your colleagues
and other project stakeholders? How frequently do you use each communication
channel?

a. Micro-blogging (e.g., twitter)

b. Instant messaging

c. Chat (e.g., IRC)

d. Email

e. Wiki

f. Mailing lists/bulletin boards

g. Verbal conversation (face-to-face, phone/Skype)

h. Physical notebook

 35

11. Do you have a preference as to which communication channel you use? If so, under
what conditions and why?

a. Try to discern motivation for use of one channel over another

b. Synchronous vs. asynchronous component

c. Normally archived vs. not normally archived (i.e., availability of
communication history to the rest of the team, management, etc.)

12. How frequently is the information obtained via lightweight communication
channels used? Are the outcomes of these communication episodes ever transposed
into another location (e.g., issue tracker, wiki, email, notebook, etc.)?

13. What shortcomings have you experienced with the tools you currently use from a
communication/collaboration perspective? What workarounds have you come up
with? Are there any shortcomings that stop you from completing your issue tracking
or related software development tasks?

14. Is there anything else you’d like to tell me about that I haven’t asked you about?

During explicit “walkthrough” questions (e.g., Questions 1 and 7) as well as those that

often spurred specific examples that could be demonstrated or relived (e.g., Questions 4b,

4c, 5, 6, 8, 10, 12, and 13), participants would often—and were also encouraged to—tell

complete stories of how a given bug or feature (for example) evolved over time from its

initial conception through to its final or current state.

Design sketch roundtable

Throughout the research study, I created a number of design sketches that illustrated

enhancements to development and communication tools as well as issue tracking systems

(see Chapter 6 for greater detail and examination). Most of these mock-ups were created

between the week leading up to our first participant session and the end of our study some

weeks later. After completing all of the contextual/semi-structured interviews, a subset of

the participants from Team C were asked to give feedback on a set of these potential

software interfaces. The interfaces were presented as annotated paper-based sketches (e.g.,

Figure 3.3) developed using the Balsamiq Mockups [Balsamiq Studios 2009] rapid

interface prototyping tool. Pros and cons of the presented designs as well as ideas for other

potential interfaces were solicited.

 36

Figure 3.3 – Sample design sketch

During this session each interface was explained verbally and any questions

regarding the envisioned functionality were answered. Feedback ranged from technical

feasibility concerns, to alternative interactions, to entirely different communication and/or

development tools. The sketches themselves along with their pros and cons and the

feedback received are examined in Chapter 6.

3.1.4 Problems and limitations

Participant interviews were carried out in each participant’s regular workspace whenever

possible. As is typical with contextual interviews, particular problems did arise. For

example, while story-telling, participants sometimes moved far away from the topic of

issue tracking. In these cases, we had to re-orient the discussion to bring it back “on track.”

Some participants also had their own constraints that interrupted the interview. For

example, P04 had an abbreviated interview due to conflicting meetings. The logistics of

meeting with particular teams also affected what we could do. For example, Team B’s

 37

members each met with the interviewer at a common office due to logistical constraints. In

this situation, a terminal remotely connected to the participant’s regular workstation was

provided to maintain as much software work-context as possible. This occasionally added

some extra work for participants in accessing their software (e.g., some pages normally

displayed automatically had to be loaded manually, some people worked with dual

monitors while only a single monitor was available in the office used, etc.). All problems

experienced were relatively minor, as participants were always able to explain and show

what they were doing and access the requisite applications and websites.

Across the four teams studied, only three major commercial issue tracking software

packages were observed (Microsoft SharePoint [Microsoft Corporation 2009b], ExtraView

[ExtraView 2009], and FogBugz [Fog Creek Software 2009a]), plus an additional

proprietary abstraction/integration layer used by Team B. Given the large number of both

commercial and open-source issue tracking systems currently available, our study’s

observations may not generalize to the broader use of issue tracking systems as a whole. To

help address this, many of our results (see Chapters 4, 5, and 6) focus on higher-level,

crosscutting concerns rather than product-specific shortcomings (unless noted otherwise).

Similarly, our study focused on the use of issue tracking and communication tools by small

(<30), collocated, non-open-source development teams. As such, our observations likely

differ from those seen in larger and/or primarily distributed teams, such as those seen in

many popular open-source projects [Anvik et al. 2006, Bettenburg et al. 2008, Reis and de

Mattos Fortes 2002].

 Finally, many of our participants self-identified as being interested in our study and,

as such, may have been biased. For example, after hearing about a study being done on

communication and issue tracking, developers with “an axe to grind” about their current

toolset may have been more likely to volunteer or otherwise participate (although we saw

no evidence of this in our data).

 38

3.2 Data Collection & Analysis

Our raw data comprised field notes, audio recordings of the interviews, and questionnaire

results. After completing our research study, a multi-staged analysis process then began.

This process was made up of two primary phases: transcription of the interview audio

recordings followed by a grounded theory-inspired approach to the analysis of the resultant

interview data [Corbin and Strauss 2008]. Full transcription of interview audio recordings

was chosen as part of our bottom-up analysis strategy. A top-down coding approach,

whereby a selected set of concepts or “codes” would be listened for, tagged, and extracted

from the interview data [Corbin and Strauss 2008], was considered, but discarded due to the

open-ended, exploratory nature of our initial research questions and interview protocol.

Since we did not set out to reject a specific hypothesis—and despite the initial concepts that

appeared to surface during the interviews themselves—we chose instead to let the concepts

“bubble up” from the data itself. To support this strategy, a full transcription approach to

the raw interview recordings was taken.

3.2.1 Interview transcription

In total, over 21 hours of audio recordings were produced from the 15 participants

interviewed, all of whom consented to the use of a digital voice recorder during their

respective interviews. Using foot pedals and the associated transcription control software

[NCH Software 2009], over 330 pages (when formatted with 1" margins and single-spaced)

of transcripts were generated. The transcription process was done by me, where it took

approximately 130 hours to complete spread out over the course of several weeks following

the fieldwork portion of the study. This intensive transcription task meant I became

intimately familiar with the data.

During interviews, participants often referred to visuals (e.g., screen contents) and

context-specific items as they performed walkthroughs and/or described examples. These

were captured somewhat in the field notes and occasionally supplemented by screen

captures obtained with the participant’s consent. To augment the audio record during

transcription, I consulted my field notes and added annotations to the transcripts when

 39

necessary in order to paint an accurate and as-complete-as-possible picture of what each

participant was relating to the interviewer.

3.2.2 Data analysis

Once the interviews were transcribed, I took a multi-pass approach to analyse our data from

the bottom up. This process was inspired by and largely mimicked the grounded theory

approach described by Corbin and Strauss [2008]. The first pass consisted of reading

through all the transcripts in detail and highlighting interesting, surprising, or seemingly

important or recurring phrases and ideas. To facilitate this note taking process the

transcripts were printed using half-page right margins which provided ample space for

annotation and note making An example working environment is shown in Figure 3.4,

where we see an annotated and marked up transcript page (right side), the accompanying

field notes (left side), and various office supplies to assist in the marking-up process.

Figure 3.4 – First-pass data analysis artefacts

 40

After completing this first pass, I began the second pass of analysis using Affinity Diagram

construction [Beyer and Holtzblatt 1997], i.e., where items are grouped and re-grouped into

related clusters, and then labelled as themes emerged. Here, I re-read the transcripts along

with my annotations and wrote down salient points and direct quotes on sticky notes and

loosely organized them on a large whiteboard. Figure 3.5 illustrates the working

environment, where it shows a multitude of notes spread across multiple whiteboard

surfaces, spatially aggregated into tentative affinity groups. Intermittently throughout this

round of analysis—and usually after a large enough pile of new sticky notes had

accumulated—I would stop and organize these notes into the existing groupings or form

new ones. After completing the task of generating all the sticky notes I then re-read them

and carefully reconsidered their tentative groupings. This resulted in the re-shuffling of

existing collections of notes to better reflect the concepts emerging from the data, as seen in

Figure 3.6, and the close-up in Figure 3.7. Of course, these groupings of concepts and

points were not exhaustive. During affinity diagramming, I identified other possible cross-

cutting themes and concepts, but decided to not explicitly group these within the affinity

diagram due to their constituent notes already being grouped elsewhere. After multiple

passes of reviewing the groupings and reading the sticky notes, I refined and structured the

concepts to arrive at the higher-level themes that make up the outline for much of Chapters

4 and 5.

 41

Figure 3.5 – Affinity diagram construction

Figure 3.6 – Theme and concept groupings extracted from interview data

 42

Figure 3.7 – Close-up of in-progress concept clustering

Once the concepts had solidified, I performed another pass over the interview

transcripts, where I extracted representative quotes that illustrated the themes and concepts

identified through the affinity diagramming analysis phase. These quotes are used in the

following chapters.

3.3 Summary

This chapter described the process used to design and execute our research study. It began

by outlining the high-level goals of my study, its target audience, and the recruiting process

used to obtain our participants. Next, the roles within the development team that we chose

to investigate were described (i.e., developer, quality assurance, and project manager),

along with brief descriptions of the organizations interviewed and a breakdown of our study

participant demographics. The materials used in our study (e.g., ethics application,

questionnaire, interview protocol, etc.) were presented and the methodology used in our

 43

analysis of the resultant data was also described. The next three chapters detail the results

obtained from our analysis.

 44

 45

Chapter 4. Roles of the Issue Tracker
In the next two chapters, I present the results from the study outlined in Chapter 3. This

chapter covers the results pertaining to the multitude of communication and collaboration

roles taken on by the issue tracking system in small, collocated, industrial software teams.

Chapter 5 will concentrate on the differing views held by those on the development team

who make use of the issue tracker, the functionality breakdowns of such systems, and the

incompletely met needs of these development teams in relation to their tools.

As described in Section 3.2.2, I analysed the interview transcripts, identified

themes, and extracted representative quotes for each of those themes. I then interpreted

these themes, where I took those that reflected existing CSCW theory and tied them back

into the literature.

This chapter begins by revisiting the conventional definitions of issue trackers. As

we will see in the remainder of the chapter, the conventional definitions do not tell the

whole story revealed by our interview data analysis. Subsequent sections show how the

issue tracking system satisfied a number of different social, communicative, and

collaborative roles for our participant teams. We will see how the issue tracker serves as a

knowledge repository, a boundary object, a communication and coordination hub, a

communication channel, and as a contextualization repository.

4.1 Conventional Definitions

Most definitions of an issue tracker (a.k.a. a defect or bug tracker) approximate Pressman’s

[2004] description of it as a software tool “that enables the [development] team to record

and track the status of all outstanding issues associated with each configuration object.”

 46

While a reasonably accurate surface description, in practice most issue trackers also track a

variety of other artefacts, e.g., feature requests and inquiries.

In its simplest form, an issue tracker serves as a centralized database for tracking

bugs, features, and inquiries as they progress from their initial creation to a final closed

state. Bugs outline defects—usually software defects—that need to be addressed by the

development team. Bugs may be initially reported by customers, the QA team, or anyone

else with access to the tracker. Features represent new functionality or enhancements to

existing code. They usually originate from project managers or team leads. Inquiries

include everything from sales questions to technical support cases and largely originate

from customers.

Issues progress through various states over time (open, resolved, closed, etc.). For

each state change or update, various annotations are often stored along with the issue.

These annotations typically include attributes, such as the title or due date for resolving a

bug, the history of ownership, and discussion about the issue.

Yet, this database view of issues does not tell the whole story. As alluded to in

Chapter 2, there are a number of social dimensions to issue trackers that extend well

beyond the conventional definitions found in the literature. Through our interviews and the

analysis of their transcripts (as described in Chapter 3), we uncovered a number of other

social dimensions of issue tracking systems and identified a number of interrelated roles

served by the tracker. These are described in the following sections.

4.2 Issue Tracker as Knowledge Repository

A knowledge repository can be defined as an “on-line computer-based storehouse of

expertise, knowledge, experiences, and documentation about a particular domain of

expertise” [Liebowitz and Beckman 1998] and that by “creating a knowledge repository,

knowledge is collected, summarized, and integrated across sources.” In this regard, an issue

tracking system is also a knowledge repository. Expertise and knowledge are stored in the

form of bug resolution descriptions, troubleshooting steps taken when working on customer

 47

support cases, and even in the assignment of bugs and feature requests to the appropriate

team member by a PM or team lead based on their knowledge of expertise. The domain of

expertise being described is that of the software system being developed. Knowledge is

accumulated across many sources, including both human (developers, PMs, QA, customers,

etc.) and digital (source code repositories, screen captures, customer email, etc.). The

knowledge repository becomes increasingly critical to its users, especially as the volume of

knowledge continues to grow over time:

Having [the issue tracker] able to page things back into my brain is
definitely the largest impetus for doing everything in [the tracker].

—P09

In addition to recording a simple list of all the bugs, features, and customer inquiries

worked on by a team, the issue tracker also stores a massive amount of organizational

knowledge [Ackerman and Halverson 1998]. Ackerman and Halverson clarify that it is

often more fruitful to think of organizational memory as “both object and process,” and this

applies in the realm of issue tracking as well. The underlying database of bugs, features,

and inquiries serves as the object representing the development team’s memory, while the

practices established by that team (entering issues into the database, keeping

communication about issues with the issues themselves, and searching through previous

issues before filing new ones) serve as the process that keeps the team’s memory accurate,

robust, and useful.

We’ve had this thing for 8 years, starting from case 1, and now we’re at
1,354,487 cases. All these little bits…little bits of insight and little bits of
things are in there and you can search them. … It has been really valuable
for us, and in the future it’s just going to grow and grow and be more
valuable.

—P08

Over time, the issue tracker builds up a staggering amount of information concerning

nagging customer support issues, partially fleshed out feature ideas, and a large portion of

the communication surrounding these developments. This enormous pool of information is

 48

often useful for both the organization and the software team on a number of different levels,

some of which have been described by Dingsøyr and Røyrvik [2003].

Project managers in our study argued on behalf of customers and used the issue

tracker’s rich history to back up their arguments with concrete data by querying the issue

tracker:

We’ve had 50 customers who have complained about this problem. It’s time
to stop punting this issue and actually fix it.

—P10

With the source control integration provided by many of our participants’ issue trackers,

programmers delved into previously resolved bug discussions to gain a better

understanding of how a section of code came to be:

Say I came across this code and I didn’t understand why they implemented it
this way. Then I would look up the [issue tracker] cases to see what they’re
trying to fix.

—P13

More broadly speaking, this massive store of interrelated data is highly valued by those

who use the issue tracker, even when they cannot find the words to succinctly quantify it:

Having this archive is huge, in the bug tracker. It’s one of the biggest…one
of the primary reasons we use [our issue tracker].

—P09

This ever-growing knowledge store is not entirely contained within the walls of the

issue tracker, however. Instead, this knowledge is distributed across the issue tracker and

those who use it both directly (such as programmers and testers) and indirectly (such as

customers). It is in this way that the issue tracker plays a significant role in the distributed

cognition of the software development team [Hollan et al. 2000]. Each stakeholder in the

issue tracking lifecycle contributes information and knowledge to the issue tracker via

individual bugs and features. This knowledge is then distributed amongst those who add to

these records as well as those who simply monitor issues and keep abreast of their progress.

 49

4.3 Issue Tracker as Stakeholders’ Boundary Objects

In this section, we describe how issue trackers involve a large social network of

stakeholders, where the issue tracker and its issues serve as boundary objects, whereby

stakeholders in different roles have different views of the underlying issues represented,

and leverage the data stored in the issue tracker in different ways [Star and Griesemer

1989].

We discuss stakeholders first. We talked at length with project managers,

developers, and those on QA teams about how they use their issue trackers. Although

primarily aimed at software developers and quality assurance, we discovered that the issue

tracker’s social network extends to include a wide range of roles and stakeholders within

the broader software ecology, all involved in the process of entering, tracking, and

resolving issues.

For example, we found that project managers would use feature requests from

customers to help formulate the direction of the software product; customer support

leveraged the ability to create, view, and monitor bug status to fix customer problems and

notify them of important updates and potential workarounds; and some teams even

integrated the issue tracker with the sales team to track potential clients and answer their

inquires. Finally, and perhaps most importantly, our developer and quality assurance

participants used the issue tracker on a day-to-day basis for prioritizing work and steadily

improving the quality of their product.

Initially, it may seem that many of these stakeholders operate in relative isolation.

After interviewing participants in project management, developer, and quality assurance

roles, we found this was most definitely not the case. Issues were frequently assigned

between project managers and developers to clarify priority and direction. Customer

support assigned potential bugs to QA to confirm their existence and refine their

reproduction steps (the step-by-step instructions on how to recreate or “repro” a problem).

After this stage was complete, we found that QA would then either assign the bug directly

to the developer who was likely responsible for that area of code or to the lead developer of

 50

the team for them to triage the bug’s priority and determine who best to tackle it. It is the

nuance between these roles and the flexibility of the underlying issue tracking system that

has resulted in the tracker serving as not merely a repository of data, but also as a

communication hub that fosters coordination among the entire product team and its related

stakeholders.

Each of these stakeholders has a different set of needs they look to the issue tracker

to satisfy. While each participant recognized a similar overarching goal of what the issue

tracker was for, each had a slightly different set of expectations and uses for the underlying

issues based on their role within the development process. This is where boundary objects

come in. The issue tracker, and in some ways its issues, served as boundary objects within

this setting; that is, participants in different roles leveraged the data stored in the issue

tracker in different ways and had differing views on what the underlying issues represented

[Star and Griesemer 1989]. Several examples of the different ways in which stakeholders

viewed the issue tracker as boundary objects are provided below.

Our first example is reflected in the way development team participants in different

roles filtered and sorted cases within the issue tracker. Project managers often looked at

high-level summaries of outstanding issues broken down by their priority level to get a feel

for how close the release under construction might be to shipping. In contrast, team leads

would break down outstanding tasks by the members of their team to ensure that no

individual team member was over- or under-burdened. Finally, quality assurance regularly

grouped open and resolved cases by project area or category to ensure that an even

distribution of product coverage had been met through their testing or to focus their

attention on under-tested areas of the product.

Our second example includes the collection of people who interacted with the issue

tracker that are outside the development team boundary or even outside the company

boundary. The sales team, management higher up the organizational hierarchy, and contract

workers (often testers) periodically worked with the issue tracking system. Customers

external to the organization would interact with the tracker, though usually in an indirect

manner such as via automated crash reports or email integration (see below).

 51

Given the wide range of people working with and influencing the contents of the

issue tracking system, it becomes clear how an issue-tracking system can act as a boundary

object between relatively disparate social worlds [Fitzpatrick, 2003], where the

fundamental purpose of (and usage for) the issues stored within can vary widely. Customers

are made aware of the issue tracker via the case number automatically appended to their

support emails or through the “support ticket” form they filled out after encountering a

problem with a piece of software. They view the underlying issue tracker as a means to the

resolution of their problem and also as a confirmation of acknowledgement that their

concerns are being addressed by the company and not just funnelled into an inbox that is

never checked.

Sales and customer support staff view the issue tracker as a tool for assisting them

in acquiring new clients and keeping existing clients happy. The issue tracking system

provides them both with the detailed client history they need to ensure that existing

customers feel well taken care of, and also helps to keep pertinent information readily

available so that the customer need not be asked the same questions repeatedly whenever

they contact the company. Furthermore, as a sales tool, the issue tracker provides a resource

for answering technical inquiries from potential customers in a timely and easily traceable

manner.

This multitude of purposes, usages, and understandings of the issue tracking system

speaks to the malleability of its identity depending on where a stakeholder lies in proximity

to the tracker and with whom such a stakeholder interacts with across the company or

development team boundary. The wide range of people interacting with and relying on the

issue tracking system on a regular basis also begins to illustrate the broad communicative

power it provides.

 52

4.4 Issue Tracker as Communication & Coordination

Hub

Given the large role that issue trackers often play in the development process and the

number of stakeholders that may be involved in it, it is not surprising that a significant body

of communication surrounds the data stored within these systems. Examples include

priority discussions during triage meetings, reproduction step clarifications between the

person who created an issue and its current owner, fix verification and regression testing,

and so on. All these conversations are communicated across a number of different channels

and frequently end up being stored along with the associated bug in one way or another.

That is, the issue tracker serves as a communication and coordination hub, where it stores

information collected and disseminated not only within the issue tracker, but also via other

communication channels (face-to-face meetings, instant messenger contents, email, wikis,

etc.).

Tracking all the communication related to issue tracking systems can be

challenging, but proves to be crucial in providing the team with the necessary tools to

coordinate their work:

You’re not going to be able to do it in your head or in files or in multiple
emails that are being sent to all these different people…they’re not
connected. … If it’s in this one central place that other people can see,
maybe there’s a chance for it to get fixed twice. Not just fixed once for the
customer we fixed it for, but fixed for all the customers.

—P08

The idea of the issue tracker serving as an easily accessible place to tie together all the

various threads of information involved in software development came up again and again

in our study data from all of the teams interviewed. During triage meetings, the newly

agreed-upon priority would be stored in the audit log of each bug under discussion. The

assignment back and forth between a bug’s filer and whoever is currently working on it was

also logged when reproduction steps were being clarified. Similarly, the verification of

 53

resolved bugs and their transition into a closed or verified state was also recorded. Not only

were all the state and field changes recorded, but other forms of communication were also

frequently transposed into the issue tracker: copied-and-pasted portions of instant

messenger conversations or email threads, summaries of face-to-face meetings, and even

self-reflective notes and ideas for potential causes and solutions to problems.

The issue tracker also served as both the starting and ending point for various links

between development artefacts for our participants. Duplicate and related bugs often linked

amongst each other. Developers working on a case would often ask for a co-worker’s

opinion or suggestions on how to proceed, and in the process they would often synchronize

their view by sharing the bug id of the issue in question via instant messenger or email.

Outbound links from the issue tracker tied individual feature cases to their respective

specifications in wiki documents and links to shared document repositories also frequently

originated within the issue tracker. Finally, countless reports were either generated directly

from the issue tracker itself or leveraged the data stored within it.

Additionally, many of our participants’ issue trackers also supported tight

integration with email. Email addresses could be configured to serve as public-facing entry

points to the issue tracker. Whenever an email was sent to such an address, an issue would

be created in the tracker and a pre-designated person would be notified of its existence. As

one might expect, replies could be sent from the issue tracker to the original email sender

and later replies would be appended to the issue via a bug id that was automatically inserted

into the email subject line.

It is through this interweaving of communication and the centralization of decisions

made and available resources that the issue tracker helped senior developers and project

managers coordinate their teams:

From a team lead perspective, this is where all the communication and list
making and giving tasks to people happens.

—P08

 54

The many interconnected communication channels all funnelled their way through the issue

tracker in a variety of convoluted ways, and part of the glue that held these paths together

was the tracker’s ability to serve as a communication channel, in and of itself.

4.5 Issue Tracker as Communication Channel

Issue trackers also support direct—albeit sometimes rudimentary—communication via their

own facilities. Each of our participants’ issue trackers provided a means for them to

communicate directly with others about an issue. Sometimes this capability was presented

as a “comments” field that could be filled-in whenever an issue was being assigned from

one person to another and would be appended onto the end of the existing list of comments.

In other systems, there was a single “task discussions” field that was edited collectively and

repeatedly by the various stakeholders interacting with the bug. Both variations of this

practice were often augmented by the ability to attach or associate email messages,

screenshots, or other artefacts to an issue.

The comment history or issue discussion (as described in the previous paragraph)

was frequently viewed as the single most valuable asset of using an issue tracking system:

Comment history. So this is huge. This running dialog on the bug, this is
just…this is necessary. Like, you can’t work without this. … You can just see
a history and figure out what the decision pattern was. … Just having this
record is invaluable.

—P04

The majority of our participants explained that by providing a consolidated view of an

issue’s entire history, it became possible to later review that history and gain the necessary

context to understand the rationale behind decisions made and directions taken. This

consolidation aspect also resulted in a significant displacement of email usage in favour of

the issue tracker (excluding the notification emails described below) for some of our teams:

So [the issue tracker] is really the primary form of communication and that’s
why I think we don’t use email as much. It’s pretty consolidated.

—P07

 55

The communication channel provided by each issue’s comment history was often favoured

over other channels that were viewed to be more interrupting for less urgent and timely

communication. For example, instant messaging systems, while used, were not necessarily

preferred due to their propensity to alert, flash, and otherwise grab their users’ attention

[Nardi et al. 2000]. The issue tracker’s more subtle support of back-and-forth

communication was often favoured. In this way, the case itself served as a persistent,

asynchronous, and oftentimes multicast communication channel.

If it’s going to actually add any piece of information that is relevant to the
case...if that talk’s going to add...then I’ll usually try to do it in the case.

—P09

Typically, whenever an issue was assigned to someone, the new assignee would be notified

of the event via email. Most of the issue trackers used by our participants also supported the

idea of “subscribing” to an issue and being notified, again via email, whenever anything

about that issue changed. Of course, each of these messages had a link back to the actual

issue, thus integrating the communication with the issue and its related information.

Because the comment history was an integral part of each issue and remained

attached and visible throughout the issue’s entire lifecycle, it served as a form of anchored

conversation [Churchill et al. 2000] that kept relevant communication embedded within the

context of the issue to which it referred:

Okay, so in that specific case I would use [the issue tracker] for sure
because then there’s a record of the communication with the bug, which is
where I want it anyway. Like, if I ask someone separately in a different way
than I am just going to write it in the bug anyway.

—P07

After interviewing our participants, we came to realize that each issue was treated much

like a threaded chat room conversation in which the comment history formed the body of

the conversation and the issue itself provided the topic for each thread. Participants in the

conversation came and went over time (either via being assigned the issue or by subscribing

to its changes) and the persistence of the issue allowed for asynchronous communication

 56

and collaboration among its stakeholders, much like the Babble system described by

Erickson et al. [1999].

4.6 Issue Tracker as Contextualization Repository

As touched on in the previous sections, we found that the issue tracker also served as a

significant source of context for the issues being worked on by our participant teams.

Because of how “once a case gets opened, everything that happens to it is tracked in the

system” (P09), the issue—and its associated comment and assignment history—provided a

single point of contact for understanding the lineage and work history for a given bug,

feature, or customer inquiry. This sentiment was expressed by each and every team we

interviewed in one way or another. In addition, by having a long-term archive of previously

resolved bugs and answered customer questions, the issue tracker became the de facto

information source—as well as the first logical destination for most new information—for

many on the development team:

That’s why I use [our issue tracker] for almost everything. Because then it is
all archived and I can easily find stuff in it.

—P07

Having a complete and readily available history of previous communication also proved to

be essential to our participants in creating and maintaining quality relationships with

customers over time:

This is actually an example of a case where having the complete history of
the conversation with this customer is pretty important because they’ve
clearly put a lot of time and effort into trying to talk to us about their ideas
and that means ... they’ve clearly put a lot of value onto the relationship that
they’ve developed with us and so that’s a good indicator to us that we
should be putting time back into that relationship.

—P10

In a similar manner, having the detailed history of how a given bug or feature came to be in

its current state was key in assisting PMs and lead developers in both the initial triage

 57

process as well as the ongoing, iterative prioritization of remaining issues in a project as it

progressed throughout its development lifecycle:

You can just see a history and figure out what the decision pattern was. So
at a triage ... often in a meeting we made a decision, like two months ago, on
this looking at the bug and then it comes back to us and we’re wondering
what’s going on and we can see the new discussion pattern and realize that,
oh, things are quite different, we need to make a new decision based on this
new information. And just having this record is invaluable.

—P04

In addition to providing relevant context for issues directly through its own fields and

comment history, the issue tracker also provided linked context in a variety of ways. For

example, the issue tracker used by Team C provided the ability to promote a topic from an

electronic discussion forum into an issue within the tracker while at the same time

preserving its original forum thread:

If you created a case from a discussion group, then that case will always
have a link back to the original discussion topic so you can see the full
context of the discussion.

—P09

Other forms of context preservation were frequently facilitated via alternate means such as

the simple attachment of files or via copy-and-paste mechanisms:

We will attach, like the whole email. ... [That way] they can see the whole
history instead of having to explain it all, you know?

—P12

Analogous to the way various information sources were linked to from the issue

tracker, so too were there a number of other mediums used by our participants that would

link back into the issue tracking system and the additional context contained there. For

example, as described briefly in Section 4.4, the notification emails generated whenever a

case was assigned to an individual served as not only a high-level summary of an

underlying issue, but also as an in-bound link to the context and history of that issue stored

within the issue tracker. In fact, the importance of reviewing the complete context of an

 58

issue prior to beginning new work on it frequently resulted in these notification emails

serving as little more than stepping stones back into the rich environment of the issue

tracker:

The majority of the time, other than I might scroll through and see who did
change it, I’ll then just use the link to go into [our issue tracker] directly and
to look at it there.

—P01

This in-bound linking was also commonly used as a quick and unambiguous means

for synchronizing the views between team members before asking a question or getting

assistance with an open issue:

If someone has a problem with something, they should start their sentence in
IM with an ID. ... [laughs] ... I’ll ping someone with this ID and say, you
know, “Hey, do you know what’s up with this thing?” So it’s like 3 words
and they can look it up and get back to me when they know.

—P04

The patterns described above resulted in the issue tracker serving a context and

contextualization repository for the development teams interviewed. Each underlying issue

within the tracker compartmentalized and consolidated much of the pertinent information

related to it, while also often providing links to additional context either through

attachments or hyperlinks to other electronic systems. Having a canonical address to each

case within the issue tracking system provided participants with lightweight context

handles that could be effortlessly passed among team members in order to quickly

synchronize their respective view of an issue before proceeding with detailed, context-

specific questions or instructions.

4.7 Summary

In this chapter, I explained how issue trackers are far more than a centralized database of

issues being tracked over time. I presented the various roles an issue tracking system takes

on within a development team that were revealed by the participants or our research study.

 59

These roles included: repository-type functions for both issue context and organizational

knowledge pertaining to the software under development; a communication and

coordination role where the issue tracker served as a consolidation point (e.g., a

communication and coordination hub); a communication channel in and of itself; and as a

means for bridging the disparate worlds of various stakeholders (e.g., as a boundary object).

While some of these roles are supported somewhat by the issue tracker, most are a

consequence of the way the social network of stakeholders perceive, appropriate, and use

the issue tracking system. In later chapters, I will suggest ways that an issue tracker can

directly support some of these stakeholders’ requirements.

 60

 61

Chapter 5. Differing Views & Incompletely
Met Needs

This chapter presents the remainder of the qualitative results from the study described in

Chapter 3. Here, I describe the differing views that team members had of various issue

tracking facilities, as well as shortcomings and other incompletely met needs of the

software as relayed by study participants. I then formulate seven design considerations

(summarized in Table 5.1) based upon the above participant frustrations as well as further

analysis of our interview data.

5.1 A Bug List, a Task List, a To-do List, or a...?

As discussed in Chapter 4, issue trackers and the issues contained within them form a type

of boundary object among the various stakeholders involved in the software development

process. That is, “they have different meanings in different social worlds but their structure

is common enough to more than one world to make them recognizable, a means of

translation” [Star and Griesemer 1989]. Although the primary purpose of an issue tracker

was described consistently across participants on the whole, when examined more closely,

the perspectives of participants in differing roles revealed fine-grained distinctions in the

function the issue tracker served. Several of these distinctions are described below.

Developers and members of the QA team expressed the need for an organized list of

their work to-be-completed: “Primarily when I log in on a day-to-day basis I look at the

cases that are assigned to me and I use it as a to-do list” (P07). The issue tracker’s ability to

apply a sense of order to outstanding tasks was largely what allowed developers to “just

come in and sit down and start working” (P09).

 62

However, some participants expressed frustration with the issue tracker being

overloaded for non-bug-tracking purposes. One of the lead members of a QA team

articulated strong opinions about the specific types of issues that should and should not be

stored in the tracker and how that reflected its primary purpose:

[The issue tracker is there] to track problems. Not tasks, problems. Totally
different. You can track tasks with Excel if you have to. It can be done. You
don’t want to track problems with Excel. Because a problem is not
perception, it’s reality, right? That’s the difference.

—P04

From the perception of this QA team, the issue tracker needed to be an infallible depiction

of what problems were still outstanding and which had already been addressed. Schedules

of non-bug tasks could “show you your perception of how things will go, but in [the] issue

tracker you want to know the reality of the situation” (P04).

Project managers and members of the QA team felt the issue tracker also served a

major function as a vertical communication channel, cutting across colleagues at different

levels of the organizational hierarchy; that is, it served as their “method of communicating

to production and management of what the outstanding quality-impacting work left in the

project [was]” (P05). In addition to communicating an idea of the outstanding work

remaining, the issue tracker also provided project managers with the fine-grained work

items needed to manage their team under the pressure of rapidly approaching deadlines:

I mostly go in there on a daily basis to see how many bugs we have—how
many highs/blockers/etc.—making sure they’re actually getting assigned out
to the team.

—P03

In a similar vein, lead developers also recognized the importance of integrating scheduling

alongside the tracker’s list of outstanding work:

What I’ve found now is that we need something more than just bug tracking.
We actually need a way to match that to the schedule as well and have some
sort of time tracking built-in.

—P15

 63

While many of the opinions expressed by our participants focused on how the issue tracker

was used from a personal, within-the-development-team perspective, one project manager

also spoke from the customer’s viewpoint: “I’m using it as an outboard brain to keep track

of all of the things that, from a customer perspective, are important” (P10). From their

standpoint, the issue tracker served not only as a database for tracking bugs and features,

but also as an interface between the company and its customers.

In addition to serving as an “outboard brain” for project managers and customer-

critical information, the issue tracker also served as a catch-all for potentially important, but

easily misplaced or forgotten-over-time details for the development team as a whole:

The primary purpose [of an issue tracker] would be to have a system that
you trust that can serve as a way to page out all of the information which
you know about a product and you know that you can’t remember all at
once. … The issue tracker serves as a way to safely offload little bits of
information—little bugs, little feature requests—and know that they’re going
into a place that we’ll be able to recall later and not worry about being
forgotten.

—P09

These distinct viewpoints suggest that the issue tracking system serves different, yet

interrelated purposes for each of the different roles within the development team. While the

overarching purpose of the issue tracker remains clear, the finer details regarding how

individuals with different roles use the system suggests the need for custom-tailored views

for each of its various stakeholders. This leads us to our first design consideration.

Design consideration #1:

The issue tracker represents different things to different people. These small but

significant distinctions should be acknowledged and exposed in the issue tracker

through features catering to each of the stakeholder’s individual needs.

Customizable, role-oriented interfaces that emphasize certain aspects of the

tracker’s data while abstracting away others may provide a better fit for the

multitude of stakeholders that make up the issue tracking system’s audience.

 64

5.2 Full-fledged Bugs & Almost Bugs

Our participants felt that every bug found in a system should ideally find its way into the

issue tracking system, which would serve as a record of its existence and eventual

resolution. In reality however, the pragmatics of day-to-day development sometimes

resulted in a less-than-complete record. Ephemeral—even if critical—bugs did not always

get entered after the fact, and others failed to be created due to a fuzzy understanding of

their root cause. We also found there were varying degrees of existence for bugs as they

moved from being first reported, to confirmed, to completely fleshed-out entities within the

issue tracking system.

Most participants commented indirectly about when an issue distinctly crossed the

necessary threshold to qualify as a bug. This at times blurry line sometimes depended upon

the accuracy of its reproduction steps, or the level of detail known about its underlying

cause:

In this case I knew that we were monitoring it, so I didn’t create the issue for
it right at that point. … As soon as I’d figured out what it was I logged the
issue because I knew which program was causing the problem.

—P02

And although the practices established at each of our participants’ companies were

generally ones of entering issues as soon as possible, this was not always the case, and

sometimes resulted in a form of “bug filing guilt”:

So when things go awry like this it’s a lot harder to identify. So I might not
log the issue until I have something to go on and something to actually work
with. Though maybe I should log the issue...I should probably log the
issue...that it’s been identified and basically took a first look and couldn’t....
So I’ll take a first look right away and see if there’s something obvious,
because you don’t want to let something like that go because something’s
wrong, but if after looking at it for the first glance you can’t see anything
that’s the cause, you should probably mark it and at least say that it’s
happening.

—P02

 65

The consensus among our participants was that the issue tracker should have as complete a

record as possible of all the bugs in the system; however, there were still certain

circumstances under which bugs—sometimes important bugs—might be missed: “often

bugs that are that critical don’t even get filed because by the time that you would go to file

it, the bug is already resolved” (P05).

To help avoid this problem, some of the participants’ issue tracking systems

integrated with their organization’s public-facing email addresses: “any customer who

sends email to [our company], it goes immediately into our issue tracking system. It

automatically creates a case every single time” (P07). Participants reported that by

automatically generating a case for each incoming email, more cases ended up in the

tracker, and the consolidated view of bugs, features, and customer inquiries further

contributed to the wealth and robustness of knowledge available to the development team.

It is this blurriness and uncertainty that often surrounds the creation of new bugs

that is the premise of our second design consideration.

Design consideration #2:

The starting point for a bug is not always a well-defined point in time. In particular,

an issue’s immediate visibility to other team members creates an onus of

‘completeness’ that may not actually be present; thus the filer may defer or neglect

to file an incomplete issue. Providing functionality for stakeholders to enter semi-

private, lightweight “pre-bugs” may increase the number of bugs that eventually end

up being recorded.

5.3 A “Flurry of Fields” vs. Ease of Entry

Certain members of the development team, such as QA, team leads, and management, often

turned to the sorting and filtering capabilities of the issue tracker to gain insight into the

state of its contents. Having a large collection of small, well-compartmentalized fields gave

these stakeholders the ability to “slice and dice” the tracker’s data in the ways they needed.

Those who filed bugs, however, sometimes did not file bugs due to the amount of work

 66

required to complete the seemingly never-ending lists of required and optional fields on

new issue entry forms. This tension was the number one complaint from our participants

who used issue trackers with customizable fields. Balancing the number of fields associated

with an issue and the ease of creating new cases was often an ongoing battle:

Generally, everyone does feel that there’s too many [laughs]. … So, it does
get frustrating. And we’ve tried at different times to pare it down, but then it
always explodes back out because someone feels they need to indicate
something different about the issue and there’s no other appropriate way to
track that property.

—P01

In contrast, those in QA saw “a value behind every single field because it [would help

them] narrow a query down” in the future (P04). This contention primarily existed between

highly technical personnel with frequent data-mining tasks, and the often less reporting-

centric role of bug filers. Although QA was the predominant source of new bug reports, a

large portion of cases in our participants’ issue trackers also originated from customers and

other potentially non-technical users of their software. These stakeholders would “tend to

skip over a lot of these fields” (P02) because they were more interested in simply getting an

issue recorded in the first place, and returning later to fill in the rest of the details.

The tension between getting the bug in quickly versus having a bug structured in a

way that would provide later value to others is typical of many collaborative systems.

Grudin [1994] describes this as “the disparity between who does the work and who gets the

benefit.”

A groupware application never provides precisely the same benefit to every
group member. Costs and benefits depend on preferences, prior experience,
roles, and assignments. A groupware application is expected to provide a
collective benefit, but some people must adjust more than others. Ideally,
everyone benefits individually, even if some benefit more; however, this
ideal is rarely realized. Most groupware requires some people to do
additional work to enter or process information that the application requires
or produces.

—Grudin [1994]

 67

This tension often resulted in an ever waxing and waning number of fields associated with

cases in the issue tracker, as described by Participant 1 (P01) above. However, a working

solution was described via ad hoc tagging. In particular, some participants managed to find

stopgaps that would give them the sorting and filtering capabilities they needed, without

adding additional fields:

So we try to, in the title, go through it … just because there’s so many [bugs]
… I don’t know what the size is now, but there’s 120 people logging bugs
sometimes, so you just try to go through once you get the bug, try to put
something in the front that helps you query for them and sort by the title.

—P03

This makeshift tagging functionality [Storey et al. 2008] was a wish reflected by others on

the development team as well, and was used as an alternative to adding more fields, even if

it was a less than ideal one: “So what we ended up doing is, look [referring to the title

field]…I’m doing my own tags…‘testpilot:’ that’s a tag” (P04).

Part of the desire for a tagging feature stemmed from the way tags could address the

all-or-nothing problem of adding a custom field; because “unless everyone’s using [the

fields], they’re not useful to anybody [and] that’s the really big problem” (P04). By using

tags (or an ad hoc facsimile), some of the benefits of having custom fields could still be

attained. Additionally, makeshift tagging also supported the need for transient labels and

searchable fields, such as tagging bugs that needed to be fixed for a rapidly approaching

beta release. Such temporary labels served as useful search terms during the limited time

span leading up to the associated deadline.

The need to minimize the number of fields presented to issue filers was well

recognized and even resulted in Team B going so far as to write their own custom

abstraction that sat on top of their issue tracker for creating bugs:

Because you kind of have to be an expert with the bug tracking system to file
good bugs with this system, we wrote a very simple interface to encourage
non-experts to file bugs. … We found that when we put this in, people in
other departments who have never filed a bug before ever, were filing bugs.

—P05

 68

This sentiment was also reflected in Team C, the issue tracking software vendor, by their

tracker not having a single required field when filing a new bug report. Getting bugs into

the issue tracker in the first place, even if incomplete, was a primary concern for many on

the QA team: “It’s to get information disseminated as quickly as possible and then you can

go back to the person to get more information if you need to” (P07).

The tension between having a rich set of compartmentalized data attributes

associated with each bug and the ease with which they could be created was a common one.

Grudin [1994] suggests a solution:

Demonstrating an application's collective and indirect benefits can help.
Reducing the work required of non-beneficiaries seems to be an obvious
priority, but it is very difficult to do in practice, because pleasing the
principle beneficiary is critically important and the natural focus of
attention. One promising approach is to design, along with the technology,
processes for using it that create benefits for all group members. This has
been stressed in several new meeting management applications. For
example, a key element of the process in one is a specific commitment
delivered by the meeting convenor to act on the contributions of the
participants.

Grudin attempts to improve the process, as a way to provide all with a reasonable benefit.

However, our participants created a technical solution of tagging that reduces one person’s

work, while still giving reasonable benefit to others, as articulated in the following design

consideration.

Design consideration #3:

Providing lightweight tagging capabilities to issue tracking would likely help ease

some of the tensions between wanting detailed fields associated with issues, and

maintaining a simplified, hassle-free interface for creating cases. These tags should

leverage the issue tracker’s existing robust infrastructure for searching, sorting, and

filtering issues.

 69

5.4 Different Perceptions of Priority

One of the cardinal services provided by the issue tracker, as described by our participants,

was its ability to prioritize and order their team’s outstanding work. This prioritization

allowed developers and those on the QA team to organize their personal work and maintain

an accurate idea of which issues should be addressed first with the limited time available

for any given milestone. These categories or levels of priority also served as a gauge of

where the project stood in terms of both completeness and relative quality. Having many

high-priority or “showstopper” bugs open presented a very different potential timeline to

management than having only lower priority bugs left to resolve.

We found that the priority assigned to an issue could come from a number of

different sources depending on the development team’s workflow and authority structure.

Sometimes a bug’s priority initially came from the filer of the bug or feature request. Often,

this priority would be redefined at a later time by project managers, team leads, or

individual developers later in the issue’s lifecycle.

For example, Team A worked directly in support of a separate department on

campus and, as such, that department’s manager had a well-defined influence over the

prioritization of projects for the development team:

It’s up to them to decide, you know, “Hey, we’ve got 2 projects of seemingly
equal priority, what do you want us to do?” And they’ll prioritize “OK, that
one’s higher” or “That’ll solve more of our problems.”

—P01

Even though this external manager had the ability to specify the priority of certain projects,

the development team retained its ability to govern its own projects depending on their

scope and size. Those projects requiring less than “one man-week” to be completed did not

require approval from outside the development team. This hierarchical prioritization

structure also trickled down to influence individual developers’ perception of prioritization

factors: “developers set the priority, but then, you know, there are certain ones that are

probably more important to the product owner than other ones” (P13).

 70

When examining a single developer’s list of issues, our participants expressed the

need for finer granularity when prioritizing their work:

We have a pretty simple priority system in [our issue tracker]. There’s low,
medium, high, or blocker, but when you have 3 high bugs “Uh, which one’s
the first one?”

—P06

To work around this, some of our participants repurposed other features of their issue

tracker to address the lack of fine-grained control over the ordering of their bugs: “this

[favourites] menu has a sense of order to it, so I use it as a task list...especially if I’m afraid

I’m going to forget to work on something” (P11).

Finally, the “ripple effect” of changing code in the project also played a significant

role in the prioritization of bugs for some of our participants, such as the project manager

for Team B:

If we’re going to fix this, is this a low risk, meaning we can fix this, it’s not
going to impact anybody else, or is this a high risk, meaning that if we fix
this one model potentially a cut scene could break?

—P03

Although encapsulated within a single “priority” field, the true priority of an issue often

proved to be multi-layered. Project managers, quality assurance, and developers all often

played a role in determining the priority for a given issue and sometimes these priorities

conflicted or left room for personal discretion. The tension around properly prioritizing

issues based on its many influencing factors lead us to the following design consideration.

Design consideration #4:

Acknowledging the multitude of factors that compose an issue’s priority is

important to serving the needs of its stakeholders. It may prove useful to present

users of the issue tracker with a personal, persistent, and easily re-orderable list that

is separated from those strictly ordered based on issue fields such as priority. Giving

users the means to articulate their personal ordering of issues without explicitly

affecting its priority may help them to better organize their day-to-day work.

 71

5.5 Shades of Ownership: Yours, Mine, or Ours?

During our study, issue ownership was repeatedly reported as being an essential component

of the software development process. Having the ability to assign an issue to a single

person via the issue tracker—and having a record of that assignment—provided the

accountability needed by the team in order to complete their work effectively. However,

this ownership of an issue was not always a clear case of “mine vs. yours” throughout its

lifetime.

Most teams in our study had a workflow that reflected the idea of having a single,

high-level owner for each bug, feature, or inquiry. In the case of bugs, this ownership

would often start and end with whoever initially filed the issue: “When I log an issue I

close it because it’s really for me to take it from top to bottom” (P02). This full-circle

approach to issue ownership was supported, although sometimes indirectly, by all of the

issue trackers examined. The process was usually facilitated by a workflow where a case

(once it was resolved) would be automatically re-assigned to the person that originally

opened it. When not enforced directly by the issue tracker’s workflow rules, this behaviour

was instilled in the development team via their standard practices and procedures over time:

Each person has to remember what they’re supposed to do on that system
because otherwise if they’ve taken some work and they’ve done some work
and they don’t assign it back to me, I don’t know that I’m ready to work on
it.

—P02

In the issue trackers we examined, an issue could generally only be assigned to a single

person (or sometimes a placeholder representing a group) at any given time. At first glance,

this may appear to be a limitation, but in reality this was the main reason accountability was

preserved:

 72

[Issues are] always assigned to an individual—someone’s always
responsible for them. None of this diffusion of responsibility stuff. So at any
point your boss can come and say “You’re responsible for this. What’s
going on?”

—P08

The restriction of having only a single active owner at any point in time did result in some

participants monitoring bugs even when they were no longer assigned to them personally:

In this case, [the bug would] still be active and it wasn’t assigned to me, but
I was monitoring it because it was a showstopper…like it was a really big
deal.

—P12

This monitoring behaviour was also sometimes supported via the issue subscription and

email notification functionality described earlier (i.e., small text summaries of actions taken

on an issue can be emailed to anyone who “subscribes” to the issue of interest regardless of

who that issue is currently assigned to). Other times, monitoring would take the form of

flagging or bookmarking the issue by its original owner before assigning it to someone else

to work on: “I start by starring the bug so that I remember that I still kind of own it and then

assigning it to them” (P11).

A related ownership issue was brought up by a member of Team C, who described

the distinction between the ownership of a customer support inquiry and its underlying bug

or feature: “By design we try to separate the inquiry and ultimately the actual bug case”

(P10). This behaviour allowed for a relatively clean separation between the technical

discussion around a fix and the potential workaround instructions and public-facing

discussion with the customer. Hyper-linking between these cases was used in an attempt to

maintain a unified view of both aspects of the issue. Using the linking functionality and/or

the other methods mentioned previously, the contact person responding to the customer

might also monitor the underlying technical bug in order to notify the customer of its status

and progress over time.

The variety and nuance in how issue ownership is viewed by the various

stakeholders of the tracking system, along with the multiple intimately related facets of

 73

issues as defined by their multiple, distinct audiences, prompted us to define the following

two design considerations.

Design consideration #5:

Multiple levels of issue ownership exist throughout the software development team.

By supporting this pattern in the issue tracker itself, stakeholders can eliminate their

need to manually monitor issues that they still partially own.

Design consideration #6:

Allowing for distinct facets of an issue (e.g., customer communication and its

technical discussion) to be contained within a single entity while remaining easily

distinguishable may prove useful in acknowledging the multiple identities of certain

issues.

5.6 Privacy, Transparency, and the ‘In’ Crowd

Just as there is a “vital tension between privacy and visibility” in supporting general

communication [Erickson et al. 1999], a similar tension also exists with respect to the

contents of the issue tracker. Having stakeholders both inside and outside the company

“wall” created tension in whether issues should be accessible by various audiences, as well

as which portions of those issues should be visible, if any. Although developers and project

managers alike agreed that “you want your customers to feel like they’re part of forming

the features [of your product]” (P11), in some cases, this desire conflicted with the inherent

sensitivity of much of the information being stored within the issue tracking system.

Getting customer feedback on which features to implement and keeping them “in

the loop” as bugs were being resolved were both important aspects of the organization-

customer relationship. Exposing appropriate information to customers while protecting

proprietary or vulnerability-related details was a difficult line to walk:

 74

A lot of that stuff is not accessible in [our issue tracker] and would take a lot
of work to make it accessible without exposing private information.

—P09

This dichotomy between “insider” and “outsider” views of the issue tracker was a

palpable source of frustration to those on the development team who frequently interacted

with customers:

The benefit of [our issue tracker] is that it’s really rich and you can see the
entire issue history and a whole bunch of other stuff. But the downside is
that it’s a fairly closed system in terms of there’s a clear sense of who’s in
and who’s out, and customers are sort of out. Even though we can collect
information from them, they can’t interact with the system directly.

—P10

An issue’s representation as seen by those internal to the company was often accompanied

by a public-facing counterpart in a manner much like the customer communication and

technical discussion facets described in the previous section. Unfortunately, in commercial

development teams, striking the necessary balance between transparency for customers and

maintaining the security of sensitive information often resulted in an entirely closed system

with no public presence outside of a bug reporting interface:

Our bugs are not generally publicly visible. Like, open-source projects
probably wouldn’t do it this way, right? They’d probably say, “Oh, that’s a
bug, so let’s open a bug and resume this communication there.” Or maybe
do it both places. But here, we’ve got the internal stuff happening in the bug
and anything where we need to talk to the person directly, we email them
using the [email functionality provided directly by the issue tracker].

—P11

Thus, the last of our design considerations is suggested by the distinctions and nuances

between—as well as the content contained within—each of the fully-private, fully-public,

and apparent “no-man’s-land” areas of the issues stored within the tracker.

 75

Design consideration #7:

Careful consideration of the multiple potential audiences for an issue and its

attributes is necessary when developing external-facing interfaces and views.

Graduation between fully-private and fully-public data may be needed and a clear

distinction among these levels of privacy should be maintained in order to gain

transparency without risking undue exposure of sensitive information.

5.7 Summary

Addressing the vastly varying needs of the software development team along with other

potentially company-external audiences has left issue tracker vendors with a number of

significant challenges. Supporting customer inquiries while maintaining the highly

technical conversation surrounding its resolution has sometimes resulted in a fragmented

representation of what is essentially a single issue. The issue itself now ties together a wide

variety of resources and is leveraged by an increasing number of stakeholders in varying

ways. In order to support these stakeholders, properly faceted views need to be presented of

this wealth of underlying data held by the issue tracker. These may take the form of per-

developer to-do lists, filtered public-facing views, or lists that distinguish between the

perception of future work and the reality of identified bugs. And although no current tools

currently address all of our design considerations collectively, future tools cannot simply

combine them in concert and expect success. Such a system would very likely suffer from

unintended side-effects and excessive complexity rather than successfully addressing the

needs of its various audiences. For example, some of the considerations suggest adding

even more fields to structure the views of an issue tracker, which contradicts the tagging

requirement that eschews a multitude of fields. Rather, it is important for system designers

to carefully consider these tools from the perspective of each potential audience and

actively consider the tradeoffs to be made among the considerations suggested here, as well

as other factors and constraints placed upon their product.

This chapter described a number of the differing views held by various members of

the development team. Areas examined included the differences in how the issue tracker

 76

itself was viewed by its clients (e.g., as a bug list, task list, or to-do list); when an issue

comes into being and when this should be reflected in the issue tracker; the contention

between many well-compartmentalized fields and the ease with which new cases can be

created; the different perceptions and origins of an issue’s priority; the various shades of

issue ownership and their related embodiments; and finally the tricky problem of balancing

the privacy of sensitive issue information with its customer-facing transparency. Through

these discussions I suggested a number of design considerations, summarized below in

Table 5.1.

The question still remains of how these design considerations can be translated into

actual design. In the next chapter, I suggest such designs via interface design sketches that

illustrate enhancements to issue tracking systems as well as development and

communication tools. I showed these designs to a subset of our participants, and then

summarize their feedback.

5.1 A Bug List, a Task List, a To-do List, or a...?
Design consideration #1: The issue tracker represents different things to different
people. These small but significant distinctions should be acknowledged and
exposed in the issue tracker through features catering to each of the stakeholder’s
individual needs. Customizable, role-oriented interfaces that emphasize certain
aspects of the tracker’s data while abstracting away others may provide a better fit
for the multitude of stakeholders that make up the issue tracking system’s audience.

5.2 Full-fledged Bugs & Almost Bugs
Design consideration #2: The starting point for a bug is not always a well-defined
point in time. In particular, an issue’s immediate visibility to other team members
creates an onus of ‘completeness’ that may not actually be present; thus the filer
may defer or neglect to file an incomplete issue. Providing functionality for
stakeholders to enter semi-private, lightweight “pre-bugs” may increase the number
of bugs that eventually end up being recorded.

5.3 A “Flurry of Fields” vs. Ease of Entry
Design consideration #3: Providing lightweight tagging capabilities to issue
tracking would likely help ease some of the tensions between wanting detailed
fields associated with issues, and maintaining a simplified, hassle-free interface for
creating cases. These tags should leverage the issue tracker’s existing robust
infrastructure for searching, sorting, and filtering issues.

 77

5.4 Different Perceptions of Priority
Design consideration #4: Acknowledging the multitude of factors that compose an
issue’s priority is important to serving the needs of its stakeholders. It may prove
useful to present users of the issue tracker with a personal, persistent, and easily re-
orderable list that is separated from those strictly ordered based on issue fields such
as priority. Giving users the means to articulate their personal ordering of issues
without explicitly affecting its priority may help them to better organize their day-
to-day work.

5.5 Shades of Ownership: Yours, Mine, or Ours?
Design consideration #5: Multiple levels of issue ownership exist throughout the
software development team. By supporting this pattern in the issue tracker itself,
stakeholders can eliminate their need to manually monitor issues that they still
partially own.

Design consideration #6: Allowing for distinct facets of an issue (e.g., customer
communication and its technical discussion) to be contained within a single entity
while remaining easily distinguishable may prove useful in acknowledging the
multiple identities of certain issues.

5.6 Privacy, Transparency, and the ‘In’ Crowd
Design consideration #7: Careful consideration of the multiple potential audiences
for an issue and its attributes is necessary when developing external-facing
interfaces and views. Graduation between fully-private and fully-public data may
be needed and a clear distinction among these levels of privacy should be
maintained in order to gain transparency without risking undue exposure of
sensitive information.

Table 5.1 - Summary of design considerations

 78

 79

Chapter 6. Design Sketches
This chapter presents a series of interface design sketches, first introduced in Chapter 3

(Section 3.1.3), that I developed throughout the course of my research study. These

interfaces were created in order to directly address the second goal of this thesis: to design

new interfaces as well as enhancements to existing systems with the intent of incorporating

better communication and awareness facilities into the issue tracking and overall software

development processes. They do not attempt to address all limitations of current issue

tracking systems as described in Chapters 4 and 5. Rather, these three designs stress the

incorporation of communication and awareness within issue tracking. In particular, they

illustrate possible enhancements to communication tools so they can better interoperate

with issue tracking, and to issue tracking systems themselves so that they can better

incorporate the communication surrounding the issues they contain. I presented these

designs to a subset of my research participants from Team C, discussed their envisaged

functionality with them, and solicited their feedback.

6.1 Setting the Scene

The three designs were created as annotated paper-like sketches, where I developed them

using the Balsamiq Mockups [Balsamiq Studios 2009] rapid interface prototyping tool.

These sketches are not formally designed or well-polished systems. Their scope of

implication firmly reflects their presentation as idea sketches rather than well-formed

prototypes [Buxton 2007]. Their intent was to generate conversation and ideas for new or

refined tools centred on communication, collaboration, and awareness within primarily

small development teams. Some of the designs were derived by modifying or extending

existing systems or prototypes previously described in the literature, such as Erickson et

al.’s Babble system [Erickson et al. 1999]. Others were inspired by social networking

 80

websites such as Facebook.com [Facebook 2009], while still others were based directly on

feedback received from participants during our roundtable sessions.

The interface sketches were then provided to selected participants as follows. Each

design was explored together at a group roundtable. I presented each interface sketch to the

participants, and then verbally explained them. Participants could ask any questions they

had concerning the envisioned functionality, which I then answered. I solicited a critique—

pros and cons—of the presented designs, as well as ideas for other potential interfaces from

my participants. Participant feedback ranged from the technical feasibility of each design as

presented, to alternative interaction methods, to suggestions of entirely different

communication and/or development tools. Participants often related personal use cases, and

suggested use cases for other potential audiences of the envisioned tools. I recorded the

roundtable session through field notes taken during the session; it was not audio recorded.

The discussions below are based on these field notes.

In the following sections, I present each design sketch, describe its functionality,

and discuss the feedback received.

6.2 Issue Tracking meets Internet Relay Chat

The first design sketch presented to our participants was largely inspired by Erickson et

al.’s Babble interface [Erickson et al. 1999], illustrated in Figure 6.1, which was itself

largely inspired by various Internet Relay Chat (IRC) systems [Oikarinen and Reed 1993].

As we will see, Babble is an advanced chat-like system based around topics and users. We

extend the Babble concept by considering how it could interact with the information held

by an issue tracking system, where issues serve as topics.

I begin by explaining Babble. As seen in Figure 6.1, the Babble interface is

comprised of a user list (upper left), social proxy (top middle), topic list (upper right), and

current topic (bottom) window. The user list window lists the names of all the people

currently logged into the Babble system. Each user is assigned a coloured “marble” to the

left of its label, where this marble is used elsewhere in the interface to signify that user’s

 81

presence. The social proxy window displays a visualization leveraging these marbles. It

shows which logged in users are taking part in the topic that is presently open in the

interface, where more active users are shown at the centre. That is, if a user does not

interact with the Babble interface over time, their marble drifts toward the periphery of the

social proxy circle to indicate this lack of activity. This design reflects the idea of locales

and the center–periphery relationship as described in the Locales Framework theory

[Fitzpatrick 2003].

The topic list window displays all of the available topics—or in terms of IRC,

“channels”—that are available for users to participate in. These topics can be created or

deleted by anyone using the Babble system. The selected topic is reflected in the social

proxy and current topic window. The current topic window displays a persistent, time-

stamped log of that topic’s conversation. Whenever a users wishes to add something to a

given topic, they enter their message in an entry window that then appends their comment

(along with a time-stamp) to the end of the topic’s conversation log. Users switch between

topics simply by clicking on different topics in the topic list window, which then updates

the contents of the other windows.

 82

Figure 6.1 – The Babble interface presented by Erickson et al. 1999

The interface sketch shown in Figure 6.2 applies the Babble design toward

discussions centred primarily on issues held by an issue tracking system. The user list, topic

list, social proxy, and current topic windows are visually similar to that of the Babble

system. However, instead of generating topics at will, each topic listed in the envisioned

system is tied to an underlying case held by the issue tracking system. Unlike Babble, the

proposed system also understands that a person may open and be interested in multiple

issue topics at the same time. This is done via a tabbed middle section at the upper part of

the main window. Each tab represents an issue topic, where the tab groups a particular

topic’s social proxy and topic window. Using tabs, users can readily switch between the

multiple open issues they are involved with or interested in.

 83

Figure 6.2 – First design sketch (Babble + IRC)

The upper section of each open tab also contains some basic information pulled

directly from the underlying case (e.g., project, priority, severity, last modified date, etc. as

seen in Figure 6.2), as well as a social proxy visualization. The bottom section contains a

text box that appends a person’s typed-in message to the particular topic’s conversation log.

This conversation log is then stored as the comment history of the underlying issue. In

addition to showing the comments entered by users currently active in an issue’s

conversation, the topic window also displays status messages as other events related to the

issue being viewed occur. For example, as shown in the active topic in Figure 6.2, the bug

being discussed was assigned to Alice at 4:35pm on March 29th. Similar notifications

would also appear for other issue-related events; for example, source code check-ins with

an underlying source code management system that reference this issue’s case number.

 84

Finally, the user list in our sketch (Figure 6.2, right) displays more information

about each user than what is shown in Babble. Each logged-in user’s name is expandable

to show a list of all the issues that person is currently participating in; that is, all the topic

tabs that user currently has open on their computer. This display could be easily augmented

to indicate which topic the user is currently viewing (e.g., an asterisk next to their active

topic), and other awareness information such as recent documentation changes or code

check-ins.

6.2.1 Participant feedback

The goal of the interface design was to provide a real-time conversation mechanism that is

tightly integrated with, and grounded in, the issues within the issue tracking system.

Participant feedback for this design was positive in regards to this goal, where the idea of

incorporating a “chat room” style interaction with the underlying issue was well received.

Yet they were concerned about acquiring the necessary critical mass to make such a tool

successful and useful for the team. First, participants described critical mass uptake as

problematic for almost any new tool being introduced to the team, especially when that tool

required one to use an additional application rather than integrating directly with existing

tools or interfaces. Second, participants reported that many tools provide the greatest

benefit to their users only when there is a sufficiently large portion of their team also using

the tool. Thus they saw this as a form of “chicken and egg” problem, where a tool is most

useful to an audience only after gaining enough participants, but participants are hesitant to

invest in learning or using a new tool without the guarantee of an up-front payoff.

Participants were also hesitant about the viability of the social proxy and user list

awareness features. Many of the developers on Team C strongly favoured the “assign the

issue back-and-forth and wait for email notifications” communication pattern that occurred

around bugs being discussed rather than the more immediate chat or instant messenger style

communication pattern. As described in Section 4.5, the asynchronous conversation pattern

provided by auto-generated email notifications was viewed to be less interrupting, even if

this was at the expense of being less efficient than more synchronous forms of

communication. Real-time versus asynchronous awareness and communication is, of

 85

course, a trade-off. Sometimes issue discussions would boil down to what could have been

accomplished via a brief instant messenger-like conversation that were instead spread out

over the course of an entire day due to the latency that often occurred when relying on the

email notification pattern. Problems with asynchronous interaction were often exacerbated

by the need for participants in such temporally extended conversations to re-familiarize

themselves with the context of the case under discussion after each notification, much like

what was described in the contextualization repository discussion of Section 4.6.

In summary, participants generally acknowledged that a system like the one

proposed would likely be useful once established within a development team. However,

they generally viewed the barriers to entry to be too high, where they did not see sufficient

benefit to motivate changing established communication and working patterns. This does

not imply this design would always fail; it could work well with new teams who do not

have an existing culture of use, or may succeed by changing an existing culture over time.

6.3 Inline Wiki Conversations

Our second design focused primarily on integrating the capabilities of the wiki component

of an existing issue tracker being used by Team C with an anchored, real-time chat system.

I begin by explaining the wiki as provided by Team C’s issue tracker, FogBugz

[Fog Creek Software 2009a]. This wiki was tightly integrated with the rest of the issue

tracking system. For example, hyperlinks could be easily inserted into a wiki document

simply by inserting a link and specifying an issue’s case number as the URL. This would be

automatically translated into a link to the related case. After the link had been created, a

small floating preview of the case’s details, as depicted in Figure 6.3, would appear

whenever a user rested their mouse over the case’s hyperlink from the containing wiki

page. This integration made it easy for bugs and feature implementation requests to tie

themselves back to their respective specifications and also allowed the QA team to keep

lists of test cases in the wiki that linked directly to their individual underlying cases.

 86

Figure 6.3 – Case link mouseover preview

Due to this tight integration, Team C had developed a practice of writing most—if

not all—of their feature and product specifications within the wiki portion of their issue

tracker. After creating the initial version of a feature specification it was a common practice

to then solicit feedback from other members of the development team. This was usually

 87

done via a weekly status report wiki article that each member of the team contributed a

small paragraph to, where they outlined what they had been working on that week. As other

members of the team reviewed the specification linked to by this wiki article, they would

generally provide feedback by editing the specification’s wiki page, adding a heading with

their name at the bottom of the article, and then listing questions and concerns in a bulleted

list at the bottom of the document. Over time, the original author of the specification (as

well as others) would often reply to these comments by prefixing their response with their

name or changing the colour of the font used to indicate that a different author was

replying. In this way there was a small bulletin board- or discussion group-style

conversation happening directly within the wiki article.

This use of the FogBugz wiki, as well as the concept of “sticky conversations”

[Churchill et al. 2000], inspired the following design sketch. Figure 6.4 envisions a system

and interface that integrates an anchored, real-time chat system directly with the underlying

wiki system. That is, the chat conversation concerning an issue is incorporated into the wiki

as a sticky conversation. If desired, such chat sessions could remain accessible after the fact

as annotations to the underlying wiki article. The persisted portion of the conversation log

could be filtered prior to being embedded into the page if needed to remove irrelevant or

potentially sensitive information.

 88

Figure 6.4 – Second design sketch (inline wiki conversations)

The interaction with the proposed system begins by simply highlighting the portion

of the wiki article that the user wishes to discuss. After right-clicking on the selected

content they could then decide to either initiate a chat session with others or to simply add

their own comment in isolation. If they chose to start a chat session they would be

prompted to select from a list of potential participants (i.e. users of the underlying issue

tracking system or wiki system). After the list of participants had been selected a small

floating chat dialog would open (Figure 6.4 upper-right) where the highlighted content

could be discussed in real-time. If the user instead wished to simply add their own comment

without discussion, they would be presented with a multi-line input box to enter their

comment into (Figure 6.4 lower-right). After the chat session had finished or the user had

entered their standalone comment, the selected page content would be augmented to

indicate an associated annotation. In both cases, initiating and anchoring a conversation or

comment over a wiki segment is easy and lightweight. Figure 6.5 shows a sample of what

the resultant annotation and mouseover effect might look like.

 89

Figure 6.5 – Annotation mouseover behaviour of second design sketch

6.3.1 Participant feedback

Most participant feedback for this design sketch centred on the technical feasibility and the

implementation difficulties that would need to be considered for such a system. One of the

participants had recently worked on a similar system that needed to keep track of precise

selection ranges within wiki articles, much like those that would be used in the proposed

system. He suggested that such a fine level of granularity would be very difficult to

implement correctly and consistently across the many popular browser and operating

system combinations likely to be in use.

This participant also suggested that most users of their system did not actually need

or even desire such a fine level of granularity to begin with. Instead, he suggested that the

granularity could be limited to the lowest block-level items within the wiki article’s

Document Object Model (DOM) without losing the desired locality or specificity for

anchoring the resultant annotations. For example, rather than allowing a user to select only

a few characters or words as suggested in Figure 6.4 and Figure 6.5, the selection process

could be made less granular and be limited to, say, the entire sentence that makes up bullet

 90

point number one in the same figures. He also suggested that a system with a coarser-

grained selection mechanism would still anchor the resultant annotation to a specific-

enough subsection of the surrounding document to provide sufficient context for the

ensuing chat dialog or comment.

In summary, our participants—who already had a culture of using wikis—were

positive about the design. Concerns tended to be centered on implementation practicality

issues, and interface refinement in terms of selecting block-level attributes of wiki text

rather than arbitrary regions for anchoring annotations.

6.4 Recent Activity Feed

Our final design uses various activity feeds to supply team awareness by reviewing recent

personal and co-worker activity over time. This interface was largely inspired by the

activity feed found on the popular social networking site, Facebook.com (see Figure 6.6)

[Facebook 2009]. Facebook’s activity feed provides a reverse-chronological, time-stamped

list of various tidbits of information pertaining to people you’ve identified as your friends.

These tidbits range from brief messages written on you and your friend’s publicly-visible

“walls,” to thumbnails of photo albums that have been uploaded and shared, to status

messages posted just to let others know what they’re thinking or have been up to recently.

The activity feed updates continuously and, over time, can provide a centralized view of

“what’s happening” within your social network.

 91

Figure 6.6 – Facebook.com recent activity feed

Our final design, illustrated in Figure 6.7, extends the Facebook.com activity feed

concept by integrating activity feeds across systems already in use by the team, such as

their issue tracker, wiki, discussion board, and/or source code management system. The

idea is that as events occur in each of these respective systems, short summaries would

 92

appear in the proposed activity feed. Each event would be time-stamped, identify who

generated or caused the event, and would include a link back to the underlying system to

allow an interested person to obtain more information.

Figure 6.7 – Third design sketch (recent activity feed)

As with Facebook.com activity feeds, this developer activity feed would be

filterable based on the types of events of interest. The various categories for events would

take the form of toggle buttons like those depicted at the top of Figure 6.7. Some events

could also be expandable inline to provide additional information without requiring users to

navigate away from the activity feed and into a separate application. For example, the email

 93

event shown near the bottom of Figure 6.7 could be displayed initially as a single line

summarizing to whom the email was sent and by whom. Next to this line would be a small

plus sign that, when clicked, would expand to display a scrollable panel including the body

of the email message. Similar drill-down operations could also be incorporated into the

other types of events displayed in the activity feed.

Much like the previous design, the activity feed interface was not envisioned to

serve as a standalone application, although such a standalone activity feed client would be a

possibility. Ideally, this feed would be embedded within an existing tool already frequently

used by members of the development team throughout the day. For example, the proposed

activity feed could be inserted as a sidebar on the user’s homepage or the default homepage

of their issue tracking system. In this way, the activity feed would serve as a flexible,

centralized portal into the various underlying systems it drew events from.

6.4.1 Participant feedback

Of all the design sketches presented, this interface received the most enthusiastically

positive feedback. Participants were visibly excited about having such an interface, and

many expressed that they had previously thought about how useful such an awareness

system would be for them personally. The proposed system was also considered to be fairly

straightforward to implement due to it serving primarily as a data sink for existing tools

already in use. Many of these underlying systems (issue trackers, source code repositories,

wiki publishing systems, etc.) already provide public APIs for accessing the types of events

that would be used by the proposed system, and those that don’t are often backed by a

relational database that can be easily queried by external tools (if given sufficient access to

the database). The participants involved in this roundtable agreed that this design provided

the best “bang for the buck” from the perspective of the development time required and the

overall value gained by the resulting system.

Participants did, however, express concern about the potential information overload

that could result from such a system. Many of the events shown in the design sketch were

very fine-grained (e.g., events for the opening of individual bugs) and could result in a

 94

flood of entries if used with even a moderately large development team. To help deal with

this, participants suggested tabbing the interface into a number of various scopes. Each tab

in the interface would roughly duplicate the interface presented above, but would be scoped

to include only a subset of all the available events. These tabs would comprise scopes

ranging from one that displayed only the events pertaining to “me,” to all the events for a

single project area, to an entire product, and all the way up to a global feed showing events

being generated by all the members of the various development teams within an

organization. They also suggested filtering out small events or grouping similar small

events together in order to cut down on the overall quantity of event entries that would need

to be displayed. For example, rather than showing a separate event entry for each of six

cases a co-worker opened in rapid succession, instead show a single entry summarizing this

(i.e., “Bob opened 6 new cases”) and provide the details of each case in the expanded detail

view.

6.5 Summary

Overall, participant feedback raises several points relevant to these and other designs.

 First, people generally thought that designs that extended, modified, or integrated

with existing systems were better than designs of entirely new applications. Their concerns

were two-fold: new applications could disrupt existing communication and/or working

habits and toolsets of the team, and would inhibit critical mass. The “critical mass” problem

is not a new one, and remains a primary obstacle in getting new tools off the ground and

adopted by development teams. Fortunately, today’s software systems are increasingly

being designed with integration and interoperation in mind rather than being totally

proprietary and closed off to the outside world. Many now make use of open data storage

and exchange formats, provide plug-in architectures, or expose public data access APIs.

Conveniently, most popular issue tracking systems today are also either entirely web-

based or provide a web interface to their underlying database. Indeed, all of the teams

interviewed during our study used completely web-based issue tracking systems. Through

 95

the advent of systems like Greasemonkey1

Second, our participants all showed interest in having the issue tracker provide a more

real-time communication component for use in issue discussion, such as the “issue tracking

meets IRC” design sketch presented above (Section

 [Greasemonkey 2009], which allow users to

readily customize both the appearance and (to a certain degree) the functionality of existing

web applications, such integrative prototypes could potentially be rapidly layered over top

of existing development tools. I posit that integrating new functionality with existing tools

can help avoid the adoption inertia that frequently prevents a promising tool from taking

hold within an existing development team’s arsenal. However, this does not mean that

totally new interfaces are impractical, for they may be adopted by new teams or even by

niches within existing teams as a disruptive technology.

6.2). However, they did not wish to be

forced into using a system requiring their constant presence in a chat room-like

environment. This suggests that new designs should incorporate both real-time and

asynchronous mechanisms, where one should not obviate the other.

Third, being able to discuss an issue or feature specification at its logical source—the

issue or specification document itself—appealed to all interviewed participants. An

example is our idea of an “inline wiki conversations” interface Figure 6.4 (Section 6.3).

The cautionary note here is technical: we may not be able to integrate such a feature within

existing systems, or do so in a way that could easily outweigh the implementation cost

incurred.

Fourth, participants championed the need for awareness among team members. In

particular, the idea of having a “recent activity feed” that would bring together activity

notifications from various development tools already in use, while at the same time being

1 Greasemonkey, and other systems like it, allow users to install customized scripts (JavaScript in the case of
Greasemonkey) in their browser that make on-the-fly changes to web page content entirely on the client (i.e.,
without any explicit involvement of the server generating the content). Each time a web page with an
associated script is loaded, that script is executed on the client immediately after the page has finished loading
in the browser. Since these scripts are both site-specific and persistent, the changes made by these scripts are
effectively permanent for the user running the script. Changes can include modifying the appearance of the
underlying web page, modifying or extending its functionality, or combining one site’s data or functionality
with content provided by another (such hybrid web sites are often called “mashups”).

 96

integrated within an existing web-based interface, was very well received. The awareness

and development details presented by such a system were seen as striking an ideal balance

between the development investment required and the overall functionality gained,

provided that the potential flood of activity events could be sufficiently mitigated through

either filtering or the collapsing of multiple similar events into shorter, summarizing ones.

This chapter has only touched upon a few changes to issue tracking systems and their

companions, and in particular, how communication and awareness can be integrated as part

of these systems. In the previous chapters, I described a variety of other factors critical to

issue tracking, and each of those could also be used to generate alternate designs. While it

is beyond the scope of this thesis to do so, I believe that the design of future issue tracking

systems should consider these factors collectively.

 97

Chapter 7. Conclusions, Contributions, &
Future Work

In this chapter, I present a discussion of the conclusions drawn from this thesis, a summary

of its primary and secondary contributions, as well as a brief discussion of the potential

future directions this research could be taken in.

7.1 Discussion & Conclusions

One of our participants, P14, has been working with issue trackers of various sorts for over

28 years:

My first 8 were actually a paper tracking system. A call would come in from
a customer and the call would be time-stamped, it would indicate on the call
what the problem was and it would go into some box—physically some little
box—and then you’d filter through and look for your name and pick it up if
it was assigned to you.

—P14

Issue trackers have come a long way from this initial physical form, but at their core, they

still remain primarily focused on simply tracking and archiving issues. What has changed

over time, however—in addition to the transition from physical to digital media—is the

increasing use of issue tracking systems as an essential form of communication within the

development team.

Issues still frequently come in from outside customers, but instead of taking the

form of a phone call that is transcribed onto a physical card, new issues may now be

automatic crash reports submitted by the customer’s software, online entry forms

completed by customers, or generated from incoming email. Instead of assigning bugs to

 98

one another and indicating their status by placing them into physical boxes, these

operations are now done electronically.

As issue trackers have evolved to become more central to the software development

process, they have also begun to service many of the conversational, archival, and

organizational needs of that process. A tool traditionally viewed as a relatively

straightforward engineering tool has revealed itself to be a complex facilitator of

communication and coordination within what is a fundamentally social process: developing

software. Even within small teams that enjoy the benefit of frequent, readily available face-

to-face communication, still the issue tracker remains a core component in the successful

cooperation of the team’s members.

Addressing the vastly varying needs of the software team has not come without its

challenges, however. Supporting customer inquiries while maintaining the highly technical

conversation surrounding its resolution has sometimes resulted in a fragmented

representation of what is essentially a single issue. The issue itself now ties together a wide

variety of resources and is leveraged by an increasing number of stakeholders in varying

ways. In order to support these stakeholders, properly faceted views need to be presented of

this wealth of underlying data held within the issue tracker. These may take the form of

per-developer to-do lists, filtered public-facing views, or lists that distinguish between the

perception of future work and the reality of identified bugs. And although no existing tools

currently address all of our design considerations collectively, future tools cannot simply

combine them in concert and expect success. Such a system would very likely suffer from

unintended side-effects and excessive complexity rather than succeed in addressing the

needs of its various audiences. Rather, it is important for system designers to carefully

consider their tools from the perspective of each potential audience and actively consider

the tradeoffs to be made among them.

From a CSCW perspective, issue tracking systems now play a significant

supporting—and sometimes pivotal—role in the communication and collaboration within

software development teams. In addition to providing developers with prioritized to-do

lists, issue trackers have come to embody a massive amount of organizational knowledge.

 99

7.2 Contributions

At the beginning of this thesis, I identified the following problem:

We do not know how small, collocated teams make use of issue tracking
systems in real-world, industrial settings from the perspective of supporting
communication, collaboration, and coordination both inside and outside the
team.

With this research I set out to address that problem through the following two goals:

1. Investigate how small, collocated teams use issue tracking systems in day-
to-day software development tasks for the purpose of communication,
collaboration, and coordination both inside and outside the immediate
development team.

2. Attempt to design new interfaces as well as enhancements to existing
systems with the intent of incorporating better communication and
awareness facilities into the issue tracking and overall software
development processes.

Through the course of an in-depth qualitative study of 15 participants spread across three

primary roles and four organizations as well as the later analysis of that study and the

feedback received on three interface design sketches, two primary and three secondary

contributions have been made:

Primary contributions:

1. A detailed exploration of the communication, coordination, and collaboration

patterns, practices, and tools of small, collocated teams as they relate to issue

tracking systems.

2. The articulation of five roles issue tracking systems play within these teams:

i. The issue tracker as a repository for organizational knowledge and

facilitator of distributed cognition within the development team

ii. The issue tracker and its issues as boundary objects that bridge a number

of diverse and distinct stakeholder worlds

 100

iii. The issue tracker as a communication and coordination hub that

consolidates a variety of interconnected communication channels within

the development process

iv. The issue tracker as a persistent, asynchronous, and oftentimes multicast

communication channel in and of itself

v. The issue tracker as a contextualization repository providing a canonical
address for all things related to each of the issues contained within

Secondary contributions:

1. The description of six areas where stakeholder perceptions vary in relation to

various aspects of the issue tracker:

i. Various types of lists as seen by different roles leveraging the issue

tracker

ii. Degrees of issue existence as described by those filing and fixing bugs

iii. Contention over field congestion and workarounds that side-step this

problem

iv. Differing multi-faceted opinions of what comprises an issue’s priority

v. Shades of issue ownership and related monitoring patterns

vi. Tension between transparency, privacy, and the internal-external wall

and as a direct result of these differing perceptions,

2. The identification of seven considerations for the design of issue tracking and

software development coordination tools:

i. The issue tracker represents different things to different people. These

small but significant distinctions should be acknowledged and exposed

in the issue tracker through features catering to each of the stakeholder’s

individual needs. Customizable, role-oriented interfaces that emphasize

certain aspects of the tracker’s data while abstracting away others may

 101

provide a better fit for the multitude of stakeholders that make up the

issue tracking system’s audience.

ii. The starting point for a bug was not always a well-defined point in time

and an issue’s visibility to others on the team could place an onus of

completeness on the filer that may prevent them from filing an issue as

soon as possible. Providing functionality for stakeholders to enter semi-

private, lightweight “pre-bugs” may increase the number of bugs that

eventually end up being recorded.

iii. Providing lightweight tagging capabilities to issue tracking would likely

help ease some of the tensions between wanting detailed fields

associated with issues, and maintaining a simplified, hassle-free interface

for creating cases. It would be important for these tags to leverage the

issue tracker’s existing robust infrastructure for searching, sorting, and

filtering issues.

iv. Acknowledging the multitude of factors that compose an issue’s priority

is important to serving the needs of its stakeholders. It may prove useful

to present users of the issue tracker with a personal, persistent, and easily

re-orderable list that is separated from those strictly ordered based on

issue fields such as priority. Giving users the means to articulate their

personal ordering of issues without explicitly affecting its priority may

help them to better organize their day-to-day work.

v. Multiple levels of issue ownership exist throughout the software

development team. By supporting this pattern in the issue tracker itself,

stakeholders can eliminate their need to manually monitor issues that

they still partially own.

vi. Allowing for distinct facets of an issue (e.g., customer communication

and its technical discussion) to be contained within a single entity while

 102

remaining easily distinguishable may also prove useful in

acknowledging the multiple identities of certain issues.

vii. Careful consideration of the multiple potential audiences for an issue and

its attributes is necessary when developing external-facing interfaces and

views. Graduation between fully-private and fully-public data may be

needed and a clear distinction among these levels of privacy should be

maintained in order to gain transparency without risking undue exposure

of sensitive information.

3. The presentation and critique of three prototype systems in the form of early

design sketches:

i. Issue tracking meets Internet Relay Chat

 103

ii. Inline wiki conversations

iii. Recent development activity feed

 104

7.3 Future Work

If we look at the original design of the research study and its resultant findings that

were presented in this thesis, we see a study that aims primarily for depth rather than

breadth in its attempt to gain a better understanding of how issue tracking fits into the

picture of small, collocated development teams. Only three primary roles—developers,

quality assurance personnel, and project managers—were sampled for our study. One large

area for potential future work, then, would be to broaden that sampling to include some of

the many other stakeholders identified as playing a role—sometimes pivotal—to the

development process within these teams. Such stakeholders could include customer service

and support personnel, customers of the systems being developed that are external to the

company, higher-ups within the management hierarchy, or even members of the sales staff

within the organizations studied.

In an alternate dimension, the study presented here examined only established teams

that had well-defined work practices and routines that had been custom-tailored over time

to fit snugly alongside the toolsets these teams had become familiar with. If we were to

explore further back along this axis, the questions asked in this study could also be applied

during earlier stages of development team formation. This could shed light onto the process

of how development teams appropriate issue tracking systems and morph them into the

roles of providing communication and collaboration support to their various audiences over

time. Additional insight could also be gained by finding out not only how a development

team’s practices came into being, but also attempting to identify why such practices arose.

Do development teams that are comprised primarily of recent graduates tend toward a

specific set of tools and practices versus teams comprised of more experienced developers?

Or does a development teams’ toolset develop organically based on the immediate

problems and frustrations dealt with by the team on a day-to-day basis?

Of the four teams studied, only three major brands of issue tracking systems were

observed (ExtraView, FogBugz, and SharePoint). There are easily dozens of commercial

and open-source issue tracking systems on the market today, and their nuances likely lead

 105

to a wide variety of work practices. Examining all these tools would likely be prohibitive

for any individual study, but recruiting participant teams with the intent of broadening the

cross-section of issue trackers sampled would likely reveal a number of interesting

comparison points. An alternate direction might instead select for teams using the same

tools, but of different sizes or of a different experience make-up in order to tease out why

different types of teams might use the same tools in interesting or surprisingly different

ways. Regardless of the specific target set, by taking a broader look at a larger set of

development teams and issue tracking systems, we could begin to understand some of the

many different ways that coordination manifests itself with regards to issue tracking

systems—and coordination systems more generally—within small development teams. By

broadening the number and variety of teams examined, we would then be better equipped

to begin looking for patterns and more readily consider how existing theories within CSCW

may be applied to the coordination dynamics observed within these teams.

Once these (and other) axes have been reasonably explored and we have gained a

better overall understanding of the coordination dynamics within small, collocated software

development teams, we could then turn our attention toward finding best practices and

experimenting with various features in issue tracking systems to see which provide better

support for the communicative and collaborative needs of their users. These experiments

could manipulate various combinations and trade-offs among the design considerations

presented in this thesis as well as elsewhere in the literature. The benefits of new, “from

scratch” solutions could be contrasted with the potentially more streamlined approach of

layering or integrating new functionality overtop of existing systems. Additionally, the

barriers of introducing new toolsets to well-established teams could also be explored and

potential workarounds could be tested.

In short, issue tracking systems are but one of many tools used by software

development teams of all sizes to help coordinate their efforts in creating quality software.

These systems do so by facilitating collaboration amongst team members as well as the

communication both inside and outside the immediate development team. Our study has

revealed that even small, collocated teams with easy, inexpensive access to rich face-to-

 106

face communication still make use of issue tracking systems as an essential communication

and collaboration tool. We—as a research community—need to continue studying how

these tools, and others like them, are used within development teams in order to continue

our collective pursuit of improving the overall software development process.

 107

References
M.S. Ackerman and C. Halverson (1998). Considering an organization’s memory. In

Proceedings of the ACM Conference on Computer-Supported Cooperative Work,
pages 39–48.

J. Anvik, L. Hiew, and G.C. Murphy (2006). Who should fix this bug? In Proceedings of
the International Conference on Software Engineering, pages 361–370.

J. Aranda and G. Venolia (2009). The secret life of bugs: Going past the errors and
omissions in software repositories. In Proceedings of the International Conference on
Software Engineering, pages 298–308.

Atlassian (2009). Workflows and fields. Retrieved October 30, 2009 from
http://www.atlassian.com/software/jira/tour/workflow.jsp

Balsamiq Studios (2009). Balsamiq Studios, makers of plugins for Web Office applications.
Retrieved October 30, 2009 from http://www.balsamiq.com

N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann (2008).
What makes a good bug report? In Proceedings of the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, pages 308–318.

H. Beyer and K. Holtzblatt (1997). Contextual Design: Defining Customer-Centered
Systems (Interactive Technologies). San Francisco: Morgan Kaufmann.

R. Black (2002). Managing the Testing Process: Practical Tools and Techniques for
Managing Hardware and Software Testing. New York: Wiley Publishing.

Bugzilla (2009). Life Cycle of a Bug. Retrieved October 30, 2009 from
http://www.bugzilla.org/docs/tip/en/html/lifecycle.html

B. Buxton (2007). Sketching User Experiences: Getting the Design Right and the Right
Design (Interactive Technologies). San Francisco: Morgan Kaufmann.

G. Canfora and L. Cerulo (2006). Supporting change request assignment in open source
development. In Proceedings of the ACM Symposium on Applied Computing,
pages 1767–1772.

 108

P.H. Carstensen, C. Sørensen, and T. Tuikka (1995). Let's talk about bugs! Scandinavian
Journal of Information Systems, 7(1):33–54.

E.F. Churchill, J. Trevor, S. Bly, L. Nelson, and D. Cubranic (2000). Anchored
conversations: Chatting in the context of a document. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems, pages 454–461.

J. Corbin and A. Strauss (2008). Basics of qualitative research: Techniques and procedures
for developing grounded theory. Los Angeles: Sage Publications, 3rd edition.

M. D'Ambros, M. Lanza, and M. Pinzger (2007). “A bug's life”: Visualizing a bug
database. In Proceedings of the IEEE International Workshop on Visualizing
Software for Analysis and Understanding, pages 113–120.

T. Dingsøyr and E. Røyrvik (2003). An empirical study of an informal knowledge
repository in a medium-sized software consulting company. In Proceedings of the
International Conference on Software Engineering, pages 84–92.

J.B. Ellis, S. Wahid, C. Danis, and W.A. Kellogg (2007). Task and social visualization in
software development: Evaluation of a prototype. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems, pages 577–586.

T. Erickson, D.N. Smith, W.A. Kellogg, M. Laff, J.T. Richards, and E. Bradner (1999).
Socially translucent conversations: Social proxies, persistent conversation, and the
design of “Babble”. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 72–79.

ExtraView Corporation (2009). ExtraView website. Retreived October 30, 2009 from
http://www.extraview.com

Facebook (2009). Welcome to Facebook! Retreieved October 30, 2009 from
http://www.facebook.com

N. Fenton and M. Neil (1999). A critique of software defect prediction models. IEEE
Transactions on Software Engineering, 25(5):675–689.

G. Fitzpatrick (2003). The Locales Framework: Understanding and Designing for Wicked
Problems. Berlin: Springer.

G. Fitzpatrick, P. Marshall, and A. Phillips (2006). CVS integration with notification and
chat: Lightweight software team collaboration. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work, pages 49–58.

Fog Creek Software (2009a). FogBugz - Bug & Issue Tracking, Project Management, Help
Desk Software. Retrieved October 30, 2009 from http://www.fogbugz.com

 109

Fog Creek Software (2009b). The Basics of Bug Tracking. Retreived October 30, 2009
from
http://www.fogcreek.com/FogBugz/docs/70/topics/basics/Thebasicsofbugtracking.ht
ml

Greasemonkey (2009). Greasespot. Retreived October 30, 2009 from
http://www.greasespot.net

R.E. Grinter (1995). Using a configuration management tool to coordinate software
development. In Proceedings of the ACM Conference on Organizational Computer
Systems, pages 168–177.

J. Grudin (1994). Groupware and social dynamics: eight challenges for developers.
Communications of the ACM, 37(1):92-105.

M. Gunderloy (2007). Painless Project Management with FogBugz. New York: Apress,
2nd edition.

C. Halverson, J. Ellis, C. Danis, and W. Kellogg (2006). Designing task visualizations to
support the coordination of work in software development. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work, pages 39–48.

C. Henderson (2006). Building Scalable Web Sites: Building, Scaling, and Optimizing the
Next Generation of Web Applications. Sebastool, CA: O'Reilly Media.

J. Hollan, E. Hutchins, and D. Kirsh (2000). Distributed cognition: Toward a new
foundation for human-computer interaction research. ACM Transactions on
Computer–Human Interaction, 7(2):174–196.

D.B. Knudsen, A. Barofsky, and L.R. Satz (1976). A modification request control system.
In Proceedings of the International Conference on Software Engineering, page 187–
192.

R.E. Kraut and L.A. Streeter (1995). Coordination in software development.
Communications of the ACM, 38(3):69–81.

T.D. LaToza, G. Venolia, G., and R. DeLine (2006). Maintaining mental models: A study
of developer work habits. In Proceedings of the International Conference on Software
Engineering, pages 492–501.

J. Liebowitz and T. Beckman (1998). Knowledge organizations: what every manager
should know. Boca Raton, FL: St. Lucie.

Microsoft Corporation (2009a). Excel Home Page - Microsoft Office Online. Retrieved
October 30, 2009 from http://office.microsoft.com/excel

 110

Microsoft Corporation (2009b). Microsoft Office SharePoint Server - Connecting People,
Process, and Information. Retrieved October 30, 2009 from
http://sharepoint.microsoft.com

B.A. Nardi, S. Whittaker, and E. Bradner (2000). Interaction and outeraction: Instant
messaging in action. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pages 79–88.

NCH Software (2009). Digital Transcriber - Free Transcription Software Player. Retrieved
October 30, 2009 from http://www.nch.com.au/scribe/

J. Oikarinen and D. Reed (1993). RFC1459 - Internet Relay Chat Protocol. Retrieved
October 30, 2009 from http://www.faqs.org/rfcs/rfc1459.html

D.E. Perry, N. Staudenmayer, and L.G. Votta (1994). People, organizations, and process
improvement. IEEE Software, 11(4):36–45.

R.S. Pressman (2004). Software Engineering: A Practitioner’s Approach. New York:
McGraw-Hill, 6th edition.

C.R. Reis and R.P. de Mattos Fortes (2002). An overview of the software engineering
process and tools in the Mozilla project. In Proceedings of the Workshop on Open
Source Software Development, University of Newcastle upon Tyne, pages 155–175.

R. Sandusky and L.Gasser (2005). Negotiation and the coordination of information and
activity in distributed software problem management. In Proceedings of the ACM
SIGGROUP Conference on Supporting Group Work, pages 187–196.

S.L. Star and J.R. Griesemer (1989). Institutional ecology, 'translations' and boundary
objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology,
1907–39. Social Studies of Science, 19(3):387–420.

M. Storey, J. Ryall, R.I. Bull, D. Myers, and J. Singer (2008). TODO or to bug: exploring
how task annotations play a role in the work practices of software developers. In
Proceedings of the International Conference on Software Engineering, pages 251–
260.

Y. Ye (2006). Supporting software development as knowledge-intensive and collaborative
activity. In Proceedings of the International Workshop on Interdisciplinary Software
Engineering Research, pages 15–22.

 111

Appendix A. Ethics Application
Below are the ethics application, consent form, and approval certificate associated with the

study described in Chapter 3.

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

Appendix B. Co-author Permission
Below are the signed co-author permission forms associated with our paper listed in the

Publications section located at the beginning of this document.

 124

 125

 126

	Abstract
	Publications
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	Problem Statement
	Thesis Goals
	Organizational Overview

	Background & Related Work
	Issue Tracking 101
	What is issue tracking?
	The lifecycle of an issue

	Related Work
	The social aspect of software development coordination
	Examining issue trackers specifically
	Where issue tracking and development coordination meet

	Discussion & Framing of the Thesis

	Research Study
	Description of the Experiment
	High-level goals/questions
	Subjects
	Target audience
	Recruiting process
	Development team profiles
	Team A: University IT Department
	Team B: Gaming Company
	Team C: Issue Tracking System Vendor
	Team D: Large Interactive Display Vendor

	Participant demographics

	Methods and materials
	Initial study formulation
	Ethics approval and research activities
	Questionnaire
	Interview protocol
	Design sketch roundtable

	Problems and limitations

	Data Collection & Analysis
	Interview transcription
	Data analysis

	Summary

	Roles of the Issue Tracker
	Conventional Definitions
	Issue Tracker as Knowledge Repository
	Issue Tracker as Stakeholders’ Boundary Objects
	Issue Tracker as Communication & Coordination Hub
	Issue Tracker as Communication Channel
	Issue Tracker as Contextualization Repository
	Summary

	Differing Views & Incompletely Met Needs
	A Bug List, a Task List, a To-do List, or a...?
	Design consideration #1:

	Full-fledged Bugs & Almost Bugs
	Design consideration #2:

	A “Flurry of Fields” vs. Ease of Entry
	Design consideration #3:

	Different Perceptions of Priority
	Design consideration #4:

	Shades of Ownership: Yours, Mine, or Ours?
	Design consideration #5:
	Design consideration #6:

	Privacy, Transparency, and the ‘In’ Crowd
	Design consideration #7:

	Summary

	Design Sketches
	Setting the Scene
	Issue Tracking meets Internet Relay Chat
	Participant feedback

	Inline Wiki Conversations
	Participant feedback

	Recent Activity Feed
	Participant feedback

	Summary

	Conclusions, Contributions, & Future Work
	Discussion & Conclusions
	Contributions
	Primary contributions:
	Secondary contributions:

	Future Work

	References
	Ethics Application
	Co-author Permission

