
Artifacts as Instant Messenger Buddies Greenberg, S., Stehr, N. and Tee, K. 1

Artifacts as Instant Messenger Buddies
Saul Greenberg, Nathan Stehr and Kimberly Tee

Department of Computer Science, University of Calgary
Calgary, Alberta CANADA T2N 1N4

saul.greenberg@ucalgary.ca

ABSTRACT
Artifact awareness is one person’s up to the moment
knowledge of the artifacts that other group members are
working with. Such awareness contributes to the overall
information necessary for fluid group coordination and
interaction. Yet current systems treat artifact awareness
quite differently from the interpersonal awareness of group
members using the artifact. Our approach differs. We
exploit commercial Instant Messengers (IMs) for artifact
awareness, where we treat an artifact – such as a document
– as a 1st class buddy. As a person uses the artifact,
changes are triggered in the artifact’s online, idle and
offline state. Further information about artifact events is
published to the IM’s ‘display name’ or ‘personal message’
field. Important artifact activities – such as major version
updates – are delivered as chat messages. Others can
engage in a chat ‘dialog’ with the artifact that includes
directives to receive and transmit artifact versions. The
group’s conversation around that artifact is also recorded as
part of the chat history.

Author Keywords
Artifact Awareness, Instant Messengers.

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces]: Computer
supported cooperative work.

INTRODUCTION
An important component of the awareness necessary for
casual interaction is artifact awareness: one person’s up to
the moment knowledge of the artifacts that other group
members are working with. Such artifacts include the
documents and drawings that individual group members
work on over the course of a day as they pursue their
collective work. Whittaker and colleagues [8] found that
over half of all casual interactions in an office involved
some form of document sharing, where documents were
mostly used as a cue or conversational prop. As detailed in

[5, 8, 7] and summarized by Tee [6], being aware of such
artifacts is valuable for many reasons:
• Monitoring each other’s progress on the document;
• Coordinating their joint activities;
• Triggering interest by seeing another person’s activity,

even if it is not part of a joint task;
• Determining availability, where knowledge of artifact

usage suggests how busy people are and if they can be
interrupted.

• Creating serendipitous opportunities for people to
engage in artifact-oriented collaborations.

Artifact awareness is easy when people are co-located
(primarily because of the artifact visibility), but is
problematic for distributed groups. Consequently, various
technical solutions providing artifact awareness have been
implemented (see [7] for examples). ‘Explicit push’ occurs
when people explicitly send artifacts to others as part of a
communication dialog, such as file exchange via email or
within an instant messenger chat session [7]. ‘Explicit pull’
occurs when people retrieve files that were somehow made
available by others, e.g., with peer-to-peer file-sharing,
document repositories [1,7], and version control systems.
‘Artifact availability’ happens when people post artifacts
through some kind of awareness server that displays the
artifact state, e.g., Notification Collage [4], Community Bar
[6], Sharing Pallette [7] and OpenMessenger [2].

While these later systems provide a fine granularity of
artifact awareness [4,6,7], they use specialized software that
are yet another awareness device present on the desktop
that competes for attention. In addition, many systems
disassociate artifact awareness from the interpersonal
awareness of actual group members interested in that
artifact. This is a problem: we know that in everyday life,
artifact awareness is closely associated with interpersonal
awareness of the people that use them [8,2,7]. Instead, we
believe we can incorporate artifact awareness within an
existing highly-used awareness system: Instant Messengers
(IMs). IMs let ad-hoc groups of friends (buddies) stay
aware of one another and move into easy conversation and
interaction. Our main idea is that artifacts can become a 1st
class IM buddy and behave like other buddies within a
defined group. The artifact knows what people are
interested in it and notifies others about its state. Others can
interact with the artifact (and the rest of the group) through
IM’s standard chat features.

Cite as:

Greenberg, S., Stehr, N. and Tee, K. Artifacts as Instant
Messenger Buddies. Report 2008-896-09, Department of
Computer Science, University of Calgary, Calgary, Alberta,
Canada. T2N 1N4

Artifacts as Instant Messenger Buddies Greenberg, S., Stehr, N. and Tee, K. 2

Figure 1.The (annotated) Artifact Buddy as it first appears.

ARTIFACT BUDDY
We call our experimental system Artifact Buddy. It
implements a user interface (annotated in Figure 1) and a
wrapper around Microsoft’s Windows Messenger, chosen
because it has functions typical of most IMs as well as a
public API (we use the DotMSN API from
http://www.xihsolutions.net/dotmsn). Through this API,
Artifact Buddy programmatically invokes activities such as
inviting buddies, setting and receiving state information,
sending and receiving chat messages, initiating and
responding to file exchanges, and so on.

We explain Artifact Buddy by scenario. Mary is working on
a conference paper with her co-authors Kim and Nathan. As
the primary author, Mary keeps the ‘master’ copy of the
paper, and coordinates with Kim and Nathan over changes
and updates to it. Because she holds the master, she is the
only one that needs the special Artifact Buddy software.

Creating an IM account. Mary starts up Windows
Messenger, and using its standard interface signs up for a
new account ID on it (identified by a made-up email
address) to represent document(s) relevant to her group.
She calls it ‘ConfPapers@live.com’.

Linking Artifact Buddy to Windows Messenger. Mary then
starts Artifact Buddy, which appears on her screen as
annotated in Figure 1. Using the functions accessible
through the ‘Properties’ menu (top left), she provides the
Windows Messenger account ID and password. Using this
information, Artifact Buddy can now link into to Windows
Messenger by logging onto that account through the
Messenger API.

Inviting Buddies. She now invites the buddies to form a
group, i.e., people with interested in the document to be
shared. Specifically, she provides Kim’s, Nathan’s and her
own Windows Messenger IDs (their email addresses) to

Artifact Buddy (again via the Properties menu). Under the
covers, Artifact Buddy will use the Messenger API to send
the invitation to each of them and then monitor their state.
As each invitee accepts the invitation, their names will
appear in the Artifact Buddy ‘Buddy List’ pane along with
an icon indicating each buddy’s on-line, idle and off-line
state (Figures 1 and 2, top middle). Following the norms of
Windows Messenger, the Artifact Buddy account name
(shortened as a nickname) also appears as a new contact in
each person’s Windows Messenger buddy list, i.e.,
‘ConfPapers’. Figure 3 illustrates this in Kim’s view, where
for convenience she has created a new group within
Windows Messenger called ‘Conference Paper Group’ and
moved Mary, Nathan and the ‘ConfPapers’ artifact-oriented
buddy into it.

As an alternative to the artifact inviting people, others could
instead use the standard IM features to invite the artifact to
be their buddy (i.e., by inviting ConfPapers@live.com).
Currently, Artifact Buddy is configured to accept all such
invitations; this access could be restricted to by comparing
requests to an access control list.

Sharing an artifact. Next, Mary drags and drops the
artifact to be shared, in this case a word document titled
‘Issues.doc’, onto the Shared File icon (Figure 1, top left).
Artifact Buddies immediately creates and stores a copy of
this file as version. It displays it as a thumbnail (Figure 2
top left) and as an item in the ‘Version List’ pane, where it
is identified by the version number and the person who has
submitted this version (Figures 1 and 2, top right).
Internally, this version copy is stored in a local directory
called ‘versions’, where the file name is prefixed with the
version number and its creator, i.e., v1-Mary-Issues.doc.

Figure 2. Artifact Buddy after a period of use.

Artifacts as Instant Messenger Buddies Greenberg, S., Stehr, N. and Tee, K. 3

The most current copy of the file is also kept by Artifact
Buddies as the ‘working document’ and is also listed in this
pane. This working document is the one that Mary (and
others) normally edit; it does not become a new version
until it is submitted as such (explained shortly).

As an aside, Mary can reuse this account with different
documents, although this would likely occur only after the
group had completed its work on the previous one.

Basic artifact awareness. Mary now begins to work on this
document in the normal way. Other people see her activity
in their standard Windows Messenger client, as illustrated
in Figure 3. They see that the artifact as ‘buddy’ is online
(the green pawn). They also see additional detail in the
display name field associated with the buddy. As Mary
edits, the display name changes to say she is editing the file
(as illustrated in Figure 3). If she pauses editing or if she
closes the document, the icon changes to its ‘away’ state. If
she shuts down Artifact Buddy or logs off her computer, it
is displayed as off-line. For each case, the display name
message field changes accordingly to provide detail.

Under the covers, Artifact Buddy monitors if the file is
opened by periodically examining the names of opened
windows on the display. If the file is opened in a window, it
tracks keyboard activity in that window to detect if the
person is editing the file. It then translates this into state and
display name messages transmitted through the Windows
Messenger API.

Saving versions. At any point, Mary can specify that a
copy of the working file should be saved as a new version
(the ‘Save file as new version’ button shown in Figure 2,
middle right). Internally, Artifact Buddy implements a

lightweight albeit simplistic version management system. It
copies the file to the storage location mentioned previously,
numbers that version, and tracks who has submitted it. That
version and the name of its submitter then appear on the
Version list (Figures 1 and 2, top right). At any time, Mary
can open previous versions by double clicking it in the list.

As will be mentioned shortly, other buddies can get
previous versions of the document via variants of the ‘Get’
command and submit them as well via drag and drop into
the IM chat dialog box. When a previous version is
resubmitted, it is saved as a new version. That is, if the
version 4 was edited and then resubmitted, it is saved as
version 5. However, if a new version had already been
submitted by someone else, the system will save the current
version as a child version. For example, the version tree
shown in Figure 2 (middle right) shows that Kim has
retrieved, edited and resubmitted version 4 of the document.
Since Nathan had already submitted version 5, Kim’s is
stored and listed as version 4a.

When a version is saved, Artifact Buddy initiates a chat
dialog with all other buddies. For each buddy, a standard
Windows Messengers chat box appears, exemplified by the
dialog in Figure 4. Artifact Buddy sends a message
indicating that a new version of a file is available (for
certain types of files it also summarizes the differences
between the current and previous version). Dialogs are also
recorded in the Artifact Buddy chat area (Figures 1 and 2).

Conversing with Artifacts. Buddies can initiate a dialog
with the artifact, where any person can send it commands
via the standard IM chat box. For example, if Kim types
‘Get Latest’ into the chat box, Artifact Buddy will respond
by initiating a file transfer of the latest version of the paper,
just as if ‘Artifact Buddy as person’ had dragged and

Figure 3. Kim’s IM window showing ConfPapers

Figure 4. A sample of conversations, commands and
events as they appear in the IM Chat Dialog window.

Artifacts as Instant Messenger Buddies Greenberg, S., Stehr, N. and Tee, K. 4

dropped the file into the chat area (see Figures 2 & 4).
Similarly, any buddy can do the following:
• Get # gets a particular version identified by its number;
• Get original gets a copy of the original document, i.e., it

is the same as Get 1;
• Get latest gets the latest saved version of the document;
• Get working gets the current working copy of the file;
• <Drag and drop> version submits the dropped file

version to the version control system;
• Versions lists all available versions;
• Get transcript gets a copy of the entire dialog entered by

people as they converse with the artifact and with each
other, as well as the events generated by the artifact.

• Help lists all commands.

All submitted commands are also displayed in the Artifact
Buddy chat area (Figures 1 and 2, bottom) as well as the
chat dialogs of other buddies (Figure 4). This provides both
the master and others with ongoing awareness of all activity
concerning these files and versions.

Conversing with the group. Any buddy can not only
converse with the artifact, but with all buddies associated
with that artifact. If the text entered in any IM chat dialog
window is not recognized as a command, Artifact Buddy
assumes it is a message intended for the group and passes it
through to all participants. Similarly, the master – in this
case Mary – can use the Artifact Buddy chat window to
broadcast messages to all other buddies. We can now see
that the (different) dialogs shown in Figures 2 and 4 contain
a mix of commands, events, interpersonal dialog, and file
transfers.

A transcript of all messages are retained in an XML file by
Artifact Buddy. At any time, any person can request and
review the transcript of events, of submitted commands,
and of the group dialog around the artifact through the ‘Get
transcript’ command. This ability to review the transcript is
especially important for people who have been off-line for a
while, as it helps them get up-to-date.

DISCUSSION
Artifact Buddy is a demonstration that realizes our basic
idea: that artifact awareness can be managed through the
standard interpersonal awareness and communication
capabilities of Instant Messengers and others of its ilk. The
idea can have many variations that go far beyond what we
have detailed here. Some suggestions follow.

Document-level locking can be managed by having the
Artifact Buddy track the state of who ‘owns’ a particular
version. It can enforce locks, where only that person can
submit the next version. It can also allow for greater control
of branching versions, as is done in many version control
systems. Indeed, it should be straightforward for a system
like Artifact Buddy to use an existing version control
system as its underlying document management engine.

Multiple artifacts. Our implementation only manages one
document at a time. It could be extended to handle multiple
documents. For example, a variant of Artifact Buddy could
track multiple files, where it provides awareness of their
global state both as a collection, and as details of particular
files as they are being used (e.g., in the display name and/or
the chat dialog). People can submit and received files
individually, or as a collection (e.g., as a zip file). Of
course, this will add interface complexity.

Artifact awareness as streamed window snapshots. Tee et.
al. [6] advocated screen sharing as a method to display on-
going changes to a file. Their idea was to transmit a
miniature of a screen or window’s image to other people,
which can then be visually tracked to see changes as they
occur. This too can be implemented in an IM-based system.
Many Instant Messengers now have the capabilities to open
a video channel, e.g., for web cam conversations. This can
be exploited by having a system like Artifact Buddy take
periodic window snapshots of the artifact as it is being
edited, and repackage and stream them on the fly as video
frames over the IM video channel. It would use the standard
IM API and video codec protocol to transmit these frames.

Linking into other awareness services. There is a multitude
of other awareness servers now available. These include
web-based social networks (e.g., Facebook, MySpace),
sidebar utilities (e.g., Microsoft Sideshow [1], micro-
blogging systems (e.g., Twitter http://twitter.com/) and so
on. Each has affordances built for interpersonal awareness
that lend themselves to artifact awareness in ways
somewhat similar to what we have done with Instant
Messengers. For example, an artifact can register as a
‘person’ on a social network, and update others by posting
events or micro-blogs. More detailed summaries can be
posted as blogs. Depending on the social network, images
of the changing artifact over time can be posted as pictures
or as shared files. All that is needed to implement this is a
public API to that awareness service.

In summary, we believe that artifact awareness can exploit
the standard interpersonal awareness and communication
capabilities of social systems such as Instant Messengers.
Artifact Buddy is just one working example to illustrate
how this can be done; many other variations are possible.

ACKNOWLEDGEMENTS
This work was partially funded by the
NSERC/iCORE/SMART Industrial Research Chair in
Interactive Technologies and by NSERC through its
NECTAR Research Network and Discovery Grant
programs.

REFERENCES
1. Bentley, R., Horstmann, T. and Trevor, J. The World

Wide Web as Enabling Technology for CSCW: The
Case of BSCW. Computer Supported Cooperative
Work, 6, 1997, 111-134.

Artifacts as Instant Messenger Buddies Greenberg, S., Stehr, N. and Tee, K. 5

2. Birnholtz, J., Gutwin, C., Ramos, G., and Watson, M.
(2008) OpenMessenger: Gradual Initiation of Interaction
for Distributed Workgroups, Proc ACM CHI 2008.

3. Cadiz, JJ, Venolia, G.D., Jancke, G., and Gupta, A.
Designing and Deploying an Information Awareness
Interface. Proc ACM CSCW, 2002, 314-323.

4. Greenberg, S. and Rounding, M. The Notification
Collage: Posting Information to Public and Personal
Displays. Proc ACM CHI, 2001, 515-521.

5. Kraut, R., Egidio, C., and Galegher, J. Patterns of
Contact and Communication in Scientific Research
Collaboration. In Intellectual Teamwork: Social &

Technological Foundations of Cooperative Work. LEA
Press, 1990, 149-181.

6. Tee, K., Greenberg, S. and Gutwin, C. Providing
Artifact Awareness to a Distributed Group through
Screen Sharing. Proc ACM CSCW, 2006.

7. Voida, S., Edwards, K., Newman, M., Grinter, R. and
Ducheneaut, N. Share and Share Alike: Exploring the
User Interface Affordances of File Sharing. Proc. ACM
CHI, 2006, 221-230

8. Whittaker, S., Frolich, D., and Daly-Jones, O. Informal
workplace communication: What is it like and how
might we support it? Proc ACM CSCW, 1994, 131-138.

