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ABSTRACT 
Tangible interfaces are best viewed as an interacting 
collection of remotely-located distributed hardware and 
software components. The problem is that current physical 
user interface toolkits do not normally offer distributed 
systems capabilities, leaving developers with extra burdens 
such as device discovery and management, low-level 
hardware access, and networking. Our solution is Shared 
Phidgets, a toolkit for rapidly prototyping distributed 
physical interfaces. It offers programmers 3 ways to access 
and control remotely-located hardware, and the ability to 
create abstract devices by transforming, aggregating and 
even simulating device capabilities. Network 
communication and low-level access to device hardware are 
handled transparently, regardless of device location.  

ACM Classification: H.5.2 [Information Interfaces]: User 
interfaces – input devices and strategies, interaction styles, 
prototyping, user-centered design 

Keywords: Distributed physical user interfaces, Phidgets. 

INTRODUCTION 
Physical user interfaces are increasingly important in many 
emerging visions of human computer interaction: 
ubiquitous and calm computing, tangible interfaces, 
pervasive and context-aware computing, information 
appliances, reactive environments, interactive art, ambient 
displays [21,7,17,19,4]. In most visions, physical user 
interfaces comprise an appliance constructed from simple 
hardware devices – sensors, switches, actuators, displays, 
motors, RFID – that developers package in some manner, 
and connect to, monitor, and control via software. These 
appliances are either carried by people or deployed at 
meaningful locations within the end user’s everyday 
environment, with the idea that they work within (rather 
than apart from) the everyday practices of people [8].  

While some physical user interfaces work as stand-alone 
appliances, they are usually envisaged as components 
interacting within a network of other devices [4,7,12,19,21]. 
For example, Weiser’s Ubicomp vision anticipates “a 

network that ties [devices] all together” [21]. Dey et. al. 
explains context-aware applications: “…the devices used to 
sense context most likely are not attached to the same 
computer running an application that will react to that 
context” [7]. Similarly, Brave et al. extend tangible 
interfaces to distributed CSCW through the notion of 
“synchronized distributed physical objects” [4]. All 
perceive the system as a distributed physical user interface 
comprising various hardware devices connected to different 
computers over multiple locations, all networked together.  

From this perspective, a distributed physical user interface 
is best viewed as hardware nodes on a distributed system. 
This viewpoint reveals that developers of such systems face 
two considerable challenges. 
1. They must program, communicate with and control low-

level hardware devices.  
2. They must assume the additional programming burden 

inherent in most distributed systems: resource discovery, 
network communication and protocol development, 
connection control, managing failures due to 
connectivity problems and latency, debugging intricacies 
of distributed systems, and so on. 

Toolkits are now available that simplify device 
programming (point 1), or that simplify distributed systems 
development (point 2), but not both. Consequently, our goal 
was to design a toolkit that lets programmers easily access 
the many distributed devices that comprised a network of 
physical user interfaces. Our solution is Shared Phidgets, a 
significant and powerful software extension of the 
commercial Phidgets platform [20]. Shared Phidgets:  
• automatically discovers devices connected to a myriad of 

different computers; 
• manages all network aspects so that no network 

programming is required; 
• uses the same API to control a device, regardless of 

whether it is attached to a local or  a remote computer; 
• uses a dMVC distributed Model-View-Controller design 

pattern to represent devices so that data associated with 
the model is easily queried and manipulated; 

• generates notifications across the network whenever 
device state is changed; 

• offers graphical ‘skins’ that let a person view local and 
distant device state and control them via a GUI;  

• offers the means to create or simulate ‘abstract devices’ 
that transform and aggregate low level hardware device 
capabilities into higher level abstractions; and 
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• provides a set of high-level tools to: manage hardware 
and network connections, control, emulate and observe 
devices, and examine the dMVC model.  

To forewarn the reader, this paper concentrates on the 
technical infrastructure underlying Shared Phidgets. Our 
belief is that the toolkit offerings and its architectural 
makeup comprise: (a) substantial software engineering 
contributions that tremendously simplify the development 
of distributed physical user interfaces, and (b) strong 
intellectual contributions by the way this architecture offers 
much more than a stapling of a physical user interface 
toolkit to a networking toolkit.  

After summarizing related work, we use a ‘hello world’ 
program to show how a person would use Shared Phidgets 
to create a distributed awareness appliance. We then detail 
the Shared Phidgets architecture and illustrate the power of 
its advanced features.  

RELATED WORK 
Until recently, physical user interface development was 
restricted to the few programmers who knew about 
hardware and circuit design, and who were willing to do a 
huge amount of back-end programming: firmware, 
networking and protocol development to link hardware and 
computers, and application software that monitors and uses 
the device. Fortunately, various toolkits now makes rapid 
physical user interface development reachable by average 
programmers. Well-developed commercial offerings are 
Phidgets [20,13] and MakingThings, while research tools 
include iStuff [2], Input Configurator [9], d.tools [16] and 
Calder [18]. Offerings typically provide hardware devices 
with well-defined functionality, easy connectivity 
(including wireless) between device and a single traditional 
computer, and a software API that lets a programmer access 
the hardware functionality. Their power is that developers 
can focus on high level design of physical user interfaces 
rather than on low level implementation details [1,11].  

Perhaps the most used of these toolkits is Phidgets, first 
created as a research system [13], and then commercialized 
by Phidgets Inc [20]. Phidgets includes USB-based 
hardware boards for input (e.g., temperature, movement, 
light intensity, RFID tags, switches) and output actuators 
(e.g., servo motors, LED indicators, LCD text displays). Its 
architecture and API lets programmers discover, observe 
and control all Phidgets connected to a single computer. 

While all the above toolkits simplify hardware 
programming, they do nothing to help one manage 
hardware as a distributed system. Dey et. al.’s Context 
Toolkit [7] is the exception. Its context widgets abstract the 
actual (possibly distributed) devices and software used to 
collect contextual information. Interpreters transform this 
low level information into high level abstractions. 
Aggregators collect, group and logically relate multiple 
pieces of information. Services use the above input 
components to control something, i.e., to perform an output. 
Discoverers maintain a registry of components. Under the 
covers, components communicate through a TCP-based 
subscription-based event system.  

Yet the Context Toolkit does not ease how programmers 
compose low level hardware devices. Our understanding is 
that a context widget’s connection to hardware (including 
hardware control) has to be custom coded; the toolkit itself 
supplies no support for this difficult step. That is, the toolkit 
begins with the abstracted ‘context widget’ but does not 
explicitly support how these are linked to hardware. Thus 
there is a significant gap between how one accesses the 
hardware (as provided by the previously mentioned 
toolkits) vs. how one leverages this hardware in a 
distributed setting (as in the Context Toolkit). This gap is 
the ‘sweet spot’ that our Shared Phidgets toolkit addresses. 
As we will see, we extend the existing Phidgets architecture 
so that programmers can access low-level hardware devices 
located anywhere on the network, and compose them to 
work together in powerful ways.  

A ‘HELLO WORLD’ PROGRAMMING SCENARIO 
To set the scene, we illustrate how ‘Jim’ uses Shared 
Phidgets to create an awareness appliance that lets a person 
at home know if his working spouse is present, around, or 
absent from her office. The appliance comprises three 
linked devices distributed across two locations: the home 
and the office. While simplistic, it implements 3 previously 
published ideas: Door Mouse [4], Physical but Digital 
Surrogates [14], and Aggregates [7]. 

Description 
The office part (not illustrated) comprises two off-the-shelf 
sensors attached to a Phidget InterfaceKit circuit board [20] 
plugged into the ‘office’ computer. A proximity sensor 
detects if someone is seated at the desk, while a force 
sensor detects if the office door is closed.  

Figure 1. The home appliance and its graphical interface 



The home part, illustrated unadorned in Fig. 1, contains a 
Phidget TextLCD display, and a figurine atop a Phidget 
Servo [20], both plugged into a home computer. It also 
contains a graphical user interface (Fig. 1) mirroring the 
state of these devices. The program in Fig. 1 aggregates 
these two sensor values into a new ‘availability’ value: 
• present: door open, someone seated; 
• around: door open, no one is seated; 
• absent: door closed, seated state ignored.  
This program also adjusts the figurine’s position and LCD 
display contents depending on this availability state: 
• present: faces forward (0o), says ‘Present’ 
• around: faces sideways (90o), says ‘Around’ 
• absent:  faces the wall (180o), says ‘Absent’. 

Implementation 
Shared Phidgets includes a run-time architecture. Jim starts 
a Shared Phidgets Server on a central computer of his 
choice (e.g., tcp://demo.ca:test), and a Connector on the 
local computer to link to this server. This takes seconds.   

Jim first works on the office sensors. He positions the 
proximity sensor in front of the desk chair, tapes the force 
sensor to the inside of the door jamb, and plugs both into 
the Interface Kit. The Connector immediately detects the 
InterfaceKit as it is plugged into the office computer, and 
publishes its sensor data to the Server. This data is now 
available to other software connected to the Server.  

Jim then builds the home part of this device illustrated in 
Figure 1. He glues the figurine to the motor, and packages 
that and the display into a box (not shown). He then writes 
a small program (Fig. 1 right) to monitor and aggregate the 
two distant sensors, and uses this aggregation to reposition 
the figure and determine the LCD display contents. Jim 
does this in 4 steps: he uses an interface builder for the first 
3, and writes code only in the last step. 
1. Connect to the server. Drag and drop the Shared 

Phidgets ConnectionManager object onto the window 
form, and set its SharedDictionary property to 
“tcp://demo.ca:test. This object automatically connects 
to the central server. 

2. Create an object connected to the distant InterfaceKit. 
Drag and drop an InterfaceKit object onto the form. Set its 
SerialNumber property to the serial number of the distant 
InterfaceKit hardware board located in the work office. 
The software and distant hardware are now linked.  

3. Create objects that control and graphical display the 
local appliance. Drag, drop and link a Servo and 
ServoSkin object, and a TextLCD and TextLCDSkin object 
into the form. Set their serial numbers to match the local 
hardware. These ‘Skins’ are graphical interfaces that 
reveals the state of the servo and the display hardware; 
while not strictly necessary, this graphical view is 
included for illustrative purposes (Fig. 1, middle top).   

4. Monitor the sensor values to control the local 
appliance. Create an event handler for the interfaceKit’s 
SensorChange event to monitor the current values of 

these sensors. Jim also creates a utility method Aggregate 
to aggregate the sensor values, and uses this aggregate to 
control the home appliance.  Figure 1 shows this code.  

He compiles and runs this program on the home computer. 
It automatically connects to the server over the internet, and 
raises events as sensor data collected from the office 
computer changes. The event handler code in Figure 1 is 
invoked and the home appliance is adjusted accordingly.   

Discussion 
The above example is notable in that its programming is 
almost identical to that of the original non-distributed 
Phidgets [13] – but in the original all devices needs to be 
connected to one machine. Aside from starting the server 
and the Connector programs, the only coding difference is 
that the programmer included a ConnectionManager and an 
address to the server. All distributed systems aspects are 
otherwise hidden. We stress that this example only shows 
the most basic use of Shared Phidgets; much more 
sophisticated and nuanced distributed appliance designs are 
possible, as illustrated in later sections (e.g., aggregation 
can be done separately, as in [7]).  

SHARED PHIDGETS ARCHITECTURE 
We now concentrate on what happens ‘under the covers’. 
Fig. 2 illustrates the Shared Phidget hardware, runtime and 
programming architectural components, its programming 
libraries, and the interactions between them. Subsequent 
sections describe what application developers actually see 
and the tools they use to facilitate the programming process. 

Hardware and Devices 
Hardware devices are the combined hardware/circuit board 
building blocks primarily exploited by our infrastructure 
(Fig. 2b). Developers use these devices to create the 
physical portion of their interface, which in turn defines the 
end user’s interaction (Fig. 2a). The Shared Phidgets 
architecture provides access to all Phidgets Inc. hardware 
devices [13,20], although non-phidget devices can be 
integrated as well. These include input sensing (motion, 
touch, proximity, light…), manual input controls (switches, 
dials, sliders, joy sticks, key fobs, RFID readers…), output 
actuators (motors, servos, solenoids) and output displays 
(lights, text displays…) (Fig. 2b). Each connected device is 
uniquely identified by its location, type and serial number. 

Computer Communication to Phidget Devices  
Phidget devices interact with a controlling host computer, 
and thus need to be connected to them. Currently, all 
Phidget devices connect to a host computer via USB. 

Phidgets Inc. supplies two rudimentary interfaces to let 
programmers communicate with these devices. First, a 
dynamic link library API offers access all locally attached 
devices. Second, a ‘web service’ provides a socket-based 
interface to the local machine’s Phidgets (Fig. 2c). While 
this second form can be exploited as a crude network 
service, Phidget Inc supplies it primarily as a platform-



 

independent interface to simplify access to Phidgets across 
different programming languages and operating systems.  

So far, we have described the offerings of Phidget Inc., 
which closely matches the original Phidget architecture 
[13]. Remaining sections depart radically from Phidget Inc. 
offerings. As we will see, our new distributed architecture 
provides a shared distributed data space that contains 
information about all phidget devices regardless of their 
location, and a connector mechanism that hooks devices on 
the local computer to this shared data structure. 

Shared Distributed Data Space 
A fundamental component of the Shared Phidgets 
architecture is a shared data space. We implement this as a 
distributed data structure using the shared dictionary 
provided by the GroupLab .NETWORKING toolkit [3].  

.NETWORKING allows client processes read / write access to 
a collection of data objects maintained within the Shared 
Dictionary Server (Fig. 2f). This is also a notification 
server, as clients are immediately notified of any changes to 
data they are subscribed to, regardless of who made these 
changes. .NETWORKING also manages all runtime 
networking housekeeping tasks: socket creation/teardown, 
wire protocol, data marshalling, parsing, etc.  

Data in the shared dictionary is structured as hierarchical 
key/value pairs. Values can be primitive data (integers, 
strings…), binary data (images…) or complex data (lists, 
structures…). A key is expressed as a path hierarchy. A rich 
set of operators allow programmers to subscribe and iterate 
over data held in particular sub-paths of this hierarchy[3]. 

Shared Phidgets leverages the shared dictionary by 
managing data and the ways participating machines access 
this data as a distributed Model-View-Controller (dMVC) 
pattern [15]. The model is the abstract data stored on the 

shared dictionary. Multiple controllers – the client 
machines – can change values in the shared data model. As 
multiple clients receive notifications of changes of that 
data, they can each generate their own view of it.   

For every phidget seen, Shared Phidgets automatically 
creates a model entry that completely defines the phidget 
state. Using our office/home appliance example, Fig. 3 
shows the partial dictionary entry for its three Phidgets: the 
Servo, InterfaceKit and TextLCD. To illustrate the 
dictionary’s hierarchical nature, consider the key 
\sharedphidgets\phidgetservo\418\servoposition\0. Its path 
specifies the root (Shared Phidgets), the device type 
(Phidget Servo), its unique serial number (418), and that it 
contains the servo position attribute of motor #0 (currently 
90O). Thus given a serial number of a Phidget Servo, it is 
easy to search for it, and to read, modify or iterate through 
all its properties and values. For the InterfaceKit, we see the 
values of sensor 0 (the door pressure sensor) and sensor 1 
(the proximity sensor). We also see that the TextLCD is 
currently displaying the text “Present”. As a person triggers 
the office sensors (the controllers), the model is updated 
and a notification raised that invokes the callback in Fig. 1 
in the distant home client. This updates the appliance’s 
view by resetting the servo and text display values. 

The critical point is that the Shared Phidgets architecture is 
realized primarily as a dMVC pattern over a distributed 
client / server shared data model with view updates 
triggered via a notification server. This greatly simplifies 
the internals of distributed data management and, as we will 
see later, provides three powerful ways for the developer to 
program Shared Phidgets. 

Connectors and Phidget Proxies 
The shared data space maintains a runtime model 
(representation of properties and current status) of all 

 
Figure 2. An overview of the Shared Phidgets Architecture 



distributed Phidgets, but does not define how a machine’s 
Phidgets connect to it. This is the job of the Connector, 
illustrated in Figs. 2d+e. The Connector runs quietly in the 
background on each local client machine. It notices any 
locally-connected Phidgets that are plugged in over time. 
As it finds a new device, the Connector dynamically adds 
an appropriate phidget proxy object to handle it.  

This proxy object has two responsibilities. First, it observes 
and controls its specific phidget device features, e.g. an 
interface kit object observes all sensor values generated by 
the hardware; a servo object controls a phidget Servo 
position. Second, it serves as an intermediary between the 
phidget device and the shared dictionary model: it ensures 
that device attributes and matching key/value pairs crated in 
the data model reflect the same state. Acting as a controller, 
it monitors the phidget device for any changes, and updates 
the shared dictionary model to reflect those. For example, a 
reported sensor value will update its corresponding data 
model entry. At the same time it acts as a view, where it 
monitors the shared dictionary model (via notifications) for 
any data updates, and adjusts the phidget device to reflect 
that new value.  For example, a change in a servo position 
data will translate to the servo motor actually rotating to 
that position. We mentioned that non-phidget hardware can 
be included in architecture; this is done by creating a proxy 
specific to that hardware to interact with the dMVC. 

Revisiting Fig. 3, we now see that it illustrates how 3 
proxies have modeled three connected phidget devices in 
the shared dictionary; excluding timing delays, these 
represent the properties and current state of the hardware as 
attributes. Attributes describe three categories. 

General device properties provide information common to 
all Phidgets: the h/w version number, whether this device is 
currently attached to the local computer, and when it was. 

Current device status represents the available input and 
output functions of the phidget. Each sensor or control input 

involves a separate dictionary entry, and the Connector tool 
is responsible for controlling (updating) these values as the 
hardware triggers updates to them as events. An example is 
illustrated by the values shown for the sensor inputs of the 
InterfaceKit. Each actuator or display output is represented 
by two entries: one with the current value of the output, and 
one for submitting requests to change the value (e.g., the 
servo’s servoposition vs. setservoposition in Fig. 3). These two 
entries are important: the set entry is what the output should 
be, and this is in turn used by the Connector to direct the 
hardware until that value is achieved in the corresponding 
entry (depending on the device and network, this could be 
near-instantaneous or take several seconds). 

Metadata entries contain additional information entered by 
the proxy that describes each device. As seen in Fig. 3, this 
includes the IP address of the computer a phidget is 
connected to, its physical location, its owner, and keywords. 
The actual metadata is specified through the local 
machine’s Connector interface. While some metadata fields 
are automatically provided, the end user can fill in a form 
within the Connector to add one or more custom fields and 
values, and associate these with a particular phidget device. 
These custom metadata entries are then stored within that 
phidget’s data model in the shared dictionary. For example, 
the three Phidgets comprising the Fig. 1 appliance may be 
viewed as a single appliance by creating a metadata key 
‘ApplianceType’ and setting its value to ‘Jims Awareness 
Appliance’.  Another metadata key ‘Where’ can indicate if 
it is the office or home side by setting its value to ‘Office‘ 
or ‘Home’. Because metadata information originates in the 
local machine’s Connector, the metadata information is 
updated if and when users move devices between 
computers (e.g., new location, owner…). That is, the 
metadata information can offer context-dependant 
information that can be exploited by the programmer.  

Internally, the Connector accesses either the Phidgets Inc. 
DLL (as in Fig. 2d), or it opens connections to one or more 
Phidgets Inc. web services (Fig. 2e). Through this web 
service connection, our Connector can serve as an 
intermediary to other computers hosting standard Phidget 
devices but not running Shared Phidgets software (Fig. 2e). 
This is important for it gives platform-independence: while 
Shared Phidgets now runs only on Windows, we can still 
connect to other Apple and Linux boxes hosting Phidgets.  

For security, the Connector lets users activate password 
protection and encryption of transmitted data. If they don’t 
want to share hardware, they can also exclude connected 
Phidgets devices from the shared data space. 

In summary, the Connector mediates between the data 
model and the phidget hardware discovered on the local 
machine or through web services. As a view onto the model, 
the Connector commands physical hardware to reflect data 
state changes made from client applications. As a 
controller, it transforms state information of the physical 
widget into changes to the data. As a local data store, it 

Figure 3. Path structure in the Shared Dictionary 



 

adds metadata that identifies particular features of that 
device as it relates to its local installation or its intended 
use. Finally, all this happens without any user or 
programmer intervention. The Connector can automatically 
start on login and run in the background. End users can 
optionally raise a Connector GUI to monitor the status of 
all shared devices, and to add and/or alter the metadata.  

DEVELOPMENT STRATEGIES - PART 1 
The dMVC model considerably simplifies the job of 
sharing and manipulating Phidget devices across a network 
and across multiple machines. Yet we recognize that the 
dMVC pattern may be unfamiliar to average programmers. 
Consequently, our architecture offers a three-tier 
programming model (Fig. 2g) that lets developers choose 
and intermix 3 different development strategies that 
balances power and simplicity. All strategies work within 
the standard Visual Studio development environment and 
C# programming language. All strategies also trivialize 
hardware access and network communication, thus letting 
developers focus on their physical interface design ideas.  

Strategy 1: Programming via the Shared Dictionary  
Programmers can develop Phidget applications by 
addressing the shared dictionary directly (Fig. 2g, row 1). 
While this adds power, programmers need to know the API 
to the .NETWORKING shared dictionary (e.g., subscription 
management and data organization), regular expressions 
(for pattern matching), the Shared Phidgets specification for 
device representation, and be familiar with the dMVC 
pattern. With subscription objects, developers receive 
notification events of changes to entries in a sub-tree of the 
dictionary hierarchy. They also write custom code as event 
handlers that take action on changes to dictionary entries.  

This programming model is very powerful as developers 
profit from pattern matching via path wildcards. That is, 
they can easily iterate through and control many devices at 
the same time. For example, the single line below returns 
all motors on all Phidget devices on all computers, where 
the ‘?’ is a regular expression that generates matches for a 
single hierarchical level.  

/sharedphidgets/phidgetservo/?/setservoposition/?/ 
By embedding this line in a foreach statement, a 
programmer can iterate over this expression to (say) read all 
motor positions of all Phidget Servos, or reset them to 180o. 

The dictionary can also be used to create new abstract 
devices that monitor, transform, and aggregating low level 
hardware device values into new data entries. As an 
example, reconsider our office/home appliance of Figure 1. 
In that system, the home component created and used the 
Availability aggregate. In practice, this should be done by 
the office component; this would let us (say) add new 
sensors to more accurately infer presence without changing 
the home side of the appliance. Similar to the code in Fig. 1 
the office side could calculate availability state, but store 
this aggregated value into a new shared dictionary SD entry 

that models an abstract device called ‘officepresence’: 
  SD (“/sharedphidgets/officepresence/1/availability”) = “Present” 
The home appliance can then subscribe to this abstract 
device instead of the InterfaceKit, where it monitors its 
value to control the figurine position and LCD display.  

Strategy 2: Programming via Phidget Objects 
In cases where the power of the Shared Dictionary is not 
required, the programmer can develop Shared Phidget 
applications by a simpler object-oriented API that 
completely encapsulates individual device capabilities. This 
is what was done for coding the home part of the appliance 
of Fig. 1. We had mentioned that the Connection Manager 
provides a phidget proxy object matching each phidget 
device (Fig. 2g row 2). This proxy reads and modifies that 
Phidget’s entries in the shared dictionary according to a 
particular device, and provides an object-oriented 
properties/methods API for the developer. A programmer 
controls a device by altering its properties and/or invoking 
its methods, and monitors changes to device status by 
adding event handlers. Networking and distributed data 
sharing aspects are completely hidden. Not only is this 
simpler than directly accessing the shared dictionary, but 
this familiar programming model requires little extra 
learning as it matches conventional GUI object-oriented 
programming and the original Phidgets programming 
paradigm [13]. Unlike the original Phidgets [13], the actual 
devices may now be located anywhere on the network; the 
programmer simply links the Shared Phidget object to the 
distant device by specifying the hosting computer’s 
metadata location and/or the device serial number.  

Strategy 3: Programming via Interface Skins 
Our simplest strategy lets developers compose an interface 
by dragging and dropping GUI representation of phidget 
devices, where these GUIs let end users monitor and control 
devices regardless of their location. While these GUIs can 
be programmed from scratch atop of phidget objects, 
programmers will typically use interface skins.  

Interface skins are wrapper objects around the phidget 
proxy object API. They normally provide GUI 
representations for every sensor or actuator functionality of 
the corresponding Phidget device (Fig. 2g, 3rd row). Using 
an interface builder, developers simply drag and drop these 
skins into a window, as done with our home appliance. In 
our experiences, skins provide an intuitive starting point for 
developers who have never dealt with hardware, where it 
entices them to experiment with the variety of physical 
interaction devices. It also serves as a very effective 
debugging mechanism.  

We call them ‘skins’ as a single Phidget device can be 
represented by multiple GUIs (this differs from the strategy 
first described in [13]). For example, the Interface Kit can 
have a skin that displays all sensor values in a textual table, 
as animated sliders, or as a graph that shows changes over 
time. Programmers can also create their own custom skins 



(using an included set of abstract base classes) to visualize a 
device in any way they wish. They can also create a skin to 
an abstract phidget that aggregates properties collected 
from several devices (e.g., as described in the shared 
dictionary subsection). A programmer can even create 
multiple views onto phidget devices by connecting multiple 
skins to one or more devices.  

DEVELOPMENT STRATEGIES – PART 2  
Three other capabilities complete our description of Shared 
Phidgets: metadata, extensibility, and tools. 

Programming using Metadata and Device Discovery 
Metadata is an important extension to the Phidgets concept 
as it allows people to attach context and device-specific 
information to devices, and to discover devices that match. 
Metadata is accessed via the shared dictionary or the Shared 
Phidget object in the same way as other Phidgets properties. 
For example, one accesses the servo’s location and 
keywords in Fig. 3 through the servo object properties: 

String location    = servo.Location; 
String keywords = servo.Keywords; 

Programmers can also use metadata to discover devices 
across the network. The easiest way is through filtering: 
filter terms are added to a Phidget object, and the device 
whose metadata matches those terms are attached to it. For 
example, the following code will discover the InterfaceKit 
used in our example and in Figure 3 by matching its 
Location and its Owner properties (other filter properties 
include serial numbers and IP addresses): 

interfaceKit.FilterLocations.Add("Home"); 
interfaceKit.FilterOwner.Add("Jim"); 

Custom metadata can be accessed, exploited and even reset 
via a hashtable associated with a Phidget Object. 
Programmers can iterate over all its metadata entries to look 
for matches, or see if a particular one exists through a 
ContainsKey() method, or get a particular value through the 
GetMetadata(“key”) method. For example, a programmer can 
unify a set of devices into an appliance simply by setting a 
common metadata tag that is later matched. One can also 
add metadata at runtime. For example, if a programmer had 
access to a servo’s GPS location, it can be added on the fly:  

servo.AddMetadata("GPS","N-51-02:W-114-01"); 

This user-defined metadata is immediately visible in the 
Connector tool, and other connected applications can 
discover it by iterating over the metadata collection. 

Extensibility 
Shared Phidgets is an extendable architecture. It is 
straightforward to include new phidget devices as they are 
made available by Phidgets, Inc. New interface skins can be 
created for existing Phidgets, for abstract Phidgets, and for 
new hardware. The toolkit offers abstract base classes as the 
building block for these phidget proxy classes and the 
interface skins; all implemented device objects and skins 
are derived from these. The base classes provide the main 
API and implementation of the phidget discovery methods, 

shared dictionary connection, and subscription objects. 
Devices are not limited to Phidgets, and hardware from 
other vendors can be included, albeit with modest effort. 

Observer and Controller Tools  
Shared Phidgets comes with two important tools, each 
constructed atop the programming environment, that lets a 
developer or end-user monitor, control and even simulate 
all devices distributed across the network (Fig. 2h).  

The Dictionary Explorer provides a direct view into the 
dMVC data model, and is invaluable for debugging. The 
user can observe, modify, and create entries in the data 
space, and they can also create simulated devices by adding 
needed set of shared dictionary entries that specify the 
device type and its properties.  

The Device Explorer provides a compact and more readable 
overview of all devices across the network, including their 
serial number, attached status, metadata such as location, 
owner, etc. The user also has the option of selecting a 
device, which automatically creates its interactive skin: they 
can then monitor and/or adjust that device’s values. 

EXAMPLES 
A few distributed physical user interfaces are listed below 
to illustrate the power of the Shared Phidgets toolkit. 

LumiTouch comprises a pair of interactive picture frames 
[6]. When a person touches one frame, the other frame is lit. 
This Tangible Media Group project is trivially replicated 
with two InterfaceKits, one per frame, each with attached 
LEDs and touch sensors. The lights on one frame are 
controlled by simply monitoring the touch sensor state on 
its distant partner frame.   

Location-based messaging. Elliot et. al designed a system 
that allowed people to send notes to devices at particular 
locations within the home [10]. Their work used standard 
Phidgets, so much coding was needed to configure these 
distributed devices. This is far easier in Shared Phidgets. 
Each device (e.g., a Phidget TextLCD Display) is tagged 
with location metadata, e.g., ‘Kitchen’ or ‘Hallway’. When 
a person wants to send a note, the underlying program 
queries and finds all the location metadata on the 
distributed system, composes this as a popup menu, and 
then ‘sends’ the message to the chosen location by setting 
the text property of the TextLCD Display at that location.       

Sensor Maps creates a map 
overview of all hardware and 
abstract devices held in the 
dMVC (any existing map 
image can be loaded). 
Attached devices are 
displayed as small circles 
atop the map, and the 
occurring events are displayed as expanding/fading circles 
(e.g., the radius depends on the current sensor value being 
tracked). Clicking a circle raises its skin. The inset 



 

illustrates distributed sensors across a university campus. 
Similar maps could let a person control the state of all 
appliances located within a smart home.  

DISCUSSION 
Shared Phidgets contribute a significant software 
engineering contribution to tangible computing by the way 
its architecture cleanly combines networking power with 
physical hardware. The result is a robust, easy to use, and 
very practical toolkit and run-time system. More 
importantly, the power of the Shared Phidgets architecture 
offers significant intellectual contributions at five levels:  

Distributed device access. Our dMVC approach adds 
considerably to how programmers interact with distributed 
hardware devices, something not done by other toolkits. 

Programming simplicity and power. Our architecture 
provides a 3-tiered way to program phidget functionality, 
which effectively trades off simplicity and power.  

Semantic metadata. The ability to add metadata to devices 
means that programmers can leverage semantic meaning 
associated with each device and location. Expected uses 
include programmatically deciding location and context-
dependant actions, and to discover device groupings so they 
can be collectively considered as an appliance.  

High level tools built atop our dMVC model lets end users 
visualize and control devices across the distributed network, 
and even add simulated devices. This is also tremendously 
useful for debugging as they can probe current state.  

Abstract devices. Finally, we stress that the ability to create 
new abstract devices from a combination of hardware 
building blocks or through simulated devices is extremely 
powerful. Letting people define abstract devices is the key 
to how we bridge between traditional physical user 
interfaces and Dey’s context widget. The programmer can 
also create new API’s and Interface Skins that further wrap 
these abstract devices, i.e., as particular appliances with 
APIs and GUIS that reflect its semantics and appearance. 

CONCLUSIONS 
Shared Phidgets is a new generation physical user interface 
toolkit. It recognizes that many physical user interfaces will 
comprise interacting distributed components, and that these 
components will be remixed in a variety of ways.  

In the past, programmers were responsible for all 
distributed systems aspects. The Shared Phidgets dMVC 
architecture takes over this chore. Surprisingly, there is 
almost no extra programming penalty, unless one wants the 
extra power offered by directly accessing the dMVC.  

There are other significant features: Interface Skins serve as 
both views and controllers into the distributed model, and 
new skins can be created to match end uses. Through 
metadata, people can add device-specific, location and 
context-dependant attributes to the appliances they create. 
Finally, the capabilities of Phidgets can be interpreted, 

recombined, aggregated, simulated and abstracted into 
abstract devices, which bridge into the powers offered by 
the Context Toolkit [7]. These abstract devices can be 
further enhanced as programmable objects and skins.  
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