
Groupware Plug-ins: A Case Study of Extending Collaboration
Functionality through Media Items

Gregor McEwan, Saul Greenberg, Michael Rounding and Michael Boyle

Department of Computer Science
University of Calgary

[mcewan, saul]@cpsc.ucalgary.ca

Abstract

Groupware normally offers only fixed

functionality, which can be a poor match to the
actual needs of particular group. We argue that
groupware should be extensible by third party
developers, and describe groupware plug-ins as a
method that enables this. Using the Community Bar
(CB) as a case study, we illustrate an easy-to-
program extensible groupware architecture. Unlike
single user plug-ins, CB groupware plug-ins
automatically share and populate a distributed data
structure, using a distributed Model View Controller
pattern to simplify programming. Several third party
plugins illustrate what people can create in practice.

1. Introduction

Single-user applications typically provide users with
fixed capabilities. Offerings range from limited
feature programs focused on task specificity (e.g., a
photo viewer), to a smorgasbord of functions
included to appease a broad set of users performing
quite different tasks (e.g., bloatware such as popular
word processors). Groupware is often designed the
same way, where designers which capabilities are in
and which are out. Yet groupware is more than a
productivity tool, for it also includes communication
and information sharing. The problem is that, except
for the most generic of collaborative activities, the
offerings of the groupware designer will likely be a
poor match to the actual needs of the group as overly
complicated bloatware.

One approach to solving this problem is to create
groupware as an extensible architecture. While there
are many ways that this could be achieved, our
particular interest is in plug-ins, a method popular in
extensible single user systems. Plug-ins are usually
implemented as visual components that can be
incorporated at runtime within some kind of
graphical user interface container. Each plug-in
delivers custom - albeit limited - capabilities to its
users. For example, plug-in ‘tickets’ in Sideshow [2]
range from traffic reports to stock tickers, while

Google Sidebar plug-ins [http://desktop.google.com]
may show news listings, weather, a musical play list,
and so on.

Plug-in systems are comprised of:
• a base system that serves as a (visual) container

of components;
• a stock set of plug-ins that the system designer

supplies to anticipate basic user needs;
• a development kit to allow third party designers

to create custom plug-ins that are automatically
included without recompilation into the system.
In this paper, we describe how plug-ins can also

work as part of an extensible groupware architecture
through one vital addition:
• plug-ins can become groupware-enabled by

automatically sharing and populating a
distributed data structure that includes simple,
complex and multimedia data types, and that uses
a distributed Model View Controller pattern to
simplify programming.
To show how this works, we detail our

Community Bar groupware system (CB) as a case
study of an extensible networked architecture. To set
the scene, we first summarize the CB interface,
followed by its architectural requirements and
details. We then describe how third party
programmers can easily create and add new
groupware functionality via custom groupware plug-
ins called media items [7]. We close with a few third
party plugins that illustrate what people can create in
practice.

2. Community Bar

Community Bar (CB) is groupware intended to
support causal interaction within a small distributed
group. CB presents itself as a sidebar peripheral
display [2] – a space-conservative bar on the side of
the screen that can never be covered by other
applications. Figure 1 illustrates its appearance, with
its primary features summarized below. While we
provide an overview here, CB’s design rationale and
interface is described fully in [5,6].

Saul
Text Box
McEwan, G., Greenberg, S., Rounding, M. and Boyle, M. (2006) Groupware Plug-ins: A Case Study of Extending Collaboration Functionality through Media Items. Proceedings of 2nd International Conference on Collaboration Technologies (CollabTech 2006), Tsukuba, Japan, July 13-14, IPSJ SIG Groupware and Network Services, 42-47. Best paper nominee.

Fig 1. Community Bar: 3 places,
4 item types, and a tooltip grande

cscw
class

mike
test

ilab

Tooltip
Grande

Presence Item
Chat Item
Sticky Note Item
Web Item P

C

S

W

P

P

P

P

P

P
C

C

P

Places. Using a menu (not
shown), people create, name and/or
join ‘Places’; each Place serves as a
locale [3] collecting different people
and other shared information.
Individuals can belong to different
groups, and thus each can have
different places visible in their
Community Bar. For example, Figure
1 shows an individual’s view of three
on-line places, titled: CSCW class,
ilab, and mike test.

Media items. Each place contains
a number of media items [4,7]. These
comprise tiles, tooltip grandes, and
full views as described below.

Tiles. The sidebar view of each
place contains a number of tile views
of several stock media items included
in CB. As illustrated in Figure 1,
these small tiles can represent things
like people (as live video, photos or
names), public conversations (as
public chat dialogues or sticky
notes), or publicly shared
information (e.g., web pages of
common interest).

Tooltip Grande. Tiles typically
provide only basic awareness
information. Individuals can choose
to explore and even interact with that
information in greater detail. When a
person mouses over a tile, CB will
display a tooltip grande next to it [2].
For example, Figure 1 (left side)
illustrates the tooltip grande for the
Presence tile. While the tile shows a
low fidelity and infrequently updated
video image, its tooltip grande
contains a higher fidelity and more frequently
updated image as well as various controls.

Each tooltip grande also contains a ‘focus’ slider
control that allows the user to control one’s personal
view of tiles, i.e., the tile can be made smaller, which
may semantically alter the information displayed
within it so that it is appropriate to its reduced size.

Full View. When a person clicks on the title bar
of the tooltip grande, a new separate window called
the full view displays even richer information, and
makes available all the functional capabilities of the
item. For example, the full views of Figure 1’s
Presence items is seen in Figure 3, where it contain
even higher resolution and higher frame rate video, a
static picture (in case the person is out of view), and
the ability to enter into a vocal conversation through
a ‘Push to Talk’ button.

Owner vs. Audience. An owner
is the person who originally creates
and posts a media item, while the
audience are all others who can view
it. The designer of a media item can
have its tile, tooltip grande or full
view behave differently for the
owner versus the audience. For
example, the Presence item offers
the owner additional control on
whether the audience should view
one’s video or a static photo (Figure
3)

Group control. Places, the
membership of people to that place,
the choice of media items within
them, and the content of these items
are completely defined by the group
on a moment by moment basis.
While people in a particular place
may see similar things, individuals
can control the size of tiles within it,
and separately drill down for further
information through the tooltip
grande or full view.

From Awareness to Interaction.
For each media item, its tile view
generally shows awareness
information; its tooltip grande shows
more detailed information and
allows partial interaction; while the
full view shows all the information
and all communication and
interaction possibilities. For
example, in the Chat Items of Figure
1, the tile view shows the last
message or two, the tooltip grande
view shows the last 10 messages and
allows sending brief messages, and
the full view allows sending long

messages while showing all messages, the place
members, and who is currently typing. Of special
note is the full view of a Place, which fits all the
tooltip grande views of a place’s media items into a
window as a rectangular grid (not shown). In this
manner, the full view of a Place almost completely
implements, and therefore subsumes, all capabilities
of the Notification Collage [4,7].

3. Architecture

The Community Bar architecture has three major
components. The first is the main application,
including the Sidebar Container interface and
management of People and Places. The second is the
Media Items Container, which wraps each plug-in
created by developers and presents it within a Place.

The third is the Shared Dictionary Notification
Server that forms the underlying distributed system.
This architecture was designed around four key
requirements:
1. Networking and Distribution – it must be

accessible to distributed groups of people;
2. Universality – a standardised Data Model that

represents people and their content;
3. Application – a program that manages and

displays people and their content; and
4. Extensibility – allow average programmers to

easily add new custom content.
In the following subsections, we describe how the

architecture is applied to the first three requirements.
Section 4 then describes Media Items, which fulfill
the fourth requirement.

3.1. Networking and Distribution

Because CB supports distributed groups and people,
CB’s first requirement is that it must have a
distributed architecture that manages multiple
processes across different computers, and the ability
to share and transmit data between them. This
implies quite complex networking and data
distribution requirements that could easily become a
programming nightmare in an extensible plug-in
architecture.

To manage this complexity, we built CB as a
client/server architecture whose data distribution is
based upon a distributed model-view-controller
(dMVC) pattern combined with a notification
engine. The basic ideas are:
• Model: the system maintains a persistent data

store on a server that is accessible to all clients,
• Controller: the model is updated

by distributed clients, usually as a
result of user actions,

• Views: client interfaces will be
updated to reflect the current state
of the model.

• Notifications: the server will
generate notifications to all
distributed processes about
additions, changes and deletions
to that data.
To implement this pattern, CB uses

GroupLab.Networking [1], a third
generation publicly-available
networking engine and toolkit
developed within our laboratories. It
proved a good fit for the networking
layer of Community Bar for several
reasons. First, it provides a server
with a persistent data store via a
shared dictionary: a hierarchical
key/value attribute list with an easy-
to-use API for setting and retrieving

distributed data. Second, the engine automatically
updates clients via a publish/subscribe notification
system, where clients subscribe to data by pattern-
matching particular hierarchical branches and nodes
of the shared dictionary. Thus the dMVC /
notification pattern is easily implemented. Third, all
low level networking details are hidden, as they are
automatically managed by the .Networking runtime
architecture. Finally, it automatically marshals and
stores data ranging from simple data types (strings,
integers…), complex data (structures, lists…), and
multimedia (binary data, images…).

3.2. Universality (Data Model)

Community Bar needs to maintain a strong notion of
three entities: of places, of people, and of media
items. All three entities are potentially long-lived
and information about them is needed by each client.
Thus CB’s second requirement is to have persistent
and distributed representations of places, people and
items.

To achieve this, CB uses the .Networking shared
dictionary as a server to persistently store all the data
about places, people and items. To illustrate how this
is done, we will use the Meeting Room place
illustrated in Figure 2 (screen capture on the right
side), which is currently inhabited by two people and
which displays two presence and one chat media
item. Figure 2 also shows the (slightly stylized)
corresponding data model held in the shared
dictionary server that defines the people, places and
items in the Meeting Room place.

CB leverages the hierarchical nature of the shared
dictionary by separating data into well-known
branches of the data tree. The top-level users branch

Key Value

Users

/users/judy@mail Judy
/users/ judy@mail/info initials = JO

/users/saul@mail Saul
/users/saul@mail /info initials = SG

Places

/places/guid1/ MeetingRoom
/places/guid1/member/guid2 /users/judy@mail
/places/guid1/member/guid3 /users/saul@mail

Media items

/places/guid1/items/guid4/type Presence
/places/guid1/items/guid4/owner /users/judy@mail
/places/guid1/items/guid4/place /places/guid1/
/places/guid1/items/guid4/pictur
e

<picture data>

/places/guid1/items/guid5/type Presence
/places/guid1/items/guid5/owner /users/saul@mail
/places/guid1/items/guid5/place /places/guid1/
/places/guid1/items/guid5/picture <picture data>
/places/guid1/items/guid6/type Chat
/places/guid1/items/guid6/owner /users/judy@mail
/places/guid1/items/guid6/place /places/guid1
/places/guid1/items/guid6/msg/ sender=Judy; initials=SS;

 message=”Want…”
sender=Saul; intials=SG;
 message=”Sure…”

Fig 2. Sample place and its Shared Dictionary key structure

stores data about a person, e.g., email, initials,
online/offline state, and so on. Figure 2, for example,
shows how information about its two people is
stored in the model’s users branch, where each
person’s subtree is defined by their unique email
address. Next, the top-level places branch stores
information about places created by a sub-group. It
also contains a list of all members of the group,
which in turn points back to particular people in the
people branch. For example, the single place in
Figure 2 is identified by a globally unique ID (the
GUID), and contains information about its name and
the two people within it. Finally, media item
branches contain generic information common to all
media items, as well as any local data particular to
that media item type. As illustrated by the three
media items in Figure 2, all items have a type, an
owner, and the place it resides in (which points back
to the places branch). Other data is specific to its
function (e.g., the multimedia picture item, or the
complex data structure comprising the actual text
chat); Figure 2 shows this in italics. Because items
can only exist within a place, they are stored as sub-
trees within a particular place branch.

3.3. The Application

The CB Sidebar Container client structures people
and places, and servers as a container for the Media
Item plug-ins. It performs this role with respect to
both interactions with the data model and as a visual
container in the User Interface (UI). Media Items are
contained within Places, and People subscribe to
places to view the Media Items. The CB Sidebar
Container therefore manages the data and user
interface aspects of Places, People and the generic
aspects of Media Items.

Place and People data, shown at the top of the
table in Fig. 2, is controlled by the CB Sidebar
Container. It gathers and updates all the People data
(e.g., display name and initials), the Place data that
People are subscribed to, and which Media Items are
in the Place. The Sidebar also manages the general
Media Item data in the fields type, owner and place
(shown in Fig. 2). All of the other Media Item data
(in italics in Fig. 2) is entirely managed by the Media
Item itself, as discussed in Section 4.

The Sidebar Container currently implements a
generic sidebar interface [2], managing placement of
controls and displaying the tooltip grande. It acts as a
visual container for Media Item visual components.
Place headers are displayed in the bar (for example
in Fig. 1 there are three Place headers shown), and a
space is reserved on the bar for each of the Media
Items within each Place. The Sidebar Container
queries each Item for a Tile view, which is then
displayed in the reserved space. Similarly, it also
deals with the Tooltip Grande, displaying it when the

user moves their mouse over the bar. Media Items
are queried for the visuals of this view, which is then
placed in the Tooltip Grande space.

In summary, the Sidebar Container links the
shared data model, the UI and Media Items by:
• querying the media items for controls to place in

the bar and tooltip grande;
• passing user commands to the UI to send to the

shared dictionary; and
• responding to notifications from the data model

to appropriately update the UI.

4. Media items

Our final and most important requirement is that the
Community Bar should be extensible by average
programmers. We strongly believe that third party
developers should be able to create media item plug-
ins without excessive training and effort.

To satisfy this requirement, the CB Sidebar
Container was designed as a groupware that
manages an ad hoc collection of media item plug-ins,
whilst managing People and Places and providing
networking and shared data facilities (see Section 3).
In contrast, the media items provide the actual
awareness and interaction content. CB includes a
basic set of generic media items, but encourages
third party developers to create more specific Media
Items through its plug-in capabilities.

4.1 The Plug-In

Media item plug-ins are based on an easy-to-learn
development platform offering a relatively simple
object-based programming metaphor, easy access to
the distributed data model, and a development
environment for rapid testing of ideas. The
programmer creates and compiles media items as
individual Dynamic Link Libraries (DLLs). CB then
loads these DLLs dynamically at runtime;
programmers do not need to access or recompile CB
source. Most of the programming effort is on the
custom functionality of individual media items, e.g.,
to implement a chat system and its interface. The
only extra effort required is that programmers of
these DLLs have to implement a simple pre-defined
code interface that the CB sidebar requires to host
the item.

Perhaps the most important information given to
the Media Item programmer is the handle to the
shared dictionary. Unlike single user plug-ins, client
groupware media items need to share data between
their distributed counterparts. The dictionary, as in
the main CB application, provides the model and
notifications for Media Items. This allows Media
Items to distribute data between item instances
(belonging to the owner or one of the user audience

members), where the item act as a view and
controller following the dMVC pattern.

To facilitate this, programmers are provided via a
code interface with a convenient handle to the
Shared Dictionary server and hence the data model.
They are also given a direct reference to this media
item’s branch in the dictionary, and direct references
to the user branch of the item’s owner and of the
current user. Thus programmers do not need to know
or worry about the potentially complex hierarchical
paths and data that are above these branches, i.e.,
they are exposed only to the primary data they would
normally use and manipulate. Through this
simplified data interface, the developers are easily
able to add and distribute custom data so that all
client media items display the appropriate contents
for their tile view, the tooltip grande view, and the
full view. However,
advanced programmers
can access this other
data in the shared
dictionary if needed. For
example, a programmer
may iterate through the
user’s branch to list all
connected people.

With this access to
the shared data
capabilities of the CB
Model, media item
developers have
considerable flexibility
in the presentation of the
items. In some Media
Items (e.g. the Chat
item) the Tile, Tooltip

Grande and Full views
are seen the same way by
all users. However, the
three views can differ for
the owner and the
audience. For example,
Figure 3 shows the six
different views for a
Presence item. While tiles
are visually similar, the
owner of a tile can click
on it to immediately
update their video
snapshot. The other views
differ much more; the
owner’s view of the
Tooltip and Full view
provides control over
their own appearance,
while the audience’s view
provides opportunities to
communicate with the

owner. A Media Item can provide even more views.
For example, a simple game may have different
views for each of the players and then another view
for onlookers.

4.2 Media Item Development Support Tools

We have also created a development environment
(Fig. 4) so that Items could be coded and debugged
on a local machine, outside of the main CB
application. The environment contains two primary
components.

First, a Media Item plug-in template streamlines
the programming and housekeeping process of
creating media items. The template serves a
convenience role as it incorporates many of the setup

 Tile Tooltip Grande Full view

O
w

ne
r

A
ud

ie
nc

e

Fig. 3: Six views of the Presence Item

Fig. 4. The Media item test environment

and housekeeping tasks common to most Media
Items. It also has a teaching role as it demonstrates
by example the necessary components of a media
item and how they relate to each other.

Second, a plug-in test interface allows a
programmer to immediately test any plug-in code
modifications by simulating a three-person
groupware environment within a single window. As
illustrated in Fig. 4, the environment conveniently
mirrors CB’s interaction with a media item while
allowing the use of standard debugging tools. For
example, the Figure illustrates a photo viewer plug-
in, where any user can post photos to the group.
Programmers have the option of displaying,
manipulating and testing the various owner and
audience versions of this photo item’s tile, tooltip
grande, and full view.

The simple mechanisms for creating Media Item
plug-ins – an easy to use programming and data
model, and a development environment – means that
developers can focus on the creative and functional
aspects of groupware component design rather than
low level distributed systems details.

5. Examples

A class of students were asked to develop media
items. Training consisted of a two hour tutorial
describing the Community Bar interface and walking
through an example of how to program a ‘hello
world’ media item plug-in. Students had ~two weeks
to develop and demonstrate their items. A sampling
is below.
• Public Web Item (Stephanie Smale) displays a

group editable list of web pages.
• Video Motion Item (Rob Diaz) provides

awareness through sharing motion data from
webcam video.

• Video History Item (Michael Nunes) displays a
webcam video stream / browsable video history.

• LCD Display Item (Nicolai Marquardt) lets a
group send messages to a physical LCD display.

• Photo Gallery (John McDonald): displays a group
editable and browsable collection of photos.

• Blog Reader (Jordan Schaan) allows the group to
monitor and browse a web log.

• Scheduler (Jeni Lynn Vito) is an event scheduler
for a group’s collective activities.

• Mean Girls (Alexandra Braginsky) lets teenage
girls gossip around multimedia photos of friends.

• Family Shopping List (Liz Friesen) allows a
family to collectively create a shopping list.

• Digital Document Task Awareness (Tim Au
Yeung) provides task assignment and task status
awareness amongst a document digitising team.

• EBUY (Phil Serchuk) allows the group to set up
and participate in rapid real time auctions.

• Dress Me up (Tony Quach) supports collaborative
multimedia fashion advice for an individual.

• Bug Tracker (Sandra Khroina) supports a team’s
bug tracking assignments and status.

• Aibo Awareness (Jim Young) allows group
control of a mobile robot dog, how it views its
environments, and how it interacts with people.

6. Conclusions

The Community Bar architecture serves as a case
study of how groupware plug-ins can be used to
extend collaboration functionality. While single user
plug-ins are well known, the primary contribution of
our work is to show how plug-ins can become
groupware-enabled by automatically sharing and
populating a distributed data structure that includes
simple, complex and multimedia data types, and that
uses a distributed Model View Controller pattern to
simplify programming. Other contributions include
the actual architectural details itself. While we do not
expect future designers of groupware plug-in
architectures to exactly copy our CB architecture, its
basic ideas can be generalized across many different
types of extensible groupware systems.

Acknowledgements. Thanks to University of
Calgary students who built media items. Research is
partially funded by the NECTAR NSERC grant.

10. References

[1] Boyle, M. and Greenberg, S. Rapidly Prototyping

Multimedia Groupware. Proc 11th Int’l Conf
Distributed Multimedia Systems (DMS’05),
Knowledge Systems Institute, IL, USA. 2005.

[2] Cadiz, JJ, Venolia, G.D., Jancke, G., and Gupta, A.
Designing and Deploying an Information Awareness
Interface. Proc ACM CSCW, 2002, 314-323.

[3] Fitzpatrick, G. The Locales Framework:
Understanding and Designing for Wicked Problems.
Kluwer Academic Publishers, 2003.

[4] Greenberg, S. and Rounding, M. The Notification
Collage: Posting Information to Public and Personal
Displays. Proc ACM CHI, 2001, 515-521.

[5] McEwan, G., and Greenberg, S. Supporting Social
Worlds with the Community Bar. Proc ACM Group,
2005.

[6] McEwan, G., and Greenberg, S. Community Bar (The
Video). Video Proc ECSCW - European Conference
on Computer Supported Cooperative Work. 2005.

[7] Rounding, M. Informal Awareness and Casual
Interaction with the Notification Collage. M.Sc.
Thesis, University of Calgary, Alberta, Canada, 2004.

