
Generating Custom Notification Histories by Tracking Visual Differences
between Web Page Visits

Saul Greenberg and Michael Boyle
Department of Computer Science, University of Calgary

2500 University Drive N.W.
Calgary, Alberta, Canada T2N 1N4

E-mail: {saul, boylem}@cpsc.ucalgary.ca

ABSTRACT
We contribute a method that lets people create a visual history

of custom notifications to track personally meaningful changes to
web pages. Notifications are assembled as a collage of regions
extracted from the fully rendered (bitmap) representation of the
web pages. They are triggered when visual changes between
successive visits are detected within regions. To use the system, a
person specifies a notification by clipping personally interesting
regions from the bitmap representation of a web page and
reformatting them into a small collage. The person then specifies
regions on the page that will be monitored and compared for
visual differences over time. Based on this specification, the
system periodically revisits the page in the background on behalf
of the user and automatically generations a notification (the
collage plus a title and timestamp) when differences are detected.
Finally, the person views the generated notifications in several
ways: as only the most recently changed version (to illustrate
current state), or as an image history that can be individually
browsed or played back as a continuous video stream.

CR Categories: H.3.3 [Information Search and Retrieval]:
Information filtering, selection process, H.3.4 [Systems and
Software]: Distributed systems, H.4.3 [Communications
Applications]: Information browsers.

Keywords: Notifications, information customization.

1 INTRODUCTION
People often revisit web pages to monitor personally interesting
and dynamically changing information. The actual information
can be quite varied, with typical examples including stock prices,
currency values, weather reports, traffic conditions, on-line status
of people, news postings, sports reports, flight status, upcoming
meeting appointments, webcam snapshots, blog entries, new
academic publications, and so on.

Yet revisiting pages can be tedious. Consequently, we are now
seeing a proliferation of notification systems that let people
selectively subscribe to personally interesting and dynamically
changing information sources offered by a content provider.
Manual polling is replaced by a system that delivers relevant and
timely changes of that information – notifications – to the people
interested in it (e.g., Alerts [9], RSS [12], Sideshow [2], various
research systems [3,4,6,8,15]).

The problem is that content providers offer only a few varieties
of notifications, and these often come with strings attached (fees,
advertisements, account creation, restrictions, prescribed delivery
timings, inappropriate information detail, etc). When a person’s

interests do not match the offerings available, they are essentially
excluded from the service. This mismatch will not disappear over
time because most content providers are motivated by commerce
and mass market needs vs. individual needs and idiosyncrasies.

Several systems – mostly research ones – do allow people to
create their own custom notification elements [3,4,6,8,15].
Unfortunately, creation is restricted to technically savvy
programmers who know how to tap into, parse, manipulate and
display web services or other raw information sources. This is
clearly not an option for the vast majority of people.

Consequently, our research goal was to develop a method that
would let non-programmers generate their own custom
notification elements from information found on web pages. We
wanted these people to be able to easily specify:
• an information source to be tracked, where that information

appears visually on a standard web page;
• criteria for determining if visual differences in these sources

warrant notification generation;
• which information fragments will be extracted from this source

to compose the generated notification;
• methods for reviewing the notification history.

To preview the method we developed, a user marks visual
regions of interest on a web page relative to a static landmark,
where images are automatically stored as bitmaps. The system
then periodically revisits that page at a user-specified time interval
to see if the current regions visually differ from the stored ones by
a user-determined threshold. If they do, the system generates and
delivers a notification, which is itself automatically assembled as
a collage of user-specified image regions extracted from that page.
People view this notification in a form that best fits the
information contained within it: a single snapshot, a browsable
history of consecutive snapshots, or even a playable video stream.

2 PREMISES: SPATIAL REGULARITIES ACROSS PAGES
Sugiura and Yosekio [13] were also interested in how people
could specify regions of a web page that would be tracked for
changes in the HTML that comprise news articles and other
similar postings. They observed certain regularities in how
information chunks in web pages were modified: categorized
articles within predefined spatial clusters, top-news articles
appearing in the same space relative to the page’s top, and
chronological ordering where new articles are inserted at the
same place relative to the top or the bottom of the page [13].

While our image-based method of clipping images differs from
Sugiura et. al’s HTML method [13], it exploits similar insights
into regularities between changed web pages. More generally, we
assume web page modifications have spatial typographic
regularities. While the points below need to be verified
empirically, they are a reasonable starting point.

Saul
Text Box
Greenberg, S. and Boyle, M. (2006) Generating Custom Notification Histories by Tracking Visual Differences between Web Page Visits. Proceedings of Graphics Interface (GI'06). (Quebec City, Canada), June 7-9. p227-234.

• information chunks are associated with specific spatial regions
on a page;

• depending on the page, the approximate position of a spatial
region across updates can be defined from its absolute
position on the page, or its relative position from the top or
bottom of the page, or its relative position from a constant
visual image landmark;

• these positions may not always remain precisely the same
between page updates, but are close enough that a search
within a small area surrounding a region can be used to verify
that image changes detected across updates are a result of real
changes vs. a small shift in image location;

• updates to that information can be detected and extracted by
monitoring that region for image changes;

• because the rendering process may introduce small visual
artifacts, e.g., text anti-aliasing, the change detection
algorithm must include a threshold where small image
changes between pages are considered equivalent;

• updated pages may repeat information over a series of
changes, e.g., when a news provider randomly chooses one of
(say) 5 candidate ‘articles of the day’ to display in a region on
successive page visits; thus the history of changes should be
searched to filter out duplicates.

While this sounds like a complex set of interacting conditions,
we believe that people can use their knowledge of layout
conventions, visual cues, content genre, and experiences visiting a

page over time to intuitively decide (or later debug) how spatial
constancy on a page is maintained across updates.

Figure 1: The annotated Notification Viewer, showing an example of thirteen numbered notifications

3 WHAT THE USER SEES AND DOES
We begin with the end user experience. We walk through a
detailed example of how ‘Jane’ creates a custom notification from
a source web page using the Notification Editor (annotated in Fig.
2), which eventually appears at the top left of the Notification
Viewer (annotated in Fig. 1). Some technical explanation
accompanies this description. We stress that describing this
interactive process through text makes the system appear more
complex than it actually is; in practice, the action sequence
outlined below is easily accomplished in under a minute. As well,
portions of these steps are optional; defaults for most settings
usually suffice.

3.1 Creating the Custom Notification

3.1.1 Motivation
Jane, a flextime worker and an avid skier, sets aside work for a
few hours to ski at a local ski area when conditions, crowds and
weather prove enticing. While the ski area web site offers several
webcam images of current conditions, it is tedious to revisit, and
the page is too large to keep on constant display for manual
refreshing. As well, the static webcam images do not give her a
sense of how conditions are changing over time. Consequently,
she composes a custom notification to help her monitor two
webcams. Fig. 1, top left shows the end result (notification #1).

Figure 2. The Notification Editor, annotating and illustrating how a notification is created from a web page

3.1.2 Selecting the information source
Jane types in the Sunshine Village ski area’s URL in the Address
Bar. The current Sunshine page appears as a bitmap in the Content
Editor (left pane) of the Notification Editor (Fig. 2).

3.1.3 Specifying a landmark
Subsequent page visits may insert variable-sized advertising
banners in the page, which can shift the information of interest
around the page. To remedy this, Jane specifies one or more
visual landmarks near the information of interest to her; other
image operations are then performed relative to these landmarks.
Selecting the Landmark tool from the Tool palette, she drags a
small region atop a portion of the ‘LIVE WEBCAMS’ text (Fig. 2, top
left). The system will later search revisited versions of this page
for this landmark image (looking at the surrounding area first) in
order to calculate its new position if it has shifted.

3.1.4 Specifying change region(s) of interest
Jane wants to see the most current webcam image. Yet she does
not know how often these images are taken, nor does she want to
have to deal with ‘frozen’ images that result from the camera
being turned off. She does notice that the main webcam image is
accompanied by a title bar showing the time it was taken: if this
time changes, this suffices to warrant a new notification.
Consequently, she uses the Change region tool to drag out a
region atop the titlebar snapshot time (Fig. 2, top left), and
indicates in the Region Properties (Fig. 2, top right) that this
region’s location is relative to the landmark she had previously
created. The system will later monitor this region for changes as
determined by visual differencing between page revisits.

If she wishes, she can fine-tune the properties of this region
through the Region properties pane (top right, Fig. 2). In
particular, using the Change trackbar, she can specify a change
threshold, i.e., the amount of visual changes that must occur in
this region between the current page and its previously visited
version if it is to trigger notification generation. To fine tune this

threshold, she can use the Test change regions tool to display
before, after, and ‘differenced’ images of the regions between
successive page visits (not shown). In this case, she leaves it at its
smallest setting, as she believes that any visual change in this
region should result in the posting of a new notification.

Jane can continue this process by creating other change regions
of interest on this page. If multiple change regions are specified,
each may be assigned its own landmark or change threshold: a
notification is triggered for the whole page if any one of the
change regions differs across page visits. In this example, the
single change region suffices.

3.1.5 Specifying the notification history and revisit frequency
Using the controls in the Notification properties pane (mid-right,
Fig. 2), Jane leaves the Record history checkbox activated. This
instructs the system to save a history of all generated notifications.
She can review all generated notifications via the player controls
attached to each notification (Fig. 1).

Also, Jane adjusts the trackbar in that pane to specify how often
the web page should be checked for changes. The system will
automatically revisit the page based on this interval and will
compare the bitmaps defined within its change regions to those on
the previous version of the page. This time interval can range
from 15 seconds, to minutes, hours, days, and even weeks.
Because she wants moment by moment ski hill conditions, she
sets the revisit frequency to 1 minute.

3.1.6 Assembling a notification
When the system generates a notification (because it detected
changes) it creates and publishes by default a scaled down version
of the whole web page as a high quality thumbnail. However, Jane
would rather see the two webcam images as a picture in picture,
one showing her the base of the hill, and the other showing
lineups at a popular lift as illustrated in notification #1 in Fig. 1.

Jane selects the Copy region tool and drags out rectangles over
regions on the web page to appear in the notification. These copy
regions also appear in the Image editor pane (lower right, Fig. 2).
In this pane, Jane can at resize, reposition, and restack the image
fragments that come from copy regions to compose a custom
notification: this visual layout is what will be presented to her
when a change to the page is detected. A copy region can also be
associated with a landmark.

As seen in Fig. 2 and shown in its generated form in Fig. 1, Jane
will create a notification captured from four copy regions: the
Sunshine logo (upper left, copy region 3), the time of the webcam
snapshot (top 1st webcam image, copy region 1), the featured
webcam image (middle, copy region 2), and a 2nd webcam image
(bottom, copy region 4). Full sized versions of these are
automatically copied to the Image Editor – arrows in Fig. 2 show
the source copy regions in the Content editor, and where they
appear in the Image editor. She creates a visual banner by resizing
and abutting the logo and time regions. She moves the main
webcam image underneath, and then resizes and moves the 2nd
webcam image to create the desired picture in picture effect.

At this point, Jane has completely specified the notification
description: the information source (the web page), the regions of
interest on it, how often that page should be revisited to see if
content in those regions has changed, and the visual appearance of
the notification to be generated when changes are detected. She
can now save and later reload this specification (stored as
an XML file) for further editing. She can email this file to friends
so that others can use or further customize this notification to
meet their own needs.

3.1.7 Generating notifications
After specifying the URL location of a notification server through
the Connect tool, she activates the notification Generator .
From now on, the notification generator will use the notification
description to determine if it should generate a notification: details
are described in Section 4. For immediate local feedback and
further fine-tuning, the Content editor pane and the Image editor
pane are updated to display the most recently visited version of
the page and the corresponding generated notification. Of course,
other notifications generated from different pages may be
published to the server at the same time.

3.2 Viewing Notifications
Later, Jane views this and other notifications by starting a
Notification viewer client, which connects to the notification
server. She immediately sees several notification items each in
their own window (Fig. 1): these all represent items she had
previously specified and that have visually changed over the
course of time. As annotated in Fig. 1, all notifications contain: a
title, a clickable Web link URL to display the web page in a
browser, the time of the posting, the number of frames in a
notification’s history, and player controls to navigate a
notification’s history. Jane can manipulate notifications in several
ways. If she resizes one, the image is scaled to fit. Or she can
close a notification after reading it: it reappears when a new
notification is generated.

Jane sees the Sunshine notification at the top left of Fig.1, and
notices that it has 201 frames in its history available for viewing.
Using the player controls, she replays the entire history as video
sequence: several hours are condensed into a minute (rate is
adjusted by the playback speed trackbar, Fig 1. bottom). She sees
a spectacular sunrise as dawn breaks over the Canadian Rockies,
workers completing their grooming of the slopes, the buzz of
activity as crowds arrive which gradually surges into a morning
rush, the brilliant sunshine replaced by darkening clouds as a
storm arrives, and crowds leaving early because of worsening
conditions. While she was thinking of taking the afternoon off to
go skiing, she decides to wait for a better day.

Jane had previously created other notifications using techniques
similar to the above. To show the range of possibilities, and as
numbered in Fig. 1, these include:
• feature news stories from several news sites (CNN #7, BBC

#8, CBC #10),
• featured articles from technical magazines (Slashdot #11, PC

Magazine, #12),
• traffic webcams (Calgary traffic #5),
• scenery webcams (Banff townsite webcam #2),
• weather reports (Calgary weather #4),
• daily comic strips (PhD comics #3, Dilbert #6),
• updates to publications (Grouplab Publications #9),
• periodically updated photos (Wagar #13),
• blog entries (not shown),
• changes to her group’s schedule (not shown)

For several notifications, such as the Slashdot and news web
sites, she sees that several updates have been captured in their
histories. For the ones of interest, she uses the player controls to
sequentially step through the previous articles.

Over the course of the day, these notifications are updated and
new ones appear as information is published to the notification
server. In this way, Jane quickly sees new postings as they arrive.
If she steps away from her machine, she can catch up on any

missed notifications when she returns by replaying the individual
notification histories.

4 IMPLEMENTATION
The architecture for this system is reasonably straightforward
(Fig. 3), but is described here in sufficient detail to encourage
replication.

Before delving into this detail, we should mention that our idea
of using image clipping as the basis for creating custom
notifications is inspired by Tan et. al.’s WinCuts [14] and Fujima
et. al.’s C3W [5]. While neither are notification systems, both use
the idea of image clipping to allow users to customize an
information display. With WinCuts [14], users can clip regions of
live source windows and assemble them to create a new
interactive display, which can even appear on a different machine.
That is, WinCuts allows ‘remixing’ of an existing user interface.
Similarly, C3W – Clip, Connect and Clone for the Web – lets
users create new web interfaces (especially forms) by remixing
regions garnered from various web pages [5].

4.1 The Notification Editor

The Notification Editor, seen in Fig. 1 and abstracted in Fig. 3,
provides a graphical interface that allows the user to specify the
information necessary to track web pages for changes and to build
a custom notification. This specification, which can be saved as an
XML file and later reloaded, includes: the Url of the page to be
monitored, the Monitoring frequency describing how often that
page should be checked for changes, a list of Change regions that
specify the rectangular regions on the page to check for bitmap
differences according to a specified Threshold, a textual Title of
the notification to be generated, a History length value that
indicates the length of the history list of notifications to be stored,
a list of Copy regions that indicate what regions on the Source
web page should be copied into the Destination notification
image, as well as the location and (scaled) size of those copies on
the destination. A list of Landmark regions are also stored and
associated with particular Change or Copy regions.

Aside from its user interface, the only special features required
by the Notification editor are the ability to capture and render a
web page into a fixed-size off-screen bitmap (to limit differences
caused by dynamic reformatting of page content to fit different
window sizes) and perform various image capture and
manipulation functions (e.g., cropping and scaling). To simplify
this task, we used the Collabrary Toolkit [1], which provides an
API to all these required features.

4.2 The Notification Generator

The Notification Generator uses the specification produced by the
Notification editor (Fig. 3). It begins by rendering the web page
off-screen at the specified monitoring frequency.

If one or more landmarks had been specified, it then tries to find
them on the page. It does this by going to the original location of
the landmark and checking to see if the underlying image region
on this page matches the original landmark image. If it doesn’t, it
then searches the area around that landmark to see if an exact
image match can be found. That is, if there is no match at the
landmark origin (0,0), it iterate through other possible origins
ranging from (0,0) up to +/- (n,n), where n defines how far it
should look from the original landmark origin before giving up. In
the current implementation, n=200. Because landscape images are
usually small, this search can be done fairly quickly.

If the landmark is found, it will then use the landmark’s actual
location on the current page to calculate the positions (as an
offset) of associated Change or Copy regions. It compares the
monitored Change regions of the current page with a stored

version of the last one it has seen. If a change is detected that
surpasses the region’s Change threshold, the Notification
Generator builds a notification comprising the notification title,
the URL, and a timestamp. It then creates the composite
notification image by locating, capturing, and scaling the Copy
regions from the source page into the destination notification.

4.3 The Notification Server.

The generator publishes this information to a Notification Server
[1] (Fig. 3), which in turn stores and publishes the notifications to
various clients. The published data is simple. A unique ID
identifies the notification. The URL, title, timestamp and
composite image are the notification contents. If the History
length is 1, then the new timestamp and image data over-writes
the previously published contents. If it is greater than 1 then each
notification is added to a history list maintained by the notification
server. If the number of notifications exceeds the predefined
history length, then the oldest notification is removed before a
new one is inserted.

4.4 The Notification Viewer Client

The Notification Viewer Client subscribes to the notification
server, and displays new and changed notifications to the user as
they arrive. The client handles all notifications in the same way,
regardless of where they were produced. It only needs to know
how to display a textual title, timestamp, URL, and a single
image. The only special capability we insist on is the ability to
play back the notification history frame by frame or as a ‘video’.
To do this, our client simply navigates the notification history
held by the notification server, where it retrieves and displays that
frame’s timestamp and image.

While our viewer client interface presents individual
notifications as a collage of possibly overlapping items positioned
in a large window (Fig. 1) [6,3], other quite different interfaces
could have been constructed instead. For example, we also
implemented a viewer as a media item within the Community Bar
[8], a real time groupware tool that posts common notifications to
an online group. The Community Bar uses the Sideshow metaphor
[2] to let people monitor peripheral information, and to drill down
into information as desired. In our version, all new notifications
are scaled to appear within a single media item. Clicking on its
‘tooltip grande’ allows a person to browse a larger version of the
current notification and its history through its player controls.
Finally, a person can raise a separate third window similar to the
one shown in Fig. 1 to show all notifications. Similarly, it would

Notification Editor
User specification of change / copy regions plus other criteria

Notification Generator
Grabs web page and analyses it for changes
Assembles and publishes notification

Notification Server
Stores published notifications
Sends notifications to subscribed clients

Notification Viewer Client
Displays and replays notifications

Figure 3: Basic architectural components

be straightforward to send notifications to PDAs or cellphones, or
RSS [12].

4.5 Limitations of the Current Version

Our actual implementation differs somewhat from the description
above, in that it combines the Notification Editor and the
Notification Generator into a single process. While this suffices to
for a proof of concept system, it is not ideal for day to day use.
The problem is that a user has to open an Editor/Generator for
every web page they wish to monitor; if a previous specification
for a page exists, they must still load it into an Editor instance
before the Generator can be activated. For example, the 13
notifications seen in Figure 1 imply that the end user also has 13
active Editor/Generators running. This introduces unnecessary
clutter and complexity in the interface, and unneeded overhead to
re-establish notifications between logins.

We stress that this is not a limitation of the ideas presented in
this paper, but rather an artifact of our current implementation.
Indeed, we discuss it here only because we include a link to our
program so others can try it (see Software Availability at the end
of this paper). A better design, which would be straight-forward to
program, would be to separate the Editor and the Generator into
two different programs. The end user would use an Editor
instance only as they create or modify one or more specifications;
the Editor would store these specifications in a convenient
location (perhaps on a server). A single Generator process would
then read in all the stored specifications, check the indicated pages
at the indicated monitoring frequency, and generate notifications.

5 DISCUSSION

5.1 Images vs. HTML?
Our method shares a common goal with Sugiura et. al’s Internet
Scrapbook [13], which is to let people specify and collect
information fragments from web pages for later viewing.
However, Sugiura uses an HTML pattern matching and machine
learning methodology that is completely different from our image-
comparison approach. (Their presentation of these fragments into
a single web page with no playback capability also differs from
our notification generation and playback approach). This paper
does not attempt to evaluate whether HTML vs. images is ‘better’.
Rather, each has their own strengths and tradeoffs (as partially
described in the next section), and ultimately these will be used to
decide what method is appropriate.

The choice of whether to use images vs. HTML methods is
reminiscent of how shared window systems intercept screen
fragments: while early systems typically intercepted low level
graphics protocol, later systems advocated bitmap capturing
instead [11]. The debate of which is better for some situations is
ongoing.

5.2 Power
The power of our image-based visual differencing method is its
simplicity. First, it leverages the surface representation strategy of
Olsen et al., [10] who argue that the major strength of surface
representations (i.e., the visual images people see) is that they are
human consumable. That is, in contrast to the abstract data that
produces the visual (such as HTML extraction [13]), surface
representations are designed to be understood by the user. For
change regions, users intuitively know from past experiences and
from web page genres what parts of a web page will change over
time. For creating a notification, people simply harvest the visual
information that is most interesting to them, exploiting image
copying, pasting and resizing skills already learned through the
many image and photo editors they have used. Unlike the HTML

approach which can only work on selections that follow a well-
formed HTML fragment [13], notification images generated from
partial, overlapping and remixed HTML fragments are easy to do.

Second, our strategy works with a broad set of arbitrary data
sources because it leverages bitmap renderings of the information
source as a lowest common denominator for information
representation and extraction. Again, unlike the HTML-specific
method [13], our approach only requires a standard web browser
object to render the page to a window. Other than that,
notifications generated from our image-based method needs no
knowledge of the language that generated it, nor of other Web
protocols that may evolve over time.

Third, because the notification data generated comprises only a
few text fields and a list of images, it is easy to collect and
distribute. Our method could be easily implemented atop any
notification service, including an SQL database.

Fourth, notification viewers only need to know how to render
received images and a few simple textual attributes. They do not
need to know (or care) about the original source data used to
generate that image. As well, image-based notifications are easily
displayed on devices that do not know how to render complex
HTML, e.g., photo cell phones.

Fifth, images as the medium for representing and presenting a
notification affords special power. It is easy to keep and exploit
visual history lists of notifications. Because each notification in
the history is just a visual, this medium lends itself to frame by
frame browsing of notification histories as well as high-speed
playback as a video stream.

Sixth, the cut-and-paste approach to composing notifications as
a visual collage means that users can exclude regions which
contain information of little interest, especially advertisements,
blinking icons, scrolling marquees, white space, etc. Resulting
notifications are compact. For example, compare the source web
page of Fig. 2 (which must be scrolled if one is to see all its
contents), to the extracted notification in Fig. 1. We should
mention that while we have not implemented a means to create a
single notification by cutting and pasting from several source web
pages (as in the Internet Scrapbook [13]) this could be easily
added to our system, albeit at the cost of interface complexity.

Finally, the user experience – while complex to describe in text
– is lightweight and fun. Creating notifications in the Notification
editor is easy to do because it relies only on what the user sees and
understands visually. The automatic page revisitation and use of
visual differences to filter out personally irrelevant or
uninteresting changes eliminate the tedium of having to manually
poll for changes to information. Information sources come alive in
the Notification viewer as changes are tracked and notifications
generated as they unfold over the course of a day. The ability to
play back the history of a web site as a browsable sequence or
video stream adds information and liveliness not normally
discernable in a web page’s static images.

5.3 Limitations
The image-based approach to creating a notification relies on a
web page retaining its basic spatial layout between visits. We
believe (but have not verified) that this is especially true for
information near the top of the page. This is obviously a direction
of future research. Still, others have empirically tested this notion
of layout consistency, where they found that information
extraction using spatial location succeeded over 90% of the time
[13]. The problem is that this information does shift around
somewhat, especially due to resized banner advertisements that
typically appear at the top or side of a page. Our use of landmarks
remedies this problem for the majority of cases. Our own
experiences suggest that landmarks combined with change and
copy regions often created the notification we wanted. For the odd

time it did not, minor fine-tuning usually sufficed to correct the
problem.

In spite of our optimism, there are classes of (sometimes
solvable) ‘problem’ pages.

5.3.1 Radically changing page layouts
There will always be some pages where changes result in
completely different page layouts. In these cases, a person can
revert to the (default) strategy of having the system capture the
whole page as a thumbnail and to use that as the notification. The
thumbnail is captured at a just readable size, so people can resize
the image if they wish to read what is ‘above the fold’.

5.3.2 Minor edits
Pages may be modified by minor edits, e.g., the addition of a
single character or line break. This can shift all text in the image,
thus changing the image significantly even though the semantic
content has not altered that much. This results in a false positive
notification.

5.3.3 Unpredictable page completion times
Many embed programs (e.g., Java applets and Flash animations)
use client-side scripting to finalize document construction after
the page is loaded. On these types of pages, grabbing an image
after it generates a ‘document complete’ event can result in a web
page with missing elements. To avoid this problem, our heuristic
was to delay capturing a page’s bitmap until several seconds after
the ‘document complete’ event. This usually sufficed to let these
extra page elements load correctly.

5.3.4 Animations
Our method works on static images, not animations. To overcome
this, our capture processes mutes animations generated by (say)
dynamic HTML and scripting. While this works well for pages
where the primary areas of interest is static, it would not work if
the person wanted to capture a region of interest that was
animated.

5.3.5 Inaccessible web pages
Some web pages cannot be navigated to directly: password
protected web sites, server redirection, popup browser windows,
CAPTCHA challenge/responses, and so on. It should be possible
to use programming by example techniques to automate past these
extra actions.

5.3.6 Errors
Errors are a fact of life, due to (say) client-side script errors,
server-side web application errors, network connectivity issues,
and so forth. These generate their own web pages that ultimately
lead to ‘spurious’ notifications. Although not implemented in our
system, error detection and filtering strategies can help minimize
these spurious notifications.

5.3.7 Copyright protection
Finally, there are the legal and ethical issues involved when web
information is clipped without permission. While many consumer
advocates believe that falls under ‘fair use’, there is a large lobby
effort by corporations to make remixing of web material illegal
[7]. Other concerns arise from the capture of static information
(e.g., webcam snapshots) as a replayable video, for the
information revealed may not be what the author intended.

6 CONCLUSIONS
At the high level, we contribute a novel method that uses visual
differences in user-selected regions of a web page’s surface
representation – a bitmap of the fully rendered page – to serve as

the basis for a notification system: custom notifications are
themselves harvested and assembled from user-specified regions
of that bitmap. While aspects of this resemble the clipping
approach for custom interface design advocated by Tan et. al. [14]
and Fujima et. al. [5], its application to notification generation
gives a very novel and completely different effect. We also
contribute:
• how custom presentations of notifications can be assembled

from changes to these images (leveraging ideas found in
[13,14,5]);

• how the underlying algorithms as well as the notification
server only needs to handle very rudimentary data types (e.g.,
images and meta-information such as the source URL for that
image): this implies that this method is very generalizable,
and can be used across many different notification engines;

• how the presentation of image notifications also needs only
rudimentary knowledge of the data source, i.e., how the
notification viewer renders and/or scales images; and,

• how notifications can be collected as an image history, which
supports rich playback mechanisms that can be used to present
not only the current state of that information, but how it has
changed over time.

Future work includes empirically verifying our assumptions
about spatial regularities, evaluating how users exploit these
regularities in a deployed system, and studying limits to user
tolerance of notification errors

SOFTWARE AVAILABILITY
An executable version of the software described in this paper can
be found by going to http://grouplab.cpsc.ucalgary.ca/cookbook/
and following the links to Web Tracker.

ACKNOWLEDGEMENTS
This research was partially funded by the NECTAR NSERC
Research Networks grant, and its industrial partners Smart
Technologies and Microsoft Inc. We also thank James Eagan from
Georgia Institute of Technology: his discussions of end-user
creation of notification inspired our interests into this area.

REFERERNCES
[1] Boyle, M. and Greenberg, S. Rapidly Prototyping Multimedia

Groupware. Proc Distributed Multimedia Systems (DMS’05), 2005.
[2] Cadiz, J., Venolia, G., Jancke, G., Gupta, A. Designing and

deploying an information awareness interface. Proc ACM CSCW,
314-323, 2002.

[3] Fass, A., Forlizzi, J., Pausch, R. MessyDesk and MessyBoard: Two
designs inspired by the goal of improving human memory. Proc
ACM DIS, 303-311, 2002.

[4] Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D., Segall, B.
Supporting public availability and accessibility with Elvin:
Experiences and reflections. J CSCW 11(3), 2002.

[5] Fujima, J., Lunzer, A., Hornboek, K., Tanaka, Y. Clip, connect,
clone: Combining application elements to build custom interfaces for
information access. Proc. ACM UIST, 175-184, 2004.

[6] Greenberg, S., Rounding, M. The Notification Collage: Posting
information to public and personal displays. Proc ACM CHI, 515-
521, 2001.

[7] Lessig, L. Free culture: How big media uses technology and the law
to lock down culture and control creativity. The Penguin Press, 2004

[8] McEwan, G., and Greenberg, S. Supporting Social Worlds with the
Community Bar. Proc ACM Group, 2005.

[9] Microsoft, Inc. Microsoft Alerts content providers: Sign up for
Microsoft Alerts now! March 28, 2005.
www.microsoft.com/net/services/alerts/.

http://grouplab.cpsc.ucalgary.ca/cookbook/

[10] Olsen, D., Hudson, S., Verratti, T., Heiner, J., Phelps, M.
Implementing interface attachments based on surface
representations. Proc ACM CHI, 191-198, 1999.

[11] Richardson, T., Stafford-Fraser, Q., Wood, K. & Hopper, A. Virtual
Network Computing, IEEE Internet Computing, Vol.2 (1), 33-38,
1998.

[12] RSS-DEV Working Group. RDF Site Summary (RSS) 1.0.
http://web.resource.org/rss/1.0/spec. 2000

[13] Sugiura, A. and Koseki, Y. Internet scrapbook: automating Web
browsing tasks by demonstration. Proc ACM UIST, 1998.

[14] Tan, D., Meyers, B., Czerwinski, M. WinCuts: Manipulating
arbitrary window regions for more effective use of screen space.
Extended Abstracts ACM CHI 2004.

[15] Zhao, Q., Stasko, J. What’s happening? Promoting community
awareness through opportunistic, peripheral interfaces. Proc
Advanced Visual Interfaces, 2002.

	Introduction
	Premises: Spatial Regularities Across Pages
	What the User Sees and Does
	Creating the Custom Notification
	Motivation
	Selecting the information source
	Specifying a landmark
	Specifying change region(s) of interest
	Specifying the notification history and revisit frequency
	Assembling a notification
	Generating notifications

	Viewing Notifications

	Implementation
	The Notification Editor
	The Notification Generator
	The Notification Server.
	The Notification Viewer Client
	Limitations of the Current Version

	Discussion
	Images vs. HTML?
	Power
	Limitations
	Radically changing page layouts
	Minor edits
	Unpredictable page completion times
	Animations
	Inaccessible web pages
	Errors
	Copyright protection

	Conclusions

