Available online at www.sciencedirect.com

science (@homeer:

International Journal of
Human-Computer
Studies

www.elsevier.com/locate/ijhcs

o BLESS
ELSEVIER Int. J. Human-Computer Studies 64 (2006) 583-598

A framework for asynchronous change awareness in collaborative
documents and workspaces ™

James Tam™, Saul Greenberg

Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1 N4
Available online 30 March 2006

Abstract

Change awareness is the ability of individuals to track the asynchronous changes made to a collaborative document or graphical
workspace by other participants over time. We develop a framework that articulates what change awareness information is critical if
people are to track and maintain change awareness. Information elements include: knowing who changed the artifact, what those changes
involve, where changes occur, when changes were made, how things have changed and why people made the changes. The framework
accounts for people’s need to view these changes from different perspectives: an artifact-based view, a person-based view and a workspace-
based view. Each information element is further broken down into distinguishing features and matched against these perspectives, e.g.,
location history within the where category prompts the questions ‘where was this artifact when I left’ in the artifact-based view, ‘where in
the workspace has a person visited” in the person-based view and ‘where have people been in the workspace’ in the workspace-based view.
The framework can be used both to inform and critique change awareness tools.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Change awareness; Asynchronous awareness

1. Introduction occur asynchronously. Asynchronous collaboration and
evolution of the artifact can happen in several ways:
People often collaborate (Nunamaker et al., 1997) for
the purpose of creating and developing a work artifact over
time such as when: people co-author papers, iterate designs
from conception to final form, or negotiate a plan through
an evolving blueprint. The participation of all partners is
vital, perhaps due to the group’s particular combination of
skills and expertise, or because all participants are
interested stakeholders, or because there is too much work
for one person to do by themselves, or because involvement
is required if participants are to buy into the final outcome.
While many episodes of collaboration often occur in face
to face meetings over the work artifact, others frequently

People may explicitly pass the artifact back and forth for
comments and revisions (i.e., ‘it is your turn, give it back
to me after you have worked on it’).

Individuals may work on the artifact as time and
opportunities arise, without explicitly coordinating this
with the other participants.

The group may drift in and out between collocated and
asynchronous work (e.g., a group may begin work in an
extended face to face meeting, but members may leave
and return to the meeting over its course).

In same-time collaborations, we already know that
people use workspace awareness not only to follow actions
of others, but to understand and respond to any changes
others make to the workspace artifact (Gutwin, 1997) (see

*This paper expands considerably on an earlier conference paper
(CRIWG’04 X International Workshop on Groupware, Lecture Notes in

Computer Science (LNCS Number 3198), Springer Verlag). The
significant major changes include all the new material in Section 5.
*Corresponding author. Tel.: +14032109455; fax: +14032844707.
E-mail addresses: tamj@cpsc.ucalgary.ca (J. Tam),
saul@cpsc.ucalgary.ca (S. Greenberg).

1071-5819/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/].ijhcs.2006.02.004

Section 3). The problem is that when people interact
asynchronously this awareness disappears; changes are
only understood if one person tells the other what they
have done (e.g., through prior coordinating talk, on-going

www.elsevier.com/locater/ijhcs

584 J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

emails, or notes attached to the artifact), or if the person
can somehow understand the changes made by inspecting
the artifact. If people cannot understand what has changed,
collaboration can quickly spiral out of control. Missed
changes made by one person can unintentionally wreak
havoc on the work of others or even the entire project.

Within this context, our research interest is on asynchro-
nous change awareness of artifacts (which we call change
awareness for short), defined as the ability of individuals to
track the asynchronous changes made to a collaborative
document or surface by other participants. Our research
concentrates primarily on how people maintain change
awareness by inspecting the changed document, rather
than on how change awareness is transmitted by other
communications e.g., verbal or textual dialog that occurs
directly between people outside the confines of the
document.

Because change awareness is a broad subject, our
immediate goal in this paper is to contribute a framework
of the critical information people need if they are to
maintain change awareness. Simply showing all the
information may simply be too overwhelming. To achieve
this goal, we took an existing framework for awareness in
face to face collaboration, Gutwin’s framework for work-
space awareness (Gutwin, 1997), and modified and
extended it to account for awareness of changes to
graphical documents over time. At the same time, we
developed a set of techniques for displaying awareness
information in a drawing editor which further influenced
the development of our framework.

This paper unfolds as follows. First, we set the scene with
several examples of failures that arise when people have
inadequate change awareness, and then describe how
current systems try to provide this information. Second,
we summarize Gutwin’s earlier framework for workspace
awareness for real-time interactions (Gutwin, 1997),
because it acts as a theoretical precursor to our own work.
Third, we introduce and describe in detail our framework
for change awareness. Finally, we discuss several implica-
tions this framework has to practitioners and implementers
of change awareness systems, and show how the frame-
work can be used to critique change awareness features in
an existing collaborative workspace.

2. Motivations and related work

2.1. Several true incidents give an example of the
consequences of missed changes

The Town of Canmore in Canada has an administrative
office that oversees all subdivision plans submitted by
developers. In this process, the developers and the
administrative office negotiate the plan through many
back and forth exchanges. The administration would ask
for changes so that the subdivision fit the needs of the
town, and the developers would respond by incorporating
these (and perhaps other) changes in a modified plan of the

subdivision development. In one on-going subdivision
plan, the developers added a gate to the main road
entrance, a security measure that inhibits ‘outsiders’ from
entering the grounds. The administrative office did not
notice this addition, and approved that particular version
of the plan. This oversight was only seen after the
subdivision was built with the gate in place. The gate
generated wide-spread controversy, where it made the front
page of the local newspaper and became a heated issue for
the town council, the town population, and the developers.
Because Canmore was a small town fostering community
values, the townspeople felt that this gated community
created a private enclave that violated the sense of
community held by its population, and that it would also
set a bad precedent for future developments. The devel-
opers, on the other hand, believed that they had followed
the planning process correctly, and because the plan had
been approved they had the right to implement their vision.
The developers were adamant that they had not tried to
‘slip in’ this gate amongst the other changes in the plan,
and indeed had told a staff member about it. The
administrative staff said that the key staff members did
not see the addition of the gate; it was a visually small
change in a complex plan that had many other changes
within it. The town council stated that “they didn’t know
about the plan and wouldn’t have approved it had they
known” (reported in the Rocky Mountain Outlook, March
11, 2004). What happened was that the administrators
lacked awareness of what had changed between docu-
ments, and thus missed a small but critical detail.
Another true example focuses on missed changes within
TeamWave Workplace, a commercial room-based group-
ware environment (Greenberg and Roseman, 2003). Com-
munity members could enter a virtual room at any time
and change its contents, i.e., a collection of persistent
groupware applications and documents scattered on the
wall of the room. The only difference between synchronous
and asynchronous work was whether people happened to
inhabit and make changes within the room at the same time
or at different times. Independent evaluators of TeamWave
found that its major usability problem was that people had
difficulty maintaining awareness of whether anything had
changed since their last visit, and what those changes
concerned (Steves et al., 2001). “Participants reported that
they were unable to effectively and efficiently detect
modifications to artifacts made by others in the rooms
they were using. TeamWave users devised [email work-
arounds] to provide the information that they needed”
(p. 5). The problem was that TeamWave users had to resort
to manual techniques to monitor changes. To see if
anything had changed, they had to start and login to the
application, navigate to a room, and visually inspect it.
Because this is a heavyweight and error-prone process,
people did not visit rooms often enough to notice if
anything had changed, and when they did visit a room
some changes were easily missed. In turn, this meant that
people were increasingly reluctant to leave time-critical

J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598 585

information in a room, for they knew that others were
unlikely to notice it until too late. The usefulness of the
entire system suffered as a consequence.

Our third example illustrates the effort people go
through if a system does not explicitly provide a mechan-
ism revealing change awareness information. A typical
strategy is to compare the two document versions—by
memory or visual inspection—and to try and spot changes
and decipher their meaning. This is both a daunting and
error prone task. For example, Fig. 1(a) and (b) shows a
before and after version of a UML class diagram,
respectively. Although a developer working on the project
may be able to eventually determine all the differences, it
requires much time and effort to do so, and changes are
easily missed. Try this for yourself: see how many
differences you and your collaborators can spot in (say)
30 seconds. Have a first person try it when both images are
side by side (for direct visual comparison). Have a second
person try it when the images are on opposite sides of the
same piece of paper (for short-term memory comparison).
Have a third person look at the first image on the first day
for 30seconds, and then have them examine the second
image on the second day for changes (for long-term
memory comparisons).

Of course, the document itself can help reveal changes.
For example, the version of the UML diagram depicted

in (c¢) highlights specific blocks of changed items by
bolding them and by muting unchanged items (coloring
would be preferred, but this is not possible in this black
and white reproduction). While limited, even this
simple technique clearly allows people to spot changes
faster and with fewer errors than by using manual
comparisons.

These examples clearly show the need for effective
awareness when working asynchronously in collaborative
workspaces and documents. This is not a new idea, and
other researchers (Moran et al., 2002) as well as developers
recognize the importance of change awareness in these
situations. Many commercial applications concerning
sequential documents (e.g., collections of reports, papers,
and source code) already detect and show change
information between new and old versions. A sampling
of standard techniques is listed below.

The first class of change awareness techniques contains
several ways that differences between two versions of a
document are visually displayed on the screen:

Sequential deltas, as exemplified by the UNIX Diff
system (Hunt and Mcllroy, 1975) insert instructions
after lines that are deemed different. Instructions
describe how the line(s) in the previous document can
be transformed into the new document, i.c., instructions

GUI
-x: int Socuri (i
-y int cunryO rrasrra—— :
width: int Cycoondint Security
+paint (Graphics g) heightint
+paint(Graphics g) Wb
HEQ .
LocalGUI +Lynx|
LocalGUIL WebGUI Web w0 % / +Netscape()
+Win95 () +HE(Q +EI O mﬁugﬂo ¥ Netscape()
+Win2000 (} NSQ L1 +Netscape Q) +Unix()
:{\}Vlnx.(l; 0 I[ﬁ".?,gg \ HelpSystem
+0ls":‘0 \ \ +brushOff O
0 - +orceReboot ()
Persistence Persistence
+Access () 1
+DBase () [Access][DBase | Oracle
| +Oracle () | |‘OLEinterface 0| [*DBinterface 0|
(a) (b)
GUI
-xcoord:] .
-yooord:int RSty
-helght:int
-width:int
+paint{Graphics g) W
el
HEQ
L
LooalGut WebGUI K B
(Windz0ooo| [(iaternetExplorer0)
L Winxp([HNetscape()
+Uf|ix()
Mac080 HelpSystem
+hrushOff ()
Persistence +forceReboot ()
|] 1
Access | [__DBase | Oracle |
L—omlmrme 0 | |+DBinterface g | [FOracleinterface ()
(c)

Fig. 1. A UML diagram in its original, changed, and visually enhanced changed form: (a) original version, (b) modified version, (c) modified, with changes

now shown in bold and unchanged parts muted.

586 J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

to add or delete new lines, or instructions that transform
an old line into a new form.

Annotations and markups display differences as expla-
natory notes that points to the parts of the document
that has changed. Microsoft Word’s track changes
capabilities, for example, optionally displays changes
as margin notes (Microsoft, 2003). Flexible Diff
(Neuwirth et al., 1992) accompanies the source text
with multiple columns of annotations. The first and
second columns contain the original and modified text.
The third column shows only the differences (where
thresholds can be specified to mute small differences),
while the fourth shows explanatory annotations added
by the author. Another example is how Rational Rose
shows changes in object-oriented source code IBM. In
one of its views, it displays objects within a hierarchical
class browser, and marks items that have changed by
special symbols positioned next to the item.
Highlighting displays the differences within the docu-
ment itself by directly marking up the appearance of the
document contents. One example is the UML diagram
in Fig. 1c. Another is Microsoft Word’s ability to show
inserted text in a contrasting color, and deleted text as
crossed out (changed text is treated as a combination of
deleted and new text) (Microsoft, 2003).

Overviews communicate changes made to an entire
document at a glance. They usually provide a graphical
miniature of the document, and mark regions that have
changed through highlighting. Attribute-mapped scroll
bars (Hill and Hollan, 1992) provide indications of edit-
wear (i.e., the areas where people have repeatedly edited
the document) as marks within a scroll bar. Seesoft
provides a zoomed out view of source code scattered
over several files (Eick et al., 1992). Each column of the
overview represents a file; each character is compressed
into a pixel. Line coloring indicates change to the code,
such as its age and the developer responsible for adding
it. State TreeMaps uses a Treemap overview to
emphasize changes made within multiple documents
(Molli et al., 2001).

Graphical playback replays changes over time by
showing all fine-grained editing actions, or by story-
boarding major changes into easily comparable scenes
(Kurlander, 1993; Tam, 2002).

The second class of change awareness techniques
describes how document versions are maintained or
specified, and how changes within them are detected or
tracked over time. Each technique may use one or more of
the change display mechanisms described above to reveal
its information to the end user.

File differencing occurs when a user manually specifies
two files and asks the system to compare them for
differences (Hunt and Mcllroy, 1975).

Real-time differencing lets the author turn on a facility to
continually track changes. The document itself stores

these changes internally. Microsoft Word serves as a
good example, where text is marked up as the author
types (Microsoft, 2003). All change information is kept
until an author decides to accept or reject them.
Version control systems automate and enhance the
process of manually tracking progressive versions of
documents and their changes (Brown, 1970; Rochkind,
1975; Tichy, 1991; Magnusson and Asklund, 1996). The
first version is typically created by freezing the current
document. The frozen version can no longer be changed,
and so editing it implicitly creates a new revision (Tichy,
1991).

History systems track all incremental changes made to a
document, typically so they can be played back at a later
time or so actions can be undone (Kurlander, 1993;
Tam, 2002).

Most of the above are ad hoc solutions for sequential
documents, and even then there is much they leave out.
They typically neglect change awareness in two-dimen-
sional graphical documents (Tam, 2002) such as: figures,
photos, blueprints, concept maps, graphs, UML diagrams
and collaborative workspaces containing spatially scattered
artifacts. While 2D documents are widespread, techniques
for displaying change awareness within them are undeve-
loped and are likely non-trivial (Tam, 2002); we do not
even know what change information they should show to
the end user. Our goal is to fill this void.

3. Theoretical foundations

The prerequisite to understanding change awareness is to
determine what information is necessary if people are to
comprehend change in the collaborative workspace. These
informational elements of knowledge verbalize, categorize
and explain what information should be tracked and
captured by an application as a change occurs and how this
information could be useful to an end user. Once the
informational elements have been specified, we can
then design an interface that captures and display this
information in a meaningful and useful fashion. The
details of the first step—the information elements—are
the focus of the next two sections. Our theoretical
foundations of these information elements have their
roots in Gutwin’s framework for workspace awareness
(Gutwin, 1997), summarized in this section and in
Tables 1 and 2.

3.1. Workspace awareness for real-time interactions

Gutwin focused on workspace awareness within real-time
groupware environments. He was concerned with people’s
continuous maintenance of awareness of others in a visual
workspace and how others were interacting with the
artifacts held by that space. He articulated a broad set of
awareness elements, where each element consists of the

J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598 587

Table 1
Elements of WA relating to the present, from Gutwin (1997)

Category Element Specific questions
Who Presence Is anyone in the workspace?
Identity Who is participating? Who is that?
Authorship Who is doing that?
What Action What are they doing?
Intention What goal is that action part of?
Artifact What object are they working on?
Where Location Where are they working?
Gaze Where are they looking?
View Where can they see?
Reach Where can they reach?
Table 2

Elements of WA relating to the past, from Gutwin (1997)

Category Element Specific questions
How Action history How did that operation happen?
Artifact history How did this Artifact come to be in
this state?
When Event history When did that event happen?
Who (past) Presence history Who was here, and when?

Where (past)
What (past)

Where has a person been?
What has a person been doing?

Location history
Action history

information that people need to track events in the
workspace as they occur. Table 1 shows Gutwin’s elements
of knowledge contained within a ““who, what and where”
category of questions asked about workspace events in the
present.

For each of these categories of questions, there is a
unique set of informational elements that provides answers
to those questions. These informational elements are the
specific pieces of information that a person would require
in order to keep up with events as they occur in a
collaborative real-time workspace.

For example, knowledge of the ‘who’ category simply
means that you know the number of people who are
present in the workspace (if any), their identity, as well as
being able to attribute a specific person to each action that
is taking place (Table 1, first row). In the ‘what’ category
(second row), awareness of action and intention means that
you know what a person is doing both at a rudimentary
level (e.g., typing some text) and at a more abstract level
(e.g., creating a title). Awareness of artifact is knowing
what object another person is currently working on.
Location, gaze, view and reach are all inter-related in the
‘where’ category (third row): location refers to the part of
the workspace where a person is currently working; gaze is
the part of the workspace where a person is currently
looking at; view is where they can potentially be looking
(i.e., their field of vision), and reach includes the parts of
the workspace that this person can potentially change
(Gutwin, 1997).

3.2. Workspace awareness for past interactions

Gutwin does mention elements for maintaining aware-
ness of asynchronous changes in his framework, required
for people to catch up with events that have already taken
place in the workspace (Gutwin, 1997). Table 2 lists this
second collection as elements of knowledge contained
within the “who, what, where, when and how’ categories
of questions that may be asked of workspace events in the
past.

Determining ‘how’ the workspace has changed involves
two elements: action history and artifact history (first row,
Table 2). Action history describes the unfolding of events
that changed the workspace. Artifact history includes
details about the process of how an object was changed
over time. Information about ‘when’ something has
occurred (second row) is described by the event history of
the workspace. This element indicates the time at which
things occurred in the workspace. ‘Who’ provides a
presence history of people in workspace, that is, of knowing
who has visited a particular location and when this visit
occurred (third row).

Although there are potentially many aspects to the
‘where’ category of questions e.g., where did events take
place, where have artifacts been etc., Gutwin mentions only
the location history of other people, which indicates where a
person has been in the workspace. Finally, the ‘what’
category of questions lists the action history of a person,
which describes what actions have another person engaged
in (last row).

Gutwin’s framework is a good beginning. However,
because he was mostly concerned with elements relating to
the present, he did not elaborate on past elements beyond
this initial list. The remainder of this paper tries to continue
where he left off in developing a framework of change
awareness.

4. Information elements for change awareness

In this section, we extend and elaborate the elements
Gutwin identified for workspace awareness to create a
more comprehensive change awareness framework for
different-time asynchronous work. In this situation, a
person has been away from the workspace for a period of
time (hours, days, weeks) and must be brought up-to-date
on what has changed in the interim.

When trying to catch up with changes the first piece of
information that a person needs to know is “Is anything
different since I last looked at the work?” Obviously, a
change awareness system must provide the answer to this
question in a very lightweight fashion. Afterwards, the
person can then probe for further details by trying to find
out the specifics of a change. The specific information that
a person may require in order to track changes will vary
from situation to situation. It will depend upon the task
that is being performed, the person who is carrying out the
task, as well as the surrounding environment.

588 J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

In a manner similar to how Gutwin constructed his
framework for workspace awareness, we can describe at a
high level the questions that may be asked. This set of
questions includes:

. Where have changes been made?
. Who has made the changes?

. What changes were made?

. How were things changed?

. When did the changes take place?
. Why were the changes made?

AN AW~

However, this does not suffice by itself. A change
awareness framework must account for the fact that people
may need to view aspects of the workspace in different
ways at different times, i.e., from different perspectives. In
particular, a person may query the workspace for changes
in terms of:

e the artifacts that exist within it (artifact-based view),

e the people who work within it (person-based view), or

e the workspace may be viewed as one locale or as a
collection of related locales (workspace-based view)
where a person is interested in the changes and events
that have taken place in one or more locales. This relates
to Berlage and Sohlenkamp’s artifact metaphor.

The specific perspective that a person has of the
workspace will have an impact on the information that
he or she is interested in and the way that the information
is requested and represented. In terms of the artifact-based
view, the person will be interested in changes made as they
relate to particular workspace artifacts, and will make
various queries about those changes. Examples include:
how has this item changed, and what has been done to this
item? From the person-based view, an individual wishes to
know about the changes that were made by another
collaborator. Queries about changes will therefore be
focused on this person e.g., what did he do while I was
away? On the other hand, someone with a workspace-
based view would be interested in and inquiring about the
events that have taken place in a specific location e.g., what
changes and events took place in this space? This location
can consist either of the workspace as a whole, or portions
of the space that are somehow logically related e.g. a
specific room in a room-based groupware system or a
particular spatial region.

Of course there is a strong relation between the three
workspace perspectives and the six categories of awareness
questions. An individual that holds a person-based
perspective will focus heavily on the ‘who’ category of
questions. Someone that holds an artifact-based view of the
workspace may focus instead on the ‘what’ category of
questions and try to determine what changes were made to
specific objects. Yet another person that holds a work-
space-based view of the workspace may focus on the
‘where’ category of questions. Alternatively, the person

with a workspace-based view may focus on ‘what’ was
done in the part of project that he or she holds an interest
in. The main point is that the person’s particular view of
the workspace will influence the value that he or she
attaches to each category of question. As will be seen,
however, the specific example questions that are unique to
each of the six high level categories awareness questions
can be asked from any of the three workspace perspectives.

The following subsections will describe in detail the
informational elements associated with each category of
question as well providing some specific example questions
that a person might ask about changes.

4.1. Where?

Location in a 2D graphical workspace could be a simple
Cartesian spatial region, or a direct digital analogue of
physical demarcations, e.g. the rooms in a room-based
system such as TeamRooms (Greenberg and Roseman,
2003) or locations may be more abstract in relating
workspace entities to each other, e.g., the different logical
or conceptual parts of a collaborative project. In all cases,
the location of a change provides valuable clues regarding
its context, which in turn guides people towards further
exploration. For example, a person may ask if a given
change was part of the project component that is under-
going extensive rework, that is, if the change occurred is in
the same place where many other changes are also
occurring.

Table 3 shows the specific questions that may be asked to
learn ‘where’ changes have occurred with respect to each of
the three workspace perspectives. As already mentioned,
the difference is how queries about changes made to the
workspace are formulated within each perspective. With
the artifact-based view, the questions could be asked in
terms of a specific object in the workspace. Where is it
now? Where was it before? Where has it been since I have
been away? From the person-based view, the example
questions may be asked about a specific collaborator.
Where has this person visited or looked in the workspace?
Where did this person change things? From the workspace-
based view, the questions asked would inquire about the
different events that have taken place in the space since a
person has been away. Where in the workspace have people
visited? Where were the artifacts moved?

The informational elements that will answer the ‘where’
category of questions include Gutwin’s location history
(described in Section 3), and the new categories of gaze
history and edit history. Location history refers to the parts
of the workspace that have been visited by a person. Gaze
history includes the parts of the workspace that a person
has looked at. The difference between location and gaze
history is that while a person may have been present in a
general location, he or she may not have actively attended
to everything that went on there. Although location and
gaze history do not directly provide information about
changes that have been made, they do indicate the parts of

J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

Table 3

Where: information elements and workspace questions related to ‘where’

Information
elements

Specific questions for ‘where’

Artifact-based view

Person-based view

Workspace view

Location history =~ Where was this artifact (when I left)?
Where is the artifact now?
Gaze history

Where has this artifact

been during the time

Edit history that I have been away?

Where in the workspace has a
person visited?

Where in the workspace has a
person looked at?

Where in the workspace

has a person made

changes?

Where have people been in the
workspace?
Where were artifacts in the workspace?

Which parts of the workspace have
people looked at?

589

Which parts of the workspace have
people made changes in?

Table 4
Who: information elements and workspace questions related to ‘who’

Information elements Specific questions for ‘who’

Artifact-based view

Person-based view

Workspace view

Who has looked at this artifact?
Who has changed this artifact?

Presence history
Identity
Readership history
Authorship history

Who has this person interacted with?

Who made changes with this person?

Who has been in the workspace?

Who has looked at the workspace?
Who has made changes to the workspace?

the workspace that have been visited or viewed and the
frequency of these visits (Hill and Hollan, 1992). This
provides strong clues as to where one should look for
changes. Edit history, on the other hand, explicitly deals
with the changes that were made. Awareness of ‘where’
edits occurred is vital to routine project management as it
provides strong clues as to the progress that has made
towards satisfying project-level goals. By this very fact, the
location of changes provides strong cues to the answers to
other “who, what, why, and how” category of questions.

4.2. Who?

Answers to questions concerning ‘who’ are important. In
collaborative environments, knowing who made a change
becomes an opportunity to query that person directly
for further information. Also, people may attend to
changes differently depending upon who made them. For
example, Neuwirth et al. (1992) described how collabora-
tors could be less interested in seeing changes made by co-
authors that he or she has known for a long time and more
interested in seeing changes made by less trustworthy
co-authors.

In Table 4, we provide a more detailed breakdown of the
‘who’ questions from the different workspace views. To
Gutwin’s concept of presence history, we add identity,
readership history and authorship history. While presence
history tracks if anyone was present, identity indicates the
specific individual associated with a change or event.
Establishing identity is needed to provide the context

for answering the person-based view of workspace
changes. For example, a team member may be responsible
for auditing and upgrading different parts of the project.
If his or her identity is associated with a particular change,
it may better help other team members (who may prefer
their original version) accept that change. Readership
history carries identity even further by listing all the
people who have viewed a particular artifact, or conversely,
listing all the items that a particular person has seen. This is
important as knowing that someone has viewed the
changes without raising any objections or making any
further changes suggests an implicit acceptance of the
current work. By a similar vein, authorship history
can list the people who have made changes to an artifact,
or list all the artifacts that a particular person has changed.
Tracking readership and authorship history can, for
example, be used to gauge progress of the project
through a process-oriented lifecycle. In such a case
knowing who has seen an object and ‘signed off” on it is
an important part of workflow management and document
routing.

4.3. What?

The ‘what’ category of questions leads to answers that
produce a picture of the action history of the workspace
(Table 5). Gutwin described two ways that action history
can answer these questions (Gutwin, 1997). First, it can be
used to track all low level actions that a person has done,
e.g., creating, labeling and positioning a circle in a diagram.

590 J. Tam, S. Greenberg / Int. J. Human-Computer Studies 64 (2006) 583-598

Table 5
What: information elements and workspace questions related to ‘what’

Information
elements

Specific questions for ‘what’

Artifact-based view

Person-based view

Workspace view

Action history What changes have been

made to the artifact?

What artifacts has a person changed?
What activities has a person engaged in?

What artifacts has a person looked at?

What changes have occurred in the workspace?

What artifacts were viewed?
What artifacts were changed?

Table 6
How: information elements and workspace questions related to ‘how’

Information elements Specific questions for ‘how’

Artifact-based view

Person-based view

Workspace view

Process history
Outcome history

How has this artifact changed?

How has a person changed things?

How has the workspace changed?

Knowledge about actions that people have engaged in
while one was away is important. When people are asked to
describe what is new in the workplace it is frequently in
terms of the actions and events that have taken place.
Sometimes there is, of course, a need to put all of these
lower level actions in the context of the higher goals. So
Gutwin also described action history from a higher-level
perspective of the low-level changes in a way that considers
the goals that motivated these actions, e.g., the labeled
circle was created in order to represent a new person in an
organizational chart.

Yet the low-level questions and answers presented in
Table 5 are often the only information that developers can
hope to capture when they add change awareness support
to an application. The problem is that it is difficult to
ascertain and store the motives behind a series of low level
changes. One could use spatial proximity (i.e., changes
located near to each other) or temporal proximity (i.e.
changes that occur at the same time) as predictors of inter-
relatedness, but often these methods will fail because the
sub-steps for achieving several different high level goals
may often be interleaved. Thus, we will postpone discuss-
ing the higher-order view of changes until Section 4.6, and
instead focus here on only the significance of low-level
changes. It is important to point out, though, that people
are able to relate and combine several low-level actions to
derive a higher-level action if they are given enough
contextual information to understand the relationships
between these lower-lever actions.

The specific questions associated with the ‘what’
category varies depending upon the perspective that a
person has of the workspace. These questions are shown in
Table 5. For the artifact-based view, inquires are made
about the changes that have been made to a particular
artifact. From the person-based view, the questions ask
about what actions has a person undertaken. With the
workspace-based view, the questions ask about the actions

that were undertaken within the workspace or actions that
were carried out on the artifacts in the workspace.

4.4. How?

The ‘how’ category asks how the current workspace
differs from the way that it was before (Table 6). The
answers to these questions can be integrated to derive one
of two historical views of changes. The first is in terms of
the process history of the workspace, which indicates
incrementally how the workspace evolved from its previous
state (i.e., the state that it was in when one last looked at it)
to its present state. This is useful when a person is
interested in the mechanical means (the intermediary steps)
that produced a change or group of changes as well as the
end result. Thus process history is tightly coupled with
action history. The difference is that the action history
consists of all the actions that have occurred while one was
away, while process history relates and abstracts a subset of
all actions into a series of steps in a process. The process
view is important for, as Gutwin described, people may
have trouble interpreting instantaneous changes (Gutwin,
1997). Thus, describing all the sub-steps involved in a
change may help to clarify what happened. Also, the
process-oriented view describes the evolutionary context of
changes (i.e., the specific details of the circumstances faced
by the person who made the change at the time that the
change occurred), and thus can provide valuable insight on
‘how’ and ‘why’ things came to be in their present state. Of
course, a person may only be interested in the final result.
This is the second historical view of ‘how’ a workspace has
changed, i.e., the outcome history. The outcome history
presents only a ‘bottom line’ understanding of a change
where it highlights only those things that differ between the
initial and the final state.

The choice of process vs. outcome history will depend
largely upon the task at hand. For example, a graphic artist

J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598 591

Table 7
When: information elements and workspace questions related to ‘when’

Information
elements

Specific questions for ‘when’

Artifact-based view

Person-based view

Workspace view

Event history When was this artifact changed?
When was a particular change to this
artifact made?

In what order were changes made to

this artifact?

change?

changes?

When did a person make changes?
When did a person make a particular

In what order did this person make

When were changes made to the workspace?
When did a particular change in the workspace
occur?

In what order did changes to the workspace
occur?

Table 8
Why: information elements and workspace questions related to ‘why’

Information elements Specific questions for ‘why’

Artifact-based view

Person-based view

Workspace view

Cognitive history
Motivational history

Why was this artifact changed?

Why did a person make that change?

Why was that change made in the workspace?

may be interested in the technique used to produce some
visual effect. In this case, this person will want to see (and
thus learn) the process history of the workspace. On the
other hand, a newspaper editor reviewing an article
submitted by a reporter is far too busy to be concerned
with the rough drafts produced by this person, and would
thus be interested only in the outcome history of the article.
Consequently, it is important that software support for
change awareness provide the ability to discover both the
process and outcome history of a workspace.

4.5. When?

The timing and ordinality (sequential order) of changes
is revealed by the answers to the questions of ‘when’
changes occurred as listed in Table 7. The time when a
change occurred, particularly if it overrides an earlier
change by another person, is often of great significance and
affects the perceived importance of a change. For example,
a person may only be interested in recent workspace events,
or a person may only be interested in changes that occurred
within a specific period of time.

The timing and ordinality of changes constitute the event
history of the workspace, and it provides the chronological
context for understanding and interpreting changes giving
clues to the ‘where’, ‘who’, ‘what’, ‘how’ and ‘why’
categories of questions.

4.6. Why?

Knowing the thought and motives behind a change can
be important for accepting the changes that others have
made. The questions that a person will ask to discover
‘why’ changes were made are summarized in Table 8.

A historical view of ‘why’ changes were made includes both
the cognitive history and the motivational history. Cognitive
history describes the logic or reasoning that may be behind
a change, which is a rational reconstruction of the person’s
goals and plans. Motivational history deals more with the
impulses or desires that are the impetus for making a
change, which is the actual reason why a person did
something at a moment in time. The reason that they are
separate elements is because a change may be based upon a
well thought out and carefully conceived plan or it may be
more of a spur of the moment thing as one reacts to the
current situation. Also, some changes are completely
unintended accidents.

Although it is not always needed, knowing ‘why’ a
change was made is obviously an important step for
coming to understand and accept it. For lower-level
changes that are the parts of a grander higher-level change,
the motivating factors may be painfully obvious. In this
way providing the motivational history for simple changes
may be too effortful (and distracting from the main task) to
explain. Also, describing all the motives behind a change
and detailing all the reasoning behind each event is
extremely difficult for computers to do automatically. This
is because understanding the ‘why’ often draws upon a
person’s accumulated technical expertise and implicit or
‘hidden’ cultural information relating to group priorities,
work practices, and short and long term goals. Today’s
computing systems lack the ability to sense these technical
and cultural factors that motivated a change. They also
lack the intelligence needed to produce a truly comprehen-
sive picture of the cognitive history of the workspace.
Consequently, most ‘why’ information will likely be
generated explicitly by authors, e.g., as annotations added
to changes or as design rationales.

592 J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

4.7. Discussion

We just described in detail the information that can be
used by a person to track changes made by others over time
in a collaborative project. The informational elements were
classified according to several categories of change aware-
ness questions. These categories are inter-related and inter-
dependent. When a person is tracking changes he or she
may start with the highest-level question, ‘Has anything
changed?” From that point the person will make inquiries
about changes from one or more of particular perspec-
tives—artifact, person, or workspace-based—that make
the most sense to him or her and the work context. The
inquiries can be directed towards a specific collaborator,
‘What has this person done?” Alternatively, the process of
inquiry can take the form of an examination of a particular
artifact, ‘How does this object differ from before?’ or it can
take the form of an inspection of a select portion of the
workspace, e.g., “‘What has happened in this corner of the
project?”’

Within the bounds of the chosen perspective, a person
can ask specific questions from these categories to probe
for further details of changes. The specific category that a
person begins with (where, who, what, how, when or why)
is not fixed. As mentioned previously, it will be influenced
by the workspace perspective that is held e.g., if a person is
making inquiries from a person-based view then the ‘who’
category may be of the most pressing urgency. Also, as we
have shown in the previous sections, queries made in one
category of question are not isolated from the other
categories. The process of inquiry can occur in parallel as
someone delves for answers in more than one category at
once. For example, take the case of a project manager who
is reluctant to have certain parts of the project undergo
anymore changes, or who has severe misgivings about the
work of specific team members. When the manager returns
to the project after a period of absence and discovers that
many changes have been made, he may immediately try to
determine exactly where changes were made and specifi-
cally who made those changes.

The answers to the questions from one category may
also inspire additional inquiries in another category. For
example, a person who is tracking the historical context of
the changes to a software system may start by asking about
‘when” most of the changes occurred. Upon discovering
this information she notes that the code was most volatile
during a port between operating systems. Since she knows
that there is a methodological way to do this, her queries
then focus on the process history of the software as she
tries to determine exactly what the programmers did during
the port.

Furthermore, the answers to the questions that a person
asks about one category of question may directly provide
him with further information. For example, when a person
knows exactly where changes occurred, she then knows
who made those changes (because she knows who is
responsible for which portions of the project). Or the

person may be able to make predictions about the answers
to the other categories of questions based upon the
information that she gets from one category. When a
person learns that a specific team member made a change,
she can guess as to how the change was made. These
guesses are based upon her personal knowledge of the
person who made the changes and the techniques that he
has employed in the past.

Although a single answer may provide information
about multiple categories of questions, the main point of
the framework is to ensure that designers of change
awareness systems actually consider what change informa-
tion should be captured if the system is to provide its end-
users who are tracking changes with the information they
need to answer these questions. At the very least, the
designer can use this framework to prioritize what change
information is needed, and to focus on those with the
highest priority. The framework ensures that the designer
will not neglect certain categories because he or she is
unaware of the need to track it.

The framework also allows a designer to evaluate and
critique existing systems for their offerings of change
awareness information. We do this in the next section,
where we apply the framework to understand the limita-
tions of a change awareness tool that we built prior to the
framework’s development.

5. Applying the framework in the critique of a change
awareness tool

Our interest in a change awareness framework emerged
out of our design of PastDraw, a 2D structured drawing
application augmented with various techniques for captur-
ing and displaying change awareness information (Fig. 2).
After completing an alpha version of this application, we
realized that there was something not quite right about
how we were portraying change awareness within it. Yet,
we could not precisely articulate what was wrong.
Consequently, we abandoned the implementation in order
to develop the framework described previously.

Document | |Project
radar | Jradar
overview overview

Jen’s Changes

Project

r Y -
() e Jea'i=== Ichange
o o~ indicators
B |pool table Plesiesrd e
Kitchen = :. --.

Main
“ document

Controls for view

text-based
indicators

Fig. 2. Overview of the main features of PastDraw.

J. Tam, S. Greenberg / Int. J. Human-Computer Studies 64 (2006) 583-598 593

In this section we return to PastDraw. Our goal is to
demonstrate how we can use the change awareness
framework to appraise change awareness tools in a fashion
that is similar to how Nielsen’s heuristics (Nielsen, 1993)
can be applied in usability evaluations.

5.1. Introduction to the base system and a usage scenario for
PastDraw

PastDraw is built atop of the GEF Graph Editing
Framework (Tigris, 1995), an open source Java library
(Sun Microsystems Inc., 1996) that enables the construc-
tion of many different types of 2D graphical applications,
i.e., basic structured drawing tools to more specialized
tools such as the UML editor Argo/UML (Tigris, 2000).

Within PastDraw, users have a conventional drawing
surface (called the ‘main view’, center of Fig. 2). The
system also provides two overviews. First, a high level
project overview shows all diagrams (top right corner) as
thumbnail images. Second, a real-time radar overview
(Gutwin, 1997) shows a miniature of the entire drawing
document, a portion of which is currently displayed in the
main view. Changes made from the present back to a pre-
determined point in time are displayed in all these views, as
detailed below. In the main view changes are shown either
in the form of labels and graphical cues or as animated
replays both of which can be filtered. Details are described
below.

Changes in the overviews: Within the project and
document radar overviews, changed objects are colored
to indicate which PastDraw user made the changes. In Fig.
2, for example, objects in the document radar overview that
were changed by James are colored blue (or black if the
image is in black and white) while those by Jen changed are
green (or medium gray). Change indicators, visualized as
change bars to the right of these overviews, indicate the
amount of changes that have been made. Together, the
project overview and the document overview provide the
current user with a rough idea of where changes occurred,
what objects were changed, as well as who made the
changes. Text labels (described below) also appear in the
overview, but because of their size reduction they are not
readable; thus they are best considered as visual markers.

Changes in the main view: The main view (center of Fig.
2, with further details in Fig. 3) uses color to indicate
changed objects, as well as text labels and other graphical
cues to accentuate and detail the differences between the
initial and final view of an object. Through ghosting and
outlining, the main view includes additional graphical cues
about ‘how’ certain types of labeled objects changed. For
example, in Fig. 3, we see that the TV object (top center)
was added (ADD) since we last looked. By tracing back
from the arrow, we see it was originally created it in the
bottom right corner and resized (the two ghosted outlines
and the MOD indicator) and finally moved (MOYV) to its
final destination.

‘ Dreamhouse: first floor ‘

Past location of TV,

r T and its resizing
. Arrow shows where
] TV was moved to l:]j
Current

location of TV

[Fmoved the TV because there wauld be o0 much glare. JEN
MDVEDby JENan \025-0(1:35PM
l table I
Kitchen

A deleted pool table. Faded &'

‘ghost’ outlines, text F‘
lannotations, and arrow
show how it was originally
ladded, moved and deleted.

Fig. 3. Detail of the main view, showing color, text labels, and graphical
cues.

Animating the main view and the document overview: In
contrast to the static images seen in Figs. 2 and 3, the
animation controls (bottom middle of Fig. 2) lets the
viewer literally replay all changes that happened over a
given time period. These changes appear both in the main
view, and in a visually reduced form in the document
overview.

Viewing personal and system-created annotations about
changes to objects: People can explicitly add comments as
annotations to objects. These are then displayed as the
viewer mouses over the object, e.g., as in the upper note by
JEN in the center of Fig. 3. By default, each object also
contains a note that indicates what action was performed
on it, who did that action, and when that action occurred
e.g., as in the lower note.

Filtering the main view: To give the viewer some control
over what changes they want to see as well as the level of
detail they desire, PastDraw provides several filters to hide
or show these details in the various views. First, by
manipulating the checkbox controls (mid-right of Fig. 2),
the viewer can filter the types of changes that should be
displayed (i.e., additions, deletions, modifications...), and/
or the types of drawing items that should show changes
(i.e., circles, rectangles, notes, ...), and/or by whose
changes they want to see (i.e., one, some, or all past
editors of the document). Second, the viewer can filter how
much detail is shown by the text labels and their
accompanying graphical cues through the slider control
(Fig. 2, bottom left). This is illustrated in Fig. 4, where we
see the effect that the different slider levels have on the
display of changes for the TV object. “No details™ turns off
the display of all change information (Fig. 4a). The 2nd
level provides only color cues for changes (4b). The 3rd
level adds descriptive text labels and outlining (4c), while
the “Full detail” of the 4th level augments the text labels
with arrows used for spatial moves.

Accepting changes: Finally, the viewer has the ability to
‘accept’ agreed-upon changes so that they are no longer
tracked or displayed.

594 J. Tam, S. Greenberg / Int. J. Human-Computer Studies 64 (2006) 583-598

tv]
[]] B

Full detail No details

0y |
=
S e

Full detail No details

3% Jevel: text labels 4 level: graphical cues)

— i
No details Full detail
1 level: No details

Na details Full detail

2% level: color

Fig. 4. Change details added at four levels of detail for the TV (the
bottom box).

5.2. Analysing PastDraw’s change tracking according to the
framework

Using the informational elements from Section 4, we
reviewed and categorized whether or not PastDraw tracks
changes for a particular element, and if it does whether this
tracking is complete or partial. Table 9 summarizes our
efforts. We see at a glance that PastDraw is quite
incomplete in how it tracks change history, where at best
it tracks only partial information for most elements. While
we may later decide that there is no need to track all these
informational elements completely, the point is that the
framework has helped us articulate the actual coverage of
PastDraw.

In the remainder of this section, we briefly discuss our
analysis of several examples of PastDraw’s change tracking
to illustrate that the process of applying the framework to
critique a system is fairly straightforward.

First, we examined which questions in the various tables
are typically answered by the dominant PastDraw change
awareness mechanisms. From this set, we then scanned the
tables to see if these particular questions were biased
toward the artifact vs. person vs. workspace-based view,
and what type of information element was favored the
most. By doing so, it was immediately apparent that
PastDraw’s design is heavily biased towards an artifact-
based view, where it predominantly showed action and edit
history of changes of artifacts. That is, the system is
designed mostly to display what changes have been made
to individual artifacts.

The next step is to go through these informational
elements in turn. We began with the action and edit
history, as it has already been identified in the previous step
as the dominant information provided by PastDraw’s
change awareness mechanism. As described in Section 4.3,
the action history of an artifact includes all of the low-level
edits in the workspace (what has changed in that artifact),
while the edit history says where these changes occurred in
the workspace. This information is likely of paramount
importance as it is perhaps the most rudimentary
information that a person will use when catching up on
changes. We see that PastDraw captures the action and edit
history by tracking the addition and deletion of primitive
objects, as well as movement and resizing modifications.
Even so, these histories are incomplete, for changes to text
are not tracked (which is why it is marked as only partially
supported in Table 9). This could be a serious omission if

Table 9
Summary of PastDraw’s change tracking

Category of Informational elements Does PastDraw track

questions the element?
Where Gaze history ~
Location history ~
Edit history 4
Who Presence history ~
Identity ~
Authorship history ~
Readership history ~
What Action history ~
How Process history ~
Outcome history ~
When Event history I
Why Cognitive history ~
Motivational history X

v»—PastDraw does track changes for this informational element.
~—PastDraw indirectly or only partially tracks changes for this
informational element.

x —PastDraw does not track changes for this informational element.

knowing about this type of change is important to the
viewer.

Because informational elements are inter-related, people
can likely infer partial information about other elements
from the action and edit history—presence, location,
readership and gaze history (rows 5, 3, 8 and 2,
respectively, in Table 9). If we know that changes have
been made we can infer that someone has loaded up
PastDraw (i.e., someone was present in the workspace) as
well as being able to infer some information about where
the person was located (the changed documents) and what
was ‘read’ or ‘gazed’ upon (the changed objects and the
approximate area around them).

However, PastDraw provides this information only if
changes have been made. If no changes have been made, as
happens when people read and review documents without
editing them, then the viewer has no information about
presence, location, readership and gaze history of others.
Those others could have simply loaded up PastDraw and
looked around without editing anything. Yet this informa-
tion could be quite useful for the viewer. For example,
knowing that others have been present and have looked at
particular regions of the document (gaze and location
history) may be valuable in cases where (say) one is waiting
for approval by the other of particular changes that have
been made, or where one is waiting for the other to get ‘up
to date’ as a prelude to talking about the drawing. Or
perhaps knowing that the second person has already
looked and not expressed any objections or made any
further changes may imply implicit acceptance of the
current version of the document. From this, we can argue
that PastDraw should at least provide details about
presence and location history even when no changes have

J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598 595

been made. This level of knowledge should be sufficient.
Except in special circumstances, it is not the individual
elements in a diagram that count but it is their combination
(in the form of location history) that matters. Thus, the
lack of direct information about gaze and readership
history is not of grievous concern.

The animation feature in PastDraw supports the process
history—the sequence of changes in which the workspace
evolved from its past state to its current state. Yet this is
largely limited to an artifact point of view. It is easy to see
how particular artifacts have changed over time by
replaying their action history, but it is harder to see it
from other points of view. As well, the animation playback
is not supported in the project overview, which only shows
a static change diagram (Fig. 2, top right). This means that
it is hard to tell what other parts of the project co-evolved
(or changed) as this particular document was changed.

Similarly, the views provided by both the overviews and
the main views give a partial outcome history. By showing
changes made in the ‘after’ state of the workspace, one can
infer the ‘before’ state and how the new stated differs from
it. However, this can be hard to do. A quick glance at Fig.
3 suggests that it would be difficult to tease out the before
image from an after image cluttered with change marks.
Yet this outcome history could be valuable if one is to put
all the changes made into perspective. We should also
mention that the outcome history as presented is pre-
dominantly artifact-oriented, although a person-oriented
view is possible by filtering the view by person.

PastDraw does track authorship history, and this
knowledge may be useful for reconstructing what a person
has done, or simply to find out who the viewer should talk
to for further information. However, the only authorship
information tracked by PastDraw is the editor’s name.
Ideally authorship information should include additional
details, such as the email address and phone number, to
facilitate getting in touch with him or her.

Event history (12th row) is tracked in PastDraw both in
terms of the exact timing of events (date and time) as well
as the order in which they have occurred. This timing is
used internally to drive the animation. Although it is more
likely that a person would be interested in having only a
rough indication of when a change occurred rather than the
exact point in time in and of itself, storing this level of
precision is not problematic. What is relevant is that
PastDraw only displays event timing as text (i.e., a pop-up
raised by mousing over any object, as in Fig. 2) which is
hard to use usefully in practice. Alternate strategies could,
for example, show event changes by aging objects through
visual cues rather than by providing individual text
timings.

PastDraw does not automatically track cognitive his-
tory, although it does allow users to manually enter their
reasons for the changes that they made. Because these
entries are attached to artifacts vs. the workspace or person
level, and because they are only seen by mousing over
object (as in Fig. 2), it will likely be difficult for a viewer to

get a good sense of the high-level motivations behind a
large set of changes created by a person.

We could go on, but these examples should be sufficient
to show how we can use the framework from Section 4 to
determine what change information is and is not tracked
and displayed by PastDraw. In some cases, the absence of
an informational element may have little consequence
within our context of a simple graphical editor. In other
cases, this absence can seriously impair a person’s ability to
track changes at the right level.

5.3. Analysing PastDraw’s display of changes and suggested
improvements

The framework can also be used to analyse what
informational elements are supported by particular display
mechanisms, and from this we can infer whether the
display mechanism would be effective. As Figs. 2 and 3
showed, PastDraw has three main mechanisms for
displaying changes: animations, short text labels combined
with graphical cues, and the overviews. All of these
mechanisms are augmented by applying color to changed
objects (in an early pilot, test participants liked the quick
overview of changes that color provided (Tam et al., 2000;
Tam, 2002)). Yet we will see that none of PastDraw’s
display mechanisms fully display the informational ele-
ments, as summarized in Table 10. In the remainder of this
section we will discuss a subset of PastDraw’s display
mechanisms to illustrate how this analysis can be
performed.

As seen in the ‘animations’ row of Table 10, the
animations employed in PastDraw focus primarily on the
edits made to diagrams: what these edits were (action
history), where they occurred (edit history) and the process
of change that the workspace underwent (process history).
The order of changes can be determined by the order of the
animations (partial event history). The main draw back of
the animated replays is that the viewer has to watch the full
sequence of changes in the form of process history, with no
ability to playback only the changes that took place during
a particular period of time. Similarly, inconsequential edits
are captured. That it, replaying the entire event history at
full fidelity becomes too much of a good thing. Also, no
timing information for ‘when’ is provided during the
animations, which would have also been useful because
then the viewer of the changes could have at least noted the
point at which the animations started showing the changes
made. While it was possible for a viewer of PastDraw to
filter out his own changes or the changes of others,
PastDraw does not indicate the person who was respon-
sible for each change as the replay is occurring. Finally, no
information is provided about ‘why’ changes were made.
This deficiency suggests some enhancements. Perhaps
animations could include a high-speed ‘skimming’ or
compression mechanism that allows the user to quickly
review overall details of changes and then view at normal
speed the details of interesting changes. Or animations

596 J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

Table 10
Summarizing PastDraw’s display of informational elements

Display mechanism Categories of questions

Where Who What How When Why
Edit history Identity Author-ship Action Process Outcome Event Cognitive
history history history history history history

Animations ~ X X ~ ~ X ~ X
Project overview I ~ ~ X X X X X
Document overview (animations) X X ~ ~ X ~ X
Document overview (text labels) I ~ ~ I X X X X
Personal annotations X ~ ~ U d X X ~ ~
Color 4 X X X X X
Text labels I X X v X X X X
Graphical cues ~ X X ~ X ~ X X

v”—the display mechanism does display changes for this informational element.
~—the display mechanism only partially displays changes for this informational element.
x —the display mechanism does not display changes for this informational element.

could be supplemented to display ‘why’ changes were made
by showing text documentation during the animations.

Text labels within the document works well for display-
ing abstract information (such as ‘why’) or precise
information (such as ‘when’), although within PastDraw
they do not show ‘how’, ‘when’ and ‘why’. Even if they did,
it is difficult to represent some types of changes in text (e.g.,
spatial movements or the physical resizing of objects).
Thus, text can, in practice, only do a partial job of
revealing many of the changes made. This suggests a design
tradeoff: use text to represent abstract information that
cannot otherwise be easily understood, but use other
mechanisms to represent changes that are inappropriate for
a text display. A further problem is that the current text
labels are too artifact centric: they only display what
primitive actions occurred and where they occurred. Yet
individual changes are usually one of a larger set
comprising a complex change, the brief text descriptions
may be inadequate in explaining what is really going on
(e.g., cognitive history, process history, and outcome
history at the person or workspace perspective).

The document overview displays the same animated
change information as the main view (when the animation
control is used) as well as the text labels, only in a
significantly miniaturized form. The advantage to having
the document overview is that while parts of the document
may be obscured in the main view, the entire document is
shown in the document overview, thus reducing the
possibility that important changes will be missed. Of
course, these changes are visually quite small. While the
animation and text information is there, it would be hard
for the viewer to decipher its meaning. In essence, the
viewer will be able to tell that something has changed, but
would have a hard time determining exactly what has
changed. The document overview also excludes many
information categories: ‘how’ changes occurred, ‘when’
they were made and ‘why’ they occurred. Yet we have to be

careful not to overload this simple overview, as this view is
only meant to provide a rough idea of the changes that
occurred to a diagram. Viewers can look to the main view
to see the additional details. Still, we can now ask ourselves
if the appropriate coarse-level information is provided.

We can see in the Row 7 that color not only indicates
where changes occurred but also partial information on
who made changes. Objects in PastDraw are filled in with
the color of the last person who changed it. For the text
labels, the text is also filled with the color of the last person
who made that particular change. However, this use of
color is limited. It does not suggest ‘how’, ‘when’ and ‘why’
changes were made. As an alternative, we could perhaps
augment PastDraw to assign colors to more than just
identity, i.e., by allowing a person to map color to some of
the other categories of change awareness questions. As
well, color fading could have been exploited to show
change aging, which in turns gives an approximate event
history.

As seen in the table, we found that a great deal of change
information was not represented effectively with the
PastDraw change awareness mechanism. At the end of
this exercise, we realized that while PastDraw used a ‘grab-
bag’ of change awareness techniques, it did not present the
viewer with a comprehensive understanding of changes.

5.4. Discussion of the critique

In the beginning of Section 5 we described the difficulties
that we encountered when trying to develop PastDraw. We
focused heavily on implementation details because at the
time we did not have a clear understanding of what were
the important concepts for change awareness. When we
retrospectively applied the principles described in the
framework to the design of PastDraw, we quickly realized
that the system was woefully inadequate. While these
problems could appear obvious after the fact, as seen in

J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598 597

much of our discussion in this chapter, we fell into quite a
few pitfalls without it.

As a reminder, this paper is not about PastDraw.
Rather, PastDraw was used as an example to show the
utility of the framework. We saw how we can articulate
what informational elements are supported by a system,
and how the framework can help one understand the
strengths and weaknesses of a change awareness imple-
mentation. What we did not show (but which should be
obvious) is that the framework can also be used to inform
design. In the case of PastDraw, determining what
information that was present or absent for different
mechanisms could help us see how augmenting several
mechanisms and/or combining the strengths of particular
mechanisms could offset their individual weaknesses.

6. Conclusions

In this paper, we have contributed a theoretical frame-
work for asynchronous change awareness in collaborative
documents and workspaces that can be used in several
ways. First, designers can use it as a high-level guide for
determining what change information should be tracked
and displayed to participants, and what perspectives of
viewing this information are relevant to the end user. This
cannot be done blindly, for it requires deep knowledge of
the end users, their tasks, and the context of their work. We
suspect that this analysis would become part of the
questions asked and analysis made during a requirements
elicitation exercise, e.g., Contextual Inquiry (Holtzblatt
and Jones, 1993) and/or Task Centered System Design
(Greenberg, in press; Lewis and Reiman). Alternatively, it
could be used to seed the questions asked in focus groups.
Second, evaluators can apply the framework after the
system has been built in a fashion similar to Nielsen’s
Heuristics (Nielsen, 1993), where the framework is used to
critique the design. As with Nielsen, we suspect better
analyses will include at least three to five evaluators: system
designers, groupware experts and experts in the work
domain (i.e., double experts Nielsen, 1993), and so on.
Third, and perhaps most importantly, the framework will
sensitize designers about the need and the importance of
change awareness. Currently, if change awareness is
included at all, it is usually done as an afterthought.

However, there is still much left to be done, and these are
directions for future research.

First, we must recognize that this framework is an initial
version, and is likely incomplete. For example, there is no
mention in the framework of how conflicting changes by
different people would be handled. As well, there is no
discussion of what happens when people hand off
responsibility (or ownership) of changes to another person.
Neither is there any discussion of the differences between
the perceived relevance of a change between (say) the
author and one or more of its reviewers.

Second, the theoretical concepts in the framework do not
dictate how they should be assigned into a system as

particular interface features. As PastDraw has shown, just
making the change information available in the interface
may not suffice to make it clearly legible to the end user.
While there are many ways to implement these theoretical
concepts as interface components, it is likely that the
interface will have to undergo a significant number of
design iterations before they prove truly usable in practice.
For example, simply making all change information visible
will likely overwhelm the end user; yet it is unclear if
filtering is the best option to reduce complexity. That is,
while the theoretical framework can instigate research into
change awareness methods, the hard work of interface
design is still required.

Third, while the framework meets common sense
analysis, it is not formally validated. Future work would
validate the importance of the framework attributes
against particular user and task needs. This could perhaps
be done by building a prototype or system that follows the
framework (perhaps using the interface components from
the above step), and performing a usage analysis of its
change awareness features through extensive observation
and testing. Of course, validation should be done by several
groups so that the differences can be collected and
analysed.

Fourth, we have to analyse the need for change
awareness in particular application domains. By under-
standing these differences, custom versions of the frame-
work tailored to that domain may be produced.

Acknowledgements

Special thanks to the participation of Frank Maurer in
this project, as well as the useful comments by members of
the University of Calgary Grouplab team. Partial funding
was provided by Canada’s National Science and Engineer-
ing Research Council.

References

Berlage, T., Sohlenkamp, M., 1997. Visualizing common artifacts to
support awareness in computer mediated cooperation. CSCW 8 (3),
207-238.

Brown, H.B., 1970. The clear/caster system. In: Proceedings of the NATO
Conference of Software Engineering.

Eick, S., Steffen, J., Sumner, E., 1992. Seesoft—a tool for visualizing line
oriented software statistics. In: Card, S., MacKinlay, J., Shneiderman,
B. (Eds.), Readings in Information Visualization. Morgan Kaufmann
Publishers Inc., Los Altos, pp. 419-430.

Greenberg, S., 2004. Working through task-centered system design. In:
Diaper, D., Stanton, N. (Eds.), The Handbook of Task Analysis
for Human-Computer Interaction. Lawrence Erlbaum Associates,
London, pp. 49-66.

Greenberg, S., Roseman, M., 2003. Using a room metaphor to ease
transitions in groupware. In: Ackerman, M., Pipek, V., Wulf, V.
(Eds.), Sharing Expertise: Beyond Knowledge Management. MIT
Press, Cambridge, MA, pp. 203-256 (January).

Gutwin, C., 1997. Workspace awareness in real-time groupware environ-
ments. Ph.D. Thesis, Department of Computer Science, University of
Calgary, Calgary, Canada.

598 J. Tam, S. Greenberg | Int. J. Human-Computer Studies 64 (2006) 583-598

Hill, W.C., Hollan, J.D., 1992. Edit wear and read wear. In: Proceedings
of the ACM CHI‘92, pp. 3-9.

Holtzblatt, K., Jones, S., 1993. Contextual inquiry: a participatory
technique for system design. In: Schuler, D., Namioka, A. (Eds.),
Participatory Design: Principles and Practice. Lawrence Earlbaum,
Hillsdale, NJ, pp. 180-193 (April).

Hunt, J.W., Mcllroy, M.D., 1975. An algorithm for differential file
comparison. Computing Science Technical Report No. 41, Bell
Laboratories.

IBM Corporation: Rational Rose. http://www.306.ibm.com/software/rational/

Kurlander, D., 1993. Graphical editing by example. In: Proceedings of the
ACM CHI'93.

Lewis, C., Reiman, J., Task Centered User Interface Design: A Practical
Introduction. University of Colorado, Boulder. This is shareware book
that is available online at the following url: ftp://ftp.cs.colorado.edu/
pub/cs/distribs/clewis/HCI-Design-Book/

Magnusson, B., Asklund, U., 1996. Fine grained version control of
configurations in COOP/Orm. In: Proceedings of the Symposium on
Configuration Management, SCM6, Berlin, Germany.

Microsoft Inc., 2003. Microsoft Word, as included in Microsoft Office
Professional.

Molli, P., Skaf-Molli, H., Bouthier, C., 2001. State Treemap: An
Awareness Widget for Multi-Synchronous Groupware. Seventh
International Workshop on Groupware—CRIWG’2001.

Moran, A.L., Favela, J., Martinez-Enriquez, A.M., Decouchant, D., 2002.
Before Getting There: Potential and Actual Collaboration Proceed-
ings. Springer, CRIWG.

Neuwirth, C.M., Chandhok, R., Kaufer, D.S., Erion, P., Morris, J.,
Miller, D., 1992. Flexible differing in a collaborative writing system.
In: Proceedings of the ACM CSCW 92, pp. 147-154.

Nielsen, J., 1993. Usability Engineering. Academic Press, San Diego, CA.

Nunamaker, J., Briggs, R.O., Mittleman, D.D., Vogel, D.R., Balthazard,
P.A., 1997. Lessons from a dozen years of group support systems
research: a discussion of lab and field findings. Journal of Management
Information Systems 13 (3), 163.

Rochkind, M.J., 1975. The source code control system. IEEE Transac-
tions of Software Engineering 1 (4), 364-370.

Steves, M.P., Morse, E., Gutwin, C., Greenberg, S., 2001. A comparison
of usage evaluation and inspection methods for assessing groupware
usability. In: Proceedings of the ACM Group ’01.

Sun Microsystems Inc., 1996. Java. http://java.sun.com/j2se/1.3/

Tam, J., 2002. Supporting change awareness in visual workspaces. M.Sc.
Thesis, Department of Computer Science, University of Calgary,
Alberta, February, unpublished.

Tam, J., McCaffrey, L., Maurer, F., Greenberg, S., 2000. Change
awareness in software engineering using two dimensional graphical
design and development tools. Technical Report 2000-670-22, Depart-
ment of Computer Science, University of Calgary (Calgary, Canada),
http://www.cpsc.ucalgary.ca/grouplab/papers

Tichy, W.F., 1991. RCS—a system for version control. Software—
Practice and Experience 15 (7), 637-654.

Tigris, 1995. GEF (the Graph Editing Framework). http://gef.tigris.org/
index.html

Tigris, 2000. Argo/UML. http://argouml.tigris.org/

http://www.306.ibm.com/software/rational/
http://ftp://ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book/
http://ftp://ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book/
http://www.java.sun.com/j2se/1.3/
http://www.cpsc.ucalgary.ca/grouplab/papers
http://www.gef.tigris.org/index.html
http://www.gef.tigris.org/index.html
http://www.argouml.tigris.org/

	A framework for asynchronous change awareness in collaborative documents and workspaces
	Introduction
	Motivations and related work
	Several true incidents give an example of the consequences of missed changes

	Theoretical foundations
	Workspace awareness for real-time interactions
	Workspace awareness for past interactions

	Information elements for change awareness
	Where?
	Who?
	What?
	How?
	When?
	Why?
	Discussion

	Applying the framework in the critique of a change awareness tool
	Introduction to the base system and a usage scenario for PastDraw
	Analysing PastDrawaposs change tracking according to the framework
	Analysing PastDrawaposs display of changes and suggested improvements
	Discussion of the critique

	Conclusions
	Acknowledgements
	References

