
 1

Abstract—Multimedia groupware systems provide rich support

for distributed team work. Yet effective design of these systems is

difficult because they must cater to complex human and social

factors. Rapid prototyping partially mitigates this, for it allows

designers to build, deploy, test and quickly evolve design ideas.

The problem is that multimedia groupware is hard to prototype

because distributed multimedia systems are complex to

implement. To solve this problem, we offer the Collabrary, a

toolkit specifically designed for easy prototyping of multimedia

groupware. The Collabrary blends real-time streaming

multimedia, asynchronous shared application state, and novel

multimedia analysis and manipulation algorithms to provide rich

functionality for distributed teamwork. Implementing core

functionality – multimedia capture, analysis, manipulation,

transmission and rendering – is trivial. The Collabrary also

affords lessons that inform the design of universally accepted

toolkits for building distributed multimedia systems: we illustrate

why toolkits should be accessible for learnability, lightweight so

easy ideas are easy to build, and flexible so that novel

unanticipated ideas are possible to implement.

Index Terms—distributed multimedia groupware, prototyping.

I. INTRODUCTION AND MOTIVATION

NCREASINGLY, groupware systems are incorporating

multimedia functionality. Traditional systems such as Instant

Messaging now add pictures, voice and video to what was

once a simple text channel. Scores of experimental groupware

systems supporting distributed colleagues now rely on

multimedia as first-order data types [1,2]. In general, these

multimedia groupware systems blend ephemeral streaming of

multimedia data with persistent shared application state.

Yet multimedia groupware design is challenging, for it must

cater to complex human and social factors if it is to support

both individual and team work practices [3]. This leads to

design uncertainty. One well-known method of handling this

design challenge is prototyping, i.e., “artifacts that simulate or

animate some but not all of the features of the system” [4].

Prototypes vary in fidelity and purpose, but all lead to iterative

design. A low-fidelity prototype might consist of ideas

sketched on paper to quickly get a sense of the major design

concept. A medium-fidelity one can be a first-cut subsystem

implementation that helps one determine factors such as

feature usability and/or system performance. A high-fidelity

prototype can be an extensive interactive user interface that

Manuscript received April 30, 2005. Work supported by NSERC & MSR.

M. Boyle and S. Greenberg are with the Dept. of Computer Science,

University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4

Canada (phone: 403-220-6087; e-mail: {saul or boylem}@ cpsc.ucalgary.ca).

can be deployed to users and marketers for feedback.

However, satisfying the socio-technical design problem of

multimedia groupware requires working system prototypes:

initial implementations of the system deployable to resilient

users who do not mind occasional glitches and restarts. These

prototypes may: be constrained to idealized hardware,

software, and network platforms; be deployed only over a

secured network or within benign social situations to alleviate

security concerns; or contain only a subset of expected

functionality. This limited deployment is extremely valuable. It

helps the designer uncover socio-technical issues that are

otherwise hard to detect except under extended, real use. As

Buxton [5] notes, working groupware prototypes permit

“living with the technology” that is critical to identifying and

solving the most pervasive and troublesome problems.

The problem is that multimedia groupware is hard to

prototype because distributed multimedia systems are complex

and difficult to implement. As a solution, this paper offers the

Collabrary, a toolkit specifically designed to allow developers

to easily prototype distributed multimedia groupware.

A. Toolkits for Multimedia Groupware

Greenberg [6] argues the need for easy-to-program toolkits

for novel interface areas: “By removing low-level

implementation burdens and supplying appropriate building

blocks, toolkits give people a ‘language’ to think about these

new interfaces, which in turn allows them to concentrate on

creative designs.” In Allan Kay’s words, “easy things should

be easy; hard things should be possible”.

Yet it has been hard to develop a toolkit for building

distributed multimedia systems, because these systems require

a wide gamut of hardware and software infrastructure. On the

multimedia side, there needs to be operating system support

for accessing multimedia hardware, and algorithms and APIs

for capturing, manipulating, compressing, and rendering

multimedia data. On the network side, multimedia data must

be distributed to all machines participating in the groupware

session. This distributed groupware aspect is complex, for it

may require basic communication services (e.g., TCP, UDP

and multicast IP), time-synchronization of multiple concurrent

data streams (e.g., RTP [7]), and session management (e.g.,

SIP [8]). It may also require protocols for coordinating

application behavior and sharing state (e.g., RPC, XML Web

Services [9]), notification services (e.g., Elvin [10]), relational

databases and/or distributed shared memory (e.g., JSDT [11]).

A number of distributed multimedia toolkits excel at

providing robust and high-performance streaming multimedia

services to applications (e.g., [12,13]), yet they often omit rich

Rapidly Prototyping Multimedia Groupware

Michael Boyle and Saul Greenberg

I

Saul
Text Box
Boyle, M. and Greenberg, S. Rapidly Prototyping Multimedia Groupware. Report 2005-786-17, Department of Computer Science, University of Calgary, Calgary, Alberta, Canada. April.

 2

support for sharing other sorts of application data necessary

for groupware. Similarly, groupware toolkits that support

application data sharing (e.g., [14]), do not robustly handle

multimedia data. Using these two classes of toolkits together in

the same application is often awkward, for they usually have

incompatible programming environments and idioms.

Commercial counterparts of these research systems are often

no better. Some, such as Microsoft NetMeeting [15], are self-

contained applications that can be remotely controlled in only

limited ways. Those that are more flexible are often incredibly

complex to learn to use, e.g., Microsoft DirectShow [16] and

JMF Java Media Framework [17].

In this paper, we present the Collabrary, a toolkit we

developed to aid the rapid implementation of working system

prototypes of multimedia groupware applications. It is

implemented as a Microsoft COM object library and can be

used with a variety of popular rapid application development

platforms (e.g., Visual Basic, C#), scripting languages (e.g.,

Python), and lower-level languages like C++. In the sections

that follow, we explain the requirements behind a toolkit

supporting prototyping of multimedia groupware, and illustrate

how the Collabrary meets these requirements.

II. TOOLKIT REQUIREMENTS.

The need to implement working system prototypes rapidly

makes special demands of the toolkit used. In particular, it

must trivialize common programming tasks so that prototypes

can be built and rebuilt from scratch quickly. This allows end-

programmers to focus the bulk of their attention on

implementing novel aspects of the design, and the freedom to

make substantial, deep revisions to their prototypes without

lamenting time lost on prior unsatisfactory versions. In the

Collabrary, we have sought to make common programming

tasks trivial in three important ways that will be discussed

extensively in the remainder of this paper.

• Accessible: the toolkit should be easily to learn, where

novice toolkit users can develop applications after only

modest training. To meet this goal, we emphasized simple

programming idioms already familiar to end-programmers.

• Lightweight: common tasks should require very few lines of

code to implement, and the code needed should use simple

programming statements. To meet this goal, we designed the

Collabrary to provide rich functionality that is difficult or

tedious to implement from scratch. It performs many

important tasks automatically or as default behavior.

• Flexible: the toolkit should be supple enough to design a

wide range of unanticipated applications. To meet this goal,

we have design the Collabrary for flexibility. It provides

direct access to internal multimedia data structures (so they

can be altered). It uses programming idioms borrowed from

other application domains already proven successful and

flexible. It allows optional customization of default

behaviors.

We also identify four common multimedia groupware

programming tasks that we strive to make accessible,

lightweight, and flexible in the Collabrary.

• Capturing multimedia must be trivial.

• Rendering multimedia must be trivial and compatible with a

rapid application development GUI toolkit.

• Simple multimedia manipulation & analysis must be trivial,

while implement advanced manipulations must be possible.

• Transmitting multimedia and other shared groupware

state/data must be trivial and done in a way that is natural

for end-programmers to think about.

In the following sections, we describe how a Collabrary end-

programmer achieves these four common programming tasks.

We use snippets of C# code to illustrate the toolkit in action,

and discuss important aspects of the API relevant to the task.

III. CAPTURING MULTIMEDIA

Perhaps the most common task asked of a multimedia

toolkit is audio/video capture. Even this can be difficult, as it

involves enumerating capture devices available on the

computer, accessing a source, configuring capture properties

(e.g., video frame size and rate, audio sampling rate) and then

controlling capture. The Collabrary trivializes multimedia

capture by offering simple hardware abstractions and by

notifying the programmer of multimedia acquisition through a

familiar event-based paradigm. Fig. 1 shows Collabrary

program code that illustrates trivial audio/video capture.

A. Hardware Abstractions

The Collabrary provides end-programmers with succinctly-

named classes that encapsulate high-level abstractions of

multimedia hardware. In Fig. 1, video and audio are captured

by a Camera and a Microphone object, respectively. The key is

that these abstractions remove unnecessary programming

complexity while adding robustness.

The Camera class will be used to illustrate six ways the

Collabrary makes multimedia capture simple yet robust. The

principles apply equally to audio and file-based multimedia

input (not shown in the figure).

1) It works with any ‘plug and play’ camera; the programmer

does not need to specify device-specific properties.

2) The program runs without exception even if no camera is

class MainForm : Form {
 PictureBox pictureBox;
 Camera camera=new CameraClass();
 Microphone mic=new MicrophoneClass();
 Speaker spkr=new SpeakerClass();
 MainForm() {
 camera.Captured+=…camera_Captured…;
 camera.Size=…320x240;
 camera.FrameRate=15;
 mic.Captured+=…mic_Captured…;
 mic.Recording=true;
 }
 void camera_Captured(IPhoto frame) {
 pictureBox.Image=…frame…;
 }
 void mic_Captured(IWaveform samples) {
 spkr.Play(samples);
 }
 [STAThread] static void Main() {
 Application.Run(new MainForm());
}}

Fig. 1. Capturing and rendering multimedia: Collabrary.Camera,
Collabrary.Microphone, and Collabrary.Speaker.

 3

attached to the computer: the Camera object automatically

inserts a ‘test pattern’ image in place of live video.

3) The program continues to function even if the camera is

detached, and automatically connects as soon as a new

camera is attached.

4) Multiple copies of the Camera object can simultaneously

share access to the same camera device.

5) Objects require little initialization before they may be used

because their properties are embedded with useful defaults.

These can be overridden: the Camera.FrameRate default

of 0 fps, which indicates manual capture, is reset to 15 fps

to start automatic capture. The frame size is also specified.

6) No ‘shutdown’ or ‘cleanup’ code is required: the objects

gracefully release resources when garbage collected.

Comparatively, other toolkits are heavyweight. For example,

JMF [17] does not automatically provide these six features.

B. Event-Oriented Architecture

To promote accessibility, the Collabrary manages

multimedia capture using the event-driven callback paradigm

familiar to GUI programming. When multimedia is captured

by a Collabrary object, the object “raises an event.” The end-

programmer can attach a callback method to handle the event.

As seen in Fig. 1, these event handlers for the video camera

and microphone are attached in the MainForm constructor. The

camera_Captured method handles the Camera.Captured event

and is invoked each time a video frame is captured, where the

captured frame is passed as a parameter to the event handler.

Audio is treated similarly, where the mic_Captured method

handles the Microphone.Captured event. Periodically, after

collecting a small block of audio data (by default, every 50 ms

of audio) the Microphone object will raise its Captured event.

There are two main advantages of this event-based idiom.

First, it uses an asynchronous programming paradigm that end-

programmers will already be familiar: it uses the same event

dispatch and handling mechanisms, syntax, and programming

patterns as the GUI toolkit. Second, read/write access to

multimedia is provided directly as a natural consequence of

handling the events. However, there is a trade-off: multimedia

pipeline architectures (e.g., [17]) timestamp data in all streams

using a common reference clock. The pipeline manager uses

these timestamps to ensure audio and video streams are tightly

synchronized. Although it is possible for Collabrary end-

programmers to implement timestamps themselves, our event-

driven architecture does not yet offer this synchronization (but

see Section V.d)

IV. RENDERING MULTIMEDIA

The second most important task that a multimedia

groupware toolkit must support is trivial rendering of

multimedia that has been captured and transmitted.

Fig. 1 shows how a programmer trivially renders the

captured audio/video to the local machine’s GUI display and

sound hardware. Other multimedia toolkits only render video

into a widget that it provides. Yet video rendering with the

Collabrary makes use of the image rendering classes and

widgets provided by the GUI toolkit (e.g., the PictureBox class

in C#). Using standard widgets for rendering affords three

critical advantages.

First, it keeps the toolkit accessible. End-programmers do

not need to learn how to use a new widget. When a multimedia

toolkit provides its own video rendering widget, this widget

often provides an API that is inconsistent with that of the GUI

toolkit. This makes it difficult for end-programmers to get

started using the multimedia toolkit.

Second, it keeps the toolkit flexible. New forms of user

interactions with the video display via the mouse/keyboard can

be implemented using the UI programming patterns and

practices already familiar to them. For example, when a toolkit

provides its own video rendering widget, it often does not

expose mouse or keyboard input event bindings that support

rapid prototyping of new forms of user interaction.

Third, relying on the GUI toolkit for video rendering keeps

the multimedia toolkit interoperable. The widget is assured to

work in perfect harmony with the rest of the GUI toolkit and

can be easily composed with the rest of the application’s GUI.

Furthermore, when the GUI toolkit uses a visual interface

designer, the designer can be used to configure video renderer

properties. When the multimedia toolkit provides its own

video rendering facilities, it is often implemented as a popup

window that cannot be visually integrated into the rest of the

application’s GUI and cannot be configured with the visual

interface designer. In extreme cases, the multimedia toolkit

may be entirely incompatible with the GUI toolkit and

impossible to use.

V. MULTIMEDIA MANIPULATIONS

The Collabrary is intended to support the rapid prototyping

of novel multimedia groupware applications. In these kinds of

applications, the designer may want to manipulate audio and

video in a variety of ways. To support the rapid prototyping of

novel multimedia interactions, the Collabrary must make

analyzing and manipulating audio and video trivial.

A. Pre-Packaged Manipulations

Some manipulations can be anticipated, and consequently

the Collabrary offers a number of pre-packaged audio and

video manipulations. One example is background subtraction

and replacement. Fig. 2 shows a modification to the code in

Fig. 1 to implement background subtraction/replacement with

the frame.Subtract method. Other examples include: video

filters such as pixelization, blurring, and posterizing; image

composition such as alpha blending; and, raster graphics

primitives.

The Collabrary also has a few analysis algorithms built-in.

For example, Bradski’s CAMSHIFT face-tracking algorithm

void camera_Captured(IPhoto frame) {
 Photo newbkg=new CameraClass();
 newbkg.Load("newbkg.jpg");
 frame.Subtract(frame, newbkg, …);
 pictureBox.Image=…frame…;
}

Fig. 2—Background subtraction and replacement is trivial in the Collabrary.

 4

[18] is implemented by a Collabrary.FaceTracker object.

With this object, the position and size (in pixels) of a face in

the video can be obtained with the addition of a few simple

method calls. As another example, a motion-detection

algorithm can be prototyped in just a few lines of code that use

image subtraction without background replacement and

compare the Photo.PSNR (peak signal-to-noise ratio) value of

the difference frame against a threshold.

B. Composing Effects from Pre-Packaged Manipulations

Custom effects can be easily achieved by composing several

manipulations and analyses together. For example, Fig. 3

illustrates a sophisticated custom video manipulation, inspired

by [19], built by composing the pre-packaged analysis and

manipulation algorithms provided by the Collabrary.Photo

object. Just 30 lines of code completely implement what is

seen. Low-frame rate video snapshots are visually blended

together to show a history of activity i.e., a frame is alpha-

blended to the history of recent video frames only when it

differs markedly from the previous snapshot in the history.

Thus we see ‘ghostly’ versions of the person in Fig. 3 as he has

moved about. Also, a scrolling EKG-like diagram appears at

the bottom of the video. This diagram represents the activity

level in the video over time. The motion detection scheme

mentioned previously is used to detect changes, and the

Photo.DrawLine method is used to draw the chart lines.

C. Custom Direct Read/Write Manipulations

The Collabrary multimedia data types (Photo for video

frames and Waveform for audio sample blocks) provide end-

programmers with direct read/write access to the buffered data.

Two types of access are provided. One type provides ‘safe’

high-level (but only modestly efficient) methods to read and

write pixels and audio samples as though they were in a 2D

array. The other type is ‘unsafe’ but highly efficient access,

where the end-programmer acquires a pointer to the underlying

data buffer in memory. This pointer can be used for high-

performance implementations of very sophisticated analysis

and manipulation algorithms. This allows end-programmers

the opportunity to quickly prototype a broad spectrum of in-

place or out-of-place transforms.

D. Event-Oriented Architecture Eases Manipulation Tasks

The event-oriented capture pipeline architecture used in the

Collabrary makes implementing multimedia manipulations

much more accessible and lightweight compared to toolkits

based on stream-oriented architectures. For example, in order

to gain direct access to multimedia data in the pipeline using

the JMF the end-programmer must write a filter class and

insert one of the filter objects into the pipeline at an

appropriate place. Writing a filter is conceptually difficult. The

programmer must create a class that implements interfaces

required by the pipeline manager. These interfaces are

extremely generalized, however: both audio and video media

types are presented as byte arrays instead of a rich image or

audio type. This makes it awkward to draw raster graphics or

compose images within a filter. Ultimately, the programmer is

forced to implement mundane code that is irrelevant to the real

work of the filter. This makes the toolkit less fit for rapidly

prototyping multimedia groupware.

VI. TRANSMITTING MULTIMEDIA

Lastly, the Collabrary makes distributing multimedia data

across networks to other computers trivial. Implementing this

task makes use of: session management protocols; audio/video

codecs (e.g., [20]); transport protocols that account for late,

lost or out-of-order messages; and, protocols for negotiating,

monitoring and regulating quality-of-service (QoS).

This task is the most difficult to implement robustly, but is

essential for deployable groupware. First, the algorithms and

protocols themselves are conceptually complex. Second,

implementations must be carefully coded to meet performance

requirements and robustly handle a myriad of possible

exceptions. While there are many toolkits to insulate the end-

programmer from the gory details of implementing standards

robustly, they often require:

• set up/administration of network services that are separate

software downloads e.g., SIP requires proxy servers;

• network features unavailable to intended prototype users,

e.g., OpenMash [12] requires multicast IP; or,

• multiple toolkits to be used concurrently e.g., RTP does not

provide a guaranteed lossless in-order delivery stream for

arbitrary-length messages, making it inappropriate for

sharing certain kinds of application state information.

Consequently, the Collabrary does not implement popular

Internet engineering standards like SIP and RTP because some

of the programming idioms used in these standards are not

trivial enough to support rapid prototyping.

Fig. 4 shows code that implements a simple n-way

videoconferencing application. For brevity, audio support has

been omitted, but if included it would follow similar

programming patterns as video. As shown in Fig. 4, the

Collabrary uses a markedly different architecture for

transmitting multimedia. The centerpiece of this architecture is

the shared dictionary. This distributed data structure blends

programming idioms from notification servers [10], groupware

programming [13], distributed shared memory systems [21],

Model-View-Controller architectures [4], and filesystems. In

the remainder of this section, we illustrate how this shared

dictionary is used to rapidly prototype multimedia groupware.

Fig. 3. Visual and graphical traces of activity, implemented by

composing various pre-packaged Collabrary manipulations.

Ghostly past
images

Activity graph

 5

A. Centralized Server Network Architecture

End-programmers do not need to think about the setup of

the shared dictionary network, as the SharedDictionary

object they use to access it takes care of all the details. This

keeps end-programmers focused on the structure of the data

they wish to share, not the mechanics of sharing it.

Internally, this object uses a client/server architecture for a

centrally-coordinated data store. Clients send updates to the

server, which orders them and forwards them to other clients.

Data is cached at each client for rapid access.

To the end-programmer however this object looks like a

hash table that maps hierarchically structured keys—text

strings resembling paths in a conventional disk file system—to

values. The object manages the connection to the server

transparently, automatically marshalling data sent to the server.

The shared dictionary automatically deals with late-comers

by providing a client with a completely up-to-date version of

the data store at the time it connects to the server, similar to

[11]. The Opened event is raised on the client after it has

connected and fully updated its local cache. In the figure, the

handler for this event stores a “display name” for the current

client which used as a window caption on other clients.

When the connection is closed or broken due to a network

connectivity problem, the end-programmer can handle the

Closed event and set a flag to have the connection

automatically re-established. The code in the figure uses the

Troubleshoot method to notify the end-user of connection

troubles and ask for permission to reconnect.

When a client connects to the shared dictionary server, the

server informs the other clients already connected to it, and

they in turn each raise the Entered event. In this simple

example, a separate window is created to render the video

from each client. This window will be deleted in the Exited

event handler when the corresponding client disconnects.

B. Organizing & Storing Data in a Hierarchical Dictionary

Values that may be stored in the shared dictionary may be of

practically any type. The Collabrary automatically marshals

the data i.e., convert it into byte array that can be transmitted

over a network. This makes the shared dictionary:

• accessible, because novice programmers need not concern

themselves with marshalling;

• lightweight, because expert programmers need not write any

code to take care of marshalling; and,

• flexible, because data are shared in their normal types.

A value is stored using a simple assignment syntax e.g.,

sd["/user/name"]="Mike". The value is removed by

overwriting it with null. This is:

• accessible, because it is the same syntax as that which is

used with the system-supplied hash table class;

• lightweight, because assignment is one of the simplest

programming statements; and,

• flexible, because the end-programmer decides the names of

keys and the values stored at each.

The shared dictionary supports hierarchical organization of

data because keys look like paths in a disk filesystem. In the

figure, the SharedDictionary.Me property retrieves the

current connection’s id and prefixes it to the "/video"

substring to generate the complete key used to transmit

compressed video frames.

C. Subscription Notifications & the MVC Architecture

The Collabrary shared dictionary has a mechanism whereby

the end-programmer can request notification of changes made

to the dictionary. The end-programmer obtains a

Subscription object, specifying a key or pattern of keys to

watch, and handles the Notified event on it. The simple

pattern matching language available resembles the “filename

globbing” pattern matching language used in UNIX and

related disk file systems. (The code in the figure does not need

to make use of pattern-based subscriptions.)

Video is streamed by repeatedly storing individual video

frames at the same key in the shared dictionary. The server

broadcasts the updates to all connected clients. As each update

is received, the key is inspected and the Notified event

handler for any matching subscription is invoked with

parameters that describe the change. In the figure, a separate

subscription is used to decompress the compressed video from

each client and render it into its own GUI window.

The ability to organize data hierarchically and receive

asynchronous notification of data changes allows the end-

programmer to employ the shared dictionary as the “model”

within a Model-View-Controller or Presentation-Abstract-

Control architecture pattern [4]. These models are important

because they allow the end-programmer to separate the

abstract data model from how it is gathered (i.e., the input

/* Initialisation */
Hashtable windList=new …;
Camera camera=new …;
camera.Size=…320x240;
camera.FrameRate = 10;
VideoCodec codec=new …;
codec.Open("MJPEG",320,240,…);
SharedDictionary sd=new …;
sd.Open("tcp://www.host.com:video");

void sd_Opened(…) {
 /* Tie data to connection status */
 sd[sd.Me+"/.transient"]=sd.Me;
 /* Store a user display name */
 sd[sd.Me+"/name"]="Mike";
}

void sd_Closed(…) {
 /* Prompt user to reconnect */
 if(sd.Troubleshoot(…)) {
 retries=1;
}}

void sd_Entered(string id) {
 /* Create separate GUI window */
 VideoWin win=new VideoWin(id);
 win.Show();
 winList[id]=win;
}

void sd_Exited(string id) {
 /* Dispose of GUI window */
 VideoWin win=windList[id];
 win.Close();
 windList[id]=null;}

void camera_Captured(IPhoto curFrame) {
 /* Store compressed video frame */
 sd["/user/"+sd.Me+"/video"]=
 codec.Compress(curFrame);
}

public VideoWin(string id) {
 /* Set window caption */
 this.Text=sd[id+"/name"]…;
 /* Subscribe to video */
 Subscription video=sd.Subscribe(id+"/video");
 video.Notified+=…video_Notified…;
}

void video_Notified(…object val…) {
 Photo p=videoCodec.Decompress(val…)…;
 pictureBox.Image=…p…;
}

Fig. 4. Implementing an n-way video conferencing application with the Collabrary shared dictionary.

 6

gathered by the controller) and how that data is displayed (via

the view or presentation). This separation is critical in a

distributed environment where different clients may have

different views or different means of managing user input.

D. Controlling Presence Distribution of Keys & Values

The Collabrary shared dictionary includes features to

control how long keys or values stay in the shared dictionary.

Normally, when a client puts a value in the shared dictionary,

it is sent to all clients and it is stored in the dictionary

indefinitely. It can be overwritten (by any client, not just the

one that first put it there) by assigning a new value to the same

key. The entry will be removed when a client sets the key’s

value to null. A client receives a copy of all data on the server

and does not need to obtain a subscription for it or otherwise

express interest in it. However, the shared dictionary server

may silently drop an unsent and unneeded update when the

link to a particular client is slow or congested.

The default persistence and distribution behavior is good for

most purposes, but may be changed to make the prototype

more robust in lower-bandwidth network conditions. Several

options are available to:

• control data caching;

• receive only updates for keys it has subscribed to;

• ensure every update (even redundant ones) are received;

• send high priority data preemptively;

• specify which other clients receive the data;

• indicate how long data stays in the cache; and,

• tie the presence of keys in the cache to the connection status

of a particular client.

For example, Fig. 4’s Opened event handler stores a flag in the

dictionary that binds persistence of the subtree used to store a

client’s data to the connected status of the client. The server

automatically removes the subtree when the client disconnects.

VII. DISCUSSION AND CONCLUSIONS

We believe that the Collabrary is a significant contribution

to rapidly prototyping multimedia groupware because it

trivializes four common programming tasks for multimedia

groupware: capturing, manipulating, transmitting and

rendering multimedia. This was done in three ways. First, we

illustrated how the Collabrary is accessible because it allows

end-programmers to use programming idioms that are already

familiar to them. Second, we have shown how the Collabrary

is lightweight where it makes “easy things easy” in a number

of ways. Third, we explained how the Collabrary is flexible,

where it makes “hard things possible”.

While space does not allow us to elaborate, the above

design features have been validated in practice. The Collabrary

has seen active use for several years by a variety of

researchers. It is the architecture underneath several long-

running and heavily used media space prototypes, e.g., the

Notification Collage [1], Community Bar [22], and Home

Media Space [23]. It is the basis of several quite novel

systems, such as mixed presence groupware [24] and user

interfaces for generating custom notifications [25]. It was used

to teach undergraduates groupware programming, where

students designed and quickly implemented many intriguing

systems [6] in a very short amount of time.

However, we recognize that some will see the Collabrary as

just another toolkit. Perhaps the more long-lasting contribution

is our design requirements: we believe any universally

accepted prototyping toolkit for distributed multimedia

groupware research must trivialize four common programming

tasks – capturing, manipulating, transmitting and rendering –

by being accessible, lightweight, and flexible. The Collabrary

merely shows one way that this can be accomplished.

Try it yourself. The Collabrary may be downloaded from

http://grouplab.cpsc.ucalgary.ca/collabrary.

REFERENCES

[1] S. Greenberg & M. Rounding, “The Notification Collage: Posting

information to public and personal displays”, in Proc. ACM CHI,

515-521, 2001.

[2] A. Fass, J. Forlizzi, & R. Pausch, “MessyDesk and MessyBoard: Two

designs inspired by the goal of improving human memory” in Proc.

DIS, 303-311, 2002.

[3] G.Fitzpatrick, The Locales Framework: Understanding and Designing

for Wicked Problems, Kluwer Academic Publishers, 2003.

[4] Human Computer Interaction, Second Edition, Dix, Alan, Finlay,

Abowd, & Beale eds., Prentice Hall International, 1998.

[5] W.A.S. Buxton “Living in augmented reality: Ubiquitous media and

reactive environments”, in Video Mediated Communication, Finn,

Sellen, & Wilbur eds., Lawrence Erlbaum Associates, 363-384, 1997.

[6] S. Greenberg, “Toolkits and interface creativity”, Multimedia Tools and

Applications, Kluwer Academic Publishers, in press.

[7] RTP: A Transport Protocol for Real-Time Applications, IETF RFC

3550, 2003.

[8] SIP: Session Initiation Protocol, IETF RFC 3261, 2002.

[9] Web Services Architecture, W3C Working Group Note 11, Feb. 2004.

[10] G. Fitzpatrick, S. Kaplan, T. Mansfield, A. David, & B. Segall

“Supporting public availability and accessibility with Elvin:

Experiences and reflections”, in J CSCW, 11:3, 447-474, 2002.

[11] R. Burridge, Shared Data Toolkit for Java Technology User Guide, Sun

Microsystems JavaSoft, 2004.

[12] S. McCanne, E. Brewer, et. al, “Toward a common infrastructure for

multimedia-Networking Middleware, in Proc. NOSSDAV’97, 1997.

[13] N. Roussel, “Exploring new uses of video with videoSpace”, in Proc.

EHCI, LNCS 2254, 73-90, Springer, 2001.

[14] M. Roseman & S. Greenberg, “Building real time groupware with

GroupKit”, in ACM TOCHI, 3:1, 66-106, 1996.

[15] Microsoft NetMeeting, 3.01 SDK, Microsoft Corporation, 2003.

[16] Microsoft DirectShow 9.0 SDK, Microsoft Corporation, 2005.

[17] Java™ Media Framework API Guide, Sun Microsystems, 1999.

[18] G.R. Bradski, “Computer video face tracking for use in a perceptual

user interface”, in Intel Technology Journal Q2’98, 1998.

[19] C. Gutwin & R. Penner, “Improving interpretation of remote gestures

with telepointer traces”, in Proc. ACM CSCW 2002, 49-57, 2002.

[20] Video coding for low bit rate communication, ITU-T H.263, 2005.

[21] N. Carriero & D. Gelernter, “Linda in context”, in Comm. ACM, 32:4,

444-458, 1989.

[22] G. McEwan & S. Greenberg, “Community Bar: Designing for awareness

and interaction”, in ACM CHI 2005 Workshop on Awareness systems:

Known Results, Theory, Concepts and Future Challenges. 2005.

[23] C. Neustaedter & S. Greenberg, “The design of a context-aware home

media space”, in Proc. UBICOMP, Springer-Verlag, 297-314, 2003.

[24] A. Tang, M. Boyle, & S. Greenberg, “Display and presence disparity in

mixed presence groupware”, in JRPIT, 37:2, 71-88, May 2005.

[25] S. Greenberg, & M. Boyle, “Tracking visual differences for generation

and playback of user-customized notifications” (in submission).

