

Abstract—Multimedia groupware systems provide rich

support for distributed team work. Yet effective design of these
systems is difficult because they must cater to complex human
and social factors. Rapid prototyping partially mitigates this, for
it allows designers to build, deploy, test and quickly evolve design
ideas. The problem is that multimedia groupware is hard to
prototype because distributed multimedia systems are complex to
implement. To solve this problem, we offer the Collabrary, a
toolkit designed to ease prototyping of multimedia groupware.
The Collabrary blends real-time streaming multimedia,
asynchronous shared application state, and novel multimedia
analysis and manipulation algorithms to provide rich
functionality for distributed teamwork. Implementing core
functionality—multimedia capture, analysis, manipulation,
transmission and rendering—is trivial. The Collabrary also
affords lessons that inform the design of universally accepted
toolkits for building distributed multimedia systems: we
illustrate why toolkits should be accessible for learnability,
lightweight so simple ideas are simple to build, and flexible so
that novel unanticipated ideas are possible to implement.

Index Terms—distributed multimedia groupware, prototyping.

I. INTRODUCTION AND MOTIVATION
NCREASINGLY, groupware systems are incorporating
multimedia functionality. Systems such as Instant

Messaging now add pictures, voice and video to what was
once a simple text channel. Scores of experimental multimedia
groupware systems supporting distributed colleagues treat
multimedia as first-order data types [1,2] blending streaming
multimedia with persistent shared application state.

Yet multimedia groupware design is challenging. It must
cater to complex human and social factors to support both
individual and team work practices [3]. One well-known
method of handling this design challenge is prototyping, i.e.,
“artifacts that simulate or animate some but not all of the
features of the system” [4]. Prototypes vary in fidelity and
purpose, but all lead to iterative design. A low-fidelity
prototype might consist of ideas sketched on paper to quickly
get a sense of the major design concept. A medium-fidelity
one can be a first-cut subsystem implementation that helps one
determine factors such as feature usability and/or system
performance. A high-fidelity prototype can be an extensive
interactive user interface that can be deployed to users and
marketers for feedback.

© 2005 Knowledge Systems Institute. Funded by NSERC & MSR.
M. Boyle and S. Greenberg are with the Dept. of Computer Science,

University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4
Canada (phone: 403-220-6087; e-mail: {saul or boylem}@ cpsc.ucalgary.ca).

However, satisfying the socio-technical design problem of
multimedia groupware requires working system prototypes:
initial implementations of the system deployable to resilient
users who do not mind occasional glitches and restarts. These
prototypes may: be constrained to idealized hardware,
software, and network platforms; be deployed only over a
secured network or within benign social situations to alleviate
security concerns; or contain only a subset of expected
functionality. This limited deployment is extremely valuable.
It helps the designer uncover socio-technical issues that are
otherwise hard to detect except under extended, real use [5].

The problem is that multimedia groupware is hard to
prototype because distributed multimedia systems are complex
and difficult to implement. As a solution, this paper offers the
Collabrary, a toolkit specifically designed to allow developers
to easily prototype distributed multimedia groupware.

A. Toolkits for Multimedia Groupware
Greenberg [6] argues the need for easy-to-program toolkits

for novel interface areas: “By removing low-level
implementation burdens and supplying appropriate building
blocks, toolkits give people a ‘language’ to think about these
new interfaces, which in turn allows them to concentrate on
creative designs.” Yet it is hard to develop a toolkit for
building distributed multimedia systems because they require
a wide gamut of hardware and software infrastructure.

On the multimedia side, there must be OS support for A/V
hardware, and libraries for capturing, compressing, and
rendering multimedia. On the network side, multimedia must
be distributed to all machines participating in the groupware
session. This may require basic communication services (e.g.,
TCP, UDP and multicast IP), time-synchronization of multiple
concurrent data streams (e.g., RTP [7]), and session
management (e.g., SIP [8]). It may also require protocols for
coordinating application behavior and sharing state (e.g.,
RPC, XML Web Services [9]), notification services (e.g.,
Elvin [10]), relational databases and/or distributed shared
memory (e.g., JSDT [11]).

While some distributed multimedia toolkits provide robust
and high-performance streaming multimedia services (e.g.,
[12,13]), they omit rich support for sharing other sorts of
application data needed in groupware. Similarly, groupware
toolkits that support application data sharing (e.g., [14]) do
not robustly handle multimedia. Using these two classes of
toolkits together simultaneously is awkward, as they use
mutually incompatible programming environments and
idioms.

Balancing abstraction and performance is tricky. A balance

Rapidly Prototyping Multimedia Groupware
Michael Boyle and Saul Greenberg

I

Saul
Text Box
Boyle, M. and Greenberg, S. (2005)
Rapidly Prototyping Multimedia Groupware. Proceedings of the 11th Int’l Conference on Distributed Multimedia Systems (DMS’05, Sep 5-7, Banff) Knowledge Systems Institute, IL, USA

that is appropriate for prototyping will like not be appropriate
for production, and vice versa. For example self-contained
applications like Microsoft NetMeeting [15] are easy to use
and offer good performance but can be remotely controlled in
only limited ways. Commercial toolkits like Microsoft
DirectShow [16] and JMF Java Media Framework [17] are
more flexible but are also incredibly complex to learn to use.

In this paper, we present the Collabrary, a toolkit we
developed to aid the rapid implementation of working system
prototypes of multimedia groupware applications. It is
implemented as a Microsoft COM object library and can be
used with popular rapid application development platforms
(e.g., Visual Basic, C#, Python) as well as lower-level
languages like C++. In the sections that follow, we explain the
requirements for this toolkit and illustrate how the Collabrary
meets these requirements.

While the prototypes produced with the Collabrary are
optimized and robust enough for limited deployments that
suffice for understanding complex socio-technical factors,
they are not as optimized or robust as systems made with
production-oriented toolkits. The benefit of using the
Collabrary is that prototypes made with it are highly malleable
and quickly implemented, matching the needs of prototyping.

II. TOOLKIT REQUIREMENTS.
The need to implement working system prototypes rapidly

makes special demands of the toolkit used. In particular, it
must trivialize common programming tasks so that prototypes
can be built and rebuilt from scratch quickly. This allows end-
programmers to focus on implementing the novel aspects of
the design, and make substantial, deep revisions to the
prototypes without lamenting time lost on prior unsatisfactory
versions. In the Collabrary, we have sought to make common
programming tasks trivial in three important ways that will be
discussed extensively in the remainder of this paper.
• Accessible: the toolkit should be easy to learn, so that

novice toolkit users can develop applications after only
modest training. To meet this goal, we emphasized simple
programming idioms already familiar to end-programmers.

• Lightweight: common tasks should need very little code to
implement, using simple programming statements. To meet
this goal, we designed the Collabrary to provide rich
functionality that is difficult or tedious to implement from
scratch. It performs many important tasks automatically or
as default behavior.

• Flexible: the toolkit should be supple enough to design a
wide range of unanticipated applications. To meet this goal,
the Collabrary provides direct access to multimedia data so
they can be altered, uses programming idioms borrowed
from other application domains already proven flexible, and
allows optional customization of default behaviors.

We also identify four common multimedia groupware
programming tasks that we strive to make accessible,
lightweight, and flexible in the Collabrary.
• Capturing multimedia must be trivial.

• Rendering multimedia must be trivial and compatible with a
rapid application development GUI toolkit.

• Simple multimedia manipulation & analysis must be trivial,
while advanced manipulations must be possible.

• Transmitting multimedia and application state data must be
trivial and match how end-programmers work with the data.

In the following sections, we describe how a Collabrary end-
programmer achieves these four common programming tasks.
We use snippets of C# code to illustrate the toolkit in action,
and discuss important aspects of the API relevant to the task.

III. CAPTURING MULTIMEDIA
Perhaps the most routine multimedia toolkit program task is

audio/video capture. Yet, even this can be difficult as it
involves discovering capture hardware, accessing it,
configuring capture properties (e.g., video frame size and rate,
audio sampling rate) and then controlling capture. The
Collabrary trivializes multimedia capture by offering simple
hardware abstractions and by notifying the programmer of
multimedia acquisition through a familiar event-based
paradigm. Fig. 1 shows Collabrary program code that
illustrates trivial audio/video capture.

A. Hardware Abstractions
The Collabrary provides end-programmers with succinctly-

named classes that encapsulate high-level abstractions of
multimedia hardware. In Fig. 1, video and audio are captured
by a Camera and a Microphone object, respectively. The key is
that these abstractions remove unnecessary programming
complexity while adding robustness.

The Camera class will be used to illustrate six ways the
Collabrary makes multimedia capture simple yet robust. The
principles apply equally to audio and file-based multimedia
input (not shown in the figure). Some principles are analogues
of patterns employed in other prototyping toolkits while others
emerged during the process of employing the Collabrary in
various prototypes [1,22].
1) It works with any ‘plug and play’ camera; the programmer

does not need to specify device-specific properties.
2) The program runs without exception even if no camera is

class MainForm : Form {
 PictureBox pictureBox;
 Camera camera=new CameraClass();
 Microphone mic=new MicrophoneClass();
 Speaker spkr=new SpeakerClass();
 MainForm() {
 camera.Captured+=…camera_Captured…;
 camera.Size=…320x240;
 camera.FrameRate=15;
 mic.Captured+=…mic_Captured…;
 mic.Recording=true;
 }
 void camera_Captured(IPhoto frame) {
 pictureBox.Image=…frame…;
 }
 void mic_Captured(IWaveform samples) {
 spkr.Play(samples);
 }
 [STAThread] static void Main() {
 Application.Run(new MainForm());
}}
Fig. 1. Capturing and rendering multimedia: Collabrary.Camera,
Collabrary.Microphone, and Collabrary.Speaker.

attached to the computer: the Camera object automatically
inserts a ‘test pattern’ image in place of live video.

3) The program continues to function even if the camera is
detached, and automatically connects as soon as a new
camera is attached.

4) Multiple copies of the Camera object can simultaneously
share access to the same camera device.

5) Objects require little initialization before they may be used
because their properties are embedded with useful
defaults. These can be overridden: the Camera.FrameRate
default of 0 fps, which indicates manual capture, is reset
to 15 fps to start automatic capture. The frame size is also
specified.

6) No ‘shutdown’ or ‘cleanup’ code is required: the objects
gracefully release resources when garbage collected.

These features are not implemented in other toolkits.

B. Event-Oriented Architecture
To promote accessibility, the Collabrary manages

multimedia capture using the event-driven callback paradigm
familiar to GUI programming. When multimedia is captured
by a Collabrary object, the object “raises an event.” The end-
programmer can attach a callback method to handle the event.

As seen in Fig. 1, these event handlers for the video camera
and microphone are attached in the MainForm constructor. The
camera_Captured method handles the Camera.Captured event
and is invoked each time a video frame is captured. The
captured frame is passed as a parameter to the event handler.
Audio is treated similarly, where the mic_Captured method
handles the Microphone.Captured event. Periodically, after
collecting a small block of audio data (by default, every 50 ms
of audio) the Microphone object will raise its Captured event.

There are two main advantages of this event-based idiom.
First, it uses an asynchronous programming paradigm that
end-programmers will already find familiar as it uses the same
event dispatch mechanisms, syntax, and programming patterns
as the GUI toolkit. Second, read/write access to multimedia is
provided directly as a natural consequence of handling the
events. However, there is a trade-off. Stream-oriented pipeline
architectures (e.g., [17]) automatically timestamp data in all
streams using a common reference clock to ensure audio and
video streams are tightly synchronized. While Collabrary end-
programmers could implement timestamps themselves, it is
not a feature of the event-oriented architecture.

IV. RENDERING MULTIMEDIA
The second most important task that a multimedia

groupware toolkit must support is trivial rendering of
multimedia that has been captured and transmitted.

Fig. 1 shows how a programmer trivially renders the
captured audio/video to the local machine’s GUI display and
sound hardware. video rendering with the Collabrary makes
use of the image rendering classes and widgets provided by
the GUI toolkit (e.g., the PictureBox class in C#). Other
multimedia toolkits typically render video into a widget it
provides. Often, these private widget implementations are

tightly coupled to the rest of the multimedia architecture for
performance reasons. Yet, the standard GUI widgets
compatible with the Collabrary offer adequate performance,
and using them affords three critical advantages.

First, it keeps the toolkit accessible. End-programmers do
not need to learn how to use a new widget. Private widget
implementations often provide APIs that are inconsistent with
that of the GUI toolkit. This makes it difficult for end-
programmers to get started using the multimedia toolkit.

Second, it keeps the toolkit flexible. New forms of user
interaction with the video display via the mouse/keyboard can
be implemented using conventional UI programming patterns
and practices. Private widget implementations are often
incomplete, and do not expose mouse or keyboard input event
bindings that support new forms of user interaction.

Third, it keeps the toolkit interoperable. The widget used to
render video with the Collabrary is assured to work in perfect
harmony with the rest of the GUI toolkit and can be easily
composed with the rest of the application’s GUI using the
visual interface designers already familiar to the end-
programmer. Private rendering widgets are often implemented
as a popup window that cannot be visually integrated with the
rest of the application’s GUI or configured with the visual
interface designer. In extreme cases, the multimedia toolkit
may be entirely incompatible with the GUI toolkit and
impossible to use.

V. MULTIMEDIA MANIPULATIONS
The Collabrary is intended to support the rapid prototyping

of novel multimedia groupware applications. In these kinds of
applications, the designer may want to manipulate audio and
video in a variety of ways. To support the rapid prototyping of
novel multimedia interactions, the Collabrary must make
analyzing and manipulating audio and video trivial.

A. Pre-Packaged Manipulations
Some basic manipulations are anticipated, and consequently

the Collabrary offers a number of pre-packaged audio and
video manipulations. One example is background subtraction
and replacement. Fig. 2 shows a modification to the code in
Fig. 1 to implement background subtraction/replacement with
the frame.Subtract method. Other examples include: video
filters such as pixelization, blurring, and posterizing; image
composition such as alpha blending; and, raster graphics
primitives.

The Collabrary also has a few built-in analysis algorithms.
For example, Bradski’s CAMSHIFT face-tracking algorithm
[18] is implemented by a Collabrary.FaceTracker object.
With this object, the position and size (in pixels) of a face in
the video can be obtained with the addition of a few simple
method calls. As another example, a motion-detection
void camera_Captured(IPhoto frame) {
 Photo newbkg=new CameraClass();
 newbkg.Load("newbkg.jpg");
 frame.Subtract(frame, newbkg, …);
 pictureBox.Image=…frame…;
}
Fig. 2—Background subtraction and replacement is trivial in the Collabrary.

algorithm can be prototyped in just a few lines of code that
use image subtraction without background replacement and
compare the Photo.PSNR (peak signal-to-noise ratio) value of
the delta image against a threshold.

B. Composing Effects from Pre-Packaged Manipulations
Custom effects can be easily achieved by composing

several manipulations and analyses together. For example,
Fig. 3 illustrates a sophisticated custom video manipulation,
inspired by [19], built by composing the pre-packaged
analysis and manipulation algorithms provided by the
Collabrary.Photo object. Just 30 lines of code completely
implement what is seen. Low-frame rate video snapshots are
visually blended together to show a history of activity i.e., a
frame is alpha-blended to the history of recent video frames
only when it differs markedly from the previous snapshot in
the history. Thus we see ‘ghostly’ versions of the person in
Fig. 3 as he has moved about. Also, a scrolling EKG-like
diagram appears at the bottom of the video. This diagram
represents the activity level in the video over time. The motion
detection scheme mentioned previously is used to detect
changes, and the Photo.DrawLine method is used to draw the
chart lines.

C. Custom Direct Read/Write Manipulations
The Collabrary multimedia data types (Photo for video

frames and Waveform for audio sample blocks) provide end-
programmers with direct read/write access to the buffered
data. Two types of access are provided (not demonstrated due
to space constraints). One type provides ‘safe’ high-level (but
only modestly efficient) methods to read and write pixels and
audio samples as though they were in a 2D array. The other
type is ‘unsafe’ but highly efficient access, where the end-
programmer acquires a pointer to the underlying data buffer in
memory. This pointer can be passed to high-performance
implementations of very sophisticated analysis and
manipulation algorithms. This allows end-programmers the
opportunity to quickly prototype or reuse a broad spectrum of
effects and measures.

D. Event-Oriented Architecture Eases Manipulation Tasks
The event-oriented capture pipeline architecture used in the

Collabrary makes implementing multimedia manipulations
much more accessible and lightweight compared to toolkits
based on stream-oriented architectures. With the Collabrary,

the end-programmer adds manipulation code to an existing
capture event handler at a minimum cost of one additional line
of code. Conversely, with a stream-oriented architecture as in
the JMF the end-programmer must write a filter class and
insert an instance of it into the pipeline at an appropriate
place. The problem is filters are difficult to write. They
implement extremely generalized interfaces which treat audio
and video as generic byte arrays rather than rich image or
audio types. Ultimately, the programmer is forced to
implement mundane code—well in excess of just one line—
that is irrelevant to the real work of the filter. This heavy “up-
front” work does not match the needs of rapid prototyping.

VI. TRANSMITTING MULTIMEDIA
Lastly, the Collabrary makes distributing multimedia data

across networks to other computers trivial. Implementing this
task makes use of: session management protocols; audio/video
codecs (e.g., [20]); transport protocols that account for late,
lost or out-of-order messages; and, protocols for negotiating,
monitoring and regulating quality-of-service (QoS).

This task is the most difficult to implement robustly, but is
essential for deployable groupware. First, the algorithms and
protocols themselves are conceptually complex. Second,
implementations must be carefully coded to meet performance
requirements and robustly handle a myriad of possible
exceptions. While there are many toolkits to insulate the end-
programmer from the gory details of implementing standards
robustly, they often require:
• set up/administration of network services that are separate

software downloads e.g., SIP requires proxy servers;
• network features unavailable to intended prototype users,

e.g., OpenMash [12] requires multicast IP; or,
• multiple toolkits to be used concurrently e.g., RTP does not

provide a guaranteed lossless in-order delivery stream for
arbitrary-length messages, making it inappropriate for
sharing certain kinds of application state information.

The Collabrary does not implement popular Internet protocols
like SIP and RTP because some of the programming idioms
used with them are not trivial enough for rapid prototyping.
Simpler-to-program, but less robust and efficient protocols are
provided, instead.

Fig. 4 shows code that implements a simple n-way
videoconferencing application. For brevity, audio support has
been omitted, but if included it would follow similar
programming patterns as video. As shown in Fig. 4, the
Collabrary uses a markedly different architecture for
transmitting multimedia. The centerpiece of this architecture is
the shared dictionary. This distributed data structure blends
programming idioms from notification servers [10],
groupware programming [13], distributed shared memory
systems [21], Model-View-Controller architectures [4], and
filesystems. In the remainder of this section, we illustrate how
this shared dictionary is used to rapidly prototype multimedia
groupware.

Fig. 3. Visual and graphical traces of activity, implemented by
composing various pre-packaged Collabrary manipulations.

Ghostly past
images

Activity graph

A. Centralized Server Network Architecture
End-programmers do not need to think about the setup of

the shared dictionary network, as the SharedDictionary
object they use to access it takes care of all the details. This
keeps end-programmers focused on the structure of the data
they wish to share, not the mechanics of sharing it.

Internally, this object uses a client/server architecture for a
centrally-coordinated data store. Clients send updates to the
server, which orders them and forwards them to other clients.
Data is cached at each client for rapid access.

To the end-programmer however this object looks like a
hash table that maps hierarchically structured keys—text
strings resembling paths in a conventional disk file system—
to values. The object manages the connection to the server
transparently, automatically marshalling data sent.

The shared dictionary automatically deals with late-comers
by providing a client with a completely up-to-date version of
the data store at the time it connects to the server, similar to
[11]. The Opened event is raised on the client after it has
connected and fully updated its local cache. In the figure, the
handler for this event stores a “display name” for the current
client which is used as a window caption on other clients.

When the connection is closed or broken due to a network
connectivity problem, the end-programmer can handle the
Closed event and set a flag to have the connection
automatically re-established. The code in the figure uses the
Troubleshoot method to notify the end-user of connection
troubles and ask for permission to reconnect.

When a client connects to the shared dictionary server, the
server informs the other clients already connected to it, and
they in turn each raise the Entered event. In this simple
example, a separate window is created to display the video
from each client. This window will be deleted in the Exited
event handler when the corresponding client disconnects.

B. Organizing & Storing Data in a Hierarchical Dictionary
Values that may be stored in the shared dictionary may be

of practically any type. The Collabrary automatically marshals
the data i.e., convert it into byte array that can be transmitted
over a network. This makes the shared dictionary:
• accessible, because novice programmers need not concern

themselves with marshalling;
• lightweight, because expert programmers need not write any

code to take care of marshalling; and,
• flexible, because data are shared in their normal types.
A value is stored using a simple assignment syntax e.g.,
sd["/user/name"]="Mike". The value is removed by
overwriting it with null. This is:
• accessible, because it is the same syntax as that which is

used with the system-supplied hash table class;
• lightweight, because assignment is one of the simplest

programming statements; and,
• flexible, because the end-programmer decides the names of

keys and the values stored at each.
The shared dictionary supports hierarchical organization of
data because keys look like paths in a disk filesystem. In the
figure, the SharedDictionary.Me property retrieves the
current connection’s id and prefixes it to the "/video"
substring to generate the complete key used to transmit
compressed video frames.

C. Subscription Notifications & the MVC Architecture
The Collabrary shared dictionary has a mechanism whereby

the end-programmer can request notification of changes made
to the dictionary. The end-programmer obtains a
Subscription object, specifying a key or pattern of keys to
watch, and handles the Notified event on it. The simple
pattern matching language available resembles the “filename
globbing” pattern matching language used in UNIX and
related disk file systems. (The code in the figure does not need
to make use of pattern-based subscriptions.)

Video is streamed by repeatedly storing individual video
frames at the same key in the shared dictionary. The server
broadcasts the updates to all connected clients. As each update
is received, the key is inspected and the Notified event
handler for any matching subscription is invoked with
parameters that describe the change. In the figure, a separate
subscription is used to decompress the compressed video from
each client and render it into its own GUI window.

The ability to organize data hierarchically and receive
asynchronous notification of data changes allows the end-
programmer to employ the shared dictionary as the “model”
within a Model-View-Controller or Presentation-Abstract-
Control architecture pattern [4]. These models are important
because they allow the end-programmer to separate the
abstract data model from how it is gathered (i.e., the input

/* Initialisation */
Hashtable windList=new …;
Camera camera=new …;
camera.Size=…320x240;
camera.FrameRate = 10;
VideoCodec codec=new …;
codec.Open("MJPEG",320,240,…);
SharedDictionary sd=new …;
sd.Open("tcp://www.host.com:video");

void sd_Opened(…) {
 /* Tie data to connection status */
 sd[sd.Me+"/.transient"]=sd.Me;
 /* Store a user display name */
 sd[sd.Me+"/name"]="Mike";
}

void sd_Closed(…) {
 /* Prompt user to reconnect */
 if(sd.Troubleshoot(…)) {
 retries=1;
}}

void sd_Entered(string id) {
 /* Create separate GUI window */
 VideoWin win=new VideoWin(id);
 win.Show();
 winList[id]=win;
}

void sd_Exited(string id) {
 /* Dispose of GUI window */
 VideoWin win=windList[id];
 win.Close();
 windList[id]=null;}

void camera_Captured(IPhoto curFrame) {
 /* Store compressed video frame */
 sd["/user/"+sd.Me+"/video"]=
 codec.Compress(curFrame);
}

public VideoWin(string id) {
 /* Set window caption */
 this.Text=sd[id+"/name"]…;
 /* Subscribe to video */
 Subscription video=sd.Subscribe(id+"/video");
 video.Notified+=…video_Notified…;
}

void video_Notified(…object val…) {
 Photo p=videoCodec.Decompress(val…)…;
 pictureBox.Image=…p…;
}

Fig. 4. Implementing an n-way video conferencing application with the Collabrary shared dictionary.

gathered by the controller) and how that data is displayed (via
the view or presentation). This separation is critical in a
distributed environment where different clients may have
different views or different means of managing user input.

D. Controlling Presence Distribution of Keys & Values
The Collabrary shared dictionary includes features to

control how long keys or values stay in the shared dictionary.
Normally, when a client puts a value in the shared dictionary,
it is sent to all clients and it is stored in the dictionary
indefinitely. It can be overwritten (by any client, not just the
one that first put it there) by assigning a new value to the same
key. The entry is removed only when a client sets it's value to
null. A client receives a copy of all data on the server and
does not need to obtain a subscription for it or otherwise
express interest in it. However, the shared dictionary server
may silently drop an unsent and unneeded update when the
link to a particular client is slow or congested.

The default persistence and distribution behavior is good
for most purposes, but may be changed to make the prototype
more robust in lower-bandwidth network conditions. Several
options are available to:
• control data caching;
• receive only updates for keys it has subscribed to;
• ensure every update (even redundant ones) are received;
• send high priority data preemptively;
• specify which other clients receive the data;
• indicate how long data stays in the cache; and,
• tie the presence of keys in the cache to the connection status

of a particular client.
For example, Fig. 4’s Opened event handler stores a flag in the
dictionary that binds persistence of the subtree used to store a
client’s data to the connected status of the client. The server
removes the subtree when the client disconnects.

VII. DISCUSSION AND CONCLUSIONS
We believe that the Collabrary is a significant contribution

to rapidly prototyping multimedia groupware because it
trivializes four common programming tasks for multimedia
groupware: capturing, manipulating, transmitting and
rendering multimedia. This is illustrated in three ways. First,
we illustrated how the Collabrary is accessible because it
allows end-programmers to use programming idioms that are
already familiar to them. Second, we have shown how the
Collabrary is lightweight and makes “simple things simple” in
a several ways. Third, we explained how the Collabrary is
flexible, where it makes “complex things possible”.

While space does not allow us to elaborate, the above
design features have been validated in practice. The
Collabrary has seen active use for several years by a variety of
researchers. It is the architecture underneath several long-
running and heavily used media space prototypes, e.g., the
Notification Collage [1], Community Bar [22], and Home
Media Space [23]. It is the basis of several quite novel
systems, such as mixed presence groupware [24] and user

interfaces for generating custom notifications [25]. It was used
to teach undergraduates groupware programming, where
students designed and quickly implemented many intriguing
systems [6] in a very short amount of time.

However, we recognize that some will see the Collabrary as
just another toolkit. Perhaps the more long-lasting
contribution is our design requirements: we believe any
universally accepted prototyping toolkit for distributed
multimedia groupware research must trivialize four common
programming tasks—capturing, manipulating, transmitting
and rendering—by being accessible, lightweight, and flexible.
The Collabrary merely shows one way that this can be
accomplished.

Try it yourself. The Collabrary may be downloaded from
http://grouplab.cpsc.ucalgary.ca/collabrary.

REFERENCES
[1] S. Greenberg & M. Rounding, “The Notification Collage: Posting

information to public and personal displays”, in Proc. ACM CHI,
515-521, 2001.

[2] A. Fass, J. Forlizzi, & R. Pausch, “MessyDesk and MessyBoard: Two
designs inspired by the goal of improving human memory” in Proc. DIS,
303-311, 2002.

[3] G.Fitzpatrick, The Locales Framework: Understanding and Designing
for Wicked Problems, Kluwer Academic Publishers, 2003.

[4] Human Computer Interaction, Second Edition, Dix, Alan, Finlay,
Abowd, & Beale eds., Prentice Hall International, 1998.

[5] W.A.S. Buxton “Living in augmented reality: Ubiquitous media and
reactive environments”, in Video Mediated Communication, Finn,
Sellen, & Wilbur eds., Lawrence Erlbaum Associates, 363-384, 1997.

[6] S. Greenberg, “Toolkits and interface creativity”, Multimedia Tools and
Applications, Kluwer Academic Publishers, in press.

[7] RTP: A Transport Protocol for Real-Time Applications, IETF RFC
3550, 2003.

[8] SIP: Session Initiation Protocol, IETF RFC 3261, 2002.
[9] Web Services Architecture, W3C Working Group Note 11, Feb. 2004.
[10] G. Fitzpatrick, S. Kaplan, T. Mansfield, A. David, & B. Segall

“Supporting public availability and accessibility with Elvin: Experiences
and reflections”, in J CSCW, 11:3, 447-474, 2002.

[11] R. Burridge, Shared Data Toolkit for Java Technology User Guide, Sun
Microsystems JavaSoft, 2004.

[12] S. McCanne, E. Brewer, et. al, “Toward a common infrastructure for
multimedia-Networking Middleware, in Proc. NOSSDAV’97, 1997.

[13] N. Roussel, “Exploring new uses of video with videoSpace”, in Proc.
EHCI, LNCS 2254, 73-90, Springer, 2001.

[14] M. Roseman & S. Greenberg, “Building real time groupware with
GroupKit”, in ACM TOCHI, 3:1, 66-106, 1996.

[15] Microsoft NetMeeting, 3.01 SDK, Microsoft Corporation, 2003.
[16] Microsoft DirectShow 9.0 SDK, Microsoft Corporation, 2005.
[17] Java™ Media Framework API Guide, Sun Microsystems, 1999.
[18] G.R. Bradski, “Computer video face tracking for use in a perceptual user

interface”, in Intel Technology Journal Q2’98, 1998.
[19] C. Gutwin & R. Penner, “Improving interpretation of remote gestures

with telepointer traces”, in Proc. ACM CSCW 2002, 49-57, 2002.
[20] Video coding for low bit rate communication, ITU-T H.263, 2005.
[21] N. Carriero & D. Gelernter, “Linda in context”, in Comm. ACM, 32:4,

444-458, 1989.
[22] G. McEwan & S. Greenberg, “Community Bar: Designing for awareness

and interaction”, in ACM CHI 2005 Workshop on Awareness systems:
Known Results, Theory, Concepts and Future Challenges. 2005.

[23] C. Neustaedter & S. Greenberg, “The design of a context-aware home
media space”, in Proc. UBICOMP, Springer-Verlag, 297-314, 2003.

[24] A. Tang, M. Boyle, & S. Greenberg, “Display and presence disparity in
mixed presence groupware”, in JRPIT, 37:2, 71-88, May 2005.

[25] S. Greenberg, & M. Boyle, “Tracking visual differences for generation
and playback of user-customized notifications” Report 2005-777-08,
Dept. of Computer Science, University of Calgary, Canada, April, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

