Employing Usability, Efficiency and Evolvability in the
CEXI Toolkit

Edward Tse
University of Calgary
2500 University Dr. N.W.
Calgary, Alberta, Canada
(403) 210-9501

tsee@cpsc.ucalgary.ca

ABSTRACT

Computer displays are expanding beyond the upright desktop and
towards personal devices such as Tablet PCs and large public
displays (such as walls and tables). These different form factors
require researchers to develop suitable interaction techniques. The
fundamental problem is that existing development environments
assume that everyone will using a mouse for all pointing input.
Thus most applications are not able to take advantage of the extra
features provided by novel input devices such as the point sizes
provided by the Smart Technologies DVIiT Board. Most input
device developers provide Software Development Kits (SDKs)
written with legacy C++ code and different SDKs provide
different APIs making it hard to port code written for one input
device to another.

This paper describes the Centralized External Input (CEXI)
toolkit, a toolkit that supports the rapid prototyping of
applications with a variety of novel input devices. Since this is a
third generation tool, I wanted to the toolkit to be usable, efficient
and evolvable. These are three lessons (or patterns) gleamed from
my experiences and the experiences of other toolkit developers.

To make the toolkit API easy to use, I limit the assumptions made
in the API, for example I do not expect programmers to know
how to traverse an object oriented class hierarchy of different
input events, instead I provide all the important event information
in a single monolithic event argument. To make the toolkit
efficient, I use event queueing in the control panel to control the
rate of events per second and I use quenching in both the input
forwarder and the client to ensure that they receive only the
information that they are interested in. Finally, I make the toolkit
evolvable by making the source code available and making it easy
for third parties to develop their own input forwarders.

1. Introduction

During my Masters thesis, I worked on the Single Display
Groupware (SDG) Toolkit. SDG is an area of research that
explores how multiple users share a single display such as a
computer monitor, a large wall display, or an electronic tabletop
display using multiple input devices such as multiple mice. Since
existing programming environments assumed that there would
only be a system single mouse researchers and programmers
faced considerable hurdles if they wish to develop SDG.

The SDG Toolkit was designed to simplify SDG development by
treating input from multiple mice as separate streams,
automatically drawing multiple cursors, handling different
orientations of a mouse around a table and providing a means of
developing widgets that understood multiple users.

High Level Language

Facade

Wrapper

Legacy C++

Figure 1. Our early approach to accessing legacy C++ code

Life was good for about six months, then our lab obtained several
new input devices such as the MERL Diamond Touch [Dietz and
Leigh, 2001] and the Smart Technologies DViT SmartBoard
[http://www.smarttech.com] that could support multiple
simultaneous touches. We used an open source computer vision
library [http://www.intel.com/research/mrl/research/opencv/]
from Intel to track a 3 Dimensional wand with multiple web
cameras and we purchased a wacom tablet and some Tablet PCs.

Rob Diaz [2] and I tried to use SDG Toolkit principles to make
separate toolkits for each input device but it quickly became
apparent that we needed a more general solution.

The fundamental problem was that our old strategy for handling
input devices used a heavyweight two layer process as seen in
Figure 2. Since every new input device provided a Legacy C++
example, we would take this Legacy C++ code (e.g., the Diamond
Touch SDK) and wrap it with tools such as ATL COM or the
NET Interoperability Services. After wrapping, we would try to
create an easy to use interface around the wrapper (called a
fagade) so that it was accessible to those using high level
languages such as Visual Basic. We used a strategy similar to
Sneed’s encapsulation of legacy software paper [2000].

Creating the wrapper and then the facade was a long process that
often would take weeks to complete. A problem with wrapper
code is that it does not evolve well, when a new version of an
SDK is released, it takes quite a bit of work to modify the
wrapper and the connection with the fagade to support the new
modified API. With ATL COM it took less time to completely
rewrite the wrapper than it did to make a simple modification.
Also, the fagades were bound to specific programming

Tse, Edward (2005) Employing usability, efficiency and evolvability in the CEXI Toolkit. Report 2005-783-14, Department of
Computer Science, University of Calgary, Calgary, Alberta CANADA T2N 1N4. April.

Saul
Text Box
Tse, Edward (2005) Employing usability, efficiency and evolvability in the CEXI Toolkit. Report 2005-783-14, Department of Computer Science, University of Calgary, Calgary, Alberta CANADA T2N 1N4. April.

environments and we had a different facade and wrapper for each
input device. Thus end programmers could not easily migrate
across different input devices.

For example, often programmers would want to prototype
applications using multiple mice and then adapt their application
to a DVIiT Smart Board. This involved commenting out all of the
mouse code, changing the event method callback and making sure
that the existing code did not depend on any features that were not
mouse specific (e.g., the mouse wheel). This greatly increased
the complexity of prototyping applications across multiple input
devices as existing code was not easily portable.

Consequently I created a new version of the toolkit using a
technique similar to Purtilo’s polylith architecture [1994] to
simplify the capture of input from legacy C++ SDKs and to make
the end programmer experience the same regardless of what input
device was used. The toolkit would use a centralized database
and allow external applications to forward and receive input.
Thus the name of this toolkit is the Centralized External Input (or
CEXI) Toolkit.

2. Toolkit Patterns

I wanted to design a toolkit that learned from my previous
mistakes and the mistakes of other toolkit developers. Thus, I
read papers related to toolkit development in the Software
Engineering and HCI Community and tried to apply their
understanding into a set of three patterns for toolkit development:

1. Usable: Often assumptions built into the end programmer API
can prohibit its use. For example, the Jazz Toolkit [Bederson,
et al., 1994] required every programmer to understand a node
class hierarchy to build even simple applications. The authors
stated that this prohibited its use by the Human Computer
Interaction (HCI) community and thus abandoned the class
hierarchy and created a new toolkit that used a monolithic
class that had almost everything that an end programmer
would need.

2. Efficient: The CEXI Toolkit is a toolkit designed to solve
problems related to input devices in the HCI domain. If the
toolkit is not efficient this will greatly limit the number of
problems that can be solved using the toolkit. Similarly,
Bederson’s Piccolo toolkit is being redesigned using DirectX
as the current Java implementation proved to be too slow for
many novel applications.

3. Evolvable: The two layer approach used by the SDG Toolkit
made it difficult to modify the SDG Toolkit to support
different input devices. While there is no way to predict the
future, usually it is possible to envision the things that are
likely to change in the near future. For example, when I
created the SDG Toolkit, I knew that new input devices were
coming out and that they would likely need a high level API
to support development.

These three lessons were gleamed during an HCI course that
required me to explore several different HCI toolkits. Almost
every toolkit was weak in at least one of these three categories.
Some toolkits were evolvable but hard to use as they required
complex code to set up and configure (e.g., COAST [7]). Others
were useable but the needs of the HCI community had evolved
and the toolkits were not able to support these growing needs
(e.g., SDG Toolkit [8]). Finally there were useable and evolvable

toolkits that were not efficient, thus the number of problems that
could be solved with the toolkit were limited (e.g., Piccolo [6]).

I would rank usability as the most important aspect of an HCI
toolkit. Many HCI toolkits could not be tested during our course
because no one could figure out how to use them. Sometimes the
tool made certain assumptions regarding the order of operations
that was not immediately obvious to the end programmer. Often
the cost of setting up a toolkit greatly exceeded the benefits that
the toolkit provided.

Efficiency is the second most important criteria as HCI
researchers are interested in developing novel interactions that
push the limit of interactivity. Thus an inefficient toolkit would
not be able to solve these problems. Also, the time spent
optimizing one’s code takes time away from the task of designing
novel interactions.

Evolvability is the least important of the three criteria as the needs
of HCI researchers is continually changing. While it is
impossible to create a toolkit that will meet all future needs in a
particular domain, one can greatly increase the longevity of a
toolkit by supporting the needs of researchers in the immediate
future.

The design of the CEXI Toolkit is based on these three toolkit
patterns. This purpose of this paper is to provide a practical
application of these patterns through a description of CEXI
Toolkit implementation.

3. The CEXI Infrastructure

The infrastructure of the CEXI Toolkit is broken up into three
different parts: the forwarder (Figure 2, rows 4 and 5), the control
panel (row 3) and the clients (rows 1 and 2).

The CEXI Forwarder is designed to support the evolution of the
CEXI Toolkit as it allows third party developers to create their
own input forwarders. Data generated from input devices (row 5)
can be easily sent to a centralized database (the Collabrary Shared
Dictionary by Boyle and Greenberg [2002]) using a CEXI
Forwarder. The forwarder is a simple to use component that is
responsible for establishing a connection with the database and
forwarding input. [describe how an example legacy C++
application can be modified to forward input in Section XXXX.

The Collabrary is a toolkit designed to efficiently support
distributed collaboration through the use of shared key value
pairs. This makes it easy to add extra event information as it is
simply a matter of adding another key value pair to the dictionary.
Also, the forwarder can be used to send input from a different
computer over the network. For example, the mouse in Figure 2,
Row 5 is forwarding input to the Collabrary Shared Dictionary
over the network. To improve efficiency the CEXI Forwarder
and Client use quenching to ensure that they only receive input
events from the Collabrary Shared Dictionary that are important
to them.

The CEXI Control Panel (Row 3) is designed to support the
efficiency of CEXI applications through event queuing. Input
stored in the Collabrary Shared Dictionary is then streamed to the
CEXI Control Panel on the local machine. The Control Panel
queues input events so that they do not overwhelm the high level
application. It is also responsible for the configuration and
processing of input. For example, the configuration of multiple
mice orientations around a table would be configured with the

q J
Row 1 i o
Row 2 CEXI Client

N Vs EEN) Frocessed Collabrary
oS i 8 Panel Input Shared Dictionary

Raw Stream

Row 4 CEXI| Forwarder
Row 5

control panel on a per computer basis rather than once for every
computer and application and input device (as was the case for the
SDG Toolkit). The processed input is returned to a separate entry
in the collabrary shared dictionary that clients would use in high
level programming environments.

Finally the CEXI Client is designed to make programming
multiple input devices easy. The client is consistent across all
different input devices thus one can easily switch between a
mouse and a DVIT Smart Board since they would all be
configured in the Control Panel.

4. CEXI Events

All event data is placed into an event arguments class and is sent
through a CEXI event stream.

4.1 Event Arguments
ID, Device ID

Location (X, Y, Z)
Orientation (Y, P, R)
Button, Wheel, Hover, Pressure
Bounds (Size, All Points)
Finger
Extra Info
Figure 3. Elements of the Event Arguments Class

The event arguments class is designed to cover the features
offered by the pointing input devices in our lab. All of these
variables are 32 bit integers, thus any extra information must be in
the form of an integer. This design decision was made because
most devices provide integers or float values. Those that provide
float values often provide a number between from 0 to 1, thus
they can be easily converted into an integer with no loss of data
accuracy. Doubles were not used because they would double the
amount of data that would need to be transferred over the
network.

Extra information can be easily added in the event argument since
we are using the Collabrary Shared Dictionary. To access extra

information on a client they would need to call a get extra info
method on the event arguments class. Even if additional
parameters are added, old versions of the forwarder, control panel
and the client will still work, they will just be oblivious to the
extra information. The event argument structure is designed to be
evolvable while still providing backwards compatibility for old
clients and forwarders.

The biggest evolvability risk of the CEXI Event Arguments class
is the possibility of the needing to be change existing parameters.
The parameters of Figure 3 have been carefully chosen to support
all of the novel input devices we have in our lab and will have in
the foreseeable future.

4.2 Events
Move (Stream)

Down, Up
Delta, Drag, Hover, Pressure, Double Down
Extra Event
Figure 4. Events Provided by the CEXI Clients

The CEXI Forwarder need only worry about handling Down, Up
and Move events. All other events (e.g., Delta, Drag and Hover
in Figure 4) are inferred through the CEXI Event Arguments
class. If the device driver requires an additional event, they can
fire an extra event by specifying an event name. There is an event
on the client side called “ExtraEvent” that is a catch all for
unrecognized events.

5. Using the CEXI Toolkit

To illustrate the features provided by the CEXI Toolkit, I describe
its three main components: the CEXI Forwarder, Control Panel
and Client.

5.1 Forwarder

Most novel input devices (e.g., Diamond Touch, DVIiT Smart
Board, Open CV) provide SDKs to show an end programmer how
to build their own applications. The problem is that almost all
SDKs are written in legacy Visual Studio 6.0 C++ code. This

makes it difficult to access input from high level languages such
as Visual C# and Java. The Cexi Forwarder is designed to
minimize the amount of changes needed to convert an example
input application into a CEXI Forwarder.

There are four steps involved with forwarding input from an
existing SDK application. All of which can be easily copied and
pasted into an existing application

1. Variables: Variables need to be added to the SDK
application so that the CEXI Forwarder will remain resident
in memory.

2. Initialization: Upon application initialization, the CEXI
Forwarder would be started and any default configuration
variables could be set (e.g., the name, description and the
default number of events per second).

3. Event Forwarding: Each time there is an event, a CEXI
Event Arguments class is created, all of the appropriate
variables loaded and the event is fired. Extra event
parameters are specified in the setExtraInfo (string)
method of the Event Arguments class. Extra Events can be
fired by calling the FireExtraEvent (string) method
of the Forwarder class.

4. Clean up: When the program closes, a method is called to
remove the CEXI Forwarder from memory.

This entire process can be completed in less than fifteen minutes,
which is an order of magnitude less than the several weeks
required to write a two layer wrapper. The goal of making the
CEXI Forwarder easy to use is to encourage the development of
third party device forwarders.

Also, the CEXI Forwarder separates the device driver writer from
the end user API (the fagade in Figure 1). This allows the device
driver writer to focus on the task of obtaining input from the
legacy C++ SDK rather than worrying about making a consistent,
easy to use interface. With the wrapping approach used in the
SDG Toolkit, each device driver provider would have try to create
a similar interface for each input device, this leads to problems
with consistency across different APIs.

5.2 Control Panel

The Control panel improves application efficiency by taking input
from the forwarder and storing it in a circular queue. This
information is processed on a timer at a user specifiable rate. For
example, the P5 glove in this example was set to release 60 events
per second in the forwarder. 60 events per second is the default
because it matches the refresh rate of some monitors and for the
most part users cannot tell the difference between processing 60
events a second versus 300 events per second.

Raw device input is often quite hard for end programmers to use.
Sometimes the input is a value between 0 and 256 other times can
be between negative two hundred thousand and a million. The
Control Panel makes end programming easier by automatically
mapping input values to sensible ranges.

For example, the X and Y coordinates are mapped to screen
coordinates. Yaw, pitch and roll are mapped between 0 and 360
and all other values are mapped between 0 and 100. This is done
by storing the maximum and minimum values of each input
variable into an array and automatically mapping current input to
the range specified by the maximum and minimum values. The

CEXI Control Panel ®

B CEXI Control Panel

é_,)

~ ‘

g;‘ Mice & Keyboards \C) Wacom Tablet

@ P5 Data Glove ?}ﬁ Ed's Device

"

%/ Normalize Input
%/ Display Output

Drevice Output

Mame: PEGlove

1D:03:0%Y:1727 Z:46

‘aw:251 Pitchi 360 Roll 103

Delta:0 Hover0 Buttor: 0 Pressure:0 State:(

Size T:1727 LOR:0B:A727

Bounds T:1727 LOR:0B:1727

T humb: 100 Index 100 Middle:100 Ring:100 Pinky:63

Figure 5. The CEXI Control Panel

result is input values that are meaningful to the end programmer,
and easier to program across different input devices since every
device is consistent.

End users expect an input device that works as smoothly and
accurately as their mouse. Jitter is a significant problem for
vision based input devices such as the DViT Smart Board since
noise is inherent in all digital cameras. To improve the end user
usability of applications, the Control Panel smoothes events to
reduce jitter. For example, if the smoothing parameter of the
CEXI Forwarder is set to 10, the average of the last 10 values is
sent to the client rather than the most current event. This causes a
noticeable difference in end user applications that expect
smoothly moving input.

The CEXI Control Panel also fills in the gaps in the Event
Arguments class. For example, if not values are specified for the
Size and Bounding Region variables then a default size of 0 is
provided for both values, this is done by creating a rectangle with
the same top and bottom values and the same left and right values
(see Figure 5, Bounds Variable).

Currently, the CEXI Control Panel (Figure 5) allows a user to
enable/disable the normalization of input and to enable/disable the
display output to the window. Device configuration is a feature
that is inherent in the design of the Control Panel and will be
added shortly.

5.3 Client

Clients are supported across different platforms. Currently, I
support both Microsoft .NET (e.g., C#, Visual Basic) and Java.

5.3.1 C#Client

Creating an input client is simple, Figure 6 shows the code needed
to add CEXI functionality to a simple windows application. This

B8 X 541 Y 1452 14 Yaw 109 Pitch 185 Roll 169 [;

private CexiClient myClient;

public Forml () {

myClient = new CexiClient();

myClient.Move +=new CexiEventHandler (ClientMoved)
}

private void ClientMoved(object sender, CexiEventArgs e) {
this.Text = "X " + e X + " Y " +e. Y+ " Z " +e.Z +

" Yaw " + e.Yaw + " Pitch " + e.Pitch +

" Roll " + e.Roll;

Figure 6. A Simple C# Client Application

application changes the title bar to the current X, Y, Z, yaw, pitch
and roll values. The steps

1. Using the Visual Studio Integrated Development Environment
(IDE), add a reference to the CEXI C# Client.

2. A ClientClient variable needs to be added (e.g., myClient)

3. When the Windows Forms class is created (e.g., Forml ()),
the client must be instantiated and any event handlers need to
be added.

4. The event callback (e.g., ClientMoved) contains an Events
Argument class that can be used to access input from multiple
devices.

As mentioned earlier, the Client application can access extra
variables through a getExtraInfo (string) method where
the programmer must specify the extra event that they would like
to obtain and extra events are sent to ExtraEvent handler.

The CEXI Client is designed in a similar way to mouse events in
current high level programming languages. Mouse events are
designed to support five button mice with mouse wheels even
though most mice only support two or three buttons. If a program
is written to take advantage of the fifth mouse button this
functionality is simply not available to a three button mouse but
sometimes it can be simulated by clicking multiple mouse buttons
simultaneously (e.g., the left and right mouse buttons). By
providing a consistent API with more features than necessary,
programmers can easily build applications that work regardless of
what kind of mouse is used.

By providing a single monolithic event argument, end
programmers can prototype applications using any supported
input device without having to recompile their code. That is, the
client application in Figure 6 will work with DVIT just as well as
it does for Multiple Mice or a P5 Data Glove. The executable can
be copied onto a USB flash disk and immediately used on another
computer that supports a DVIT Smart Board without even
needing to copy over the application source code. If the new
input device does not provide yaw, pitch and roll values, a default
of zero is given.

5.3.2 Java Client

To demonstrate how the CEXI Toolkit can be used across
different languages, a similar java client application is shown in
Figure 7. The code is not quite as simple as the C# client because
an actual java client has not yet been developed. This application
directly accesses the values contained in the Collabrary Shared
Dictionary through a Collabrary client developed for java and
encapsulated in a jar file.

£ Cexi JClient - Connected

FEX

X 741 1605 Z 31 Yaw 247 Pitch 242 Roll 82

private SharedDictionary sd;

CexiClient () {
this.sd = new SharedDictionary();
this.sd.subscribe ("/cexiinput/?", notified);

this.sd.open("tcp://localhost:cexi");
}

public void notified(String key, Object value) {
Struct s = (Struct) value;
buttonl.setText ("X " + s.get("X") + " Y " + s.get("Y")
+ " Z " 4+ s.get("Z") + " Yaw " + s.get("Yaw")
+ " Pitch " + s.get("Pitch")
+ " Roll " + s.get("Roll"));

Figure 7. A Simple Java Client Application

While no official client has been produced this example proves
that the CEXI Toolkit can be used with clients in various high
level languages.

6. Applications
The CEXI Toolkit has been applied to two applications related to
the support of real time interactive 3D puppets.

6.1 Maya Puppet Application

The goal of this project was to map the input provided by the P5
Data Glove to an orally articulated puppet such as the T-rex
shown on the top left corner of Figure 8. Using a P5 Data Glove
provided by essential reality, I created a CEXI Forwarder from an
example application provided by the SDK that came with this
input device. Using the Grouplab Widget Tap library [9], I was
able to create a client application that would send input events
directly into a Maya script window to control the head position
and jaw opening of a 3D model in real time.

It is important to note that this entire application took only two
days to complete since the hard part of obtaining input from
legacy C++ code was taken care of automatically by the CEXI
Toolkit. Also, the fact that input variables were mapped to
sensible ranges (e.g., the bend of each finger was mapped to a
value between 0 and 100) made it much easier to map onto the
attribute coordinates needed in the Maya Application. While this
application sounds complicated its implementation was rather
simple given that the complicated parts of the implementation
were handled by the CEXI Toolkit.

= ==

ses?

Figure 8.

6.2 Networked Maya Puppets

Since I wanted to support multiple simultaneous 3D puppets, |
modified the CEXI Forwarder to automatically send input events
to another computer (this is simply the addition of one variable in
the Start () method of the CEXI Forwarder). Next, I set up the
client application to send input events to multiple puppets in
Maya. This produced tool that could be used to manipulate
multiple puppets simultaneously in real time.

Again, while the implementation of this application sounds
complex, the CEXI Toolkit made the addition of a second input
device through a networked computer a trivial task.

Figure 9. Networked Maya Puppets

7. Conclusions
“Toolkits are cool and fun, but I’d caution developers of them
because it is exceedingly difficult to create a broad reputation as a
researcher by building them. They are very hard to publish about,
and the # of publications to hours put in is very low compared to
other kinds of research.”

—Benjamin Bederson, developer of the Piccolo Toolkit

The fundamental argument of this paper is that the HCI
community is stinting its own growth by rejecting toolkit papers
that build upon existing contributions. Toolkits are more than just
engineering, they are the foundation of advancement in the field
of HCI research. = They summarize and build upon the
contributions of other researchers so that we do not have to
constantly reinvent the wheel when building research prototypes.
The HCI community seems to value papers with attractive images
(e.g., gratuitous images of red Ferraris) and little contribution
over toolkit papers. The result is that Toolkit developers are
discouraged from building toolkits and thus HCI research always
remains at the breakthrough and replication stages. Toolkits will
always remain unusable if there is no benefit to spending extra
time to make a good toolkit.

The primary contribution of this paper is the presentation of three
patterns for developing toolkits. These patterns are designed to
help toolkit developers create toolkits are effective for the rest of
the HCI community. These patterns were applied in the creation
of the CEXI Toolkit. I showed how the CEXI Toolkit worked

through example and illustration. The CEXI acronym is a pun on
the word sexy as the only thing lacking in toolkit papers is sex
appeal.

8. ACKNOWLEDGMENTS

This project would not have been possible without the gracious
help of Michael Boyle. In addition to creating the Collabrary, he
helped with much of the debugging and idea forming of this
toolkit.

Thanks also goes out to Ben Bederson for being in contact with
me regarding his thoughts about toolkit design.

9. REFERENCES

[1] Dietz, P. and Leigh, D., DiamondTouch: A multi-user touch
technology, Proceedings of the ACM Conference on User
Interface and Software Technologies (UIST '01), Orlando,
pp. 219-266, 2001

[2] Diaz-Marino, R.A., Tse, E, and Greenberg, S. (2003)
Programming for Multiple Touches and Multiple Users:
A Toolkit for the DiamondTouch Hardware. Companion
Proceedings of ACM UIST'03 Conference on User Interface
Software and Technology.

[3] H. Sneed, Encapsulation of legacy software: A technique for
reusing legacy software components. Annals of Software
Engineering 9, 2000.

[4] J. Purtilo, The POLYLITH Software Bus. ACM Transactions
on Programming Languages and Systems 16(1), 1994.

[5] Boyle, M. and Greenberg, S. (2002), GroupLab Collabrary:
A Toolkit for Multimedia Groupware, Extended Abstracts of
the ACM Conference on Computer Support Cooperative
Work (CSCW ’02), Workshop on Network Services for
Groupware, New Orleans.

[6] Bederson, B., Grosjean, J., and Meyer, J. Toolkit design for
Interactive Structured Graphics. In /[EEE Transactions on
Software Engineering, Vol 30, No. 8, 535-546.

[7]1 Schuckmann, C., Kirchner, L., Shummer, J., Haake, J.,
Designing Object Oriented Synchronous Groupware with
COAST, CSCW, 96

[8] Tse, E. The Single Display Groupware Toolkit, MSc Thesis,
2004, University of Calgary, Alberta Canada.

[9] Greenberg, S. and Boyle, M. (2002) Customizable physical
interfaces for interacting with conventional applications.
Proceedings of the UIST 2002 15th Annual ACM
Symposium on User Interface Software and Technology, 31-
40, ACM Press.

