
Using Aspects to Convert Single User Applications into
Multiple User Applications

Edward Tse
University of Calgary

2500 University Dr. N.W.
Calgary, Alberta, Canada

(403) 210-9501

tsee@cpsc.ucalgary.ca

ABSTRACT
This paper details the process of converting a single user
application into a multiple user application through the use of
Aspect Oriented Programming (AOP). While AOP hopes to
enable developers to capture crosscutting concerns (e.g., features
that affect different classes and modules of source code) my goal
is to treat multiple user functionality as a cross cutting concern
that should be easily added to a single user application.
This primary contribution of this paper is the detailing of the
issues encountered in the exercise of trying to apply aspects to
existing single user applications. Through a detailed analysis of
the issues encountered there is the potential to refine the design of
current and future Aspect Oriented Tools.

Categories and Subject Descriptors
D.2.10 [Design]: Software Engineering Design Methodologies.

General Terms
Human Factors, Software Architecture

Keywords
Single Display Groupware, Aspect Oriented Programming,
Software Architecture Design

1. Introduction
Conventional programming environments employ a design
paradigm known as object oriented development. The main
concept of object oriented development is that everything is
modeled within modules (e.g., a class or a collection of classes)
that encompass certain components of functionality within an
application or tool [1]. The problem is that the concept of
separating functionality into clearly defined modules with limited
cross module communication (i.e., coupling) sounds good in
theory but rarely occurs in reality.
Often a particular function is needed in numerous locations within
the source base. For example adding a logging function within a
program would require a programmer to manually add a
FunctionEntered()and FunctionExited() method for
every public function within every class of an application. This is
tedious and prone to error if done on large programs.
Aspects allow logging functionality to be added programmatically
to source code at compile time or at run time. This significantly
reduces the effort involved and reduces the chances of
programmer error.

Researchers in Single Display Groupware (SDG) explore how
multiple users share a single display such as a computer monitor,
a large wall display, or an electronic tabletop display. Yet today’s
personal computers are designed with the assumption that one
person interacts with the display at a time. Thus researchers and
programmers face considerable hurdles if they wish to develop
SDG. As part of my MSc Thesis topic [3], I developed the SDG
Toolkit, a software library that allowed multiple user applications
to be developed using multiple mice and multiple keyboards. The
SDG Toolkit provided a simple to use API that presented SDG
input in a similar fashion to mouse events except that an
additional ID parameter was added to specify the input device
(e.g., Mouse 1).

1.1 Problem
While the SDG Toolkit simplifies the development of SDG
applications from scratch, the task of converting existing single
user applications into a multiple user applications is difficult and
prone to error. The problem is that it requires programmer time
and effort to learn how to use the SDG Toolkit. A lack of SDG
Toolkit understanding leads to errors and frustration on the part of
the SDG programmer.

This paper attempts to introduce SDG functionality as an aspect
so that SDG functionality can be used with minimal learning of
the SDG Toolkit.

2. Aspects
To illustrate the features and limitations of aspects I provide a
brief example through a logging example illustration for those
familiar with Microsoft .NET [2]. While there are numerous
implementations of Aspects, .NET was used because this is the
environment that the SDG Toolkit is designed for.
Using the open source utility Aspect Sharp, one could create a
console logging utility using two chunks of code as seen in Figure
1. First, an aspect must be declared. In this example we created a
sample (line 3) that contains a pointcut to all methods (line 5). A
pointcut is like a syntactic search on the source code base, where
every method is searched for the opening and closing braces. The
pointcut is set to call the advice called LoggerAspect (line 6),
which is an aspect that contains logging functionality.
If we examine the LoggerAspect Implementation we see that it
overrides a method called Invoke (line 12). This function is
invoked each time a method is called since the pointcut was
declared for every method (line 5). Before a method invocation
(line 15), the method is written to the screen (line 14) and after

Saul
Text Box
Tse, Edward (2005) Using Aspects to Convert Single User Applications to Multiple User Applications. Report 2005-785-16, Department of Computer Science, University of Calgary, Calgary, Alberta CANADA T2N 1N4. April.

each method invocation the exiting method is printed to the
screen (line 16).
When this aspect is run on a simple application with a single
method called MyFunction the output seen in lines 21-22 is
shown.
Logging is a very standard sample example that introduces
several basic concepts of Aspect Oriented Programming. Current
AOP environments focus on the syntactic elements of source
code. That is, they do not have any semantic understanding of
source code, such as if a program is written with the assumption
of a single user or not.

3. The SDG Toolkit
For the purposes of this paper the core SDG Toolkit [3]
functionality that I am hoping to support in existing single user
applications is the following for multiple mice only:

1. Multiple input and identification: SDG Toolkit provides a
convenient way to gain and uniquely identify the multiple
input streams from mice and keyboards.

2. Multiple cursors: Since almost all SDG applications require
multiple cursors, the SDG Toolkit provides a cursor for each
attached mouse.

3. Table orientation: Since developers face considerable
hurdles circumventing orientation issues that occur when end
users are seated at different sides of the table, e.g., how the
cursor appears, how the mouse behaves, how coordinates are
handled, the SDG Toolkit provides orientation functionality
for a table top.

The use of the SDG Toolkit is best illustrated through example.
Figure 2 shows a basic drawing application that uses multiple
cursors. The first step is to add an SDG Manager component
(using the visual designer) and set it’s RelativeTo property to the
form (line 2) so that all coordinates are provided relative to the
form as this is the norm expected by most programming
environments. Next, a mouse event handler is added to the mouse
movement event (line 3) for our drawing application. The mouse
event handler (line 6) is almost identical to the normal windows
mouse event handler except that an SdgMouseEventArgs
class containing an e.ID parameter is used instead of a
MouseEventArgs class.

To draw a diagonal line onto the screen we create a graphics
object to draw to our form (line 7). Next, we set the colour of the
pen (which we are going to use for our drawing) to Black (line 8),
if the e.ID parameter is greater than zero we set its colour to Red
(line 9). Finally we check to see if the left mouse button is
pressed (line 10), if it is then we draw a diagonal line on the
screen (line 11). The final result application is shown on the left
side of Figure 2.

3.1 Converting a Single User Application
If one wanted to a single user application into a multiple user
application they would need to perform the following three steps:
1. Add an SDG Manager Component to the form. This involves

creating an SDG Manager Class and adding it to the
component container class. For example:

this.Mgr1 = new SdgManager(this.components);

2. Set the coordinates to be Relative to the form application (e.g.,
Figure 2, line 2).

3. Removal all existing MouseMove event handlers and replace
them with event handlers in the SDG Toolkit (e.g., Figure 2,
line 3).

4. Modify all existing MouseMove even callbacks and replace
them with callbacks compatible with the SDG Toolkit (e.g.,
Figure 2, line 3).

5. Manually add code to take advantage of the e.ID parameter
(e.g., Figure 2, line 9). This is a highly cognitive task that
requires a programmer to understand the single user
assumptions made in their application and modify them so
that they support the simultaneous activities of multiple users.

4. Hypothesis
The hypothesis of this paper is that it would be possible to use
aspect oriented programming to perform the first four tasks in

1 //Aspect Declaration
2 import HelloWorldApplication
3 aspect sample for [MyNameSpace]
4 include StandardMixin
5 pointcut method(*)
6 advice(LoggerAspect)
7 end
8 end

9 //Advice Implementation
10 public class LoggerAspect : IMethodInterceptor
11 {
12 public object Invoke(IMethodInvocation invocation)
13 {
14 Console.WriteLine("Entering " + invocation.Method);
15 object retVal = invocation.Proceed();
16 Console.WriteLine("Exiting " + invocation.Method);
17 return retVal;
18 }
19 }

20 [Sample Output]
21 Entering Void MyFunction()
22 Exiting Void MyFunction()

Figure 1. A Simple Logger

Figure 2. A Basic Hello World Example using the SDG Toolkit

converting a single user application (Section 3.1).
This hypothesis was ultimately not achieved but the discussion of
the problems encountered may inform the design of future Aspect
Oriented Programs.

5. Methodology
While Aspect Sharp was the platform that was ultimately tested,
two other AOP tools were tested: AspectC# and AspectJ [5].
Aspect J is a commercial AOP tool for Java that was used as a
learning exercise for understanding how Aspects work. It
includes a number of useful online video tutorials that provide
step by step instructions on using the AspectJ environment in Java
(http://eclipse.org/aspectj/).
Aspect C# is a AOP implementation for C# that was done as a
Masters thesis at the University of Dublin in 2002 [1]. Aspect C#
has an architecture that is almost identical to AspectSharp except
that Aspect Sharp provides Aspectual Polymorphism. That is,
Aspects can be easily turned on and off in Aspect Sharp.
When using AspectC# I noticed another implementation
difference, AspectC# has a separate compiler for combining C#
code, thus the Microsoft Visual Studio Integrated Development
Environment (IDE) cannot be used for compiling code (since
there is no option to switch compilers in Microsoft .NET).
AspectSharp is implemented as a number of libraries that can be
added to an existing C# application. Aspect Sharp was used
because results could be rapidly viewed in the Microsoft Visual
Studio IDE. The source code for AspectSharp was available so
that I could potentially modify AspectSharp to suit my needs.

6. Results
After building the basic logging application in Figure 1, I
attempted to encapsulate SDG Toolkit functionality as an aspect
or a collection of aspects since each aspect could only contain one
method interceptor. I will describe the first four steps of
converting a single user application with AspectSharp.
First, we need to add an Sdg Manager to our form. Recall from
Section 3.1:
this.sdgMgr1 = new SdgManager(this.components);

The Microsoft Visual Studio IDE will fail to compile this Aspect
code since this.components is not a member of the
SdgAspect. The invocation class (e.g., Figure 1, line 15) provided
a This property that I could cast as a windows Form as seen below:
Form form1 = invocation.This as Form;

This approach fails as components is a private member
variable within the Microsoft .NET Form class. Thus it is not
possible to access this hidden member variable even if I have a
reference to the originating method class.
Second, to make all coordinates Relative to the application we
need to add the following line of code.
this.sdgMgr1.RelativeTo = this;

We can use the invocation.This property to place a form in
the location of this. Thus there are no issues preventing the
implementation this particular dependency.
Third, to removal all existing MouseMove event handlers we
require a pointcut that allows one to remove event handlers. It is
possible to remove an event handler by simply deleting all code
within the event handler, that is one could choose not to call the

invocation.Proceed() method and the body of the
function would never be called. The problem with this approach
is that we still want do not want to remove the callback method
but rather the addition of the event handler callback (like Figure 2,
line 3).
Fourth, to modify existing Mouse Move callbacks we need a
pointcut that allows one to modify method signatures. The four
pointcut types provided in AspectSharp are method, property,
property read, and property write. Unfortunately, there is no
facility provided to modify the method signature of a pointcut in
AspectSharp.

7. Practical Considerations
The SDG Toolkit could be modified to remove dependency on the
private components member variable. This dependency was
added to provide end programmers with the ability to add the
SDG Manager in the Visual Studio Form Designer. That is, one
could add an SDG Manager to a form just like they would add a
timer and easily modify its properties and add event handlers.
AspectSharp could be modified to support the removal of event
handler invocations. This would involve a pointcut that would
capture event signatures (e.g., MouseMove).
To support the modification of method signatures (e.g., the Mouse
Move event callback in Figure 2, line 6) one could add a write
capability to the method signature. For example
invocation.Method = “SdgMouseMove(object sender,

 SdgEventArgs e)”;

Even if all of these functions were provided we would encounter
problems in step 5 as use of the e.ID parameter would cause
compiler errors since it is not declared in the conventional Mouse
Event arguments class.

8. Using SDG Aspects
If we assume that all the technical problems preventing the SDG
Toolkit from being implemented as an aspect were resolved we
would require the following steps to convert a single user
application into a multiple user application.
1. Add five library references to your current application (4 for

AspectSharp and 1 for the Sdg Toolkit).
2. Import the appropriate SDG Toolkit Aspect classes so that

SDG functionality could be added.
3. Modify the applications Main() function to load the Aspect

Engine and appropriate aspects.
4. Create an interface that contained all of the core application

functionality as the application class would need to be
wrapped at run time. This can be a rather involved process as
the end programmer must manually type in all of the functions
that will be affected by the aspect (e.g., MouseMove,
MouseDown).

5. Manually add code to take advantage of the e.ID parameter
as before.

The time spent getting started (steps 1-4) with the SDG Toolkit is
minimal compared to the time spent modifying source code to
take advantage of the multiple user functionality of the SDG
Toolkit (step 5).

9. Conclusion
Converting single user applications into multiple user applications
is not a simple task. This paper showed some of the practical
limitations of using AspectSharp to add SDG Toolkit
functionality to existing Single User Applications. Clearly, this is
something that AspectSharp was not intended to support. The
time required to get AspectSharp to work would exceed the time
needed to add an SDG Manager to a form.
Even after the technical issues of using aspects in Microsoft .NET
are resolved there are issues related to compiling code with SDG
functionality. It would be easier for an end programmer to
understand the effects of an aspect if the aspect code appeared in
the source code browser.
This paper was not designed to point out the weaknesses of
AspectSharp. It was also not designed to say that aspects are not
useful. Rather, the purpose is to show the potential of Aspects in
aiding the conversion of single user applications into multiple
user applications and to suggest how aspects could be adjusted to
meet the needs of SDG developer.

10. Future Work
The future work of this paper is best described through an
example single user application that was later converted into a
multiple user application.
Rush Hour is a simple online puzzle game, where the player must
move cars around until they can get the special red car to the red
exit marker (Figure 3). I decided to implement an SDG version of
this game, where multiple players can move multiple cars
simultaneously. First, I implemented a single user version of this
game using the standard features of C# and .NET. Second, I
modified this game to add multiple user capability via the
SDGToolkit.
Collision detection was implemented by treating the puzzle board
as a two dimensional array of numbers. If a car was positioned
over a square, its corresponding value would be 1 in the array,
otherwise it would be 0. When a car was dragged, the vehicle
was removed from the collision detection array and the
application would check to see if the vehicle was collided into the
space of another vehicle. If it did then, movement would not be
restricted.
Problems arose when multiple cars were moved simultaneously.
They would both be removed from the collision detection array
and we would often observe two vehicles moving through each
other. The reason for this problem was that our collision
detection array was designed with the assumption that there
would only be one car moving at any given time. To resolve this
problem, the ID of the car was placed into the collision detection

array (instead of 1 and 0) so vehicles could be moved and the
values of the current card ID would be ignored.

Figure 3. The SDG Rush Hour Application

This example introduces some of the complexities involved with
converting single user applications into SDG applications. While
a syntactic tool such as Aspect Sharp could aid SDG development,
a greater benefit could be accrued by using a semantic level tool
that could point out the single user assumptions in existing
applications.

11. ACKNOWLEDGMENTS
I would like to thank Robert Walker for all of his insights about
Aspect Oriented Programming. I would have never thought to
explore the concept of combining Aspects and SDG Toolkit
functionality if he had not pointed me to it.

12. REFERENCES
[1] Kim, H. Aspect C#: An AOSD implementation for C#, MSc

Thesis, University of Dublin, 2002
[2] Microsoft .NET, http://msdn.microsoft.com/netframework,

2005
[3] Tse, E. The Single Display Groupware Toolkit, MSc Thesis,

2004, University of Calgary, Alberta Canada.
[4] AspectSharp, http://aspectsharp.sourceforge.net/
[5] AspectJ, http://eclipse.org/aspectj/

