
Rapidly Prototyping Single Display Groupware
through the SDGToolkit

Edward Tse and Saul Greenberg

Department of Computing Science,
University of Calgary, Alberta, Canada T2N 1N4

Email: [tsee, saul]@cpsc.ucalgary.ca

ABSTRACT
Researchers in Single Display Groupware (SDG) explore
how multiple users share a single display such as a
computer monitor, a large wall display, or an electronic
tabletop display. Yet today’s personal computers are
designed with the assumption that one person interacts with
the display at a time. Thus researchers and programmers
face considerable hurdles if they wish to develop SDG. Our
solution is the SDGToolkit, a toolkit for rapidly prototyping
SDG. SDGToolkit automatically captures and manages
multiple mice and keyboards, and presents them to the
programmer as uniquely identified input events relative to
either the whole screen or a particular window. It
transparently provides multiple cursors, one for each
mouse. To handle orientation issues for tabletop displays
(i.e., people seated across from one another), programmers
can specify a participant’s seating angle, which
automatically rotates the cursor and translates input
coordinates so the mouse behaves correctly. Finally,
SDGToolkit provides an SDG-aware widget class layer that
significantly eases how programmers create novel graphical
components that recognize and respond to multiple inputs.

KEYWORDS: Single display groupware, interface toolkits,
co-located collaboration, groupware architectures, CSCW.

INTRODUCTION
Researchers in Computer Supported Cooperative Work
(CSCW) are now paying considerable attention to the
design of single display groupware (SDG) i.e., applications
that support the work of co-located groups over a
physically shared display [12]. What distinguishes full SDG
from conventional windowing systems is that each
participant has his or her own input device, allowing all to
interact simultaneously with the common display.

Sporadic research in SDG began over a decade ago with the
demonstration of the MMM system [2], followed by
technical explorations of SDG architectures [e.g., 11, 1],
SDG interaction methods [e.g., 12, 13] and many studies of
how children share a display in educational settings [e.g., 5,
10]. Recently, SDG has surged in importance due to the

opportunities presented by projectors and other large
displays that can be attached to walls and/or used
horizontally as electronic tabletops.

The problem is that SDG is still notoriously hard to build.
Typically, researchers develop their own specialized
applications from the ground up, resulting in SDG that is
tedious to implement, difficult to maintain and modify, and
tough for other researchers to replicate. While most
researchers are interested in interface design issues and
SDG use, excessive effort is spent developing the
underlying plumbing. This problem is exacerbated by our
current generation of windowing systems that make it
difficult to do even the most basic SDG activities:
• Multiple input and identification: There is no

convenient way to gain and uniquely identify the
multiple input streams from mice and keyboards.

• Multiple cursors: Systems supply only a single cursor.
Yet almost all SDG applications require multiple
cursors, one for each attached mouse.

• Table orientation: Tabletop developers face
considerable hurdles circumventing orientation issues
that occur when end users are seated at different sides of
the table, e.g., how the cursor appears, how the mouse
behaves, how coordinates are handled.

• SDG user controls: Conventional controls (aka
widgets) such as buttons, menus and even windows
cannot distinguish which SDG user interacted with it,
only store a single input focus between them, and are
not designed to handle concurrent use.

Our own frustrating experiences in SDG echoed these
problems. We began developing SDG interface widgets
[13] with the MID (multiple input devices) toolkit [1], but
had to abandon it as it worked only with Windows 98. It
then proved impossible to get individual mice and keyboard
streams from the later Windows 2000 and NT systems.
Seeking alternatives to the mouse, we developed PDA-
based input devices [7; see also 11], and even rewrote the
firmware of a USB mouse so that the window system saw it
as a Phidget (a physical widget) instead of a mouse [8].
Even then, coordinate tracking and cursor drawing was
painful and inefficient. Especially disconcerting was that
our time and effort went into infrastructure development vs.
our main focus: the design and evaluation of SDG
interaction techniques over upright displays and tabletops.

Cite as:
Tse, E. and Greenberg, S. (2003) Rapidly Prototyping Single Display
Groupware through the SDGToolkit. Report 2003-721-24, Department of
Computer Science, University of Calgary, Calgary, Alberta Canada. March.

Consequently, we decided to design and build a toolkit that
would help us and others rapidly develop SDG applications
and interface components suitable for upright displays and
tabletops. Our driving goal was that the toolkit would be:
• simple enough for average programmers to quickly

learn and use, where they can concentrate on SDG
application design rather than low level SDG plumbing.

The result is SDGToolkit, and this paper reports our
experiences. We begin by presenting the fundamental
problems in SDG development, how the SDGToolkit
architecture solves them, and how the end-programmer sees
these solutions. Next, we illustrate what the end-
programmer would have to do to create a few simple SDG
applications. The subsequent section is concerned with
infrastructure for creating true SDG-aware user controls
(widgets). This is followed by example applications and
SDG widgets built with the toolkit. We conclude by
relating our work to other SDG systems, especially the
MID multiple input devices toolkit [1].

While this paper describes what some may consider
‘routine’ software development, we stress our contributions
have a much broader impact to SDG research. Specifically:
1. We articulate the basic requirements and technical

challenges that face all designers of single display
groupware toolkits. This is important as it helps others
understand the needs and pitfalls in SDG development a
priori rather than by after-the-fact discoveries through
trial and error.

2. We detail solutions to these problems as implemented in
SDGToolkit. While our descriptions are within the
context of the Microsoft Windows platform and .NET,
our strategies would generalize to other platforms and
thus help other developers of SDG toolkits.

3. We describe how end-programmers would process and
use SDG input events, and how they would develop
and/or use SDG widgets. This is important as it supplies
a conceptual model to other toolkit builders about how a
toolkit for SDG should present itself.

4. We provide SDGToolkit as a fully documented
downloadable resource for others so they can
immediately begin SDG research.

SDG TOOLKIT – FUNCTIONALITY & ARCHITECTURE
By definition, SDG allows the simultaneous use of multiple
input devices. Consequently, a basic SDG toolkit must
address requirements and technical challenges fundamental
to managing multiple mice and keyboards. In this section,
we describe various technical SDG challenges in turn, and
explain how our SDGToolkit implements each solution.
Figure 1 is our anchor: it shows the SDGToolkit class and
event architecture, and we will use it to illustrate how the
various pieces fit together. We again emphasize that while
our toolkit is based upon Windows and .NET, our general
approach to solving these SDG challenges are replicable in
most windowing systems.

Note on terminology. Controls, user interface components,
and widgets are used synonymously, as are windows and
forms. We refer to mice as synonyms for pointing devices
(pens, digitizing tablets…) and fully expect future versions
of our toolkit to include novel pointing devices such
multiple touch surfaces, e.g., MERL Diamond Touch [4],
and Smart Technologies DViT [www.smarttech.com].

Gaining the Device Input Stream
For anything to work in an SDG setting, we have to
discover what pointing devices and keyboards are attached
to the computer and identify a separate input stream for
each one. While this should be simple, in practice most
windowing systems present significant hurdles because of
the special way they deal with the system mouse and
keyboard. The first problem is that all windowing systems
combine the input from multiple mice and keyboards into a
single system mouse and single keyboard input stream. For
example, if two USB mice were attached to a computer,
and if these mice were moved left and upwards
respectively, the merged stream would move the cursor
diagonally up and left. Only this combined stream is easily
available to the programmer.1 The second problem is that
non-standard input devices (e.g., game controllers,
joysticks, digitizing tablets) at their worst require that the
programmer write very low level code such as device
drivers, and at their best requires one to use APIs (such as
Microsoft’s DirectInput) that do not interoperate well with
the windowing system.

Solution. Windows XP introduced Raw Input, a somewhat
difficult-to-program utility for low-level management of
input. Programmers can query Raw Input to gain a list of all
attached input devices. On any keyboard or mouse input,
Raw Input adds it to a generic input stream, which the
programmer can parse to identify what device generated
that input and its particular arguments. For example, Row 1
of Figure 1 illustrates a Raw Input event stream. Each event
is tagged by a handle identifying the input port, the input
device type (e.g., mouse, keyboard), and its parameters.

SDGToolkit uses Raw Input as the building block for
handling input from multiple keyboards and mice. In
particular, SDGToolkit supplies the SDGManager class
(the box contained between Rows 2 - 6) that captures,
transforms and wraps the Raw Input into a more convenient
form (Rows 2 - 4). When the programmer creates the
SDGManager instance, it queries Raw Input (Row 1) to
discover the attached mice and keyboards. The
SDGManager then automatically creates instances of the
SDG Mouse and Keyboard classes (Row 4), each matched
to a particular input device by storing its handle (Row 4).
Finally, the SDGManager parses the incoming raw input
stream (operation in Row 2), and stores the mice/keyboard
data in the appropriate Mouse and Keyboard instances

1The MID toolkit [1] used Microsoft’s DirectInput to gain individual mice
inputs in Windows 98. Unfortunately, Windows 2000 turned off this
mouse access, compromising MID’s utility for SDG.

(Row 4). We note that this is a general strategy: we can use
the same approach to extend SDGToolkit to handle other
types of input devices.

Furthermore, the SDGManager maintains this collection of
all Mouse and Keyboard instances. Thus the programmer
can easily find out how many devices of a particular type
are attached and enumerate through them. For example:
 // Initial mice positions: move all to 0,0
 foreach (Mouse this_mouse in sdgMgr.Mice) {
 this_mouse.X = 0; this_mouse.Y = 0;
 }

The SDGManager also generates ID’s for each device
instance as ordinal integers, starting at 0. This means that
programmers can use this ID to index the SDGManager’s
Mouse and Keyboard collection, where they can easily
query or set the properties of a particular instance. For
example, we can display the coordinates of the 1st mouse by
 Console.Writeln (sdgMgr.Mice[0].X + “,” +
 sdgMgr.Mice[0].Y;

Uniquely Identified Input Events
When a programmer receives an input event from an SDG
toolkit, he or she needs to know which of the mice or
keyboards generated that event. Traditional mouse and key
event handlers do not provide this information.

Solution. As the SDGManager stores the data in a particular
mouse/keyboard instance, it also raises an SDG Mouse
Event or SDG Key Event, which is presented to
programmers in a style that mimics standard mouse and
keyboard events (Figure 1, Row 8). For example, SDG

Mouse Events follow the standard MouseDown, MouseUp,
MouseMove and MouseClick naming conventions, and it
contains all the expected parameters, e.g., X and Y
coordinates, button state, and so on. Similarly, the SDG
Key Events include KeyUp, KeyDown and KeyPress.
The major and very important difference from standard
events is that we add the ID parameter into all events
arguments class (Row 8). The result is that programmers
can create event handlers that easily identify the mouse or
keyboard that fired the event.

For example, Figure 2 compares how a C# programmer
would register and write a standard non-SDG mouse event
handler (Figure 2 top) vs. an SDG mouse event handler2
(Figure 2 bottom). The important differences are the
inclusion of a mouse ID, the different typing of the event
argument (SdgMouseEventArgs e) and that the
SDGManager generated the event (sdgMgr.MouseDown)
instead of the window (Form.MouseDown).

Translating Pointer Data to Window Coordinates
In traditional graphical user interface programming, mouse
pointer events are generated by the active window or
control, and all coordinates are returned relative to it. This
is very convenient because it is this active window/control
that is the programmer’s usual context for interpreting
events and/or for drawing graphics. Within an SDG toolkit,

2 While examples are in C#, SDGToolkit works with any .NET language

e.g., Visual Basic, Managed C++ and so on.

Rotation Matrix

Handle Delta XButton 1 Down Delta Y

Raw Input Stream

Handle Virtual Key Down

ID X Relative Y Relative Button
SDG Mouse Event

SDGManager Class

Key ASCII Shift, Control, Alt
SDG Key Event

ID

SDG User Control class: [0..n]
Properties/methods for displaying/managing
a graphical user control

Figure 1. The SDG Class and event structure, showing how raw input turns into SDG events

 ID
Handle

X
Abs

Y
Abs

Button

Mouse Class: Mice[0..n]
Relative

To
ID Keys

Keyboard Class: KB[0..n]
Cursor

Info

Moves /draws cursors

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 8

Row 7

Degree
Rotation

Mouse Control
Focus

we would like to do the same thing. However, pointing
devices usually deliver only delta values relative to their
last movement to the low level input handler. For example,
Raw Input’s event stream reports mouse movements as +/-
some increment e.g., (+2, -1). While converting this to
window coordinates should be straightforward, traditional
controls (such as a top level window or even a button) do
not generate SDG mice events, and thus we do not know
the context of where our SDG events occurred. This is why
the SDGToolkit example in Figure 2 bottom has the
SDGManager deliver SDG events instead of the Form
window (as in the top example of Figure 2).

Solution. By default, we transform Raw Input delta values
into absolute screen coordinates that are stored in the SDG
Mouse Instance (Figure 1, Row 4). Unless otherwise
instructed, the SDGManager includes these screen
coordinates whenever it raises an SDG Mouse Event.

Because screen coordinates can be unwieldy, we let
programmers explicitly associate mouse instances to both
standard windows and controls. Specifically, they set the
Mouse’s RelativeTo property to the desired
window/widget; the SDGManager will now translate and
return the mouse coordinate relative to that window or user
control (Figure 1, Row 4; see Mouse Class). For example,
 SDGMgr.Mice[0].RelativeTo = Form;
instructs the SDGManager to return coordinates for the first
mouse relative to the Form top level window instead of as
screen coordinates. Because the SDGManager does the
coordinate transformation on the fly at run time, the
RelativeTo property can be changed any time during
program execution.

In a later section, we will describe how our SDG User
Control class define controls that receive events from the
SDGManager, and how these controls automatically
translate the event screen coordinates to control-relative
coordinates. The SDG control then re-raises these modified
events (Figure 1, Rows 7+8). This is now identical to how
windows and controls raise events in the traditional
programming model shown in the top of Figure 2.

Displaying Multiple Cursors
In single user systems, programmers expect to get cursors
for free, where the cursor moves fluidly as it responds to
pointer movements. The problem for SDG developers is
that our standard operating systems provide only one

cursor, and we need multiple cursors representing each
pointing device. In addition, we need the ability to visually
distinguish between these cursors. While implementing
multiple cursors is a straight-forward graphics problem, it
can be very tedious for the SDG programmer to implement
them at the application level if he or she wanted to avoid
drawing artifacts while still maintaining performance.

Solution. By default, every pointing device seen by
SDGToolkit displays an associated cursor. No extra end-
programming is needed to get these basic multiple cursors.
The SDGManager is responsible for this (Figure 1, Row 5).
It implements it by leveraging the capabilities of top-level
transparent windows, where one is created for each Mouse
instance. SDGManager draws the cursor within this
window, and repositions the window after each mouse
move to the correct position. As long as cursors are of
modest size, they perform well, especially if the computer
uses video cards that process transparent windows in
hardware.

SDGToolkit cursors are also highly customizable. The
programmer can set the various cursor properties contained
in each mouse instance (Figure 1, Row 4) to redefine the
cursor shape, its hot spot, whether it is visible, and even its
transparency. The programmer can also add a text label to
the cursor, and can adjust the text font, size, color and
location relative to the cursor graphic. For example, the
following code snippet creates these
two visually distinctive cursors
identified by their owner’s name.
 SDGMgr.Mice[0].Cursor = Cursors.Cross;
 SDGMgr.Mice[0].Text = “Saul”;
 SDGMgr.Mice[0].TextCardinalPosition = West;
 SDGMgr.Mice[1].Cursor = Cursors.Arrow;
 SDGMgr.Mice[1].Text = “Ed”;

Supporting both Tabletop and Vertical Displays
While almost all early work on SDG was on traditional
monitors and electronic whiteboards, recent work has
focused on horizontal displays such as electronic tables.
Unlike upright displays, users are often seated in many
different orientations around a table, e.g., ‘kitty-corner’,
facing one another, side by side, etc. The problem is that
mouse movements and cursor appearance always assume a
single orientation; thus from any but the ‘South’ person’s
perspective the cursor and text labels will be oriented
incorrectly, and the mouse is unusable as it seems to move
in the wrong direction.

Solution. The programmer can set an orientation for any
mouse through the SDGManager using the Mouse
instance’s DegreeRotation property (Figure 1, Row 4).
The mouse cursor and mouse movements are adjusted
accordingly to give the cursor the correct look and the
mouse the correct feel. For example, if one person is sitting
across from the other, we would set DegreeRotation to
180; the cursor and text caption would be flipped 180
degrees, and cursor movements would inverted. For
simplicity, the SDGManager does this coordinate

// a traditional mouse event
Form.MouseDown += new MouseEventHandler(OnMouseDown);
…
OnMouseDown (object sender, MouseEventArgs e) {
 Console.Writeln (“X,Y,button is: ”
 + e.X + e.Y + e.Button); }

// an SDG mouse event – differences are bolded
sdgMgr.MouseDown += new MouseEventHandler(OnMouseDown);
…
OnMouseDown (object sender, SdgMouseEventArgs e) {
 Console.Writeln (“ID, X, Y, button is:”
 + e.ID + e.X + e.Y + e.Button);}
Figure 2. Comparing traditional and SDG mouse events

transformation directly on the deltas produced by Raw
Input through a rotation matrix (Figure 1, Row 3). Finally,
the SDGToolkit also adjusts the rotated cursor so that it will
always appear on-screen. All this dramatically simplifies
tabletop programming, as the SDG Toolkit takes care of all
translation, rotation and cursor resizing issues.

Dealing with the System Mouse
The next technical challenge is an artifact caused by the
way current windowing systems interpret the system
mouse. The problem is that there is only one true system
mouse. Recall that a standard window system merges
multiple pointer inputs to move this single system cursor.
Consequently, this system mouse is still moving around the
screen as it responds to all mouse movements, even if we
turn off the display of its cursor. This leads to quandaries
for SDG developers in terms of how they manage this
system mouse. We present these problems, but forewarn
that there are no elegant solutions. Instead, we list various
approaches we could take and show how each mitigates
problems caused by the system mouse.

First, if all SDG mice move the system mouse, it will not
track correctly (as it reacts to the combined forces on it): it
will appear as an extra cursor moving around the screen in
strange ways. While we could make it invisible, it is still
active i.e., a click with any SDG mouse also generates a
click on the system mouse: this could mysteriously activate
the window or widget under the system mouse.

One possible solution is to continuously move the system
mouse to the location of the most recently used SDG mouse
i.e., to give the momentary illusion that any SDG mouse
could control a non-SDG window or control.
Unfortunately, this does not work well in practice. Time
and location dependencies in how a system mouse
interpreted concurrent click/move/release actions generated
by multiple mice meant that one user’s mouse action could
easily interfere with another user’s mouse action.

A much better solution is to bind the system mouse to
directly follow a single SDG mouse and its cursor. This
‘super mouse’ will have both SDG and standard
capabilities. While not a democratic solution, it is
pragmatic. This solution is implemented by SDGToolkit,
where the programmer can ask the SDGManager to bind
the system mouse to a single SDG mouse, for example:
 SDGMgr.MouseToFollow = 1; //follow mouse #1

However, a serious side effect of having an enabled system
mouse results from windowing systems maintaining only a
single active window as the input focus. A super mouse
click outside the SDG window causes the system mouse to
raise a non-SDG window and the SDG application will lose
the input focus. Other SDG mice will no longer respond.

To remove this side effect, we can ‘turn off’ the system
mouse. We can do this by ensuring that it never moves
from some unused corner of a window and by making it
invisible. We also include this approach in SDGToolkit,

where programmers set the ParkSystemMouseLocation
property of the SDGManager. While excellent for
managing pure SDG applications, it means that the end user
cannot use standard window controls (close, resize), any
standard widgets (buttons, scrollbars), or switch to other
non-SDG windows. This can be confusing because people’s
naïve conceptual model is that their cursor represents both
an SDG mouse and a system mouse.

Still, it would still be convenient if we could exploit non-
SDG widget capabilities with a parked mouse. To do this,
we can tell the program what widget appears under an SDG
mouse event. In particular, whenever the SDGManager sees
a mouse event, it examines what user control (if any) is
immediately under that coordinate position. It then returns
it as the sender argument e.g., as shown in Figure 2:
 OnMouseDown(object sender, SdgMouseEventArgs e);

Of course, this does not completely solve the problem as it
remains the programmer’s responsibility to activate any of
that widget functions. For example, if a user clicked over a
non-SDG button then the programmer could identify this
button in the sender argument and use it to interpret the
event within the context of the button. However, the
programmer would have to somehow activate the button –
its graphical behavior and its callback - as the button has
never received this event.

The choice between the solutions implemented by
SDGManager – the single ‘super mouse’, mouse parking,
using the sender argument – is a tradeoff between the
desired nuances of the SDG application and its effect on the
end user audience.

Managing Multiple Keyboard Focus
In a standard application, pressing a key on a keyboard
usually associates that key event with a single input focus,
i.e., the window or control where the character should be
written and the event reported. Users change this focus by
tabbing or by clicking into a text control with the mouse.
The problem in SDG is that there can easily be multiple
input foci, where each user of an SDG application may
want text to appear in (say) a different text control.

Solution. We track multiple text foci for all keyboards and
mice as follows. First, we associate each keyboard with a
mouse. Second, when a user mouse-clicks over a control to
indicate their text input focus, the Mouse instance
automatically stores a pointer to that control in its
ControlFocus property (Figure 1, Row 4). Third, the
programmer writes a keyboard key event handler that just
looks up the ControlFocus of its corresponding mouse
and directs the text towards that control.

By default, Keyboard 0 is automatically mapped to Mouse
0, Keyboard 1 to Mouse 1 and so forth. Programmers can
customize this mapping by changing the ‘mouse’ property
of the keyboard instance e.g.,
 SDGMgr.Keyboard(5).Mouse = 0
causes the 6th keyboard to track the first mouse.

WHAT THE PROGRAMMER SEES
This section illustrates how a programmer would actually
create SDG applications with the SDGToolkit. For clarity,
our examples are deliberately simple to minimize non-SDG
complexity. Code excludes setup and housekeeping code
standard to all SDG and non-SDG Windows programs.

Hello world – mouse drawing. Our first ‘hello world’
example is a very simple concurrent drawing application
involving two users and two mice, illustrated in Figure 3a.
It illustrates how SDG mouse events are handled. To build
this, the programmer takes the following steps.
1. Using the Visual Studio interface builder, drag an

SDGManager component from the Visual Studio
toolbox onto the application. 3

2. In the standard InitializeComponent routine (Figure 3a,
line 1) that initializes the top level window, add two

3 The SDGManager is implemented as a non-visible control used by the
programmer in exactly the same way as other standard controls. One adds
it to a window by drag ‘n drop, sets its many properties and event handlers
through form-filling, and handles events in the normal way.

lines of code that first sets the relativeTo property of
the SDGManager to the form (line 2), and then register
an event handler to the SDG MouseMove event (line 3).
Alternatively, one can set the event handler without
coding by using the SDGManager’s property window.

3. Write the callback for the sdgMgr_MouseMove event
(lines 6-12). Create a black drawing pen (line 8), but
change its color to red if the Mouse ID is greater than 0
i.e., if its not the first mouse (line 9). We then check to
see if the left button is depressed for that mouse (line
10), and if so draw a 2x2 pixel around the current X and
Y coordinates of the mouse (line 11).

These few lines of code illustrate the simplicity of the
SDGToolkit. In contrast, building the same program
without the SDGToolkit (atop of Raw Input) is an order of
magnitude larger and certainly more complex!

Hello world – keyboard text. Our second ‘hello world’
example has two textboxes and also works with two people
(Figure 3b). When a user clicks on a textbox, that user’s
keyboard KeyPress event will go to it. If two people click
different textboxes as in Figure 3b, their typing will be

1 private void InitializeComponent () {
2 Form1.sdgMgr.RelativeTo = this; //‘this’ refers to the top level window
form
3 this.sdgMgr.MouseMove +=new SdgMouseEventHandler(this.sdgMgr_MouseMove);
4 …
5 }
6 private void sdgMgr_MouseMove(object sender, SdgMouseEventArgs e) {
7 Graphics g = this.CreateGraphics();
8 Pen penColour = Pens.Black;
9 if (e.ID > 0) penColour = Pens.Red;
10 if ((e.Button & MouseButtons.Left) > 0)
11 g.DrawLine(penColour, new Point(e.X-1, e.Y-1),new Point(e.X+1, e.Y+1));
12 }

Figure 3a. SDG Hello World Drawing – ‘Hello’ is in black, ‘World’ is in red.

1 private void sdgMgr_KeyPress(object sender, SdgKeyPressEventArgs e){
2 TextBox this_textbox;
3 if (sdgMgr.Mice[e.ID].ControlFocus is TextBox) {
4 this_textbox = (TextBox) sdgMgr.Mice[e.ID].ControlFocus;
5 this_textbox.Text = this_textbox.Text + e.KeyChar.ToString();
6 }}

Figure 3b. SDG Hello World Keyboard

1 Public Form1 (){ // The Form constructor
2 String[] sdgText = {"Ed", "Saul", "Mike", "Flo"};
3 int[] sdgDegreeRotations = {0, 90, 180, 270};
4 for (int i=0; i < sdgMgr.Mice.Count && i < 4; ++i) {
5 sdgMgr.Mice[i].Cursor = Cursors.UpArrow;
6 sdgMgr.Mice[i].Text = sdgText[i];
7 sdgMgr.Mice[i].DegreeRotation = sdgDegreeRotations[i];
8 }}
9 private void sdgMgr_MouseMove(object sender, SdgMouseEventArgs e) {
10 Graphics g = this.CreateGraphics();
11 Color[] colors = {Color.Blue, Color.Magenta, Color.Red, Color.Black};
12 if((int)(e.Button & MouseButtons.Left) > 0) {
13 Graphics g = this.CreateGraphics();
14 g.DrawLine(new Pen(colors[e.ID]),
15 new Point(e.X-1, e.Y-1), new Point (e.X+1, e.Y+1));
16 }}

Figure 3c. SDG Tabletop drawing. All user marks are in different colors.

directed appropriately (even if they type simultaneously). If
both click the same text box, their input is merged.

The code in Figure 3b shows only the KeyPress event
handler, which illustrates how one associates KeyPress
events from multiple keyboards to the different text widget
foci. The logic is simple. Recall from the previous section
that each mouse remembers what control it last clicked (the
focus) in its ControlFocus property. When the KeyPress
event is raised from either keyboard, the event handler
(lines 1-6) finds the corresponding mouse (via the matching
Id), checks to see if its ControlFocus property holds a
Textbox control (line 3), and if so assigns it to a temporary
variable (line 4). It then inserts the key character into this
Textbox (line 5).

Tabletop drawing. Our third example illustrates a drawing
application designed for a square tabletop with four seated
people, one per side. As Figure 3c shows, cursors and text
labels are oriented appropriately. What is not visible is that
the person’s mouse will also behave correctly given their
orientation. The initialization code shows how the
programmer deals with an unknown number of mice (up to
4 in this example – line 4), sets mouse properties such as
cursors and their text labels (lines 5–6), and correctly orient
the cursors and returned coordinates (line 7). The
MouseMove event handler (lines 9-16) is very similar to
Figure 3a, except that it shows a better way to assign
different line colors to each user.

SDG USER CONTROLS
Programmers can now use SDGToolkit to easily create
vertical or tabletop SDG canvases that respond to multiple
input events. However, they still face considerable hurdles
equipping these canvases with interaction controls, such as
SDG-aware analogues to single-user buttons, menus,
textboxes, palettes, and so on. Standard widgets are
inadequate. They do not understand multiple input devices.
They cannot deal with concurrent access correctly as they
still maintain their single user semantics.

Consequently, we argue that any SDG toolkit must supply
the following features to ease the end programmers’ task of
equipping SDG applications with appropriate controls.
1. Provide building blocks that let programmers create

novel SDG controls exhibiting SDG semantics.
2. Controls include an event mechanism so that they can

pass through SDG events for direct use by the end-
programmer.

3. Include a stock set of useful SDG controls that a
programmer can use immediately within an application.

This section describes how SDGToolkit includes these
capabilities.

The SDG Control Interface
We began by creating two class interfaces that defined the
minimum set of capabilities that any SDG control should
understand. The ISdgMouseWidget interface defines the

mouse capabilities, where we insist that any SDG control
object must implement methods (with arguments)
corresponding to the four normal SDG mouse events
described in the previous section e.g., OnSdgMouseDown,
OnSdgMouseMove, OnSdgMouseUp, OnSdgMouseClick.
For example:
 void OnSdgMouseMove(SdgMouseEventArgs e);

The second ISdgMouseAndKeyWidget interface extends this
interface to include the key events OnSdgKeyDown,
OnSdgKeyPress, and OnSdgKeyUp. For example:
 void OnSdgKeyDown(SdgKeyEventArgs e)

If graphical controls on the screen contain these methods,
then the SDGManager can exploit them to make them
SDG-aware. In particular, whenever the SDGManager gets
an SDG Mouse event, it looks for a control immediately
under the mouse coordinate to see if it has these methods. If
it does, then the SDGManager invokes those methods,
passing through the appropriate arguments. Row 7 of
Figure 1 illustrates this with a generic graphical control
called ‘SDG User Control class’, discussed next.

The SDG User Control
While the above interfaces help provide the mechanism
underlying SDG widgets, they are still too low level to be
convenient building blocks for an SDG widget developer.
Consequently, we give the SDG widget developer an
inheritable object that has all the expected behaviors of a
widget, and that implements the basic SDG interface.

Microsoft .NET supplies special objects called Controls
and UserControls that are the building blocks for all
conventional widgets. To make these SDG-aware, we
created an SdgUserControl class as follows.
1. We defined the class so it inherits from the standard

UserControl, and declare that it implements the
ISdgMouseAndKeyWidget (Figure 4, line 1).
Inheriting the standard UserControl means it has all
the methods, properties and event capabilities of a
normal control (e.g., properties that define its location,
extents, background and foreground colors, and font). It
also means the programmer accesses this control
through the .NET interface builder in the same way they
access non-SDG controls.

2. The SdgUserControl then implements the SDG
interfaces (lines 5-25). If the SDGManger finds this
control under the current mouse coordinates, it invokes
its SDG methods with the arguments filled in.

3. In turn, the SdgUserControl raises its own event
corresponding to the received SDG event (lines 26-32).
This new event is thus available to the end-programmer.

While this sounds complicated, this generic control was
very easy to create given our design logic. For example, the
complete class definition is handled in 32 lines of code.
Figure 4 shows the complete code structure and how it
handles two of the seven events.

Example: Creating an Sdg ColorMixer Control
Using the SdgUserControl, programmers can now easily
create their own SDG controls through techniques familiar
to them. To illustrate this, we show how we can implement
a trivial color-mixing control that fully responds to two
mice (Figure 5, top). It is white if no one presses on the
widget, blue if only the first person is pressing it, yellow if
only the second person is pressing it, and green if both are
pressing it at the same time. Figure 5 provides the complete
code, omitting only the housekeeping code found in all
.NET controls, and the two lines where we register the
SdgMouseDown and SdgMouseUp event handlers. To
explain its logic, the press array contains two elements,
each holding the ‘button press’ state of the first and second
mice. The SdgMouseDown event handler sets the
appropriate press element to true, while the
SdgMouseUp handler sets it to false. Both call the Draw
method, which is a simple state machine that calculates
which mouse or combination of mice are currently pressing
the control, and sets the background color accordingly.

While simple, this example illustrates that the SDGToolkit
makes SDG widget development straightforward.

EVALUATION: APPLICATIONS AND CONTROLS
The driving goal behind the toolkit is to let developers
concentrate on the design of SDG applications rather than
low level programming. This goal has been achieved in
practice. While SDGToolkit is still fairly new, people are
now using it to rapidly prototype single display groupware.
This section illustrates a few early examples of what we
and others have built.

Rush Hour: An SDG Game
Rush Hour is a simple online puzzle game, where the
player must move cars around until they can get the special

red car to the red exit marker (Figure 6). We decided to
implement an SDG version of this game, where multiple
players can move multiple cars simultaneously. First, we
implemented a single user version of this game using the
standard features of C# and .NET. Second, we modified
this game to add multiple user capability via the
SDGToolkit. This took less than one hour of straight-
forward programming (some
extra programming was
required to add collision
detection for cars moving at the
same time in the same position).
The game is responsive and
handles multiple players easily.
We did not use our SDG
Controls to implement the cars
as we developed the game
before the SDG Control layer
was available.

SDG Flow Menu – an SDG widget
To test our SDG widget layer, we recreated Guimbretière’s
Flow Menu [9] as an SDG interaction technique (flow
menus use gesture as the primary interaction method, and
are efficient for pen-based interfaces). Figure 7 shows the
result, where each person has their own individual flow
menu that can be raised any time (even concurrently) to
select a pen color and pen size. The largest investment of
time in developing this widget was on its non-SDG aspects,
i.e., how to track and recognize a gesture. Making this
SDG-aware was easy. First, because flow menus appear
above the window (rather than within it) we could not use
the SdgUserControl (which must live within the

Figure 6. SDG Rush Hour

1 public class SdgUserControl : UserControl,
 ISdgMouseAndKeyWidget{
2 public SdgUserControl() {
3 // 3 routine lines of constructor code
4 }

 // SDGManager invokes these methods when the mouse
 // moves over this control or when a keypress is
 // directed to the control. Note that each method
 // invokes the corresponding event handler
5 public void OnSdgMouseMove(SdgMouseEventArgs e){
6 if (SdgMouseMove != null) SdgMouseMove(this, e);
7 }
 // The other 3 mouse methods are similar
8-16 …

17 public void OnSdgKeyDown(SdgKeyEventArgs e){
18 if (SdgKeyPress != null) SdgKeyPress(this, e);
19 }
 // The other 2 key methods are similar
20-25 …

 // Now define the events
26 public event SdgMouseEventHandler SdgMouseUp;
27 public event SdgKeyEventHandler SdgKeyUp;
 // The other 5 events similar to the above
28-32 …
}

Figure 4. The class definition of SDGUserControl

 public class SdgMixer : Sdg.SdgUserControl {
 private Boolean [] press = new Boolean [2];

 // We omit initialization routines and
 // event handler registering as this is standard
 …
 private void SdgMixer_SdgMouseDown(
 object s, Sdg.SdgMouseEventArgs e){
 press [e.ID] = true;
 Draw ();
 }

 private void SdgMixer_SdgMouseUp(
 object s, Sdgt.SdgMouseEventArgs e){
 press [e.ID] = false;
 Draw ();
 }
 private void Draw () {
 this.Parent.Text = press[0].ToString () +
 "," + press[1].ToString ();
 if ((press[0] || press [1]) == false)
 this.BackColor = Color.White;
 else if (press[0] && press [1])
 this.BackColor = Color.Green;
 else if (press[0]) this.BackColor=Color.Yellow;
 else this.BackColor = Color.Blue;
}}

Figure 5. The SDG ColorMixer control. Colors are annotated.

white yellow blue green

window). Instead, the flow menu class implemented the
mouse events defined in ISdgMouseWidget (the code is
almost identical to Figure 4). Next, we used this within the
drawing application by creating an instance of the flow
menu for each mouse, and ensuring that the mouse down
events reached the appropriate menu (about 3 lines of
code).

SDG MagicLens ToolGlass
For our final example, Nicole Stavness (U. Saskatchewan)
and Edward Tse recreated Bier’s notion of a MagicLens
ToolGlass [3]. Bier’s ToolGlass was originally designed to
exploit two handed input by a single user: one hand moved
the ToolGlass over a surface (perhaps transforming how the
underlying objects are displayed), while the other hand
would ‘click through’ the ToolGlass to assign a property to
the underlying object. For example, the ToolGlass could
contain a palette of colors, and the user could position a
particular color over and object and assign that color to it
by clicking through it.

The SDG re-creation provides all users with their own
magic lens (Figure 8). What is especially interesting about
this is that each user has two pointing devices: one to move
the lens (the cursor is the small hand in the bottom left
corner of each Magic Lens) and one to click through (the
arrow cursor). To our knowledge, this is the first
ToolGlasses have been equipped with SDG semantics. This
could easily be extended into a collaborative tool [5], e.g.,
where people can mix and select new colors by placing
their lens atop of one another. As with the other examples,
the programming effort to manage and identify multiple
input devices was small compared to the effort in
constructing the drawing application and the ToolGlass
graphics.

RELATED WORK
MMM [2] was a wonderful early SDG breakthrough that
illustrated concepts and challenges in SDG applications. It
was built from scratch and required quite a bit of low level
OS hacking to build a simple system that handled up to
three mice. It was not a toolkit: to our knowledge no further
work was done on it. Since then, many others have built
proof of concept SDG applications through brute force.

From a toolkit perspective, the most heavily
commercialized work has been done in game console
environments, as these come equipped with multiple input
devices of various sorts, e.g., games controllers, steering
wheels and foot pedals. However, they are not easy to
develop on and consoles are not suitable for productivity
applications.

Most operating systems do provide low-level facilities to
acquire unusual input devices. In Windows, for example,
the DirectInput SDK lets a programmer retrieve data from
input devices not supported by the standard Windows API
[http://msdn.microsoft.com]. These devices, however, are
usually oriented toward gaming. While one could develop
SDG applications on top of this API, it again would take
considerable effort.

Pebbles [11] eschewed mice and keyboards and used
multiple PDAs as input / output devices. Because PDAs are
involved, it used a distributed model view controller
paradigm to share data between the PDA and the computer
running the SDG application (see also [7]).

Closest to SDGToolkit is MID [1], arguably the first
generally released toolkit for SDG. Like SDGToolkit, it
delivers multiple mice input as separate streams of events.
To get these events, Java programmers coded classes that
implement all of MIDs event handlers. MID has also been
recently extended to work with other input devices, such as
the DiamondTouch multi-touch display [4]. Otherwise MID
is a subset of the SDGToolkit, where:
• it does not support multiple mice after Windows 98,
• it does not handle multiple keyboards,
• it only returns screen vs. window coordinates,
• it deals with the system mouse only by turning it off,

which means that no conventional widgets are usable,
• it does not manage orientation issues in tabletop

displays, and
• it does not provide any SDG widget building blocks4.

4 In spite of these limitations, the MID team constructed impressive
SDG interaction techniques for children by combining it with the Jazz
toolkit [5]. We also used MID for our earlier work on SDG [13]. MID
obviously inspired our own development of SDGToolkit, and we are
grateful to its creators.

Figure 7. An SDG drawing application. Two users are
select a drawing color and size from their individual flow menu,
as the third is drawing.

Figure 8. SDG MagicLenses. Each user moves his/her magic
lens around with their non-dominant hand. With their other hand,
they click through the lens to choose a color or the erase (middle
square).

CONCLUSIONS
SDG development parallels Gaines’ [6] BRETAM
phenomenological model of developments in science
technology. The model states that technology begins with
an insightful and creative breakthrough, followed by many
(often painful) replications and variations of the idea.
Empiricism occurs when people draw lessons from their
experiences and formalize them as useful generalizations.
This continues to theory, automation and maturity [6].

Within this context, the primary contribution of this paper
is to move SDG technical work from the replication stage
(where it is now) into the empiricism stage. We did this
through several mechanisms. First, we articulated the
technical requirements and challenges of SDG software that
face many designers. Second, we detail solutions to these
problems. We believe these are generalizable to most
modern GUI windowing systems and that they can be used
by other developers. Third, through our illustrations of how
a programmer would develop an SDG application with our
toolkit, we provide a conceptual model to other toolkit
builders about how a toolkit for SDG should present itself.
Finally, we provide the SDGToolkit itself as a resource that
means others can work on the nuances of SDG and SDG
interaction techniques rather than replicate SDG plumbing.

Our future plans follow several threads. First, we are now
extending SDGToolkit’s capabilities to manage other input
technologies. These devices include display surfaces that
recognize multiple touches such as the MERL
DiamondTouch [4] and Smart Technology’s DViT
technology [www.smarttech.com]. We foresee no problem
with this, as it merely means extending the way we now
capture input and present events. Second, we are now using
SDGToolkit to rapidly prototype and research many SDG
applications and interaction techniques. In one project, we
are creating software for linking distributed SDG settings
(e.g., linking two or three SDG-enabled tables to one
another). In another project, we are developing distortion-
oriented information visualization techniques that give each
SDG user a focus+context view into their information,
centered around their cursor. In a third project with
colleagues Sheelagh Carpendale and Russell Kruger, we are
examining the social factors of how people use object
orientation in SDG-enabled tables i.e., how they rotate
artifacts to present them to others or to signal artifact
‘ownership’. Finally, we are currently prototyping various
types of SDG widgets such as the ones shown in Figure 7
and 8. These will be included in future versions of the
toolkit as stock components. In all projects, the SDG toolkit
is proving to be an extremely valuable resource.

If one looks down the road a few years, it is hard to imagine
future computers that are not SDG-capable. This
functionality could be achieved through an add-on such as
SDGToolkit. At some point, our windowing systems should
have SDG built into them as a fundamental component, and
perhaps the concepts introduced in this paper will influence
how this is done.

Acknowledgements. Michael Boyle and Tony Tang gave
excellent technical assistance and feedback. Russell Kruger
and Stacey Scott motivated our tabletop work. We are
grateful to NSERC and Smart Technologies for funding.

Software availability. See www.cpsc.ucalgary.ca/grouplab/
for downloads, full documentation, and examples.

REFERENCES
1. Bederson, B. & Hourcade, J. Architecture and

implementation of a Java package for Multiple Input
Devices (MID). HCIL Technical Report No. 9908.
http://www.cs.umd.edu.hcil. 1999.

2. Bier, B. & Freeman, S. MMM: A user interface
architecture for shared editors on a single screen. Proc
ACM UIST’91, 79-86, 1991.

3. Bier, E., Stone, M., Pier, K., Buxton, W. & DeRose, T.
Toolglass and Magic Lenses: The See-Through
Interface. Proc SIGGRAPH '93, 73-80, 1993.

4. Dietz, P. & Leigh, D. DiamondTouch: A multi-user
touch technology. Proc ACM UIST’01, 219-266, 2001.

5. Druin, A., Stewart, J., Proft, D., Bederson, B. &
Hollan, J. KidPad: a design collaboration between
children, technologists, and educators, Proc ACM
CHI’97, 463-470, 1997.

6. Gaines, B. Modeling and forecasting the information
sciences. Information Sciences 57/58, 3-22, 1991.

7. Greenberg, S., Boyle, M. & LaBerge, J. PDAs and
Shared Public Displays: Making Personal Information
Public, and Public Information Personal. Personal
Technologies 3(1), 54-64, Elsevier, March 1999.

8. Greenberg, S. & Fitchett, C. Phidgets: Easy
Development of Physical Interfaces through Physical
Widgets. Proc ACM UIST’01, 209-218, 2001.

9. Guimbretiere, F. & Winograd, T. FlowMenu:
Combining Command, Text, and Data Entry Proc.
ACM UIST’00, 213-216, 2000.

10. Inkpen, K., McGrenere, J., Booth, K. & Klawe, M. The
effect of turn-taking protocols on children's learning in
mouse-driven collaborative environments, Proc
Graphics Interface, 138-145, Morgan Kaufmann 1997.

11. Myers, B., Stiel, H., and Gargiulo, R. Collaborations
using multiple PDAs connected to a PC.. In Proc ACM
CSCW’98, 285-294, 1998.

12. Stewart, J., Bederson, B. and Druin, A. Single display
groupware: a model for co-present collaboration, Proc
ACM CHI 1999, 286-293, 1999.

13. Tse, E. and Greenberg, S. SDGToolkit: A Toolkit for
Rapidly Prototyping Single Display Groupware. In
Extended Abstracts of ACM CSCW’02, 173-174, 2002.

14. Zanella, A. and Greenberg, S. (2001) Reducing
Interference in Single Display Groupware through
Transparency. Proc ECSCW’01, Kluwer.

