
 

THE UNIVERSITY OF CALGARY 

 

 

Informal Awareness and Casual Interaction with the Notification Collage 

by 

Michael Lloyd Rounding 

 

 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

 

 

DEPARTMENT OF COMPUTER SCIENCE 

 

 

CALGARY, ALBERTA 

APRIL, 2004 

 

Copyright © Michael Lloyd Rounding 2004 

 

 



 

 ii

THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

 

The undersigned certify that they have read, and recommend to the Faculty of Graduate 

Studies for acceptance, a thesis entitled “Informal Awareness and Casual Interaction with 

the Notification Collage” submitted by Michael Lloyd Rounding in partial fulfillment of 

the requirements for the degree of Master of Science. 

 

 

 

Supervisor, Saul Greenberg 
Department of Computer Science 

 

 

 

Guenther Ruhe 
Department of Computer Science 

 

 

 

External Examiner, Larry Katz 
Faculty of Kinesiology 

 

 

 

Date  



 

 iii

Abstract 

Communities of intimate collaborators are people who know each other and have a need, 

reason, and desire to stay in contact with one another on a daily basis.  These are groups 

such as families, research groups, and close circles of friends.  The ‘glue’ that holds these 

groups together is casual interaction, or the lightweight and informal communication and 

coordination that is important in everyday activities.  Casual interaction is facilitated by 

informal awareness, where people naturally accumulate information about what is 

happening in their physical surroundings without realizing it.  The problem is that casual 

interaction breaks down over distance.  In this thesis, I explore the design for a multimedia 

tool called the Notification Collage.  Using an extendible set of independent multimedia 

elements (Media Items), I will show how it supports casual interaction in a community of 

intimate collaborators that contain a mixture of co-located and distance-separated people. 



 

 iv

Publications 

Materials, ideas, and figures from this thesis have appeared previously in the following 

publications: 

Greenberg, S. and Rounding, M. (2001) The Notification Collage: Posting Information 
to Public and Personal Displays. Proceedings of the ACM Conference on Human 
Factors in Computing Systems [CHI Letters 3(1)], 515-521, ACM Press. 

Rounding, M. and Greenberg, S. (2000) Using the Notification Collage for Casual 
Interaction. ACM CSCW 2000: Position paper for the Workshop on Shared 
Environments to Support Face-to-Face Collaboration. Philadelphia, Pennsylvania, 
USA, December. 



 

 v

Acknowledgements 

I would not have been able to finish this work without the support and help of a great many 

people. 

I want to thank Saul Greenberg, my advisor and idol in lifestyle for giving the 

opportunity to learn more about what you really should get out of a University degree.  Saul 

provided me with an enormous opportunity to grow and improve as both a student and as a 

person.  If I ever lost the faith, he was always one of the people there to set me straight and 

point me in the right direction again.  Thanks for his patience and efforts in helping me 

finish this work.  I hope I can do much more climbing and scrambling and hiking with him 

than before! 

Michael Boyle will always hold a special place for me.  He has been a solid place in 

the lab for many people, and has been a special help for me – both technically and 

personally – and that has not gone unnoticed.  I was very proud to have organized the #4 

jersey for him, because he deserves that and so much more.  His support for this work and 

for me has been above the call of duty, and he can plan to always have me there if he needs 

anything!  Mike’s curiosity for everything life has to offer is rare and refreshing, and he 

will forever be one of my favourite people. 

Of course the support of the people in the Interactions Lab has been astounding.  

Whether it be foosball tournaments or patiently using my sometimes buggy software, they 

have made the trip worthwhile.  I’ve never had so much fun working with a group of 

people, and I hope and expect them to keep me permanently on the mailing list for hot 

wings excursions. 

I also wish to thank my family for always being there.  Darwin and Joan, or Mom and 

Dad, have supported me all through this endeavour, and I don’t know if and how I can 

thank them enough for that!  Phil has helped me through a ton of stuff with a laugh and a 

smile and a round of video games, and will always be my best friend.  I want to thank 

Kathryn for being interested in this stuff and helping out with the project, and also for 



 

 vi

having pity sometimes when I’ve needed it, especially when I’ve needed food!  I know I’m 

scatterbrained and I know I get frustrated, and I sometimes just plain lose hope, but all 

these people know me well enough to let me blow the steam off and then encourage me to 

get back at it again.  Thanks so much for being there, and thanks for being so patient with 

me in times of need. 

About Adena, I can’t say enough I guess.  She has not been in my life for very long in 

the grand scheme of things, but I feel like she’s been along for this whole ride.  She’s seen 

the high points and the low points of it, and has shown patience and support for me through 

and through.  Thanks to her for rescuing me with a trip to the climbing gym or a day of 

skiing here and there, and I hope we can continue to rescue each other far into the future. 

With too many names to mention, I can’t begin to talk about friends who have 

supported me, then worried about me, then just plain harassed me about finishing this!  

This has been a very worthwhile experience for me, and I think I am a different and more 

relaxed person than when I started. 



 

 vii

Dedication 

This thesis is dedicated to the memory of Lloyd Rounding, the smartest man I will ever 

have known.  If I can live with even half the dignity and grace he managed over the course 

of his life, then I will have been a success.  If you can measure the wealth of a man in terms 

of the respect and friendship he has legitimately earned, then he would have likely been the 

richest man alive.  I am a better person to have known and learned from him, and am only 

sad that I never had the chance to tell him that he is my idol. 

 

The best lessons aren’t learned in school. 



 

 viii

Table of Contents 

Abstract ....................................................................................................................... iii 

Publications ..................................................................................................................iv 

Acknowledgements .......................................................................................................v 

Dedication .................................................................................................................. vii 

Table of Contents ...................................................................................................... viii 

List of Tables............................................................................................................. xiii 

List of Figures ............................................................................................................xiv 

Chapter 1. Introduction..................................................................................................1 

1.1 The Situation .......................................................................................................1 

1.2 Research Problems ..............................................................................................4 

1.3 Research Goals ....................................................................................................5 

1.4 Definition of Success...........................................................................................5 

1.5 Thesis Overview..................................................................................................6 

Chapter 2. Background and Motivation ........................................................................7 

2.1 Interaction for Intimate Collaborators.................................................................7 

2.1.1 Casual Interaction.........................................................................................8 

2.1.2 Informal Awareness .....................................................................................9 

2.1.3 The Distance Problem ................................................................................10 

2.2 Tools for Casual Interaction ..............................................................................11 

2.2.1 Media Spaces..............................................................................................11 

2.2.2 Instant Messaging.......................................................................................15 



 

 ix

2.2.3 Chat Rooms and Multi-User Dungeons .....................................................17 

2.2.4 Notification Systems ..................................................................................21 

2.3 Technical Resources for Design........................................................................23 

2.3.1 Notification Servers....................................................................................23 

2.3.2 Component Based Design ..........................................................................25 

2.4 Summary ...........................................................................................................26 

Chapter 3. The Notification Collage ...........................................................................28 

3.1 Notification Collage Design Rationale and Description ...................................28 

3.1.1 Media Items................................................................................................31 

3.1.2 Display........................................................................................................34 

3.1.3 Aging and Competition ..............................................................................35 

3.1.4 Adjusting Item Visibility and Salience ......................................................36 

3.1.5 Acting on Information ................................................................................36 

3.1.6 Notification Collage Architecture ..............................................................37 

3.2 Initial Usage Experiences..................................................................................40 

3.2.1 The group and its setting ............................................................................40 

3.2.2 Bootstrapping .............................................................................................41 

3.2.3 Display........................................................................................................42 

3.2.4 One-to-one, overheard and broadcast communication...............................43 

3.2.5 Video as conversation and opportunity ......................................................44 

3.2.6 Artefact display ..........................................................................................45 

3.2.7 Privacy Issues .............................................................................................45 

3.2.8 Distraction issues........................................................................................46 



 

 x

3.2.9 Summary of experiences ............................................................................46 

3.3 Discussion and revision.....................................................................................47 

3.3.1 Notification Collage Strengths and Weaknesses........................................47 

3.3.2 Summary ....................................................................................................51 

Chapter 4. The New Notification Collage User Experience .......................................54 

4.1 Redesign Goals..................................................................................................54 

4.2 The Notification Collage Board Interface .........................................................55 

4.2.1 The Notification Collage Board Revisited .................................................57 

4.2.2 Connecting..................................................................................................57 

4.2.3 Presence......................................................................................................59 

4.2.4 Media Items................................................................................................60 

4.2.5 Dealing with New Media Items..................................................................62 

4.3 The Media Item Stock Set .................................................................................64 

4.3.1 The Sticky Note..........................................................................................65 

4.3.2 The Video Snapshot ...................................................................................66 

4.3.3 The Web Item.............................................................................................67 

4.3.4 The Photo Show Item.................................................................................68 

4.3.5 The Desktop Snapshot................................................................................69 

4.3.6 Notification Collage Availability Item.......................................................70 

4.3.7 The Notification Collage Chat Item ...........................................................71 

4.3.8 The Notification Collage Sketchpic Item...................................................71 

4.4 Summary ...........................................................................................................74 

Chapter 5. The Media Item Architecture.....................................................................75 



 

 xi

5.1 Conceptual Model, Architecture Goals and Overview .....................................76 

5.1.1 Architecture Goals......................................................................................77 

5.1.2 Overview of the Architecture .....................................................................78 

5.2 Collabrary: A Robust Shared Dictionary for the Notification Collage .............80 

5.2.1 Connecting and Instances...........................................................................81 

5.2.2 Shared Dictionary Keys..............................................................................82 

5.2.3 Key Subscription ........................................................................................84 

5.2.4 Notification Collage Data Model ...............................................................86 

5.3 The Media Item Library ....................................................................................89 

5.3.1 Library Overview .......................................................................................89 

5.3.2 Hosting media items using the Media Item Host control ...........................92 

5.3.3 The IMediaItem Interface...........................................................................94 

5.4 Validating Ease of Development.....................................................................102 

5.4.1 Transportation Pool Item..........................................................................103 

5.4.2 The Peer Edit Item....................................................................................105 

5.4.3 The Notification Collage Alarm Item ......................................................105 

5.4.4 The NCHack Item ....................................................................................106 

5.4.5 The Mini Artist Item.................................................................................108 

5.5 Summary .........................................................................................................109 

Chapter 6. Conclusion ...............................................................................................111 

6.1 The Successes of the Notification Collage board............................................112 

6.1.1 Usage ........................................................................................................112 

6.1.2 Technical design.......................................................................................113 



 

 xii

6.1.3 Influences on other researchers ................................................................113 

6.2 Future Work ....................................................................................................116 

6.2.1 Moving from awareness to collaboration and work.................................116 

6.2.2 New metaphors for displaying media items .............................................118 

6.3 Research Problems and Goals Revisited .........................................................119 

6.4 Contributions ...................................................................................................121 

References .................................................................................................................122 

Appendix A. Table of Acronyms ..............................................................................127 

Appendix B. Co-Author Permission .........................................................................128 

Appendix C. Student Release Form ..........................................................................129 

 



 

 xiii

List of Tables 

Table 1 – Notification Collage Redesign Recommendations .....................................52 

Table 2 – List of Acronyms.......................................................................................127 

 



 

 xiv

List of Figures 

Figure 2.1 – The Portholes ‘pvc’ client .......................................................................13 

Figure 2.2 – MSN Messenger......................................................................................15 

Figure 2.3 – The TeamRooms Interface......................................................................20 

Figure 2.4 – Components of Notification Service Transfer Protocol..........................24 

Figure 3.1 – A paper bulletin board illustrates a real world collage ...........................29 

Figure 3.2 – The Notification Collage.........................................................................30 

Figure 3.3 – Media Item Client Interface ....................................................................31 

Figure 3.4 – Public Display.........................................................................................34 

Figure 3.5 – Notification Collage Architecture...........................................................37 

Figure 3.6 – Laboratory layout....................................................................................41 

Figure 4.1 – The Notification Collage Redesigned.....................................................56 

Figure 4.2 – The Notification Collage connection dialog ...........................................58 

Figure 4.3 – Accessing contact information................................................................59 

Figure 4.4 – Media Item Posting Menu.......................................................................60 

Figure 4.5 – The media item container’s title bar .......................................................61 

Figure 4.6 – A media item’s timeout menu.................................................................61 

Figure 4.7 – Other media item features.......................................................................62 

Figure 4.8 – prompt to download new item ................................................................63 

Figure 4.9 – The Sticky Note media item ....................................................................65 

Figure 4.10 – The Video Snapshot media item ...........................................................66 

Figure 4.11 – Posting a link to a Web Item .................................................................67 



 

 xv

Figure 4.12 – The Photo Show media item .................................................................68 

Figure 4.13 – The Desktop Snapshot media item........................................................69 

Figure 4.14 – The Availability item ............................................................................70 

Figure 4.15 – The Notification Collage chat media item............................................71 

Figure 4.16 – The Notification Collage Sketchpic media item ...................................73 

Figure 5.1 – Conceptual Model...................................................................................76 

Figure 5.2 – Design for the Media Item Architecture .................................................78 

Figure 5.3 – Shared Dictionary client setup code .......................................................81 

Figure 5.4 – Stylized Notification Collage Shared Dictionary Hierarchy ..................82 

Figure 5.5 – Storing and retrieving using the Shared Dictionary................................83 

Figure 5.6 – Subscription to a key pattern...................................................................85 

Figure 5.7 – Object contents of the media item library...............................................90 

Figure 5.8 – A media item ActiveX control................................................................93 

Figure 5.9 – Initial media item declarations................................................................95 

Figure 5.10 – The MediaStart method.........................................................................97 

Figure 5.11 – The MediaStop method.........................................................................98 

Figure 5.12 – IMediaItem objects and related methods ..............................................99 

Figure 5.13 – Other methods and properties of IMediaItem in the Template...........100 

Figure 5.14 – The Transportation Pool Item .............................................................103 

Figure 5.15 – The Peer Edit Item ..............................................................................104 

Figure 5.16 – The Notification Collage Alarm item .................................................105 

Figure 5.17 – The Notification Collage Hack Item...................................................107 

Figure 5.18 – The Mini Artist media item.................................................................108 



 

 xvi

Figure 6.1 – VisStreams ............................................................................................114 

Figure 6.2 – h.323 video connection built into Video Snapshots..............................117 

Figure 6.3 – From a desktop snapshot to a desktop sharing facility .........................118 

Figure 6.4 – SideNC, with permission from Gregor McEwan..................................119 

 

 



 

 

1

Chapter 1. Introduction 
 

1.1 The Situation 

People live in an active social environment.  As ever, people are on the move and talking to 

each other about problems and solutions, micro-coordinating their activities, and sometimes 

just exchanging social banter. 

More formally, casual interaction is defined as the lightweight and informal 

communication and coordination that is important in everyday activities (Whittaker, 

Frohlich & Daly-Jones, 1994).  While interactions as lightweight as saying “hello” to a 

passing stranger satisfy this definition, my interests lie with casual interactions in 

communities of intimate collaborators, defined as groups of people that have a real need for 

close coordination and communication (Greenberg and Kuzuoka, 1999).  These groups 

typically include friends, families and work collaborators.  For these groups, casual 

interaction often results in purposeful communication as well as the strengthening of social 

bonds (Kraut, Fish, Root & Chalfonte, 1990). 

The physical world presents a dynamic social environment in terms of casual 

interaction for intimate collaborators.  People naturally accumulate information about what 

is happening in their environment without realizing it, resulting in informal awareness 

(Whittaker et al, 1994).  For example, an open office door generally indicates presence and 

availability, while an office door only slightly ajar projects presence but also perhaps a 

desire for privacy (Kraut et al, 1990).  Similarly, approaching footsteps, an opening 

elevator door, a phone ringing, or a snippet of overheard conversation are all cues 

indicating presence and availability.  These serendipitous environmental cues come out of 



 

 

2

social context in that they are always available to be tracked, but may not necessarily be 

noticed.  They can be ephemeral by being short-lived.  They can serve as ‘background’ 

information because they need not be attended to consciously to be successfully tracked.  

Casual interaction is supported by these cues, as they provide for intimate collaborators 

opportunities to enter into conversation and potentially work. 

Traditional awareness and casual interaction requires people to be in close proximity. 

We know that the likelihood of encountering awareness cues dramatically worsens as the 

distance between intimate collaborators increases (Kraut et al, 1990). This is problematic, 

for this loss of contact due to distance separation could prove damaging both to work 

practices and social relationships.  For example, this is why old-style companies went to 

great effort to co-locate teams. 

The nature of the workforce has changed recently, partly due to the wide-spread 

availability of high-speed internet access.  Telecommuters can work from home or remote 

offices where they now collaborate across distance.  Even family members living in 

different places now have new ways to communicate.  To overcome these distance barriers, 

people who are separated now rely on computers and other technologies as a medium to 

help them stay in touch, to have formal online meetings – as explained below – and to 

casually interact with one another. 

In particular, there are now multitudes of internet-based applications available that 

support casual interaction over distance.  Email is the first highly successful tool to do this.  

More recently, Instant Messaging systems, Multi-User Dungons and Media Spaces offer 

better support for real-time distance-separated casual interactions; these are described in 

turn. 

Instant messaging (IM) systems such as MSN Messenger, ICQ and AOL Instant 

Messenger let people keep a list of favoured contacts (their personal intimate collaborators) 

with whom they communicate, similar to an address book.  These contacts (who each also 

have their own independent contact lists) communicate an estimate of one’s availability to 

others through a presence indicator.  The indicator is typically updated automatically 

through a measure of idle time measured through keyboard and mouse inactivity, but it can 



 

 

3

also be set manually to different states such as ‘Online,’ ‘Away,’ or ‘Out to Lunch.’  Most 

of these systems support synchronous communication, where two or more (but most often 

just two) people can send brief text messages back and forth to one another in real time.  

Instant Messaging systems have become the current ‘killer application’ of the Internet, and 

their recent inclusion of multimedia (e.g., video and audio connections, groupware 

applications) points to where the technology is headed. 

Multi-User Duneons (MUDs) are similar in purpose to IM, except that they are 

designed around the real world metaphor of how people meet within a physical space, such 

as a set of meeting rooms. MUDs simplistically simulate a physical space in a virtual 

environment, typically by providing its community with a set of ‘rooms’ (Curtis & Nichols, 

1993).  Depending on the complexity of the MUD, people navigate through different 

‘rooms’ using either a text or graphical interface.  When one enters a room, he or she ‘sees’ 

who else is in that room and can casually interact with those people as well as the objects 

occupying the environment. Unlike the directed conversations of instant messaging, 

conversations in a MUD are generally public, where any contribution or user action is seen 

by all room inhabitants. 

Media Spaces also support casual interaction, but instead of text and awareness 

indicators, they use always-on multimedia channels – live video and audio links – to 

connect two or more participants. People maintain awareness of others by monitoring the 

transmitted video (which can be snapshot or continuous video), and can move into casual 

interaction simply by talking over the same link.  While most media spaces are research 

prototypes, video and audio capabilities are now appearing in commercial products.  For 

example, Microsoft’s NetMeeting and its newest MSN Messenger add an optional video 

and audio channel.  On a different scale, video-connected meeting rooms and public places 

(e.g., coffee rooms and common kitchens) nurture the feeling of proximity in working 

communities separated by distance by exploiting how people naturally gather in common 

areas (e.g. Fish, Kraut & Chalfonte, 1990;  Jancke, Venolia, Grudin, Cadiz & Gupta, 2001). 

All of the above technologies offer provisions for casual interaction over distance.  

Underlying their success is peoples’ needs and desires for ways to easily stay in contact and 



 

 

4

interact while separated.  These systems, while extremely simple, work because they make 

causal interaction possible.  However, they do all suffer from different weaknesses. IM 

only offers a one-on-one interaction space that makes it hard for small group interactions to 

occur spontaneously.  MUDs provide public and semi-private spaces for group interaction, 

but require people to be in these rooms for this to happen. This makes it hard for group 

members to find one another at appropriate times.  Media Spaces provide very concrete 

awareness of others but also verge on providing too much information, raising privacy and 

distraction concerns.  They also do not afford the awareness that could be gained from 

sharing electronic work artefacts such as documents. 

Recognizing the strengths and weaknesses of these systems opens a novel design 

space.  In this thesis, I explore the design for a multimedia tool called the Notification 

Collage.  Using an extendible set of independent multimedia elements (Media Items), I will 

show how it supports casual interaction in a community of intimate collaborators that 

contain a mixture of co-located and distance-separated people. 

1.2 Research Problems 

While contemporary systems now make informal awareness and casual interaction 

possible, I feel that there are several problems with their designs when taken in context of 

how a community works together. 

1. Impoverished awareness of the community.  Present-day tools for informal 

awareness and casual interactions do not provide rich awareness of others within the 

context of the community.  The research challenge is to design an environment that 

provides rich, multimedia awareness to the community. 

2. Closed systems.  Present-day tools are closed systems offering a restricted set of 

channels for informal awareness and casual interactions.  It is difficult or impossible 

to rapidly extend them to afford new kinds of rich, multimedia-based interactions 

required by the community.  The research challenge is to architect the system to be 

extended with little user impact as community’s needs and desires change. 



 

 

5

3. Impoverished interactions in the community.  Present-day tools for informal 

awareness and casual interactions often provide just one channel for awareness and 

one channel for interactivity.  Rich channels are available separately, but there is no 

one tool that brings them all together and situates them within the community.  The 

research challenge is to provide diverse rich multimedia channels for casual 

interaction in the community. 

1.3 Research Goals 

In this thesis, I describe a tool and architecture I built that addresses each of the stated 

research problems. 

1. Notification Collage Board. I build a tool that appropriately situates informal 

awareness cues and casual interactions of an entire community in a shared public 

space. 

2. Media Item Architecture.  I architect the Notification Collage Board so that I and 

other developers can quickly and simply extend it with Media Items that afford novel 

multimedia-based awareness and interactions. 

3. Media Items.  I build a stock set of Media Items that provide rich channels for 

informal awareness and casual interaction.  These items will plug into the architecture 

so that they can appear on the NC Board as part of the community shared interaction 

space. 

1.4 Definition of Success 

Throughout this thesis, I use the term ‘success’ to both highlight existing systems and to 

evaluate my own.  My definition of ‘success’ is quite pragmatic rather than academic. 

For existing systems, I consider them successful if they are widely deployed and used 

in society or in a truly believable way by real life groups. 



 

 

6

For my own inventions, I consider them successful in use if they are used consistently 

by a community for everyday interactions and purposes, and if they are voluntarily adopted 

by new members of that community over time.  I also consider them successful as a 

development tool if programmers not directly involved in this research project can extend 

the system with reasonable effort, and can deploy these extensions with little disturbance to 

the end-user community. 

1.5 Thesis Overview 

In Chapter 2, I discuss the motivation for this project.  I explore the sociology of Informal 

Awareness and Casual Interaction and some precedents that drive the requirements for the 

design of the Notification Collage (NC) and the Media Items it uses.  I also highlight 

several architectural ideas that could lend their usefulness to the design of the NC. 

In Chapter 3, I tell the story of the first version of the NC.  I discuss its display 

metaphor, its placement in a research community, and how our experiences with it led to a 

list of re-design requirements. 

In Chapters 4 and 5 I detail the redesigned NC.  Specifically, Chapter 4 covers how 

the NC Board interface was rebuilt as a singular user interface.  This includes a stock set of 

Media Items that were developed to enrich the community space of the NC and facilitate 

informal awareness and casual interaction.  Chapter 5 describes how the NC’s architecture 

was redesigned with a new client / server shared dictionary system and development model 

to facilitate the building of the new NC board interface.  The development model is 

described in detail and several examples of its use when distributed to a group of average 

programmers are shown. 

I conclude this thesis in Chapter 6 by revisiting the initial research problems and 

goals and summarizing their achievement.  I also discuss both future directions and parallel 

streams for this research to highlight potential areas for improvement and further 

exploration in this area. 



 

 

7

Chapter 2. Background and Motivation 
As we will see in later chapters, the Notification Collage (NC) is a groupware system 

intended to support informal awareness and casual interaction in a group of partially co-

located and partially distance-separated intimate collaborators.  In this chapter, the reader is 

equipped with the contextual background motivating this system, sees why the NC concept 

is worthwhile, and gains the knowledge to understand the NC design decisions I made.  I 

begin by re-introducing informal awareness and casual interaction, and why they are 

important.  This sets the stage for the next section, which discusses the different 

granularities of groupware tools intended to support casual interaction over distance.  

Specifically, I present Media Spaces, Instant Messaging, Chat Rooms and Multi-User 

Dungeons, and Notification Systems.  Finally, I present component based design and 

describe the idea of notification servers and how they can be capitalized on as an 

infrastructure for multimedia groupware. 

2.1 Interaction for Intimate Collaborators 

This section presents casual interaction and how it is supported by informal awareness to 

become the binding mechanism for communities of intimate collaborators.  It finishes by 

discussing the breakdown of casual interaction and informal awareness over distance. 

As first mentioned in Chapter 1, intimate collaborators are defined as groups of 

people that have a real need or desire for close coordination and communication 

(Greenberg and Kuzuoka, 1999).  Intimate collaborators can include such diverse groups as 

families, friends, research groups, corporate teams, and so on.  While the type of group can 

be diverse, their functions essentially remain the same:  members want to further the 

collective goal of the group and they want to maintain the group’s social structure both as a 



 

 

8

whole and on a member to member basis (Kraut et al, 1990).  For the purpose of this thesis, 

these groups are referred to as communities of intimate collaborators. 

2.1.1 Casual Interaction 

While many communities organize scheduled meetings with the purpose of furthering their 

goals, there are far more casual interactions that occur in the workplace.  These interactions 

are typically opportunistic or one-person initiated.  For example, they occur when one 

person passes another in the hallway and starts an impromptu conversation, or when one 

seeks out another without the other’s prior knowledge.  Unplanned and typically brief, 

casual interaction (also known as informal communication) exists outside formal 

scheduling channels and serves to further the goals of those participating in them (Kraut et 

al, 1990; Whittaker et al, 1994): 

• Social greeting, pleasantries and bantering helps maintain the social structure of the 

group and helps people keep up to date by informing them of ‘what is going on’ in 

another’s life. This furthers social understanding in the community and how people 

perform group maintenance. 

• Micro-coordination helps coordinate on-going joint activities ‘in the small’. Examples 

include phrases such as ‘let’s meet in 5 minutes’ or ‘I’ve completed that thing you 

asked me to do’ or ‘I’ve revised the document – I’ll email it so you can go through it’.  

• Seeking expertise occurs when a person seeks out a community member who can help 

them. This may be by serendipitously finding the first person of many who can provide 

assistance, or by explicitly asking others – through casual conversation – if they can 

identify a person who has that knowledge. 

• Detailed discussions occur when people move into purposeful work, perhaps by first 

affirming that they have the time and motivation to do so.  

• Working over artefacts happens as people use resources ready to hand to assist their 

interactions – napkins, whiteboards, writing implements, scraps of paper, and 

documents and other items relevant to the task that happen to be close by. 



 

 

9

All the above examples illustrate that casual interactions can easily evolve from pleasantry 

to more meaningful and rich work interactions. 

People move in and out of casual interaction fluidly. Hallway conversations can 

happen in a few seconds, with barely a pause as people pass by each other.  In shared work 

areas, people ask brief questions of others near them rather than referring to a manual. 

People join others at coffee tables.  Even when a person is hard at work at their desk, others 

often find suitable times to briefly interrupt them and converse. People may pause on their 

way to some other destination to talk to someone who they notice.  All of these 

conversations are unscheduled, dynamic, fluid and lightweight, yet work is being 

accomplished in the community (Kraut et al, 1990). 

2.1.2 Informal Awareness 

Informal awareness makes casual interaction possible.  It is the information that people 

subconsciously collect about their changing environment as they move throughout their day 

(Greenberg, 1996).  Cues as simple as hearing doors open or close, soft voices down the 

hall, a stack of papers to be graded on a desk or noticing someone as they walk by are all 

good examples of how informal awareness information is produced and collected in the 

physical world.  It is by these mechanisms that people keep active stock of their 

environment and are presented with opportunities to enter into casual interaction.  For 

example, seeing someone walk by in the hallway can both jog someone’s memory about 

something they wanted to discuss with that person, and provide the opportunity to enter that 

discussion at the same time (Kraut et al, 1990). 

What makes these awareness cues so successful in the real world is that they are 

natural and easy to act on.  People do not have to actively attend to them to track them.  

Awareness information is more often than not gathered subconsciously in the 

‘background’, and may or may not result in action. Cues are often ignored and missed, yet 

the ramifications are slight within a social context. This is a benefit, for the intense amount 

of information in the everyday world would quickly overwhelm us if we tried to 

consciously manage every bit of information. People are well-practiced at selectively 



 

 

10

attending to cues, and using these cues to help them decide whether they need to gather 

more information and whether they should act upon this information. The sum of the 

awareness cues accrued by an individual in a community allows them to form a picture of 

‘what is going on’ and to make more informed decisions about contacting others and in 

entering casual interactions. 

2.1.3 The Distance Problem 

The informal awareness that supports casual interaction suffers with distance. While 

everyday cues described in the previous section are highly salient when people are in close 

proximity e.g., several meters, they are dramatically less salient as people are separated by 

even small distances, e.g., opposite ends of a corridor.  The problem increases further when 

people are separated by greater distances, and Kraut, Egido and Galegher (1988) have 

shown that causal interactions decrease exponentially with distance.  For example, people 

who are separated on different floors are only slightly more likely to come into contact and 

collaborate than those who are separated in different buildings or cities (Kraut et al, 1988).  

The lack of co-presence leads to a lack of opportunity to interact.   

The decrease in visibility that occurs over even small distances also hurts the richness 

of messages being sent and received between collaborators.  They can no longer send 

auxiliary messages such as facial expressions or nodding accompanying understanding.  

Also, they can no longer directly hear one another, increasing the cost and reducing the 

spontaneity of any interaction.  The lack of these mechanisms can lead to a breakdown in 

grounding, where it is more difficult for people to gain a common understanding of their 

respective environments (Clark & Brennan, 1991). 

In the distant past, distance separation was not a huge problem.  Extended families 

(where all family members lived together or close by) were common.  Social communities 

were small (e.g., villages).  Businesses were small and tended to gather all people at one 

site.  This has, of course, changed in our much more global community.  In contrast, 

nuclear families are the norm in Western society. Cities sprawl very large areas.  Even 

modest-sized businesses have workers scattered over different floors of a building or across 



 

 

11

buildings.  International companies almost always have offices in different cities.  In spite 

of distance separation, many of the people that comprise these communities still need to 

remain intimate collaborators.  This is where computers can help, particularly by providing 

tools that support informal awareness and causal interaction spanning the distance barrier. 

2.2 Tools for Casual Interaction 

The previous section highlighted the importance of casual interaction supported by 

informal awareness in improving group dynamics and getting work done (Kraut et al, 

1988).  However, the distance problem is now becoming more prevalent as people tele-

commute or families move to different cities.  There is an understood need for the 

grounding and communication that casual interaction provides (Clark & Brennan, 1991), 

and thus also a desire to produce tools that solve the distance problem and allow people to 

casually interact over distance.  This section will provide an overview of tools available to 

people and how they are intended to be used.  They range in audience size anywhere from 

one on one chatting to shared video feeds to full public displays connecting public spaces 

and chat rooms.  As we will see, systems vary in the group size (e.g., from two to 

thousands) and the private versus public nature of the interactions (e.g., from private chat 

windows to public displays). 

2.2.1 Media Spaces 

Traditionally, media spaces are a class of applications that use ‘always on’ rich media 

channels such as audio and video to allow remote collaborators to be aware of one 

another’s activities and to easily move into dyadic conversations.  However, today media 

spaces come in many forms:  from simple one on one desktop systems, to video walls 

connecting different common areas.  They all share the common attribute of using ‘always 

on’ video as a means of determining availability and communicating with others (Bly, 

Harrison & Irwin, 1993). 



 

 

12

Systems such as CAVECAT provide full audio and video connections between 

desktop locations (Mantei, Baecker, Sellen, Buxton, Milligan & Wellman, 1991).  A 

CAVECAT setup consisted of a video camera, a TV monitor, a personal computer and a 

microphone.  Through the system people could participate in up to four point meetings, 

with the TV monitor showing all four points in quarters.  The system was used in faculty 

offices and a group workspace to connect people in a co-located setting.  It was used both 

to have formal meetings online and also to host brief encounters between sites (such as 

introducing someone to the group through the system and not actually leaving an office).  

While the system was used successfully to perform the described activities, it also suffered 

from poor audio filtering that became distracting and detracted from the user experience. 

Cruiser is a similarly constructed traditional media space that attempted to facilitate 

informal awareness and casual interaction by providing one and three second video 

connections into others’ workspaces (Fish, Kraut, Rice & Root, 1993).  The one second 

glances and three second cruises were initiated by users via a system command to look into 

another’s space, while simultaneously broadcasting the initiator’s video (for reciprocity).  

Not specifying a specific person as a target caused the system to initiate glances or cruises 

with a series of randomly selected people.  In addition, a third opportunity for awareness 

was provided through autocruises, where the system automatically opened a cruise between 

two people at random times.  The attempted metaphor was that of walking down a hallway 

and briefly glancing into others’ offices.  In practice, the auotocruise facility proved to be 

invasive and distracting, and users tended to not even use the system.  While it did have a 

privacy feature, people opted instead to disconnect completely from the system.  The 

facilities for informal awareness and casual interaction provided in the system were not as 

subtle as their real life counterparts. 

While traditional media spaces as described above provide awareness and interaction 

through full audio and video connections, Portholes takes a low-cost approach by using 

simple snapshot video (Dourish & Bly, 1992).  Through it, research groups within Xerox 

located in both Europe and in California were able to maintain contact with one another.  

While several clients for image display were created, the simplest (“pvc”) showed an array 



 

 

13

of video nodes as thumbnails (Figure 2.1).  Each thumbnail had a time associated with its 

capture time, and could be used to email to the person represented by the video node.  

Another Portholes client, ‘edison’, allowed people to associate an audio message with their 

node image that others could retrieve.  The ’viewmaster’ client was the public client, and 

loading it would only allow the user to display public location nodes; no personal office 

nodes were included.  This simple system successfully fostered a feeling of community for 

the two sites, and elicited comments such as “I like to see the day start in America when 

people are arriving” or “It’s fun to see the sun rise in the UK”.  One of the chief complaints 

of the system was that when someone wanted to run it, it required a significant amount of 

screen space to display it. 

On a different scale, VideoWindow tries to connect two public common areas 

transparently (Fish, Kraut and Chalfonte, 1990).  It does so by projecting a very large video 

image (eight feet by three feet) of the other location onto one wall.  Microphones and 

speakers are set up strategically so that standing and talking at a particular spot in one 

location will sound like speech is properly originating from the projected image in the other 

location.  The idea was that people would be able to notice one another and converse over 

 
Figure 2.1 – the Portholes ‘pvc’ client (from Dourish and Bly, 1992) 
 



 

 

14

the link just as if they were conversing with someone in the same room, with the same 

feeling.  An informal study by Fish et al (1990) found that people took advantages of 

virtual opportunities to casually interact across VideoWindow.  They also found that people 

more frequently took advantage of co-located opportunities to casually interact.  E.g., in the 

same time-frame that VideoWindow was being observed, a higher proportion of the 

opportunities occurring in one room were capitalized on than those occurring over 

VideoWindow. 

The Video Kitchen project at Microsoft Research also takes the approach of linking 

public spaces – common kitchens – between different floors and buildings (Jancke, 

Venolia, Grudin, Cadiz & Gupta, 2001).  Three kitchens were outfitted with microphones, 

cameras and a video projector.  The projector displayed three kitchens in each of three 

quarters of the display, while the fourth quarter was reserved for CNN, in an attempt to 

provide something to draw people into conversation through the link.  While initially 

setting up the system, the researchers ran into resistance from people not wanting to be on 

camera every time they walk into the kitchen.  To resolve this issue, an ‘off’ button was 

placed at the door of the kitchen.  If pressed as one enters the room, the feed from the 

room’s camera would turn off for 180 seconds.  In practise, people actually did use Video 

Kitchen to foster casual interaction.  However, acceptance was far from universal and there 

still were those who would hit the ‘off’ button on entry, even when other people in the 

kitchen were conversing through the Video Kitchen link. 

Media spaces have been likely the most developed type of groupware application 

aside from shared drawing canvases.  Yet they remain mostly research systems and have 

not entered real mainstream use.  Still they teach us lessons we can apply to new designs. 

a) The rapid ability to gauge awareness and move into conversation over a video and 

audio channel supports the intermittent, spontaneous and rapid nature of casual 

interaction. 

b) Video as a medium is very successful in terms of judging activity and availability of a 

potential contact. 



 

 

15

c) From the many field deployments of media spaces, we know that privacy is a 

problem.  At the very least, participation in a collaborative space should be voluntary, 

i.e., people should not be forced to participate simply by walking into a room that 

contains a media space. 

2.2.2 Instant Messaging 

Instant messaging (IM) is a class of conceptually simple groupware applications that offer 

mostly text-based impromptu real-time communication and awareness via the internet.  IM 

systems such as ICQ, AOL Instant Messenger and MSN Messenger are simple in concept 

but are now claimed to be used by millions (Nardi, Whittaker & Bradner, 2000), 

highlighting that tools such as these are considered important for supporting informal 

awareness and casual interaction with our collaborators. 

IM systems allow people to track a list of ‘buddies,’ or contacts they communicate 

with (MSN Messenger’s list is shown in Figure 2.2a).  People can communicate their 

availability to others using iconic status indicators representing different states such as 

‘online’, ‘away’ or ‘busy’ (as illustrated on the left side of Figure 2.2a).  Leaving the 

computer for a certain amount of time will also automatically adjust the online state to 

  
Figure 2.2a – MSN Messenger’s 
Buddy List 

Figure 2.2b – MSN Messenger Chat window 

 



 

 

16

‘away’ or some equivalent.  Double clicking a name in the contact list invokes a chat 

window where a one on one chat can occur (Figure 2.2b).  Nardi, Whittaker and Bradner 

(2000) found that people saw the ability to quickly get a feeling for ‘who was around’ in 

their personal contact list was important, as well as the lightweight interface for entering 

into a conversation. 

Although the contact list can be perceived as a personal ‘group’, IM’s awareness and 

resulting conversations are typically dyadic.  This makes sense for the context of IM:  each 

person has differing contact lists, with potentially many personal social and work circles 

being represented (e.g., the ‘family’ and ‘friends’ classifications in Figure 2.2a).  That is, 

‘groups’ are not in common between IM holders.  Although close individuals may have 

overlapping people in their contact lists, they will generally be different. 

IM systems also do not broadcast conversations beyond those (usually two people) 

involved in them.  The consequence is that people remain unaware of the conversational 

state of the people on their contact lists.  Compared to real life, we may know someone is 

there, but we cannot see if they are talking to others or hear what they are talking about. 

IM’s availability state, while simple, leads to inaccuracies.  For example, a person 

who appears ‘Online’ may actually miss invitations to converse simply because they are not 

looking at the screen, or have just stepped out, or are engaged in other activities.  This can 

actually serve as a resource allowing people to mitigate privacy through ‘plausible 

deniability’ (Nardi et al, 2000).  A lack of response to an IM message is not seen as rude; it 

is perfectly acceptable if a person whose status says ‘online’ is not actually there.  For this 

reason, it has also been observed that many people begin IM conversations with questions 

such as ‘are you there?’  As well, some explicitly set their availability to ‘away’ or some 

equivalent making it less likely that they will be interrupted by others.  They essentially 

hide while online. 

IM conversations are low-cost.  They can be ignored for later response or they can be 

used for a quick question, which easier than a phone call or walking down a hallway to find 

someone.  More recently, IM has begun to offer bridges into richer interaction channels 

such as video, audio and shared applications (e.g., the Webcam, Audio and Launch Site 



 

 

17

buttons in Figure 2.2b).  Also, additional people can be added to conversations to increase 

the circle of a discussion (e.g., the Invite button in Figure 2.2b). 

The rapid success of IM highlights the importance of the lightweight awareness they 

provide.  While they are not tailored to communities of intimate collaborators, we can take 

some lessons from their successes. 

a) Even minimal awareness of the presence of intimate collaborators is seen as important 

in gaining a feeling of ‘who is around’. 

b) Establishing conversations should be lightweight, where it is easy to connect and 

converse with others. 

c) Interactions can be ignored and left in the periphery until such time as it is seen as 

convenient to respond. 

2.2.3 Chat Rooms and MUDs 

Chat rooms allow people (often strangers who may not know one another) to enter and 

chat in a large, public arena.  Unlike IM, a chat room defines a public group space, where 

all see who is in the room and can overhear and participate in all conversations. 

Chat rooms are popular.  Systems such as Internet Relay Chat (IRC) see daily use of 

thousands of users.  More recently, web-based services such as MSN or Yahoo! and online 

video game services such as Battle.net have also begun offering live chat rooms as part of 

their sites.   

The ‘group’ and conversation defined by a chat room is often anonymous and in a 

state of flux.  While regular users may appear daily in particular chat rooms and get to 

know one another through their online presence, new people are also continually arriving 

and departing.  Users arriving also have no pre-existing knowledge of what is happening in 

a particular chat room.  The only clues or motivation people may have to join a chat room 

is its name, which is often used to indicate an intended discussion topic.  In reality, the 

conversations actually taking place can diverge significantly from these topics.  Still, chat 

rooms are successful in that they allow people to interact and get some work done.  For 



 

 

18

example, Blizzard Entertainment’s Battle.net chat rooms are extremely successful in 

allowing anonymous users from diverse locations to negotiate and enter both competitive 

and cooperative gaming sessions. 

Multi-user Dungeons (MUDs) use a richer version of the room-based metaphor for 

moving about a virtual space that contains objects as well as other people (Curtis & 

Nichols, 1994).  Traditional MUDs have come in the form of online text-based role playing 

games.  An online database contains the definition of the ‘world’ to which people connect.  

The user signs on and takes control of an avatar, which they use to move through different 

‘rooms’ in the world using text based commands such as “go west”.  Objects can also be 

stored in the database with which users can interact in the environment.  For example, they 

could use commands like “read sign” or “climb ladder” or “open door”.  The worlds are 

extensible from within, allowing users with correct access to add, modify and remove 

rooms and objects, as well as changing the way in which the world works.  All of this is 

done with a native programming language. 

Seeing potential for supporting community communication in the room-based 

metaphor of the MUD model, Xerox PARC developed a customized server called 

LambdaMOO which allowed them to add a graphical interface (Curtis & Nichols, 1994).  

While traditional MUDs incorporated only text based interactions through a standard telnet 

client, the LambdaMOO server could send messages to its specialized clients that could 

invoke windows to provide a different interface.  The client tracked interaction on these 

windows and sent any relevant events (e.g., mouse button clicks) back to the server for 

processing.   

The benefit of the graphical interface elements is that it opened the possibility of 

adding rich media such as video and images to windows for people to share and converse 

over.  Later versions included an audio channel for each ‘room’ where audio sourced from 

each person occupying the room was heard.  As people navigated through the rooms, the 

server would process the channels and have the clients multicast the appropriate audio 

between one another.  Because processing of the channels themselves was performed on the 

server, it could also ‘mix in’ a smaller volume audio from adjacent rooms, somewhat akin 



 

 

19

to overhearing a conversation through a doorway (Curtis & Nichols, 1994).  While the 

video was very low fidelity (320 by 240 greyscale at five frames per second), it was 

actually enough that people could tell ‘what was going on’ in another space, allowing them 

to judge the availability of other people. 

The LambdaMOO MUD concept was taken another step towards support for 

communities with the AstroVR system, developed by Xerox PARC and the NASA/JPL 

Infrared Processing & Analysis center (Curtis & Nichols, 1994).  AstroVR is a modified 

version of LambdaMOO with the purpose of supporting researchers – rather than a broad 

community of strangers – collaborating on astronomical research.  The community already 

shared much of their research over the internet using email, the web, and USENET 

newsgroups.  People from outside the community (the public at large) added their own 

questions and comments to the community newsgroups, and as a result the levels of 

discussion also had to match the level of the public, reducing the effectiveness of the 

community’s online collaboration.  AstroVR provided researchers with an exclusive online 

forum for collaboration within their community.  It included tools for sharing images of 

research via links, ‘meeting rooms’ where one person could direct an annotated slide show 

and record discussions about it, as well as internal email and bulletin board systems – these 

messages never left the confines of the MUD system. 

While the progression of these systems succeeded in narrowing down the 

communication circle to groups such as those communities described in section 2.1, they 

still had the usage hurdle of being primarily text-based systems at heart.  TeamRooms 

(Roseman & Greenberg, 1996) takes on the room metaphor of the MUD, but also moves 

completely away from the text-based interfaces (Figure 2.3).  TeamRooms was developed 

using GroupKit, a Tcl based toolkit for building groupware (Roseman & Greenberg, 1996).  

It provided a community with a set of virtual ‘rooms’ where they could create graphical 

user interface (GUI) objects and interact over them.  GUI objects persisted so that things in 

a room were there (and in the same state) when people returned.  Also, all objects are 

groupware, so the act of entering a room puts people in immediate contact with one another 

and with the room’s contents.  A list of the rooms available was provided on a small dialog 



 

 

20

(Figure 2.3b).  Objects were small applets such as brainstorming tools, or pictures, or postit 

notes (the objects on the white canvas in Figure 2.3a), and were added via a menu.  Each 

room also had a standard set of tools, including a chat system (bottom of Figure 2.3a) and 

its wall was an electronic whiteboard for sketching and annotation (the white canvas in the 

background of Figure 2.3a).  TeamRooms also included a way for third party developers to 

create and add their own custom applets. 

A list of people who were in a room was shown on the left-hand side of the canvas, 

providing some sense of who was around (Figure 2.3b).  Once in room, people could 

interact in real time and gesture via tele-pointers and drawing.  To provide even more 

community awareness, a list of people currently using the system was available on another 

dialog, showing also which room they were in (Figure 2.3c).  As well, contact information 

for particular users was available (Figure 2.3d). 

 
Figure 2.3 - the TeamRooms Interface (From Roseman & Greenberg, 1996) 
 



 

 

21

While the system had extensive collaborative facilities, in actual practise it was found 

to be too heavyweight for community awareness over distance (Greenberg & Kuzuoka, 

1999).  The main problem was that people had to be actively in the system and looking at it 

to gain awareness.  While successful in enabling interaction, moving through the startup 

and login process was too effortful if one only wanted to gather awareness information 

(e.g., if anyone was present).  As well, the size of the application was seen as too costly to 

keep on the screen for the sole purpose of gathering awareness cues from the community. 

In summary, chat rooms evolved into MUDs, then multimedia MUDs such as 

LambdaMOO and AstroVR, and ended up with TeamRooms, a MUD-like system enabling 

collaboration over persistent groupware applets.  The progression from purely text based 

systems to graphical systems allowed developers to add more novel multimedia 

information to their spaces.   I take several lessons from these systems. 

a) Rooms are a good metaphor for grounding group interaction and are well accepted in 

large group systems, but a single room could suffice for a simple community system 

wanting group awareness. 

b) People benefit from interacting over objects and work artefacts as they can encourage 

interaction more than simple text-based chatting. 

c) Systems must be lightweight to get started and use. 

d) Large amounts of multimedia information end up taking up a lot of space, and are 

thus too costly to keep on the primary screen.  Instead, perhaps ephemeral awareness 

information could be moved off the primary display to secondary displays, or even to 

large public displays (Grudin, 2001). 

2.2.4 Notification Systems 

Notification systems simply display information as it comes in.  That is, people publish 

information to the system, and subscribers see the information as it is propagated.  They 

have enjoyed considerable use and attention from a large community of people using them 

(Fitzpatrick, Kaplan, Mansfield, Arnold & Segall, 2002). 



 

 

22

Coffeebif is a simple example of such an application (Fitzpatrick et al, 2002).  It was 

developed for an organization with a single coffee room to foster how people – who were 

distributed over several floors – met over coffee.  It is a small window with a picture of a 

coffee cup.  Anyone running Coffeebif is connected to a common ‘place’ where Coffeebif 

information is sent.  When a person gets up to go to the coffee room, they simply click on 

the coffee cup to send a message, which increases the count of people on a coffee break and 

adds the new person’s name to a scrolling list of people in the coffee room.  The 

information is broadcast to all others. 

TickerTape is another application running on the same system as Coffeebif that 

simply presents a one line scrolling marquee of notifications (Fitzpatrick et al, 2002).  Via a 

simple interface, people can choose any number of ‘groups’ from which they wish to 

receive notification (such as the ‘coffee’ group accompanying Coffeebif).  People can then 

post messages to these groups which are automatically sent to all subscribers (for example, 

when the number of people out for coffee in Coffeebif reaches five, TickerTape notifies 

people subscribing to the ‘coffee’ group that a large group has gathered).  Incoming 

messages steadily scroll across a one line interface.  Messages are textual but can also 

contain MIME attachments such as URLs or pictures.  For attachments, small icons 

accompanying the scrolling notification can be clicked to retrieve them.  Messages will 

fade over time, eventually disappearing from the message queue altogether. 

TickerChat runs in the same venue as TickerTape, but was borne from the desire to 

more easily move into discussions over the same medium.  Instead of an ephemeral 

scrolling list of messages, it takes on the form of a traditional chatting interface, logging 

notifications as a list as they arrive in time order.  This allows a more persistent state to the 

information as it arrives, and makes it easier to review and discuss. 

We can take a major lesson from these simple, yet elegant systems. 

a) The ability to ‘broadcast’ information of any kind to interested parties is important, 

for it serves as a means to supply awareness, to provide information, and to ‘dig 

deeper’ into that information if desired (i.e., through message attachments) 



 

 

23

2.3 Technical Resources for Design 

While the previous section considered what groups see and use, this section concentrates on 

infrastructure.  I present two concepts that are useful for developing multimedia groupware.  

First, Notification Servers can propagate data as events from one client to others, who can 

then react to the information.  Second, Component-based Design allows the re-use of 

binary code and objects that can be loaded on the fly.  As described in a later section, both 

of these ideas are used in the Notification Collage to design a system that is constructed as 

a modular software system that allows for easy distribution, connection and expansion. 

2.3.1 Notification Servers 

As stated by Fitzpatrick et al (2002), “the function of a notification service is to act as a 

distributor for descriptions of events”.  That is, when some event occurs, those who are 

listening for it are informed of the potential change in state.  This is simply called a 

notification.   

Patterson, Day & Kucan (1996) described the Notification Service Transfer Protocol 

(NSTP), which was initially intended as a concept for building synchronous groupware.  In 

it, clients requested information from a server on state changes for some set of information.  

Specifically, it is concerned with the concepts of Places, Things, Facades, and the server 

itself Figure 2.4a illustrates how these are interrelated with respect to clients waiting for 

notifications. 

The notification server itself is connected to by clients.  Multiple places can exist in 

the server, each representing the state of a different system or set of information.  The 

things in the place are the objects that actually hold the state information of the system.  

Facades can be seen as the public face of a place.  For instance, it may be the case that 

some clients may not need to receive notifications for all the things in a given place.  By 

only viewing the façade, they are spared from the unnecessary notifications that would 

otherwise be generated.  Of course, there is nothing to stop a client from gaining access to 

all of the notifications generated. 



 

 

24

Notifications themselves are demonstrated in Figure 2.4b.  When client 2 changes 

some data e.g., to change the colour of the center object, the server takes note of it and then 

propagates the change as an event that carries the attributes of the change out to the other 

clients who are occupying the place or façade, allowing them to take action on the change if 

necessary.  It should also be noted that it is perfectly acceptable for clients to occupy more 

than one place at a time. 

The ephemeral nature of awareness cues and information makes this model a good 

choice for designing awareness systems.  The environments we are trying to support always 

entertain some current state of activity.  Notification servers can be used to track what is 

happening in the environment by having clients ‘call in’ with different pieces of 

information to offer which when treated as a whole represents the community (Patterson et 

al, 1996). 

A successful deployment of such a notification server system is the Elvin system 

(Fitzpatrick et al, 2002).  Elvin is a ‘pure’ notification server (e.g., an active client 

generating information tells the server about it, which in turn tells other passive clients 

about the changed information).  In particular, the three simple applications already 

described in section 2.2.4 – all based on Elvin – have proven enormously successful across 

a broad user-base. 

 
Figure 2.4a – components of NSTP (Patterson et 
al, 1996) 

Figure 2.4b – a typical notification sequence 
(Patterson et al, 1996) 

 



 

 

25

2.3.2 Component Based Design 

A big problem with building rich, multimedia based groupware systems is re-use and 

manageability, especially if many people are using and designing the system at one time.  

Having one large program doesn’t make sense as it becomes impossible to manage all the 

separate developer versions.  Still, as group dynamics change over time, so might group 

requirements of our proposed design.  Thus, it is not an unrealistic requirement that a 

system designed to support a community may need extension at some point. 

MUDs (Curtis & Nichols, 1993) recognize this by their ability to add and change 

objects and interactions in their virtual environments.  This is all done in native languages 

within the MUDs themselves.  TeamRooms makes the same effort by allowing developers 

to build basic applets, and simply load them in the application to make them groupware 

(Roseman & Greenberg, 1997).  Arrangements such as these definitely hold the advantage 

that the systems can be extended.  However they limit the interaction potential for new 

object design because the developer is limited to the capabilities of the native languages 

being used to create these objects. 

Another alternative is component based design, which can take a more ‘plug-in’ 

based approach to design.  Component-based design is essentially re-usable, pre-packaged 

program objects or functionality.  The developer simply publicizes an Application 

Programmer’s Interface (API) or contract for how their component works, and then that 

component can be included in any other program which can invoke the API.  An example 

of this is ActiveX in Microsoft Windows.  Many common objects in Windows are built as 

ActiveX objects (also called Component Object Model or COM objects), which can be 

inserted and used in many different applications without having to rebuild them from 

scratch.  For example, many common widgets are implemented as ActiveX objects, e.g., 

the Command Buttons we see on many forms and dialog boxes are all derived from the 

same ActiveX control.   

For groupware, extensions to group systems can also be built as new components, all 

employing an agreed upon contract, such that the system would always know how to load 



 

 

26

these objects.  This opens the design space for novel interactions by allowing designers to 

package a multitude of techniques in their sharable objects, as long as they comply with the 

standard software contract.   

Creating extensions in this fashion also contains deployment benefits.  It opens the 

avenue for loading newly developed objects on the fly, dynamically downloading the 

required binary to use the new object.  People using the system would never have to obtain 

a brand new version to take advantage extensions, nor would they have to even restart it to 

gain new interaction opportunities.  Developing the system and extending it can remain two 

distinctly separate development streams only using the development contract (the API) to 

inter-operate. 

2.4 Summary 

In this chapter, I have described casual interaction and informal awareness within the 

context of a community of intimate collaborators.  Casual interaction is supported by 

informal awareness cues, and it is used by community members to maintain the social 

makeup of the group.  I also explained, however, how these mechanisms break down when 

physical propinquity dissolves.  As casual interaction is seen as being so important, many 

different kinds of tools have been developed with the aim of bridging this distance gap.  I 

have discussed tools varying from media spaces to instant messaging and MUDs, systems 

that range from small research community use to widespread internet use.  While these 

systems have different intended audiences and present different granularities of awareness 

information, my particular interests revolve around small communities. 

Based on these concerns, I built an application incorporating a single ‘room’ (MUDs 

and Chat Rooms) where lightweight multimedia notifications (reflecting the diverse media 

in Media Spaces, Instant Messaging, and Notification Systems) are displayed as discrete 

component objects within a MUD-like system (taking inspiration from MUDs and 

component based design).  The system posts input gathered from remote locations to a 

large display in the community’s space, as well as peoples’ personal desktops.  All of the 



 

 

27

communication passes through a notification server that notifies connected clients when 

someone posts new information and caches the current state of the community’s data.  The 

system is designed to present info as lightweight and peripheral objects.  It does not 

demand the full attention of its users:  rather it can be attended to in passing, where people 

collaborate should the need or desire arise.  In the next chapter, I present the initial design 

and usage experiences with the Notification Collage. 



 

 

28

Chapter 3. The Notification Collage 
In this chapter, I present the initial vision for the Notification Collage (NC), a groupware 

system in which distributed and co-located colleagues comprising a community of intimate 

collaborators post multimedia elements onto a real-time collaborative surface that all 

members can see.  Akin to collages of information found on physical bulletin boards 

(Kerne, 1997), the NC randomly places incoming elements onto this surface.  People can 

post assorted media: activity indicators, slide shows displaying a series of digital photos, 

snapshots of a person’s digital desktop, textual sticky notes, and a host of others. 

I begin with a description and design rationale for the NC.  This is followed by a 

description of our research group’s early usage experiences with it, concentrating on how 

group members bootstrapped themselves, how NC was used in both public and personal 

spaces, and how people interacted on it.  A set of strengths and weaknesses derived from 

these experiences results in a redefinition of the initial vision.  It should be noted that much 

of the information in this chapter is taken from a published research paper about the 

Notification Collage (Greenberg & Rounding, 2000). 

3.1 NC Design Rationale and Description  

Our system design follows the metaphor of a bulletin board containing a collage of 

randomly positioned and possibly overlapping visual elements (Figure 3.1).  The original 

Notification Collage is illustrated in Figure 3.2.  Using various client programs (e.g., as in 

Figure 3.3), members can post a variety of multimedia elements (called Media Items) to the 

NC.  Upon receipt, the NC reconstructs these as discrete visual entities and randomly 

places them on the left side of the vertical separator bar that splits the board.  Overlapping 

Media Items are allowed, and new items are always positioned on top. 



 

 

29

This collage metaphor was chosen for several reasons.  First, the overlap of items 

inherent on a large collage acknowledges that there may be a large number of information 

fragments, too many to fit neatly in the display space available (e.g., Figure 3.1).  Second, 

collages are customarily used to present unstructured information comprising diverse 

media, conceding that awareness information comes in many forms (see Figure 3.1, again).  

Third, a collage gives a temporal history, with new items placed atop old ones.  While 

newer items dominate, one can still see parts of the older ones.  In the end, the metaphor 

allows a large amount of this awareness information, in the form of discrete and potentially 

diverse Media Items, to be displayed in the same space.   

 
Figure 3.1 – A paper bulletin board illustrates a real world collage 



 

 

30

 

 
Fi

gu
re

 3
.2

 –
 T

he
 N

ot
ifi

ca
tio

n 
C

ol
la

ge
 



 

 

31

The initial vision was that the NC itself would live on a large, public display and that 

people would independently post Media Items to it from their personal workstations.  This 

would leave the NC as a publicly accessible multimedia bulletin board, the idea of which 

was to promote informal awareness and casual interaction in our community of intimate 

collaborators.  An initial prototype was built by Saul Greenberg, which was taken over and 

extended by me. 

The rest of this section looks at particular features of the NC: its architecture, its 

media items, its display, and its user interaction. 

3.1.1 Media Items 

This initial NC deployment comprised separate clients that people would use to generate 

media items (e.g., Figure 3.3), and the NC client that displayed the items (Figure 3.2).  

Initially, six main media items were developed, all illustrated and labelled appropriately in 

Figure 3.2, and individually below: 

 

Figure 3.3 - Media Item Client Interface 
 



 

 

32

a. The Sticky Note item followed the metaphor of a real 

world sticky note (e.g., a Postit™ note).  When someone 

created a note via their client, it appeared on the NC with 

their name as a caption.  As its owner typed their message 

(Figure 3.3, top left), text appeared within the NC note for 

others to see:  edits are shown in real time.  Note that only 

the owner could edit this message. 

Sticky Note 

b. The Video item showed a live video snapshot captured 

from the client via a desktop camera.  Its owner used a 

slider to specify a refresh rate on the image ranging from 

‘near-live’ to ‘once per minute’ (Figure 3.3, 2nd row & 

video mirrored on the upper right).  By pressing the ‘Snap 

Video’ button, the owner could deliberately take and 

broadcast a video snapshot at any time. 

 
Video Snapshot 

c. The Desktop item displayed a thumbnail image of its 

owner’s digital desktop.  With the client (Figure 3.3, 

middle), the person can explicitly capture and post one’s 

desktop at a desired image size (specified by a slider) to 

the NC. Desktop Snapshot 



 

 

33

d. The SlideShow item extended the notion of tacking a 

picture to a bulletin board.  Using the client (Figure 3.3, 

bottom left and right), a person could select one or more 

photos through a standard file dialog box and post them to 

the NC.  Desired sizes were adjusted using a slider. Its 

owner could also specify whether the photos would cycle 

within a single SlideShow item on the NC, or as multiple 

SlideShow items (each containing a single photo) across 

the collage.  
Slide Show 

e. The WebPage portrayed a web page as a thumbnail image.  

A custom web browser (not shown) was employed to 

browse and post image links to the NC.  Using this 

browser, its owner would navigate the web and as a side 

effect have webpage thumbnails created for each page 

visited.  These were in turn posted to the NC as WebPage 

items.  Anyone using the NC could use the context menu 

of a Web Page item to visit the page depicted by the 

thumbnail. 

 
Web Page 

f. Finally, the Activity Indicator displayed a continuously 

updating bar chart reflecting the amount of physical 

activity at its owner’s workspace.  A client (not shown) 

collected this information by using a physical proximity 

sensor to monitor movement in the space. 

 

 
Activity Indicator 

The NC was not limited to just these Media Items.  With some programming effort, it 

was possible to add new ones, but it required source-level modification, recompilation, and 

redistribution of the NC display board if existing NC functionality did not adequately 

support the presentation of the new media item information. 



 

 

34

3.1.2 Display 

The NC was originally envisioned to run on a large public display in a common area 

(Figure 3.4a).  This had certain implications in terms of how it would be designed.  As it 

was seen residing on a large public display, items were designed to be static in size, 

roughly the same size as items on a real world bulletin board when projected on the large 

screen display.  Font size on Sticky Notes was set so that they could be read on the public 

display at a modest distance, but not so large that it unreasonably limited the amount of 

messages that would fit.  With these item sizes and the public display in mind, the NC itself 

 
Figure 3.4a – Public Display Figure 3.4b – Personal Display 

 

 
Figure 3.4c – Ghosted Display 

 



 

 

35

was designed as a full-screen application.  It did not have a title bar and it hid the standard 

Windows task-bar. 

As described in our initial experiences below, the NC quickly found its way onto 

peoples’ personal workstations.  If they had a single display, the NC would compete with 

the user’s normal productivity applications for space.  Since the NC is a ‘secondary’ 

information source, this often meant it was buried by other application windows.  In the 

ideal case, people displayed the NC on a second monitor (Figure 3.4b).  This second 

display was handy because of the rather large desktop footprint used by NC.  To attempt to 

ameliorate the amount of space it required on a person’s desktop, a ‘ghosting’ feature was 

added, where a user could click a button and the NC became translucent (Figure 3.4c).  As 

a semi-visible, click-through layer on top of other windows, the NC could be passively 

tracked without loss of application work space.  However, the main problem remained that 

the NC did not scale well (overcrowding of media items was more severe when the NC 

window was smaller) and even on a second monitor, the full size NC still represented a 

significantly large scene that competed for the user’s attention. 

3.1.3 Aging and Competition 

When new Media Items first appeared on the NC canvas, they were randomly positioned on 

the left side of the vertical separator bar, always on top of other items that happen to occupy 

the same space.  As the number of posted items increased, new items eventually covered 

old ones.  When no new items had appeared for a certain amount of time, the NC would 

occasionally ‘bubble up’ old items towards the surface.  The result was that new items were 

almost always visible for a reasonable amount of time, giving them a good chance of being 

noticed.  The appearance, eventual decay, and occasional reappearance of items reflected 

that some (but not all) information is timely yet ephemeral, that some information may be 

missed, and that peoples’ awareness of information fragments is sometimes accidental and 

serendipitous. This again followed the analogue of the real life bulletin board where not 

every notice posted will be attended to by each person viewing the board. 



 

 

36

3.1.4 Adjusting Item Visibility and Salience 

When a person attended to the NC, they could increase the visibility and salience of 

particular media items.  They could select individual Media Items to raise them back to the 

surface, drag items around on the canvas to reposition them, or hide items entirely from 

view via a menu option.  Items could also be dragged over to the right side of the vertical 

separator bar (Figure 3.2).  Because the NC positioned new items only on the area to the 

left of the vertical separator bar, placing an item on the right meant that it would never be 

covered by the automatic positioning of NC items.  People could slide this separator bar 

right or left, adjusting the proportion of the canvas dedicated to newly arriving items and 

items they deemed more important.  When this was done, items already on the canvas were 

automatically shifted proportionately to fill or compress into the re-allocated space. 

All of these actions affected only the local NC client, and not the view of other clients 

connected.  Thus the NC was a relaxed ‘what you see is what I see’ system (Stefik, 

Bobrow, Foster, Lanning & Tatar, 1986); while the same information was available to all 

connected NC clients, individuals could adjust each item’s salience to their own taste.  This 

allowed different people to track different sets of information that they considered more 

individually, and this increased the likelihood they would notice changes to items more 

closely affecting them. 

3.1.5 Acting on Information 

A person could act on any Media Item by right-clicking it with their mouse and raising a 

context menu (Figure 3.2).  Through this menu, people could respond to whoever posted 

the item by emailing or instant messaging them, or they could visit the homepage of the 

item poster.  In addition to these standard contact methods, some items also provided their 

own custom interactions.  For example, a person could select an additional item in the 

WebPage item’s menu which would raise a web browser and automatically navigate to the 

actual site depicted by the thumbnail. 



 

 

37

3.1.6 NC Architecture 

The Notification Collage was built atop a client / server architecture as illustrated in Figure 

3.5.  At its heart was a Shared Dictionary server that maintained a cache of string-based 

key/value pairs, a client-side library (DLL) that handled all communication with the server, 

and a simple API for programming clients. A typical sequence illustrates how this 

architecture worked (numbers match those in Figure 3.5 and using as an example an image 

captured by a client and distributed to all others). 

1. Through the API, input clients (posting client programs) announce (or publish) new 

or altered key/value pairs, or requests to remove a key and its associated value. 

2. The client-side DLL marshals this announcement as a string containing the command, 

the key and the value. 

3. The DLL sends the marshalled string to the server via a socket connection. 

 
Figure 3.5 – Notification Collage Architecture 



 

 

38

4. The server updates its local shared dictionary cache as directed. 

5. The server then broadcasts the same sequence to all connected clients (including the 

posting clients). 

6. Upon receipt of this message, each client-side DLL updates its own local cache of the 

shared dictionary. 

7. The client-side DLL generates an event in the output clients (NC Boards) that signals 

via the API that a particular key has been created, modified, or destroyed. 

This architecture was similar to a notification server (Patterson et al, 1996), which 

also rebroadcasts incoming messages. There were several key differences. The maintenance 

of all key/value pairs within the shared dictionary meant that new clients arriving after 

some activity had already occurred could request the current status of the dictionary (which 

happened automatically upon connection).  This in turn meant that the client could update 

its display as needed.  That is, it served as a distributed model-view controller (Stefik et al, 

1986).  In contrast, clients of a pure notification server must use some other mechanism to 

get the current state e.g., by requesting it from another client (Greenberg & Roseman, 

1999).  A cache was used so that client requests for a key’s value did not require another 

trip to the server, thus speeding updates.  

Keys were hierarchical, which meant that clients could structure information they 

were sending out, and could selectively pattern-match incoming events (Greenberg & 

Roseman, 1999).  NC exploited this by setting the following convention for naming keys: 

each media item was identified by a unique id (a number) followed by a set of words that 

indicated what information the value would contain. For example, a Sticky Note item (see 

Figure 3.2) used five keys:  

• <id #>.sticky.name indicated the name of the note’s creator, as posted as a caption 

on the top of the sticky note 

• <id #>.sticky.contents held the note’s contents, which change as the owner types 

their message in their client 



 

 

39

• <id #>.action.messenger held the creator’s instant messenger contact name 

• <id #>.action.email held the creator’s email address 

• <id #>.action.homepage held the creator’s homepage URL 

The first two keys were specific to the Sticky Note item.  Any change to a note just 

required a change of the value of key <id #>.sticky.contents; the rest of the information (for 

example <id #>.sticky.name) did not have to be retransmitted.  The three remaining keys 

used the sub-key name ‘action’ (e.g., <id #>.action.messenger) to indicate that they were 

part of the context menu for that media item (Figure 3.2). 

Other media items worked in a similar fashion. All image-based items, for example, 

used the key <id #>.image.picture to hold a marshalled version of the image. Finally, 

reusing media items was easy because individual items were associated with a key’s id.  

Changing <id #>.sticky.contents told the receiver to change the contents of one particular 

Sticky Note item instance (e.g., as would happen when someone typed text into a Sticky 

Note).  Similarly, continuously changing <id #>.image.picture would create an image 

stream within a single item (this is how the Slide Show, the Desktop, and the Video items 

were implemented).  When keys were received that contained a new id number, the NC 

client created a new media item that matched the key’s type. 

In summary, the NC worked by having all clients publish key/value pairs describing a 

media item (embedded in key names), its information (through values stored at key 

locations), and how someone could respond to it (with keys containing the sub-key 

‘action’).  When NC received these as events, it read the keys and associated information, 

and constructed or modified the media item on the board to reflect this information. Since a 

key name convention was agreed upon, creating new media items was relatively 

straightforward.  A new client for generating the media item information was built, and 

code was added to the NC client to display the new item. 



 

 

40

3.2 Initial Usage Experiences 

The first version of the NC was created by Saul Greenberg and evolved by myself in May 

of 2000 (Greenberg & Rounding, 2001).  Because it was new software still under active 

development, it was initially deployed only to our own research group.  Experiences in this 

environment are summarized here. 

3.2.1 The group and its setting 

Our group comprised mostly research assistants, graduates and faculty: only two of us were 

initially involved in the NC project.  Much of the group inhabited a research laboratory 

(floor-plan illustrated in Figure 3.6).  One side of the laboratory comprised workstations 

and workbenches for graduates and research assistants.  Computers were typically equipped 

with a camera and two monitors (Figure 3.4b).  The other side of the lab contained a small, 

public meeting area containing a 72” rear-projected Smart Board, also equipped with a 

camera (Figure 3.4a).  Workstation partitions in the lab were short, so people anywhere in 

the lab had some informal awareness of activity elsewhere in the room, including what was 

on the Smart Board (which directly faced the laboratory’s door).  The Smart Board (which 

had its own ‘user identity’) always ran NC and a client that would post the video from its 

camera, showing a panorama of the room. 

While some group members regularly worked in the laboratory, others did not.  

Faculty had separate offices.  Other members were telecommuters.  One faculty member 

regularly worked at his home office 110 km away, coming into the laboratory only 

occasionally.  Some group members lived elsewhere; for example, one was on a work 

internship 1000 km away for part of the evaluation period.  A few others alternated between 

work and home offices, with home use at its peak each day in the early morning and late 

evening hours. 



 

 

41

3.2.2 Bootstrapping 

The preliminary version of the NC was accessible only to co-located group members on a 

local network.  Not surprisingly, there was very little activity on it since its users were in 

the same room and they could see each other directly. 

When an internet-enabled version of NC was released (i.e., a version that allowed off-

site people to connect to it), a dramatic change in its use was observed.  There was a 

noticeable buzz of excitement: people wanted to join in, and those connected became 

evangelists for getting other team members to join.  While the majority of users were still 

co-located, the ability to see and interact with remote telecommuters added significantly to 

their motivation and experience. 

Peoples’ first instinct was to post their visible presence to the NC via the Video item.  

This mimicked what is usually seen in most media spaces and instant messengers:  all could 

project their presence to others and sense who was around.  Video was considered special:  

 
Figure 3.6 – Laboratory layout 
 



 

 

42

typically, people would move video images to the right side of their NC’s separator so they 

would not be covered up.  As telecommuters became visible and reachable through the NC, 

other people inside the laboratory became increasingly interested in using the NC; they 

would connect to it and stay connected to it. 

3.2.3 Display 

The initial expectation of NC was that people would run it only on the single large public 

display in the research laboratory, and that those outside the laboratory would connect to it 

every now and then from their personal machines.  In practise, the NC quickly found its 

way to almost permanent display on everyone’s desktop, even if those people were in the 

same room as the public display.  We saw that people with multiple monitors did their main 

work on one monitor and had their view of the NC running on the other display: this 

accords with Grudin’s findings that second displays are often used to hold peripheral 

information (Grudin, 2001).  While those in the laboratory could glance around to the 

Smart Board, it was not always in their direct line of sight.  They felt that having an 

instance of NC on their own machine made them more aware of changes, and they were 

better able to respond to particular events. 

When the NC appeared on the public display however, people used it somewhat 

differently than when it appeared on their personal computers. 

First, people not at their workstations used the public display as another means of 

tracking and posting information to the NC.  This depended on several things: whether they 

were logged onto a workstation in the room, whether they were closer to the public display 

than to their workstation, and so on.  As a result of the placement of the large display, some 

glanced at it briefly as they walked in the door.  As could be expected, people would also 

bring other people’s attention to items on the public display and would converse around 

them. 

Second, telecommuters used the video generated by the camera attached to the Smart 

Board as a means to monitor and communicate with people seated at the meeting table or 



 

 

43

workbench, and with people wandering about the laboratory.  This was a particularly 

important way for telecommuters to contact laboratory inhabitants when they were not at 

their workstations, as well as laboratory visitors and associates who did not have a personal 

NC.  For example, we saw telecommuters notice and contact part-time members of the 

group who appeared occasionally in the laboratory. 

Third, the Smart Board public display (a regular PC) became a more public artefact 

as a result of it being the NC’s main residence.  People began using it as a file server, 

placing files for sharing and broadcast, and it eventually did become the laboratory’s 

official file server.  This evolution of the NC server to a file server was due to people using 

NC as a medium to communicate amongst each other, and then using the file server in 

place of one of the missing features in NC: file sharing. 

3.2.4 One-to-one, overheard and broadcast communication 

People often took advantage of presence information by using the NC as an instant 

messenger.  People were observed to initiate IM conversations by way of the context menu 

on a Media Item that invoked a one-on-one Microsoft Messenger session with the person 

who posted the item. More often however, people communicated within the NC itself 

through Sticky Notes. This direct contact generally began with the other person’s name e.g., 

‘Hey Mike…’  While not explicitly designed as a chat tool, people would frequently 

communicate to each other in real time by modifying their own note and by monitoring 

changes to others. 

Conversations over Sticky Notes differ considerably from those over Microsoft 

Messenger.  Since anyone connected to NC could see the Sticky Note contents, the 

conversation could be overheard. This became an important opportunity for casual 

interaction (Kraut et al., 1988) where others would serendipitously join the conversation. 

These others would sometimes just say hello, or would join in any random bantering, or 

would contribute to a purposeful conversation when they felt they had something to add. 



 

 

44

Other people in the laboratory seeing incoming Sticky Notes also meant that they 

could tell others about messages directed to them. This happened when the addressee did 

not notice the note, or when he/she was a room visitor.  For example, a note on the NC 

labelled “Hey Mike…” would be noticed by someone just arriving in the lab.  They would 

then turn to Mike and say “Hey Mike, Saul’s trying to ask you a question…” 

Sticky Notes were also used for purely broadcast communication. People used them to 

inform the group about current or upcoming events, to annotate other Media Items (e.g., 

annotating a Slide Show by posting a Sticky Note that says “Photos from my trip to Japan”), 

or to elicit group comments. Sticky Notes also served as a way to make general queries or 

requests which could be answered by anyone e.g., ‘Does anyone know…’ 

3.2.5 Video as conversation and opportunity 

People used Sticky Notes and Video elements in tandem. They would sometimes wave to 

re-enforce a greeting, and would accentuate a note’s message by exaggerating their body 

language (laughter, thumbs up, looks of shock, making faces at one-another). They also 

used the video to show others physical things being talked about. One person, for example, 

used the video to display the covers of a large number of boxes of software they had just 

purchased. 

Aside from knowing that a person was around, the group used other things they saw 

on the video as opportunities for conversation. For example, one conversation stemmed 

from seeing a particularly ugly hat a person was wearing, with quite a few people 

eventually joining into the teasing.  Seeing ‘visitors’ in the video also led to many 

conversations. One telecommuter introduced his children (who were visible on the video) 

to other group members. In another case, a person working at home recognized a visitor to 

another person’s office that he had not seen for years.  They began to chat in Sticky Notes. 

Since the telecommuter’s wife had also met this person several years back, she too came up 

and joined the conversation. 



 

 

45

Video also provided situational feedback. In one case, a telecommuter asked a person 

in the laboratory to get something from elsewhere in the building. He saw her get up and 

leave, thus affirming that she was doing what was requested. 

3.2.6 Artefact display 

People used the NC for displaying other artefacts to the group as different Media Items. We 

saw one popular example where people would post digital photos to the NC via the 

SlideShow element for others to see. These included photos of personal vacations, families 

and friends, and group outings. Other examples included postings of large desktop 

thumbnails and individual photos.  People sometimes included Sticky Notes to explain the 

slide show. Most importantly (and unlike instant messaging and media space system use) 

conversations would sometimes arise as a consequence of people seeing these artefacts. 

3.2.7 Privacy Issues 

Several privacy issues accompanied NC use. First, NC does not guarantee reciprocity. One 

can use it without signalling their presence through video.  Alternatively, a person can have 

the video capture client running without having the NC displayed. While people did usually 

enforce reciprocity through social habit, we saw inadvertent reciprocity breakdowns. One 

example of this breakdown stemmed from a power-save facility that turned off the Smart 

Board projector after a certain amount of time. Telecommuters sending a message to a 

person captured by the Smart Board camera when the projector was switched off could then 

not make contact.  Of course, that person did not see the message as the display was dark. 

Occasionally, people captured by the Video element had no idea that their image was 

being broadcast. For example, one telecommuter reported seeing the lights come on after 

hours in the laboratory, and watching a cleaning person (unaware that she was being 

monitored) going about her duties. 

Telecommuters who used NC video from home reported other privacy concerns. One 

telecommuter’s home office doubled as a guest bedroom. While he felt video was essential 



 

 

46

(and had it always on), his wife (who was not part of this NC community) did not like the 

idea: she received no benefit from having the video on and saw it as a possible intrusion. 

The telecommuter was also more aware of his appearance: while he previously worked 

with his shirt off on warm days, he no longer did so. He was also concerned about 

inadvertently broadcasting situations visible within the room e.g., family members 

wandering by in various states of undress, or who used the room for other purposes. As a 

partial solution, he habitually rotated the camera to face out the window when leaving the 

room. Another telecommuter commented and apologized for the ‘mess’ visible in his room. 

3.2.8 Distraction issues 

When many items were on the NC, people found it more difficult to find information they 

felt important. While people could post many elements to the collage—slide shows, photos, 

videos—most felt video to be the most essential element. Although Video elements always 

rose to the surface of the collage on every update, it was still effortful to find them in a 

busy collage. Related to this, people sometimes wanted a way to ‘filter’ items from the 

display, especially if the NC was on their personal computer. For example, one person 

commented that he wanted to remove a SlideShow element from the NC because he found 

the current set of photos uninteresting and the cycling of images distracting. As a 

consequence, we added the option for people to ‘hide’ elements. We also saw people 

regularly move elements they felt important — particularly videos — to the right side of 

the NC’s separator bar so they would not be covered up. 

3.2.9 Summary of experiences 

After reviewing these experiences, I saw that people treated the NC more as a virtual public 

room (Roseman & Greenberg, 1996) rather than a bulletin board encouraging interaction. 

One person would post a Media Item, and others would (eventually) become aware of it 

and selectively react to it. What typically ensued was a sometimes brief, sometimes 

lengthy, sometimes parallel interaction between many people at once on the board. People 

made faces at each other, chatted through the Sticky Notes, and often posted other items 



 

 

47

onto the NC that were relevant to the conversation. These experiences suggest that NC 

affords uses spanning several types of collaborative tools: awareness notifiers, instant 

messengers, media spaces, asynchronous bulletin boards, and MUDs.  They also suggest 

different communication styles: broadcasts, playful, purposeful, casual, one to one, many to 

many, directed, and so on. 

3.3 Discussion and revision 

While the NC remains a successful system even in the state as described thus far, we found 

that actual use of the system did not quite match with our original vision of its use.  In 

particular, we noticed usage patterns that indicated both strengths and weaknesses of the 

current system.  In turn, this knowledge suggested ways to redesign the NC to accentuate 

the strengths and to more closely fit it to the actual way in which people were using it. 

3.3.1 NC Strengths and Weaknesses 

Our initial usage period showed that the NC was an overall success, promoting informal 

awareness and casual interaction within our group.  However, evolution in the way people 

were using it led to numerous ways in which the system could also be improved.  This 

section outlines both successes and weaknesses of the system, and makes several 

recommendations as to how the NC should be redesigned.  In hindsight, some of these may 

seem obvious. However, it would have been extremely helpful to know these ahead of time. 

1. The NC became useful when people outside the laboratory (or the immediate physical 

domain) could connect, enabling the co-located group to stay in touch with those not 

immediately present.  The NC should make connecting over the internet for both co-

located and distance separated people easy. 

2. Running NC on the large public display was advantageous to visitors, to new arrivals, 

and to occupants of the laboratory.  Visitors could get a good idea for what was 

happening in the group, new arrivals could gain an immediate partial understanding of 

the current group state, and normal occupants could apprise others of items of import 



 

 

48

they hadn’t yet noticed.  The NC needs to remain amenable to use on a large public 

display. 

3. When people started running NC on their personal workstations, they found that there 

was no way for them to accurately tell who else was running it and watching.  However, 

people wanted to see others, and wanted others to be able to see them.  Most posted 

video almost immediately, explicitly indicating presence.  The few who did not have 

desktop cameras or who chose to not post their video could essentially connect and 

‘hide’ (sometimes unintentionally).  In turn, this could provoke feelings of being ‘spied 

on’ in those who did post video.  The NC needs to enforce at least a rudimentary sense 

of presence when people connect, enabling everyone to see ‘who is around’. 

4. Using media items enabled people to post personal artefacts for others to see and share, 

and gave opportunities for others to post their own in turn.  Further, running NC on their 

personal displays allowed people more immediate access to the artefacts posted by 

others.  Media items need to be supported and used because people use them effectively 

to post and share information artefacts and act on them through the NC. 

5. People organized media items to their liking, as it enabled them to increase the visibility 

of some pieces of information over others.  Media item movement and hiding was 

available.  While movement was easy by simply clicking and dragging an item, hiding 

an item required a user to find its context menu and select the appropriate function there 

(this action proved difficult on the early versions of our touch-sensitive SmartBoard).  

The NC definitely needs to make easy support for managing media items available on 

both a per session and per media item basis. 

6. People consistently used Sticky Notes on the NC to act out conversations.  Making these 

conversations visible to the group by posting them to NC meant that they could be 

‘overheard’.  Thus anyone could monitor and join in on interaction, and people could 

inform their peers of notes directed specifically to them.  Also, unlike instant messaging 

and media spaces, conversations sometimes began from people seeing interesting 

artefacts within the space and wanting to talk about them.  Examples include an 

interesting Web Page or set of photos in a Slide Show.  The NC should support this 



 

 

49

information broadcasting style as a communication metaphor because it fits well in a 

community of intimate collaborators. 

7. Media Items were used in tandem to augment each other.  For example, a face in a Video 

was used to accentuate a textual statement on a Sticky Note, or a Sticky Note could be 

used to describe a series of pictures in a Slide Show.  The NC should make it possible to 

quickly identify particular individual media items, making it easier to draw attention to 

specific items. 

8. While people wanted to run the NC on their personal desktops, they could not 

manipulate anything on it besides media item position and visibility.  The separate 

client-side interfaces along with the NC itself meant it was a large-footprint display, and 

that there was high user overhead to start the NC and its various clients.  There was 

definite concern about the trade-off between screen space and the value of the 

information on NC.  However, because people wanted to be able to ‘see each other’ 

properly, running it locally on a workstation was seen as necessary.  In order for a 

conversation to occur, people had to switch between at least two interfaces (for example, 

a Sticky Note client to broadcast their message and a NC client to review others’ 

reactions).  This could get even more complicated when using several items to engage in 

conversation.  For example, using a Sticky Note to describe a series of photos in a Slide 

Show with an accompanying Web Page containing a trip diary and a Video to display a 

very happy face could have involved up to five separate applications, depending on 

which posting clients were used.  This overhead was excessive.  The NC board itself 

should be used for input and output, supporting direct in-place posting and editing of 

media items and their contents. 

9. For development purposes, using the simple shared dictionary server and an agreed upon 

key structure to represent the contents of the NC was successful.  Media items could be 

differentiated in the server from one instance to another, and any amount of information 

could be stored online for each.  Event notifications from specific items were easy to 

retrieve and handle, and new NC arrivals could always retrieve the current contents of 

the NC to become up to date.  In this way, NC effectively helped people who were 



 

 

50

separated from the main group stay in contact.  However, conversations were frequently 

interrupted by the shared dictionary server crashing.  This left all clients hanging, and 

people were forced to restart, and re-connect their NC software (both item posting 

clients and the NC client itself).  A robust Internet communication layer, modelled after 

the shared dictionary architecture used in the initial prototype should be developed for 

the NC. 

10. Asynchronous communication using NC was possible by leaving a Media Item posting 

client running.  This meant however, that for an item to live beyond working hours, the 

posting user needed to leave their NC item client on, plus their workstation on and 

logged in.  While a ‘hack’ was written so some versions of Media Item clients would 

leave items on NC after they were closed, it was quickly discovered that there was then 

no way to ever remove them from the NC at all, producing excessive clutter.  The NC 

should support offline asynchronous communication by allowing people to leave items 

up for a duration that is independent of login status with the shared dictionary server 

removing information needed for expired items. 

11. From the development point of view, extending the NC with new media items was 

possible, but was a cumbersome experience.  Extension required source code access to 

the NC for the purpose of adding the new item.  If several people were developing new 

media item types independently, then several different code versions were circulating 

and needed synchronizing each time a new item was finished, even before it was 

released for people to try.  The NC needs to have an architecture to separate media item 

development from media item display and use (or alternatively, from NC development). 

12. As mentioned in the previous point, the NC was successfully extended with new media 

items.  However, it was a cumbersome experience for users to include them.  They had 

to remove NC from their system, acquire a new version that supported the new item, and 

acquire the item’s posting client.  Instead of extending NC in this fashion, in the end 

several items were developed to simply emulate others to avoid the process (for 

example, Slide Show and Videos all actually use a Slide Show item).  The NC needs a 



 

 

51

system for extending media items where people can take advantage of the new items 

immediately with minimal effort. 

3.3.2 Summary 

This review of our experiences and the resulting strengths and weaknesses leads to a new 

design rationale for the NC.  The single design intent was that NC would be a publicly 

displayed multimedia bulletin board that could be posted to by people running simple client 

programs.  Table 1 (below) summarizes a set of important revision recommendations for the 

NC based on initial usage experience. 

Based on these experiences and observations, I proposed a new design rationale for a 

modified (albeit completely re-implemented) Notification Collage.  This design rationale is 

split into two parts, the first concentrating on the user experience and the second on the 

media item developer experience.  

1. NC user experience design:  The NC is a publicly accessed multimedia bulletin board.  

It will run on both a large public display visible in a public space, and also on personal 

displays such that individual users can run it on their workstations (preferably on a 

second monitor).  It will incorporate a single client interface where people will be able to 

post and interact with media items in-line. 

2. NC development and extension: There can and will be more than one developer 

extending the NC with new Media Items.  Integrating extensions needs to be seamless to 

those using the NC, so that they can continue to use NC while quickly gaining the 

benefit of new items.  Media items will be uncoupled from the NC interface completely 

by designing an architecture to fit in between the two. 



 

 

52

The following chapters focus on each of these visions in parallel.  Chapter 4 presents 

user experience of the redesigned NC, including its stock set of Media Items and the NC 

interface itself.  The ability to include new media items onto the NC is also presented from 

a user’s point of view. Chapter 5 discusses the technical aspects of the redesigned NC 

development and extension.  This presents the architecture for the relationship between 

Media Items and the NC, as well as the deployment strategy from a technical viewpoint.   

Table 1 – Notification Collage Redesign Recommendations 

The NC should make connecting over the internet for both co-located and distance 
separated people easy. 

The NC should be amenable to use on a large public display. 

The NC needs to be able to enforce at least a rudimentary sense of presence when 
people connect, enabling everyone to see ‘who is around’. 

The use of discrete media items needs to be supported. 

The NC needs easy support for managing media items available on both a per 
session and per media item basis. 

The NC will follow a broadcast style communication metaphor. 

The NC should make it possible to quickly identify particular individual media items. 

The NC should be both an input and output interface.  This will allow in-place 
posting and editing of media items and their contents. 

The NC should exploit a robust client / server system for the shared dictionary 
architecture to support real-time interaction over the internet. 

The NC should allow people to leave items up for a duration that is independent of 
login status. 

The NC needs to have an architecture that separates media item development from 
NC development. 

The NC needs a system for extending media items where people can take 
advantage of the new items immediately with minimal overhead. 

 



 

 

53

It is important to note that although presented sequentially, these chapters should be 

taken in parallel. The evolving visions were co-developed, where the concepts in one 

interplayed with the other. 



 

 

54

Chapter 4. The New Notification Collage 
User Experience 

In chapter 3, I introduced the Notification Collage (NC) and our initial development and 

usage experiences with it.  Several recommendations for the redesign of the Notification 

Collage came out of those initial experiences.  The most important redesign idea was to 

merge all the various clients – the Notification Collage board, the various media item 

clients that individuals use to capture and present information – into a single, unified user 

interface.  In this chapter, I present the NC board interface as redesigned and implemented 

concurrently with the Media Item Architecture (presented in chapter 5) as a single unified 

user interface.  I first revisit the redesign recommendations of chapter 3 to define three 

goals for the new user interface.  I then break down these goals by discussing the re-

implemented NC user experience, including a discussion of the stock set of media items 

included with the NC board.  While interface features hint at the new technical aspects of 

the NC, I defer a detailed description of its architecture until Chapter 5. 

4.1 Redesign Goals 

The design recommendations of chapter 3 relating to the user experience have been 

consolidated into three goals that will be addressed in this chapter: 

1. The NC board should allow people to rapidly connect and use a public space that 

incorporates both basic presence information of other connected people and a 

collage of media items.  The collage metaphor of randomly placed media items will be 

maintained to keep the NC amenable to large displays as well as personal displays.  In 

addition, the new interface will include a generic presence indicator, allowing those 



 

 

55

connected to see ‘who is around’ (via their login status) and to discover more 

information about those people. 

2. People should be able to add and manipulate media items directly using a single 

user interface.  The interface components that existed as separate clients for posting 

and viewing media items will be consolidated into one single interface encompassing 

all interaction using the Media Item Architecture (presented in chapter 5).  That is, 

media items on the NC will not only display information but will also provide their own 

user interfaces for information capture. 

3. The NC board should include a stock set of media items designed to support 

informal awareness leading to casual interaction and / or information sharing in a 

group of intimate collaborators, as well as the means to incorporate items.  Media 

items should include the successful ones as presented in chapter 3, but enhanced to 

provide richer interaction, as well as several new items that are expected to be useful..  

All media items should ideally give people not only awareness, but should lead to 

information sharing and / or casual interaction.  Of course, we cannot anticipate what 

items – especially ones that serve a group’s special purposes – would be useful. 

Consequently, the NC Board should have a means for a person to include new items 

developed by others, and for others to add that new item to their own NC board. 

4.2 The NC Board Interface 

The NC board client is the application window that contains media items.  While there are 

many ways the NC board could display these media items, our choice was to keep the 

collage metaphor for the new version (Figure 4.1), as we deemed this successful in the 

original prototype.  The most notable cosmetic differences between the new and the initial 

NC boards are the addition of the standard Windows title bar and the menu toolbar at the 

top of the window, and the user list in the bottom left-hand corner (see Figure 4.1).  In this 

section, I will describe the new NC board and how it mimics and differs from the initial 

prototype. 



 

 

56

 
Fi

gu
re

 4
.1

 - 
Th

e 
N

ot
ifi

ca
tio

n 
C

ol
la

ge
 R

ed
es

ig
ne

d 



 

 

57

 

4.2.1 The NC Board Revisited 

At a high level, the new NC board client (Figure 4.1) looks much the same as the initial 

version presented in chapter 3.  The same canvas is displayed, along with the vertical 

separator bar.  As with the original NC, newly appearing media items will always be placed 

randomly to the left side of the vertical bar.  Placing items on the right side of the bar still 

means that those chosen items will never be covered by newly arriving ones, allowing 

people to set aside certain media items.  Sliding the vertical bar left and right will grow and 

shrink the areas dedicated to newly arriving items and highlighted items.  The ghosting 

feature also still exists, and appears in the ‘View’ menu along with the ‘show all hidden 

items’ tool, both selectable from the toolbar at the top of the NC board (Figure 4.1, top).  

Unlike the previous version, a person can now customize the board’s appearance by 

selecting an image to use as the NC board’s background ‘wallpaper’ from the ‘Tools’ 

menu. The remaining sub-sections will describe other key differences. 

4.2.2 Connecting 

With the original NC, connecting to the server was synonymous with users creating and 

destroying the NC application.  While this worked, the scheme did not recognize that: 

a) people may want to disconnect for a short time from the NC without stopping it (e.g., 

to reconnect later); 

b) people may want to switch from the current community to another one (i.e., a 

disconnect followed by a reconnect to a different server); 

c) the connection may be dropped by the system (e.g., due to a network bottleneck) and 

people would want to reconnect back as soon as possible. 

To make it easy for people to manage their connection status, a ‘Connect/Disconnect’ 

button was added to the NC board on the new toolbar (Figure 4.1, top left). 



 

 

58

When the ‘Connect/Disconnect’ button is pressed, the NC board displays the 

connection dialog (Figure 4.2) which collects some basic information from the person.  

First, the ‘Identification Info’ (Figure 4.2, top section) is used to specify the local person’s 

contact information to the server.  Second, ‘Server Info’ (Figure 4.2, middle section) is 

used to specify the community’s server, including its location and its name.  Third, the ‘text 

item font’ section (Figure 4.2, bottom section) allows the user to specify a font which is 

used as the default by text-based media items (for example, the Sticky Note). 

The buttons at the bottom of Figure 4.2 control the outcome of the dialog box.  First, 

‘Connect’ attempts to connect to the server which, if successful, will display all media 

items currently posted.  Second, as a side effect of connecting, all the user information that 

was entered or edited in the dialog box is also saved to the Windows registry file.  This 

saved information is automatically loaded and redisplayed every time the person wishes to 

connect, so that retyping is not needed.  If desired, this information can be changed at any 

time by editing it directly, although one can ‘undo’ by reverting to the last saved 

 
Figure 4.2 – The NC connection dialog 

 



 

 

59

information through the ‘back to saved’ button (Figure 4.2, bottom). ‘Cancel’ closes the 

dialog box without connecting or saving the user information. 

Upon successful connection, the NC board’s title bar displays the name and location 

of the server that has been connected to (Figure 4.1, top). A ‘Disconnect’ button appears in 

place of the ‘Connect’ button and allows a person to disconnect from the server, which 

closes all media items to show the empty NC board with the ‘Connect’ reappeared.  This 

allows people to disconnect from one NC session and connect to another one on a different 

server without restarting the application. Existing media items are displayed, along with a 

list of all connected users (Figure 4.1, bottom left and Section 4.2.3).   

Finally, the NC is further tuned to recognize dropped connections.  When this 

happens, a dialog box (not shown) is raised, asking the user whether to reconnect or not. 

4.2.3 Presence 

One of the side-effects of the initial NC board was that connected people could ‘hide’ from 

others (intentionally or not) if they did not post any media items.  Similarly, people were 

only reachable through the posted media items as their contact information was provided on 

a per-media item basis only. 

 
Figure 4.3 – Accessing contact information 



 

 

60

With the new NC board, the contact information provided by people in their 

connection dialog (Figure 4.2) is automatically broadcast and stored on the server, and then 

sent to all NC board instances to create an ‘online users’ list of people. This list is displayed 

directly on the NC board and independent of media items (Figure 4.1, bottom left).  The list 

provides some sense of presence for everyone who is connected, regardless of what media 

items are posted. As Figure 4.3 illustrates, a person can click each user’s name in the list to 

gain access to the contact information they posted through their connection dialog box to 

email them directly and to link to that person’s homepage on the web. 

4.2.4 Media Items 

As the most important goal for redesigning the NC board is to create a single interface for 

posting and manipulating media items, several features have been added to help people 

manage media items directly.  As we will see, people not only control item position and 

visibility as in the initial version, but they now create and delete their own individual media 

items, control media item lifetime, and install new media items on the fly directly through 

the NC board. 

Creating media items is now accomplished by selecting an item type from a menu 

accessed either through the ‘Post Media’ button on the toolbar (Figure 4.1, top) or by right-

clicking the NC board canvas (Figure 4.4).  When a media item 

(no matter what type of item it is) appears on the NC board, it 

does so within a rectangle that resembles a small window.  This 

enclosing rectangle, or media item container, includes a small 

caption and title bar (outlined in Figure 4.5).  The title bar has 

two different modes, depending on who owns the media item.  

For the item poster, all of the media item management 

functions are available (Figure 4.5a).  These include two 

different options for removing media items from all connected 

NC boards (2 and 5 in Figure 4.5a) and functions for hiding the 

media item entirely from view or to shrink it to just the title bar 

 
Figure 4.4 – Media Item 
Posting Menu 



 

 

61

(aka ‘window-blinding’) within the local NC board (3 and 4, respectively in Figure 4.5a).  

Each media item also displays a name tag in the title bar (1 in Figure 4.5a), identifying the 

poster of the media item at a glance. 

If someone is viewing a media item they do not own (i.e., they did not post it), they 

will (usually) only see the shrinking and hiding functions on the title bar; these allow the 

user to affect the item’s appearance on their local NC board (Figure 4.5b).  Finally, a media 

item can be moved around on the NC board by clicking on and dragging the item 

container’s title bar. 

The poster of a media item has exclusive control over removing it from the NC board.  

By default, disconnecting from the server will remove all the items a person has posted, 

which automatically ‘cleans up’ after them. While they are connected, a person can also 

remove any of their created items 

by clicking the ‘X’ button on the 

media item’s title bar (5 in Figure 

4.5a). However, there will be times 

when a person may want their 

posted media item to persist 

beyond their login session.  They 

do this by using the timeout tool (2 

in Figure 4.5a), which allows the 

poster via a pop-up menu to 

specify how long a media item 

 

 

B: Viewer’s typical title bar controls 

 

A: An owner’s title bar and controls 
1. name of item owner 
2. timeout control icon 
3. hide item 
4. shrink to title bar, ‘window-blind’ 
5. close item 

C: Viewer’s title bar controls for an item 
showing timeout notification 

Figure 4.5 - The media item container’s title bar 

 
Figure 4.6 - A media item’s timeout menu 



 

 

62

should persist after its poster has logged out (Figure 4.6).  Clicking this tool raises a menu 

with timeout choices ranging from one minute to twenty-four hours.  When the time limit is 

set, the clock icon changes in colour on the owner’s interface and appears on the viewer’s 

(Figure 4.5c) to provide feedback for the new closing condition.  The media item will 

automatically close on all connected NC clients when the time limit – tracked by the server 

– expires. 

Media item containers also have context menus associated with them, where one can 

right-click on an item to gain access to further controls (Figure 4.7a).  The hierarchical 

context menus have two sections: one labelled ‘Collage’ that gives the user access to NC 

board specific functions (e.g., the management controls also appearing on the title bars in 

Figure 4.5), and a second section with custom controls for the media item (as shown in 

Figure 4.7a). 

Media item containers also have the ability to be resized.  When the mouse is moved 

over an item, a resize button appears on the lower right-hand corner of the item (Figure 

4.7b).  This button can be clicked and dragged to resize the item.  Not all media items will 

support resizing, but the button will always appear. 

4.2.5 Dealing with New Media Items 

As we will see in the next section, the Notification Collage is distributed with many stock 

media items that we believe are useful. However, we fully expect other developers to create 

new types of media items. Some may be generic items useful for many groups, while others 

may be specially designed for particular groups, people, and tasks. Thus one of the most 

important abilities of the new NC board is the ability to incorporate new media items on the 

  
A:  Media item context menu B:  resizing media items 

Figure 4.7 - Other media item features 



 

 

63

fly. While the next chapter describes how a programmer creates these new items, in this 

section we are concerned with how users install new items with minimal effort. 

When a new item is made available, at least one community member must install it 

on their own local NC board. This is usually a fairly trivial exercise: the developer will 

likely post a standard Windows msi file (an installation file) on a web page known to the 

user, and the user needs only click on the link to begin installation. As in most windows 

installation, the user just needs to acknowledge the steps to be taken as presented in a series 

of dialog boxes. Once installed, the name of the new item will automatically appear on the 

‘Post Media’ menu, and selecting it will create the new item on the local board (Figure 4.4). 

Note that this series of steps can be done as the Notification Collage is running – there is no 

need to shut down and restart the board. 

However, the problem is that at this point in time, only that person actually has a 

copy of the running software, and thus the Notification Collage boards owned by others 

cannot actually display the posted  item on the NC board since the software has not been 

installed on their local system. Instead, other users see a special media item containing 

‘download’ and ‘ready now’ buttons (Figure 4.8a).  Pressing the ‘download’ button will 

tell the NC board to automatically navigate to the site containing the software and begin 

downloading the installation script for the new item. The users do not need to know where 

this site is, as all information is self contained by this special item. After completing the 

installation wizard for the new media item (Figure 4.8b), the user presses the ‘ready now’ 

button on the item (Figure 4.8c) to immediately use or join in on the current session with 

Figure 4.8a – 
prompt to 
download new 
item 

Figure 4.8b – the user installs 
the new item outside the NC 
board client 

Figure 4.8c – 
when install is 
complete, start 
new item 

Figure 4.8c – 
the new item is 
immediately 
available 



 

 

64

the new item (Figure 4.8d). These users can now create a new media item of this type 

through the ‘Post Media’ menu. Finally, this operation only has to be done once per new 

item, as the software is now included as part of the local Notification Collage. Again, all 

this can be done on the fly while the Notification Collage is running.  

I must emphasise how this model significantly eases the task of updating the 

Notification Collage. As a distributed groupware system, the community membership may 

not be known, or people may come in and out of a session at various sporadic times. 

Anyone who has done software deployment for a distributed group knows what a 

nightmare this can be: software support to deliver up to date copies is tedious, and often 

requires a centralized authority. Even if software delivery succeeds, people will often  

neglect to install the software because of the work involved or because there is no 

perceived need to do so at that particular instance. Thus people often run out of date 

(perhaps incompatible) versions, and as a result one person’s incorrect version can break 

the entire system. The deployment model of the NC changes this. Any person can install 

the first instance of the software, and others are notified of this new item as they are using 

the system. Installation is optional, and is just a matter of clicking a button. 

4.3 The Media Item Stock Set 

The initial set of media items presented in Chapter 3 demonstrated the ability for people to 

share and interact over different types of multimedia artefacts.  Following these successes, 

the goal in rebuilding the media items was to maintain this level of interactivity and provide 

further opportunities for people to move into casual interaction quickly and smoothly.  As 

media items are now added directly through the NC board interface, the media items 

themselves have been enhanced with their own controls to manipulate the multimedia 

information being shared (these are controls that would have previously existed on the 

posting clients).  In this section, I first revisit the media items of chapter 3 and how they 

have evolved.  I then present several new items designed to further support the bridge from 

informal awareness to casual interaction in a group of intimate collaborators, developed 

with help from fellow graduate students Kathryn Elliot and Michael Boyle.  Note that while 



 

 

65

the surrounding media item container (e.g., the title bar and controls) is not shown in 

images in this section, it still appears with each media item on the NC board. 

4.3.1 The Sticky Note 

The Sticky Note adds functionality to its previous version while still resembling a ‘live’ real 

world post-it note (Figure 4.9a). The poster of a sticky note can now type directly into their 

item with the NC. As before, edits are shown in real time on other peoples’ NC boards in a 

mirrored sticky note item. The controls for the sticky note added to this version only appear 

when the mouse is dragged over the item.  For the owner of the control (ownership is 

indicated by a red dot in the lower right-hand corner of the note), all controls are available 

(Figure 4.9b), while for people viewing the item, only the first three controls below are 

available (Figure 4.9c): 

• a display of the time at which it was last updated; 

• up and down arrow buttons will grow and shrink the font in the note, respectively; 

• a ‘copy’ button copies the contents of the note to the Windows clipboard; 

• three coloured buttons will change the background colour of the note to attract 

attention to it; 

• a ‘caption’ button will allow the owner to change the caption on the sticky note 

(e.g., ‘Mike R’ in Figure 4.9), which is set to the name of the owner by default; 

• a ‘clear’ button which clears the contents sticky note in one action. 

 
Figure 4.9a - Sticky Note, 
view on the NC 

Figure 4.9b - Owner’s 
controls on a Sticky Note 

Figure 4.9c - A viewer’s 
controls on a Sticky Note 

 



 

 

66

The new sticky note also allows the owner to embed hyperlinks in the text they post.  

These links are automatically recognized as URLs and rendered as such when they are 

typed in (Figure 4.9).  Clicking them from either view of the item will raise a web browser 

with the appropriate link followed.  Finally, a scroll bar automatically appears when the 

contained text cannot all be displayed at the same time. 

4.3.2 The Video Snapshot 

The Video Snapshot item appears on the NC as a feed from a regular desktop web 

camera, just as before (Figure 4.10a).  As with the Sticky Note (see the previous section), 

ownership of the video item is indicated with a red dot in the lower right-hand corner, and 

the owner (but not anyone else) can raise special control to adjust the properties of this item 

simply by passing the mouse over the item (Figure 4.10b). As well, the item contains a 

small caption in the upper left-hand corner.  The particular controls let a user set the 

following attributes of their media item, which in turn affects how this item is displayed on 

all NC board. 

• A pause button pauses the camera’s capturing (paused video in Figure 4.10c); 

• The time slider selects the picture taking interval; 

• A button labelled with an ‘A’ allows the owner to change the video’s caption; 

• Adjusting the blur slider blurs the owner’s image at different levels for privacy. 

 
 

 

Figure 4.10a - Video 
Snapshot media item 

Figure 4.10b - Video 
Snapshot controls: adjusting 
blur 

Figure 4.10c - Video 
Snapshot paused on 
particular image 

 



 

 

67

Any time the owner clicks on the video snapshot, the camera will immediately take a 

picture.  This feature works while the video is actively being captured and also while it is 

paused, letting the owner pick a specific scene to display (Figure 4.10c).  In fact, all of the 

control tools work while the video is paused, allowing the owner to change their caption 

and the blur level on the video in the frozen state. 

A natural extension of this media item is to let people click on the video to open a full 

audio/video connection.  While this capability is not in the stock media item set, a later 

chapter will describe how this is included in an experimental version of this media item. 

4.3.3 The Web Item 

The web item allows people to share website links.  Instead of using a custom web browser 

as before, the poster of this item now first raises the item’s context menu to post a link 

(Figure 4.11a).  After entering a URL and an optional description for the URL, the item 

goes to the web to capture a thumbnail of that page (Figure 4.11b).  Once this is done, any 

person viewing the web item can click on it to raise a small window that contains a larger 

view of the thumbnail plus the optional description provided by the poster (Figure 4.11c).  

 
Figure 4.11a - Posting a link to a Web Item 

  
Figure 4.11b - After capturing a thumbnail of the 
desired link, a small copy appears in the Web Item 

Figure 4.11c - Click on a Web Item to 
briefly view a larger thumbnail 

 



 

 

68

As with the original web item, double clicking the thumbnail in the NC will open a web 

browser to the page represented by the thumbnail (not shown).  Changing the link in the 

thumbnail simply involves repeating the above process with a new URL. 

4.3.4 The Photo Show Item 

The Photo Show Item has been updated significantly from the version designed for the 

initial NC board.  When posted, the empty photo show starts in a paused state (Figure 

4.12a).  The owner adds one or more images from a file dialog box raised through the 

context menu on the photo show item (Figure 4.12b).  One image is displayed at a time by 

the photo show item, but a count of the photos and the item’s position in the show is 

displayed in the top left-hand corner of the item (Figure 4.12c).  Pressing the play button in 

the lower left-hand corner of the item will make the item cycle through the photos, fading 

from one to the next image in the set every five seconds.  Otherwise, simply clicking on the 

photo show item will advance it to the next picture in the series. 

A new photo or set of photos can be added by the owner at anytime.  Additionally, 

the interval between images can be changed through the context menu (Figure 4.12b).  

Finally, the photo show item allows anyone to download the full set of images at their full 

size by selecting the ‘Browse Images’ option in the item’s context menu (Figure 4.12b). 

The images will be automatically displayed in the system’s default image viewer. 

  
Figure 4.12a - The empty 
photo show item 

Figure 4.12b - Photo show menu 
includes posting and browsing 

Figure 4.12c - Cycling 
through the set of images 



 

 

69

4.3.5 The Desktop Snapshot 

The new desktop snapshot item was developed by Michael Boyle but is in standard use 

with the NC board.  As with the initial version, the intention is to be able to post snapshots 

of one’s virtual desktop.  The item is now a public item however, which means that 

everyone can choose whether or not they wish to participate in sharing their desktops.  The 

item itself shows one person’s desktop at a time, along with their name and the machine the 

snapshot is coming from (Figure 4.13, left).  Should another person wish to join by posting 

their desktop, they click on the small icon in the lower right-hand corner of the item to 

bring up its control panel (Figure 4.13, right).  By default, for privacy reasons everyone’s 

‘Update’ is paused.  A person has to explicitly unselect the ‘Pause’ check box at the bottom 

of the column, to add their desktop to the list, and a new snapshot is taken on the interval 

defined by the slider in the same column. 

The display of desktop snapshots is independent from their capture, i.e. they are 

timed independently.  Adjusting the controls on the right side of the control panel changes 

the interval between peoples’ desktops in the item, or pauses the playback completely.  

Since the item exists on the NC board without an owner, anyone can actually remove the 

item through its context menu. 

This current version only displays the desktop in miniature, and is just a static image. 

This does not follow the NC philosophy of letting people act on an item to move into 

 
Figure 4.13 - Desktop Snapshot and its popup controls 



 

 

70

interaction. As we will see in a later chapter, we have also developed an experimental 

version of this media item that allows people to actually connect to another’s desktop and 

interact with that person.  

4.3.6 NC Availability Item 

The NC availability item, developed by Kathryn Elliot, is designed after the iconic status 

indicators present in instant messaging systems (item shown in Figure 4.14a).  When 

people cannot post video, they can use this item to give others some idea of their 

availability.  By default, the six different availability states a person can choose from the 

item’s context menu are similar to the generic states provided by IM systems (for example 

‘online’, ‘away’, or ‘be right back’; Figure 4.14b).  Changing from one state to another also 

changes the image displayed by the item.  The availability item can be customized by 

choosing the ‘change my images’ option from the context menu.  This brings up a dialog 

where the captions and pictures for availability states can be changed (Figure 4.14c). For 

 
Figure 4.14a - the Availability item as it 
appears on NC 

 

Figure 4.14b:  the Availability item’s 
context menu controls 

Figure 4.14c:  customizing the Availability item’s 
pictures and status messages 

 



 

 

71

example, people typically use photos of themselves or caricatures to indicate (often 

whimsical) versions of themselves in different states. 

4.3.7 The NC Chat Item 

The NC chat item is a text item also developed by 

Kathryn Elliot (Figure 4.15).  Its need came from the 

observation that users of the initial NC had a tendency to 

clutter the display with many sticky notes when large 

conversations were occurring.  Every speaker had one or 

more sticky notes up, and each one competed for space 

and attention. While conversational threads could be 

followed easily by attending the unfolding talk, new participants would have to interpret all 

these seemingly diverse text fragments. As well, there is no persistence: if text is erased or 

a media item deleted, that part of the conversational record disappears.  

In contrast, the chat item is more similar to chat systems that puts one conversational 

thread into a single display, where it allows several people (not only its owner) to 

contribute to the conversation at once via the lower pane. Each contribution, identified by 

the user-name they signed in with, is added to the bottom of the upper pane in time order. 

Its interface is quite simple: the only controls appearing in the context menu are to clear the 

chat buffer and change the caption on the chat window. Scroll bars automatically appear 

when needed. 

4.3.8 The NC Sketchpic Item 

Recognizing that people should be able to move smoothly from awareness to full 

collaboration and back again, we decided to create a media item that  has different 

granularities of operation: a small form for awareness, and a large form for actual work. 

Our test bed was a groupware sketchpad that operated over images. To this end, the NC 

Sketchpic item takes inspiration from student projects by Kathryn Elliot and Rosemary 

Sanchez created as part of assignments to build new media items (see chapter 5).  The 

 
Figure 4.15 - the NC chat item 



 

 

72

version included with the NC posts a picture of a sketching session as a thumbnail to the 

NC board (Figure 4.16a).  A list of names on the thumbnail shows who is actively 

participating in the sketching session.  As the sketch evolves, the thumbnail is continually 

updated to show others connected to the NC board the current state of the sketch, albeit in 

miniature and with no telepointer displayed.  The thumbnail also updates to show when 

new people join in on the sketching session (Figure 4.16b). 

To join the sketching session, a person double-clicks on the Sketchpic item.  This 

brings up a full size sketching canvas window, which is displayed independent of the NC 

(Figure 4.16c).  The sketching canvas is a groupware sketching interface with a number of 

controls outlined in Figure 4.16c.  Sketchpic allows people to sketch over a blank canvas or 

various images; images the user can select through Sketchpic controls include photos or 

diagrams stored in image files, a desktop snapshot of a person’s virtual workspace, or a 

single window on a person’s desktop.  These are loaded by the controls numbered 1, 2 and 

3 in Figure 4.16c, respectively.  Emptying the canvas (5 in Figure 4.16c) will allow people 

to sketch over an empty canvas, while clearing the sketch (6 in Figure 4.16c) will clear 

annotations added by people but not the image loaded as the canvas background.  Should 

someone want to save the results of a sketching session to an image file at any time, they do 

so by clicking on the ‘save sketch’ button (4 in Figure 4.16c).  People can control the look 

of their annotations by changing the colour and width of their paintbrush (7 and 8 in Figure 

4.16c, respectively).  All of these controls apply to the sketching canvas (10 in Figure 

4.16c).  People can gesture to others on the canvas using tele-pointers, which are activated 

on a per-user basis by right-clicking on the canvas and moving the mouse around (11 in 

Figure 4.16c). 



 

 

73

The sketching canvas also provides a chatting facility similar to the NC chat item, 

allowing people to include textual messages along with their annotations (12 in Figure 

4.16c).  People participating in the sketch are tracked by a user’s list, each colour-coded 

with that person’s annotation colour (9 in Figure 4.16c). 

  
Figure 4.16a - the NC Sketchpic Item with a list 
of people participating 

Figure 4.16b:  NC Sketchpic Item updating as 
people draw or join in 

 

Figure 4.16c: the NC 
Sketchpic Item’s sketching 
canvas window controls 

1. Open Image button 

2. Post Desktop button 

3. Post Window button 

4. Save Sketch button 

5. Empty Canvas button 

6. Clear Sketch button 

7. Paint colour selector 

8. Brush Width selector 

9. Users list 

10. Sketch Canvas 

11. Tele-pointers 

12. Chat interface 

 



 

 

74

4.4 Summary 

This chapter explained the redesigned NC board user experience.  I have described the new 

NC board from the user’s point of view. I paid particular attention to how the NC was re-

implemented as a single user interface that allows people to connect to and use the public 

space.  Media items are now created directly within the NC board, and their contents are 

manipulated in place.  Finally, I described the stock set of media items, which now 

provides for richer control and interaction over multimedia information and more 

importantly that demonstrates how one moves from awareness to interaction and work. I 

also described how new media items can be included. 

In the next chapter, I focus on the technical aspects of this re-implementation and 

how it is built.  These aspects are described as several components which are consolidated 

as the media item architecture.  As mentioned at the end of the previous chapter, 

development of both the architecture and the new interface were co-supporting objectives, 

and it is important to remember that they occurred in parallel. 



 

 

75

Chapter 5. The Media Item Architecture 
In chapter 3, I introduced the Notification Collage (NC) and our initial development and 

usage experiences with it.  What came out of those initial experiences were several 

recommendations leading to a redesign, with the most important idea being to merge all the 

various clients – the Notification Collage board, the various media item clients that 

individuals use to capture and present information – into a single, unified client interface.  

This interface was presented from a user’s point of view along with a stock set of media 

items in chapter 4.  

The redesign idea had major architectural implications. In particular, we would 

expect third-party developers to create media items that would work within this unified 

interface.  However, it would be unrealistic – from both a development and a deployment 

point of view – to give developers NC source code access.  Modifying the source would be 

too difficult, and trying to manage and re-distribute different versions of the source to the 

community would be hard to do in practice (especially if incompatibility issues were to 

appear between versions).   

Consequently, I developed a new architecture to mitigate these problems along with 

the new NC board interface.  In this chapter, I present the Media Item Architecture, a 

software and data architecture designed to separate the development of the NC board 

interface from the development and deployment of media items.  I do this first by forming a 

conceptual model for redesigning the NC and this architecture.  That model is then used to 

derive four goals, each addressing recommendations found in chapter 3.  In the remainder 

of the chapter, I present a new architecture that explains the construction of the NC board 

presented in chapter 4 by: incorporating a more robust and flexible shared dictionary 

system, including a scheme where media items can be loaded into the NC on the fly and 

forming an input / output paradigm for media items appearing on NC. Because the 



 

 

76

architecture is fairly technical, I introduce it at several levels, with each level showing 

progressively more detail. I close by discussing this development model and how it allows 

rapid prototyping of new media items from experiences with an undergraduate computer 

science interface design course. 

5.1 Conceptual Model, Architecture Goals and Overview 

The new architecture is formulated around a new 

conceptual model of how the NC should work.  

1. The NC board (Figure 5.1, top) is a client that hosts 

media items. It positions items within an interface 

similar in appearance to the original NC, and it lets 

people move around and control these items in 

generic ways.  However, it knows nothing about the 

content of media items i.e., it is not responsible for 

what is displayed within the media item, or how the 

media item should respond to user input.  In this 

way, it is similar to a window manager that knows 

about windows on a screen but not about their 

contents.  

2. Media items (Figure 5.1, bottom) are discrete, programmer-defined visual objects.  

They display output, and they understand user input.  A particular media item shares 

state information with their partner instances on other displays.  However, media items 

do not exist by themselves.  Rather, they must be ‘hosted’ by an application (e.g., the 

NC board), which positions them on the screen so the user can interact with them.  

3. Dynamic hosting (Figure 5.1, arrows from items to generic containers) means that the 

NC board has a well specified way of incorporating media items at run time, regardless 

of whether these items have been seen before.  

 
Figure 5.1 - Conceptual Model 



 

 

77

This conceptual model of the new NC means that developers can create media items 

independent of the NC board, that they can deploy them without any recompilation or 

redistribution of the hosting NC, and that the people using the board will be able to use 

previously unseen items without having to shut down and restart the NC board application.   

5.1.1 Architecture Goals 

The new NC architecture derives mainly from the conceptual model above, as well as other 

recommendations in chapter 3. Its specific implementation goals are detailed below. 

1. Use a robust shared dictionary that lets the Notification Collage distribute, store 

and control both simple data structures and multimedia across the internet.  The 

primary purpose of the shared dictionary is to provide a single data structure that lets 

NC board instances as well as media item instances to independently share 

information. Since I am designing from scratch, I can completely replace the shared 

dictionary system previously used with a new one.  As we will see, the new shared 

dictionary system is used to specify a hierarchy that separates media information (as 

used by media items) from user information (as used by the NC board).  It is more 

flexible and robust, and allows a reliable client / server communication paradigm over 

the Internet.  It also allows a developer to control persistence, where media items can 

be left up for a time duration independent of its poster’s connection status. 

2. Media items should be dynamically added to the NC board without requiring 

recompilation or re-installation.  I devise a scheme where media items can be 

loaded into the system on the fly.  If new items obey an agreed-upon object interface, 

they will be hosted by the NC board.  This will allow the board to host individual 

media items without knowing their contents. It will also allow new items to be 

incorporated dynamically without interrupting the operation of the NC board or other 

media items at runtime.  This will eliminate the bulky upgrading process of the initial 

NC (recompilation, deployment, installation, etc.). This is important if third party 

developers are to deploy media items they have created. 



 

 

78

3. A media item should serve as both input and output.  The new generation of media 

items will both capture local information to broadcast to others, and will display 

information received from their remote counterparts.  This does away with the many 

separate client-side interfaces of the previous NC (e.g., as shown in Figure 3.3).  The 

modality of this operation (whether input, output, or both) will be determined at run-

time.   

4. Media items should provide a simple programming model so that average 

programmers can rapidly prototype new media items.  The architecture will serve 

double duty as a toolkit for rapid development and deployment of media items, as 

well as a groupware interface.  To evaluate whether the programming model is indeed 

easy to use, we will test how programmers explore novel designs for media items. 

5.1.2 Overview of the Architecture  

This section provides an overview of the new Media Item Architecture.  It adds to the 

conceptual model presented earlier, where it details how media items interoperate with item 

containers which in turn are hosted by the NC board, showing how the interface presented 

 
Figure 5.2 - Design for the Media Item Architecture 



 

 

79

in chapter 4 was constructed.  Figure 5.2 illustrates the architecture in three layers working 

with a shared dictionary server: 

1. Layer 1:  Each media item is built as a distinct object, separate from the NC board 

(layer 3) and completely responsible for capturing any user input and displaying its 

output.  It is also responsible for distributing shared data to its instance counterparts 

through the shared dictionary connection.  It implements a software interface 

recognized by a media item container class (layer 2). 

2. Layer 2:  Each media item is ‘hosted’ by a generic container class, which resembles a 

small window.  As we will see, the NC board knows how to dynamically load and host 

these containers.  Thus a container acts as a transparent proxy that separates a media 

item (layer 1) from the NC board (layer 3), while still allowing the two to interoperate.  

While the NC board knows how to deal with these generic containers, it need know 

nothing about media items they contain. 

3. Layer 3:  The Notification Collage board, described in chapter 4, is responsible for 

hosting multiple containers, where each container (layer 2) is capable of containing a 

separate media item (layer 1).  Each time a new item needs to be added, the NC board 

loads a new container.  The container, which actually loads the item, provides a layer of 

abstraction between media items and the NC board, which in turn allows new items to 

be added dynamically without recompilation or reinstallation. 

The main hub of information exchange in this redesigned architecture remains a 

client/server based shared dictionary (SD) system (bottom of Figure 5.2).  Goal #1 as 

presented in the previous section is to use a more flexible and robust SD system.  This is 

accomplished by adopting the SD component of the Collabrary, a toolkit for developing 

multimedia groupware (Boyle & Greenberg, 2002).  The NC board will be responsible for 

establishing and maintaining the SD connection, which will be shared across all three 

layers.  This means that each media item on the NC board will use the same network 

connection as the NC itself. 



 

 

80

After first explaining how the architecture will capitalize on the newly adopted SD 

system, I will describe how the three layers of the architecture combine to accomplish the 

goals of this redesign.  I will describe the object interface that media items use followed by 

discussing the hosting mechanism.  I will then present the development model for building 

new media items. Finally, I will show the results of distributing the development model to a 

group of average programmers to explore novel designs for media items. 

5.2 Collabrary: A Robust Shared Dictionary for the NC 

From our experiences of the previous NC, a shared dictionary (SD) client / server proved a 

successful general purpose data sharing and notification server, where it was an elegant 

means to represent, transmit and store information.  Unfortunately, the initial shared 

dictionary server was unreliable in operation and led to frequent and unexpected service 

outages, sometimes with multiple crashes in a single day.  Since the new NC would be 

rebuilt from scratch, I could completely replace the unreliable SD with a newer more robust 

and powerful version.  Consequently, I used the shared dictionary component of the 

Collabrary, a toolkit written by Michael Boyle designed to enable rapid-prototyping of 

multimedia groupware (Boyle and Greenberg, 2002).  While the Collabrary was built as a 

general toolkit, the new NC was its first major test bed; so consequently the Collabrary 

shared dictionary and the NC evolved in tandem. 

While the Collabrary shared dictionary (SD) is similar in concept to the server 

component of the shared dictionary described in section 3.1.1, it is very different in 

implementation.   However, it too is conceptually like a notification server (Patterson et al, 

1996) augmented to cache the most recent data sent to it in a central repository.  The SD 

server maintains an active list of clients who are connected to it, as well as information that 

a programmer can use to control how data persists in its repository.   

This section is not an exhaustive description of the shared dictionary’s features, but 

is intended to explain the concepts crucial to the development and implementation of the 

media item architecture and the unified NC client.  While I am not principle developer of 



 

 

81

the Collabrary, the Notification Collage was the primary driving force behind the 

Collabrary shared dictionary and I contributed to its intellectual formation.  Sections 5.2.1 – 

5.2.3 provide a brief tutorial to the Collabrary shared dictionary.  Section 5.2.4 describes 

the Notification Collage’s SD-based data model. 

5.2.1 Connecting and Instances 

Figure 5.3 contains an excerpt of Visual Basic 6 (VB6) code that demonstrates how an SD 

client instance is created, how a connection to the server is opened, and how the 

programmer detects a successful connection.   

After declaring the SD as a Collabrary.SharedDictionary instance and creating 

that instance in the OpenConnection procedure, the sd.Open call actually opens the client1.  

The argument, in URL syntax, specifies the server host machine name 

(example.machine.com) and the name of the server process (“test”).  When a connection 

is successfully opened, the SD client fires an event which in turns invokes the callback 

function sd_Opened. In this example, the callback merely displays a message box but of 

course other actions can be taken e.g., initialization actions. The client can also fire other 

relevant events (e.g., user exited or connection closed) to update the programmer on other 

status changes to the SD connection.  In terms of the new NC board, the connection dialog 

                                                 

1 Since the NC is developed as a client application, only the client form will be presented here.  

However, the Collabrary includes simple tools to start and administer SD servers, and these default servers 

are used by the NC. 

Private WithEvents sd As Collabrary.SharedDictionary 
 
Private Sub OpenConnection() 
     Set sd = New Collabrary.SharedDictionary 
     sd.Open “tcp://example.machine.com:test” 
End Sub 
 
Private Sub sd_Opened(ByVal Url As String, ByVal isServer As Boolean) 
     MsgBox sd.Me 
End Sub 
 
Figure 5.3 – SD client setup code 



 

 

82

(Figure 4.2) gets this server location and name information in its ‘Server Info’ section. 

Internally, the SD maintains an active list of users connected to the server.  The SD 

refers to each connected user as an instance.  Each instance (and thus each user) is 

identified by an automatically generated globally unique identifier (GUID) – a 128-bit 

value represented as a character string enclosed in braces.  Individual clients can access 

their own GUIDs by using the “Me” property of the client.  For example, the MsgBox 

sd.Me call in Figure 5.3 will display the local instance’s (user) GUID in a message box 

after a successful open. 

5.2.2 Shared Dictionary Keys 

Keys in the SD are hierarchical strings specified as paths.  The hierarchy is specified by 

using the solidus (“/”) character to separate different levels of the hierarchy in a specific 

key.  For example, Figure 5.4 shows keys in a hierarchy foreshadowing the way the 

Notification Collage actually stores its information.  Users are specified by the root key 

“/users”, and media types by “/media”.  Individual users and media items are defined by 

child keys (e.g., “/users/user1”, “/media/postit1” and “media/video1”).  Under each 

SD Keys Values Stored at Keys 

/media/postit1 
/media/postit1/message 
/media/postit1/caption 
/media/postit1/.transient 
 
/media/postit2 
/media/postit2/message 
/media/postit2/caption 
/media/postit2/.lifetime 
 
/media/video 
/media/video/snapshot 
 
/users/user1/name 
/users/user1/url 
/users/user1/email 
 
/users/user2/name 
/users/user2/url 
/users/user2/email 

<unique id #> 
“Hi there!” 
“Mike R says” 
“user1” 
 
<unique id #> 
“Hi, what’s up now?” 
“Sally B says” 
60 
 
<unique id #> 
<serialized video frame> 
 
“Mike R” 
“http://www.azedzed.net/” 
“rounding@cpsc.ucalgary.ca” 
 
“Sally B” 
“http://sally.com/” 
“sally@someplace.com” 

Figure 5.4 - Stylized NC SD Hierarchy 



 

 

83

of these are further keys defining information for individuals and media items e.g., 

“/media/postit1/message” for a message, “/users/user1/name” for a person’s name, 

“/media/video/snapshot” for a video frame, and so on. 

SD keys can hold a value, and these key / value pairs are what makes a dictionary 

structure.  That is, SD keys are both place-markers in the hierarchy and spaces to hold 

information as well.  

The programmer's interface is similar to that of standard dictionary data structures 

(a.k.a., hash table, map, associative array) in that the programmer specifies a key / value 

pair.  The key is the index into the hierarchy, and the value is what should be stored there.  

Values stored in the SD can range from simple strings to complex objects or binary 

information marshalled for storage.  This ability to incorporate complex and binary objects 

is a significant improvement over the older dictionary implementation as it makes 

multimedia programming less complicated. Removing keys from the SD is as simple as 

specifying an empty value to be stored at the desired key. 

To illustrate, Figure 5.5 shows an excerpt of code written in VB6 that demonstrates 

creating and storing a key/value pair (sd(”/media/postit1/message”)=“Hi There!”), 

retrieving a value (MsgBox sd(“/media/postit/message”)), and then removing a 

key/value pair from a SD (sd(“/media/postit1/message”) = Nothing). 

Ordinarily, keys stored on the SD server persist indefinitely and independent of any 

instance connection.  However, the SD specifies two highly useful reserved key names:  

‘.transient’ and ‘.lifetime’. Both are used to control the lifetime of sub-trees in the SD 

hierarchy: 

Private Sub SDTest() 
    sd("/media/postit1/message") = "Hi there!" 
    MsgBox sd("/media/postit1/message") 
    sd("/media/postit1/message") = Nothing 
End Sub 
 
Figure 5.5 – storing and retrieving using Shared Dictionary 



 

 

84

• The ‘.transient’ key makes data persist only for the lifetime of the connected client. Its 

value is loaded with the user’s GUID representing the client (see the previous section).  

When that client is disconnected, the key one level up from the .transient key plus all its 

children (including the .transient key) are deleted.  To illustrate, if ‘user1’ in Figure 

5.4 is disconnected, the shared dictionary automatically notices that user1’s GUID 

matches the .transient value in the /media/postit1 hierarchy, and that entire sub-tree 

would be removed. 

• The ‘.lifetime’ key allows a developer to force data to persist for a specified time 

duration.  Its value is loaded with a time value (in seconds).  The shared dictionary 

server (not the clients) tracks this time from when the value is set, and will remove its 

parent and all its children when the specified duration has passed.  In Figure 5.4 for 

example, the /media/postit2 hierarchy will be removed automatically after a duration 

of sixty seconds, as specified by the /media/postit2/.lifetime key in that 

hierarchy. 

By strategically placing ‘.transient’ and ‘.lifetime’ keys in the SD, the new NC board 

can meet part of architecture goal #1 stated earlier, where media items can be either tied to 

the connectivity of the poster or remain on the NC independent of the poster’s login status. 

5.2.3 Key Subscription 

When keys are created, changed or deleted, especially from a different client, the local 

client needs to know about it.  The SD does this through a subscription mechanism, where a 

programmer can selectively attend to particular keys.   

In particular, programmers can subscribe to keys or patterns of keys, and associate 

with them a programmatic call-back that is invoked whenever keys matching a subscription 

pattern are modified.  Modifications to keys are detected in one of four ways: 

• Added – A key is appearing in the SD for the first time, and a value associated with 

it is being cached by the SD server. 

• Changed – The value of a previously existing key has been modified. 



 

 

85

• Removed – A previously existing key and its value have been removed.  This key 

will no longer be available for any client to read. 

• Signalled – A key has been used to broadcast out a value of some kind, but the 

value will not be cached.  This implements a pure notification server (Patterson et 

al, 1996), where the server only broadcasts, but does not store information. 

To illustrate, Figure 5.6 shows a code snippet that subscribes to the key 

“/media/postit1/message”.  First, the programmer creates a subscription object 

(provided by the Collabrary toolkit).  When the programmer is told that the SD is 

successfully opened, they initialize the subscription object to either a single key or a pattern 

of keys to watch for.  When one of the above events occurs on a key matching the 

subscribed pattern, the subscription object will receive the appropriate event notification as 

well as the reason for the notification (e.g., added, changed, removed or signalled) so it can 

be dealt with on an individual basis.  In Figure 5.6, for example, if any client anywhere 

adds or changes the key defining postit1’s message (introduced in the hierarchy of Figure 

5.4), the sp_Notified callback is invoked, and new text is displayed in a message box. 

The SD also uses pattern matching through a regular expression system that enables a 

programmer to subscribe to all keys matching a given pattern.  For example, through the 

‘wildcard’ character (‘*’), programmers can subscribe to an entire hierarchy of keys and 

receive notification of changes that happen to any key in it.  To illustrate, if the subscription 

Dim WithEvents sp As Collabrary.Subscription 
 
Private Sub sd_Opened(ByVal Url As String, ByVal isServer As Boolean) 
 
     Set sp = sd.Subscribe(“/media/postit1/message”) 
 
End Sub 
 
 
Private Sub sp_Notified(ByVal Key As String, ByVal instance As _  
     String, ByVal val As Variant, ByVal reason As _  
     SubscriptionNotifyStyle, ByVal prev As Variant) 
 
     If reason = Added OR reason = Changed Then _ 
        MsgBox val 
End Sub 
 
Figure 5.6 – Subscription to a key pattern 



 

 

86

in Figure 5.6 was to “/media/postit*/message”, the callback would be invoked when 

any postit’s message key was changed.  

5.2.4 NC Data Model 

Similar to the preliminary NC, the new NC be designed around a model-view-controller 

data-sharing architecture (Stefik et al, 1986).  As such, a good design for the data model 

using the new SD system is needed.   

The data model will contain two basic types of information.  As with the previous 

NC, it will contain information about media items. However, it will now also contain 

information about connected individual users so that data about those users can be 

exploited by the NC board e.g., to show who is logged on and whether or not those people 

have posted media items. These two information types will be maintained separately.  

Indeed, a large advantage of adopting the Collabrary Shared Dictionary is the ability to 

separate information via the hierarchy.   

The user information and media item data model will be described independently in 

this section.  It is important to note though, that they are interrelated as people post media 

items and there does need to be a way to get from one to the other. 

5.2.4.1 The ‘Users’ Data Hierarchy 

When connecting with an NC client, a user supplies some basic information about him or 

herself (name, email address and homepage URL are examples, see section 4.2.2).  This 

information is stored on the server using the data model, and all NC clients can access this 

information. For example, the NC Board uses this information to manage and display its 

visible ‘online’ list, which in turn notifies people about who is currently connected to the 

NC system and allows them to gain further information about them (see section 4.2.3). 



 

 

87

All user information appears on a per-instance basis under the ‘/users’ key hierarchy of 

the SD.  Each user instance is assigned a unique identifying key ‘/users/<instance 

GUID>’; its value stores a Collabrary structure2 storing the following information: 

• name – the name of the person, either as a short or full name. 

• email – the email address of the person (optional). 

• homepage – the URL of the person’s homepage (optional). 

• phone – the person’s phone number (optional). 

• caption – a caption to be used by some media items (optional – if not used, the 

person’s name will be used instead). 

5.2.4.2 The ‘Media’ Data Hierarchy 

Information pertaining to media items will be stored in a separate branch of the shared 

dictionary hierarchy, all keys prefixed with ‘/media’. As with the user hierarchy, each new 

media item is stored on a per-instance basis by first adding a unique identifying key as a 

child of /media i.e., ‘/media/<instance GUID>’.  

When the user selects a media item type to post from a menu on the NC board (see 

section 4.2.4), it first it creates a new GUID for that item.  Having a different GUID, or id, 

for each item means that more than one instance of the same media item type can appear on 

the board – this is a more robust version of the id numbering scheme described in chapter 3.  

Using information held in the Windows registry file, the NC then dynamically loads the dll 

containing the media item’s code.  After the item is initialised, the NC board passes control 

to the media item itself, which is responsible for posting the following generic Collabrary 

structure at the ‘/media/<new GUID>’ key: 

                                                 

2 The Collabrary toolkit provides a generic structure object that allows the developer to store a series of 

data fields indexed by string-based names.  The object is automatically serialized when stored in the SD. 



 

 

88

• DownloadUrl – a string describing a URL where an installation script for the media 

item can be found. If someone connected to NC is missing a particular media item, this 

value is used to retrieve and install media item implementations on the fly. 

• MIMEType – a string that describes the primary data type of the information presented 

in the media item.  For example, the Sticky Note as described in the previous chapter 

has a MIME (Multipurpose Internet Mail Extensions) type of ‘text/ascii’, and a Photo 

Show has ‘image/jpeg.  The SD can store binary data, but often this data is merely a 

stream of bytes: the MIMEType value makes it possible for other researchers to build 

logging tools (Tang & Greenberg, 2002) that can fully understand media item data 

without needing to know specific details about the media item implementation. 

• RootPath – a string representing the key at which this information structure has been 

stored, thus its value will always be ‘/media/<new GUID>’. 

• RelativePath – a path that, when appended to RootPath, will find the primary 

information displayed in the media item. This is the information whose data type is 

described by the MIMEType field.  For example, a Sticky Note stores its message 

contents at a key under its root called ‘/media/<new GUID>/message’, so the 

RelativePath  is /message’.  As with the MIMEType value, this value is intended to 

provide future support for generic logging applications (Tang & Greenberg, 2002). 

• ProgID (Program Identifier) – the name of the media item as installed on the system 

and registered with the operating system registry.  This information is used by other NC 

clients to load the media item described by this structure.  The value stored here is the 

same as the value stored in the operating system registry file, mentioned earlier. 

• Owner – the GUID that matches the instance GUID of the person who posted the 

media item. This is used to map into the Users data hierarchy as described in the 

previous section, where one can find information about the person who posted the 

media item. 

Every media item is required to post the above generic information structure to the 

SD server, and adhere to the conventions for storing information in it.  Every time one of 



 

 

89

these structures is added to the SD data model, the server will signal all connected NC 

clients (through the Model-View-Controller paradigm) that a new media item has been 

added.  Similarly, when the structure is removed, the data model signals the item’s 

removal.  Using this arrangement, there will be enough information for an NC client to 

either load the appropriate media item, or to find a place to retrieve it from on the fly.  

Media items are free to store any additional information they require under the 

‘/media/<new GUID>’ key (for example, the Sticky Note’s message: ‘/media/<new 

GUID>/message’).  This arrangement effectively partitions the ‘/media’ hierarchy into 

isolated sub-trees, one for each posted media item. 

5.3 The Media Item Library 

The previous section detailed how the new shared dictionary will be a paradigm for data 

sharing, which satisfies the first goal in Section 5.1.1.  This section addresses the second 

and third architecture design goals by showing how the media item library provides a 

method to dynamically load media items into the NC, where the items support both input 

and output to streamline the user experience.  I describe how this software library fits into 

the different layers of the architecture described in section 5.1.2 to build the new NC board 

client described in chapter 4.  As part of the scheme for dynamically loading media items, I 

also introduce the development model used to create media items and provide a test-bed to 

solve the fourth design goal. 

5.3.1 Library Overview 

Figure 5.7 illustrates the overall design of the media item library and how it fits into the 

media item architecture.  Figure 5.7a describes the different objects available in the library, 

and Figure 5.7b adds implementation detail to the architecture diagram presented in section 

5.1.2, placing the crucial parts of the library in the three different layers.   

Recall that a primary goal of the architecture is to separate media items as much as 

possible from NC board implementation, which in turn enables independent development 



 

 

90

and deployment of media items and the NC while still allowing them to interoperate.  This 

is done by using the shared dictionary data model (section 5.2) and the generic software 

interface described next.   

Layer 1 (see Figure 5.7b) specifies that each media item is implemented as an 

ActiveX control.  This is a Microsoft facility that lets a programmer create a visual 

component (e.g., a widget) and distribute it as an independent dll.  ActiveX controls can 

then be included as separate objects by other software systems.  In this case, special 

ActiveX controls (media items) will be included as objects by the NC board.   

Library Component Function 

IMediaItem interface A software object interface defined in the library and 
implemented by ActiveX controls to become media items. 

MediaItemHost control An ActiveX control that hosts media items, or other ActiveX 
controls that implement the IMediaItem interface. 

MediaItemEventObject object An object that lets media items forward user interaction events 
to be synchronized on through the different layers of the 
architecture 

ShortcutMenu object An object that uses a shared dictionary hierarchy to describe a 
menu hierarchy.  It allows media items to specify and export a 
context menu definition. 

Figure 5.7a – Object contents of the media item library 

 
Figure 5.7b – Media Item Architecture with the Media Item Library 



 

 

91

When any ActiveX control is installed, the Microsoft Windows operating system 

tracks it through its system registry, where the control stores some information about itself.  

The NC board can inspect the registry at any time to discover which media items are 

available, retrieve their human-readable names, and find where they are located.  As with 

most standard ActiveX controls, these visual components gather input and display visual 

output.  However, media item controls also implement the IMediaItem interface (first item 

in Figure 5.7a, also in Layer 1 in Figure 5.7b), a special software interface that allows these 

ActiveX controls to be exploited by other layers in the media item architecture. 

The next part of the architecture is an Item Container, which is also an ActiveX 

control except that it also implements MediaItemHost capabilities (second item in Figure 

5.7a, also represented as layer 2 in Figure 5.7b).  This container dynamically loads media 

items, and it also acts as a kind of proxy between media items and the NC board (Layer 3 in 

Figure 5.7b).  The end result of this design is that media items are never in direct contact 

with the NC Board client. Instead, the NC Board only needs to know how to display and 

interoperate Item Containers, while the Item Containers only needs to know how to load 

and display Media Items while interoperating with both the Media Item and the NC Board. 

The NC board never actually concerns itself with the contents of media items:  the 

appearance and disappearance of media items on the NC is managed in multiple container 

controls and signalled by changes to item metadata contained in the shared dictionary. 

Before going into further details about the above interfaces, the concept of media 

item ‘ownership’ first alluded to in section 4.2.4 must be explained.  ActiveX controls are 

interface components, and they are typically used to display output and gather user input. 

This proves a natural mechanism for having media item ActiveX controls support 

groupware input and output in place i.e., without the need for a separate client interface for 

each media item. The problem is that media items may be ‘owned’, where its creator should 

have different input permissions (or even a different view) when compared to those others 

who just view it. For example, Sticky Notes (see section 4.3.1) are owner-specific: only a 

note’s poster (thus, the creator) should be able to change its contents. The creator may also 

see controls within the Sticky Note not visible to others e.g., a button to change the caption 



 

 

92

as displayed within the note.  Having a notion of ‘owner’ and ‘viewer’ introduces a certain 

level of modality as to who can manipulate input on specific items. To this end, the 

architecture recognizes three types of media items: ‘master’, ‘slave’, and ‘un-owned’ items.  

When a media item is loaded on the NC, it will be loaded as one of these three types.   

‘Master’ and ‘slave’ items are two different modes expected on one type of media 

item.  The ‘master’ is the media item mode for the item creator, while the ‘slave’ is the 

mode for other viewers.  That is, when a person posts a media item on their own NC board, 

it is created in the ‘master’ mode.  What appears on other peoples’ NC clients is the same 

media item in the ‘slave’ mode.  This distinction allows developers to design media items 

such that the people posting information have exclusive access to modifying it, but others 

can still view it.  For example, when a Video Snapshot (see section 4.3.2) is posted, only 

the person to whom the video belongs should be able to control when the video is running, 

blurred, or paused. The master instance will show controls for doing these actions, but the 

slave will not. 

Finally, an ‘un-owned’ item is an item whose contents are equally accessible by 

anyone. When a person creates an un-owned item, it appears identically on all displays, and 

anyone can control or modify its contents equally (for example, the desktop snapshot item 

in section 4.3.5). 

This subsection gave greater detail on how the media item library fits into the media 

item architecture, as well as the master/slave concept for media items.  The next subsection 

covers the Media Item Host control for hosting media items developed as ActiveX controls 

using the development model as provided by the IMediaItem interface, which is described 

following the host. 

5.3.2 Hosting media items using the Media Item Host control 

The Media Item Host control is a standalone ActiveX control that can host any media item.  

That is, it can contain any ActiveX control that supports the IMediaItem interface 

(described in the next section).  Acting as a generic wrapper for all kinds of media items, 



 

 

93

this control makes it possible for the NC board to be built using only a single type of 

control to represent and manage a diverse number of media items.  The host control itself 

provides methods that mirror the IMediaItem interface, but it mainly only delegates the 

calls to the appropriate implementation on the contained media item. 

On the NC board itself, media items appear as small windows, including a small 

caption and title bar (see section 4.2.4).  The actual construction of this arrangement as it 

appears on the NC board using the media item host control is illustrated in Figure 5.8, 

below.  As described above, each media item is implemented as a separate ActiveX control 

(Figure 5.8a).  These specialized controls are loaded and hosted inside a media item host 

(Figure 5.8b).  The item host has no visual interface itself: it only acts as a transparent 

proxy between media items and the NC board.  For this reason, the NC board adds a UI 

wrapper that makes each host resemble a window (Figure 5.8c), placing the item 

management tools discussed in chapter 4 directly on each media item.  The most important 

component of this hosting system and the focus of people using it is the media item.  To 

this end, the host and the UI wrapper will both automatically size themselves to whatever 

size the media item takes, creating the combined interface seen by each NC board user 

(Figure 5.8d). 

The hosting system allows the NC board to include new media items on the fly.  The 

arrival of a new media item is signalled in the SD server by the arrival of a new media item 

information structure (see section 5.2.4.2).  At this point, the NC board will dynamically 

load a new host control.  The host control is an empty container with no visible GUI of its 

Figure 5.8a - A 
media item ActiveX 
control 

Figure 5.8b - The 
media item host 

Figure 5.8c - The item 
host’s UI wrapper 

Figure 5.8d - A media 
item hosted as it 
appears on the NC 

 



 

 

94

own.  Using the information structure in the SD, the host attempts to load the media item 

described by its ProgID field.   

Chapter 4 briefly touched on the user interface for including previously uninstalled 

media items (see section 4.2.5).  This facility is provided directly by the media item host 

control.  If the item described by the ProgID field is not installed on the system, the 

loading process will fail, and the host displays its only user interface: a ‘download’ button 

and a ‘ready now’ button.  Pressing the ‘download now’ button will cause the host control 

to retrieve the installation script for the item using the DownloadURL field of the item’s 

structure stored on the SD server.  This invokes a standard download and installation script 

common to most applications in Windows, and thus familiar to users. Once the installation 

is complete, pressing the ‘ready now’ button will load the new item (this trigger is needed 

is because the host control cannot automatically know when installation is complete). 

This scheme, coupled with the IMediaItem interface – presented in the next section –  

completes the architecture for dynamically loading media items.  Through the host, an 

application (like the NC board) can load and host any media item, and not concern itself 

with the contents of the item at all.  This allows new items – developed separately from the 

NC board – to be added quickly and on the fly, without the need to modify the hosting 

application (the NC board). 

5.3.3 The IMediaItem Interface 

This section details the IMediaItem interface and how a developer would use it to create a 

media item.   

The IMediaItem interface transforms an ActiveX control into a media item. Through 

interface inheritance, the ActiveX control implements and exposes the methods and 

properties defined by the IMediaItem software interface.  These methods and properties are 

then used by the NC board through the media item host container (see the previous section) 

to interact with it.  Other functionality can then be added: as long as this software interface 



 

 

95

is supported, the media item contract is fulfilled and the ActiveX control becomes a media 

item. 

I explain the IMediaItem interface from a programmer’s perspective. Because most 

media items have a very similar (or even identical) implementation of the methods and 

properties that comprise the interface, we provide programmers with a template media item 

as a starting point3.  We expect programmers to use this template to transform a Visual 

Basic 6 ActiveX Control project into a testable media item, where they use the template to 

‘fill in the blanks’ as they create their items.  This allows them to focus on unique aspects 

of the media item interaction design rather than low-level common coding. 

While the following code may appear complex, the reality is that its only visible in 

the template because Visual Basic 6.0 is not a true object-oriented programming language. 

If it were, much of this code would be hidden in parent objects. 

5.3.3.1 Initial Media Item Setup 

The media template uses or tracks several common objects and variables, all of which are 

declared at the beginning of the code for the template item. These declarations are shown in 

Figure 5.9.  The first line imports the IMediaItem interface so that it can be implemented by 

the ActiveX control.  The second line declares SD, an instance of the Collabrary used by 

                                                 

3 The template was created in cooperation with Kathryn Elliot, a research assistant who worked under my 
supervision for this project. 

1  Implements MediaItem.IMediaItem 
 
2  Dim WithEvents sd As Collabrary.SharedDictionary 
3  Dim m_Information As Collabrary.Struct 
4  Dim EventObject As MediaItem.MediaItemEventObject 
5  Dim m_MediaPath As String 
6  Dim m_MediaMode As MediaModes 
 
7  Private Const MediaItemTemplateProgid = "Template.NCMediaItem" 
8  Private Const MediaItemTemplateMimetype = "text/ascii" 
9  Private Const MediaItemTemplateURL = "http://install.msi" 
10 Private Const MediaItemTemplatePath = "" 
 
Figure 5.9 – Initial media item declarations 



 

 

96

the media item to post and share information.  A Collabrary structure is declared which is 

used to house information about the media item as described in the NC data model (section 

5.2.4.2).  Next, an event object is declared.  This is used by the media item to fire user 

interaction events that can be synchronized across the three layers of the architecture (e.g., 

so the NC board can know when an item is clicked, Figure 5.7b).  For lines 4 and 5, the 

m_MediaPath variable refers to the RootPath value of the information structure (see 

section 5.2.4.2), and the m_MediaMode stores the user mode in which the item was started 

(the possible values of which are ‘master,’ ‘slave,’ and ‘un-owned,’ as outlined in section 

5.3.1).  The four remaining constants are posted at the top of the template so they can be set 

once, and are used by the programmer to fill in the information structure about the item and 

to use them within the program. 

5.3.3.2 IMediaItem methods for starting and stopping 

Starting and stopping a media item comprises the main portion of a media item template.  

Once the media item is started, very little architectural maintenance is required.  The basic 

starting and stopping pattern is common across all media items, as defined by the 

architecture design. Consequently, the template supplies a basic ‘shell’ that creates a fully 

operable (albeit empty) media item.  Developers are expected to add their own item-

specific setup code at specified points in these methods to support any item-specific 

interaction they want to include. 

Figure 5.10 shows the implementation for the IMediaItem_MediaStart method.  

The first things it accomplishes are storing the media path (m_MediaPath, the RootPath) 

and user mode (m_MediaMode).  These values are supplied through the layers of the 

architecture from an external calling application like the NC board.  It then initializes the 

event object and media item information structure.  Following that, a SD connection 

supplied to the media item through this method call is saved in a local copy for convenient 

use.  Note that a new connection is not established; instead, media items use an existing 

connection so it can be integrated into the hosting application with minimal overhead.  

From here, the execution stream of the method splits depending upon which user mode the 

media item is started. 



 

 

97

If a ‘master’ item is started, then the item information structure is built (section 

5.2.4.2).  This is done partly with information supplied from a calling application (such as 

the NC board) through the architecture (in the case of Owner and Rootpath) and partly 

with information provided by the media item (for the ProgID, MIMEType, 

DownloadURL and RelativePath fields).  At this point, the developer is expected to write 

code for setting up the unique aspects of their media item.  This could include things like 

Public Sub IMediaItem_MediaStart(ByVal MediaMode As _ 
    MediaItem.MediaModes, ByVal ShDict As Object, _ 
    ByVal MediaPath As String) 
 
    On Error Goto SetupFailed 
    m_MediaPath = MediaPath 
    m_MediaMode = MediaMode 
 
    Set m_Information = New Collabrary.Struct 
    Set EventObject = New MediaItem.MediaItemEventObject 
 
    If Not ShDict Is Nothing Then 
        Set sd = ShDict 
        Select Case m_MediaMode 
            Case meMaster: 
                'post media item information 
                m_Information("owner") = sd.Me 
                m_Information("rootpath") = m_MediaPath 
                m_Information("progid") = MediaItemTemplateProgid 
                m_Information("mimetype") = MediaItemTemplateMimetype 
                m_Information("downloadurl") = MediaItemTemplateURL 
                m_Information("relativepath") = MediaItemTemplatePath 
 
                'TODO: ADD CODE FOR MASTER SET UP HERE 
 
                sd(m_MediaPath) = m_Information 
                sd(m_MediaPath & "/.transient") = sd.Me 
 
            Case meSlave: 
                'retrieve media item information 
                Set m_Information = sd(m_MediaPath) 
 
                'TODO: ADD CODE FOR SLAVE SET UP HERE 
 
            Case meNoOwner: 
                'TODO: ADD CODE FOR UNOWNED MEDIA ITEMS HERE 
 
        End Select 
    Else 
SetupFailed: 
        IMediaItem_MediaStop 
    End If 
End Sub 
 
Figure 5.10 – The MediaStart method 



 

 

98

setting up SD subscriptions, or starting up desktop web cameras and timers. It is only after 

this that the item structure is posted to the SD server.  This ordering is important because it 

is the appearance of the new structure in the SD server that signals to the NC board that a 

new item has been added. By posting the structure following the setup code, a media item 

developer will know that any required setup (both locally and server-side) is completed 

before anyone else sees the item. 

If a ‘slave’ item is started, the information structure signalling the arrival of the new 

item is retrieved (this will have been posted by the master instance as described in the 

previous paragraph).  This allows the slave to have access to the same setup information as 

the master.  Most importantly, the owner information is available, enabling a later 

connection to be created between someone viewing the ‘slave’ item and the person who 

posted the ‘master’ item.  After retrieving the structure, the programmer can add any setup, 

most of which will likely mirror or complement the setup code in the ‘master’ section.   

Finally, unowned items only need setup code. The information structure is not 

retrieved because the owner field in the structure is not required. 

The IMediaItem_MediaStop method (illustrated in Figure 5.11) is much simpler.  First, 

the media item developer cleans up any of their item-specific objects that must be removed 

before their media item is unloaded.  This include things like stopping timers, unloading 

any auxillary dialogs that were used by the media item, and removing SD subscriptions.  

Next, if the media item was a ‘master’ item, it will esentially clean up after itself, removing 

Public Sub IMediaItem_MediaStop() 
    On Error GoTo DoneAnyways 
     
    'TODO: ADD CODE TO CLEAN UP ITEM-SPECIFIC RESOURCES 
 
    If m_MediaMode = meMaster Then 
        sd(m_MediaPath) = Nothing 
        sd(m_MediaPath & "+") = Nothing 
    End If 
 
DoneAnyways: 
End Sub 
 
Figure 5.11 – The MediaStop method 



 

 

99

the item information structure (thus signalling to other NC board clients that the item is 

being removed) and any keys that were placed by the item. The ‘slave’ and ‘unowned’ 

items do not have to do anything. 

5.3.3.3 Objects Returned Through IMediaItem and Related Methods 

The IMediaItem interface implementation returns three objects that can be used by other 

layers in the architecture.  Figure 5.12 shows the software implementation of these, plus 

one method that is directly related to one of the objects. 

The first object is acquired via the IMediaItem_MediaEventsObject property.  This 

object allows user interaction events (such as mouse clicks and keyboard actions) to be 

synchronized through the different layers of the architecture.  Figure 5.12 shows that the 

EventObject variable is first initialized (if this has not already been done), and then the 

object itself is returned.  Because the implementation of this method will be the same for 

every media item, the developer need never modify this definition. 

The next object is acquired through the IMediaItem_MediaMenu property.  The idea 

here is that the media item developer can build a context menu using the ShorcutMenu 

object (a component in the media item library) that can be passed through other layers in 

the architecture.  The object can then be used on its own to construct a menu, or appended 

Public Property Get IMediaItem_MediaEventsObject() As Object 
    If EventObject Is Nothing Then _ 
        Set EventObject = New MediaItem.MediaItemEventObject 
    Set IMediaItem_MediaEventsObject = EventObject 
End Property 
 
Public Property Get IMediaItem_MediaMenu() As Object 
    Dim scm As New MediaItem.ShortcutMenu 
    'TODO: build your context menu here 
    Set IMediaItem_MediaMenu = scm.MenuHeirarchy  
End Property 
 
Public Sub IMediaItem_MediaHandleMenu(ByVal Selection As String) 
    ‘TODO: insert code to handle context menu callbacks if necessary 
End Sub 
 
Public Property Get IMediaItem_MediaItemInfo() As Object 
    Set IMediaItem_MediaItemInfo = m_Information 
End Property 
 
Figure 5.12 – IMediaItem objects and related methods 



 

 

100

as a sub-menu within another context menu hierarchy (as in the case of the NC Board). 

Figure 5.12 shows that an instance of the ShortcutMenu object is declared (the scm 

variable), following which the media item developer would define their item-specific menu 

hierarchy. The method immediately following the property is the 

IMediaItem_MediaHandleMenu method.  This method directly maps to the 

IMediaItem_MediaMenu property: it should be written to handle the menu cases defined in 

the hierarchy.  As before, these implementations will work as is, and there is no 

requirement that a menu hierarchy be further defined.  

The final object is acquired through the IMediaItem_MediaItemInfo property. This 

object contains the information structure described in section 5.2.4.2.  It is provided for 

convenience to other layers of the architecture.  Instead of other layers having to figure out 

where the information structure for a particular item is stored in the SD server, the entire 

information structure can be accessed directly as a property of the item.  

5.3.3.4 Other IMediaItem Properties and Methods 

The remaining parts of the IMediaItem interface are two simple properties and one method, 

illustrated in Figure 5.13.  The first – ImediaItem_MediaDownloadURL – lets a developer 

of an application (such as the NC board) re-assign a download URL to the media item.  

This is useful for a local network distribution as it allows an item installation script to be 

Public Property Let IMediaItem_MediaDownloadURL(ByVal RHS As String) 
    m_Information("downloadurl") = RHS 
    If Not (sd Is Nothing) Then 
        If sd.Status = Opened Then 
            sd(m_MediaPath) = m_Information 
        End If 
    End If 
End Property 
 
Public Property Get IMediaItem_MediaItemMode() As MediaItem.MediaModes 
    IMediaItem_MediaItemMode = m_MediaMode 
End Property  
 
Private Sub IMediaItem_MediaResize(ByVal Width As Long, _ 
    ByVal Height As Long) 
    ‘TODO: insert resizing code for media item here 
    EventObject.RaiseSizeChanged 
End Sub 
 
Figure 5.13 – Other methods and properties of IMediaItem in the Template 



 

 

101

moved for retrieval to a local network path, as opposed to having clients retrieve the scripts 

from the default scattered URLs potentially all over the world wide web.  This property’s 

implementation need never be altered. 

The second property, which also need never be altered, is the 

IMediaItem_MediaMode property.  Its sole function is to return the user mode in which the 

media item was started (master, slave, unowned).  This is used by other layers of the 

architecture to quickly identify item ownership. 

Finally, the IMediaItem_MediaResize method is implemented by the media item 

developer to handle media item resizing.  If a user attempts to resize a media item (i.e., 

from the NC board interface as described in chapter 4, section 4.2.4), the set of new size 

dimensions are gathered and this method is invoked.  The developer inserts code to resize 

the item’s visual components.  By calling the EventObject.RaiseSizeChanged method, 

the media item signals to the other layers (most importantly layer 2, the item container in 

Figure 5.7b) that its size has changed and appropriate actions should be taken (for example, 

resizing the item container).  Leaving the method as is means that resize requests will never 

be addressed and that the media item will always remain the same size. 

5.3.3.5 IMediaItem Interface Summary 

In this section, I described the design for layer 1 (Figure 5.7b) in the architecture, where a 

media item is defined as an ActiveX control that implements the IMediaItem software 

interface.  As ActiveX controls, the programmer can create media items that gather input 

and display output.  The interface was described from the programmer’s perspective, where 

I walked through a template supplied to developers to help them create media items. 

Unfortunately, because Visual Basic 6.0 is not a true object-oriented language, more code 

is visible than necessary; some of this could have been hidden with inheritance.  

While apparently complex, the template is easily learnable and usable by average 

programmers. The next section details the results of distributing this development model to 

an undergraduate computer science class, validating its double duty design not only as an 

architecture, but as a  toolkit for exploring novel groupware interfaces in media items. 



 

 

102

5.4 Validating Ease of Development  

The fourth goal stated at the beginning of this chapter called for the development model, 

presented as the media item template in section 5.3.3, to be simple enough for average 

programmers to quickly and easily prototype novel designs for media items.   

To this end, the media item template was distributed to a fourth year undergraduate 

interaction design course in computer science. They were instructed on the NC, the shared 

dictionary, and how to use this template through a single lecture. Students had no prior 

knowledge of the shared dictionary, the NC, or even programming with the model-view-

controller paradigm using a distributed data / notification server.  Many students were 

relative newcomers to the VB6 language used to write the template. Most had never written 

groupware before. Given these conditions, we label these students as ‘average 

programmers’ as they had no prior knowledge or experiences developing NC media items 

or groupware. 

After two weeks, the fifteen students in the class each successfully produced and 

demonstrated a novel item design, some which were far more sophisticated than was 

expected.  This section illustrates five of the fifteen designs the students produced after 

being given a brief introduction to the system and having two weeks of development time4.  

The important point for validation is that no changes to the new NC board client (discussed 

in chapter 4) were necessary for the students to carry out their designs. 

                                                 

4 Of course, this was not two weeks of full time work on this design. Most students took 5 courses, 

each with other assignments that had to be fulfilled. However, we did not track the hours spent by each 

student on the media item assignment. 



 

 

103

5.4.1 Transportation Pool Item 

Alan Flanders designed a media item to 

organize and track times for 

transportation pools that would help 

groups of people manage carpools 

and/or get together on transit systems.  

Figure 5.14 shows how the media item 

operates for a group of people using the 

NC, where the ‘master’ view is shown 

on the left (as seen by the creator) and 

the ‘slave’ view on the right (as seen by 

all others).  

The owner chooses a 

transportation medium and a 

destination by dragging them from the 

palette (step 1, top left) to the road. 

They do the same with a destination, 

dropping the destination on a time later 

on in the day.  After optionally adding 

a comment, they click the ‘Go’ button 

(bottom right of the item) and the route 

is broadcast to the other users.  Other 

people can join the route by pressing 

the ‘Join’ button, and they will see their 

name on the list.  When the departure 

time approaches, a departure 

countdown is shown and an alarm 

raised when the departure time arrives. 

Master Slave 

 
1. Master is posted. The 
current time is shown on 
the road. 

 
2. Slave appears in 
response, waits for 
the master to post a 
route. 

 
3. Master drags and 
drops a transportation 
medium on the road (car 
or bus). 

 
4. Master drags and 
drops destination (home 
or work) at a time, adds 
a comment.  Then click 
Go button. 

 
5. The proposed route 
appears to other 
users. Time changes 
to countdown. 

 
6. Other people press Join. Their names appear. 
Throughout day, departure countdown continues. 

Figure 5.14 - The Transportation Pool Item 



 

 

104

 

Step 1 
Master Slave 

 
 

 

 

When the Peer Edit item is posted, the owner posts a document by pressing the post document 
button (right side of the Master item) and using the document window (center).  The slave item 
shows that it is waiting for a document to be posted. 

Step 2 
Master Slave 

   
After the master posts a document, it shows the owner no comments or suggestions have been 
posted.  A slave can post a comment or suggestion by clicking either caption on the item (right 
side of the slave item) and using the revision window (right) 

Step 3 
Master Slave 

  

When someone posts a comment or a suggestion, the master control is notified and plays an 
audio cue (master media item, in middle).  Clicking on the comments or suggestions caption will 
raise the review dialog (center window) where the highlighted text and comment is displayed. 

Figure 5.15 - the Peer Edit media item 



 

 

105

5.4.2 The Peer Edit Item 

Roberto Diaz-Marino designed the Peer Edit item that provides an online versioning system 

for text documents (Figure 5.15 previous page).  Through this media item, people post a 

text document, and people viewing the item can respond to the document with comments 

and suggestions. 

When first posted, the owner adds a text document to the master using the clipboard 

dialog (Step 1).  Until this point, slave items display that they are still waiting for a 

document.  When the document is posted, the slave interface adds controls so others can 

add comments and suggestions via a ‘review’ window (Step 2). Similarly, the master 

interface now allows the owner to view these comments and suggestions.  Clicking on the 

comment or suggestion caption allows the owner instant access to the comments in the 

review window (Step 3).   

5.4.3 The NC Alarm Item 

Christina Escabillas constructed the NC Alarm item that allow a person to post an event 

pertinent to everyone who may be viewing the NC, and to trigger an alarm before the event 

comes due (Figure 5.16, below). 

When the owner posts the item, they are presented with an event interface where they 

    
Step 1: The owner sees 
a scheduling window 
where they set an alarm 
for an appointment. 

Step 2: Everyone sees 
a blank screen while the 
alarm is counting down. 

Step 3: The event 
reminder shows with an 
audio cue to remind 
people connected to 
NC. 

Step 4:  Pressing the 
Snooze button 
dismisses the reminder 
temporarily. 

Figure 5.16 - The NC Alarm item 



 

 

106

can set up an alarm for an event happening sometime in the future (Step 1).  The date 

dropdown (middle bottom, step 1) allows them to pick a date directly from a calendar view.  

Until this point, everyone else sees a blank item (Step 2).  When the appointment time 

approaches, the appointment particulars appear on everyone’s display, and a light audio cue 

is played as an alarm (Step 3).  Pressing the ‘Snooze’ button from this state (Step 3, bottom 

right) allows people to individually defer the alarm and be reminded a short time later (Step 

4).  This very simple and common idea in scheduling and personal management software is 

made more interesting by it being situated in a public space dedicated to informal 

awareness and casual interaction. 

5.4.4 The NCHack Item 

Anand Agarawala took a different creative direction with his NCHack media item (Figure 

5.17, below).  NCHack takes advantage of the SD and other media items on the NC board 

by modifying the contents of the SD to change the appearance of items owned by other 

people.  When the item is first posted, Gilbert and his bag of tricks appears (Figure 5.17a).  

The person posting the item is the only one who sees it.  When the item owner clicks on the 

bag, they are presented with a list of users to choose as victims, labelled as 1 in Figure 

5.17b.  To use NCHack, the owner selects a person who is logged in from the list as a target 

and then uses one of the tools on the palette, labelled as follows in Figure 5.17b: 

2. Random spoof note – this tool will post a random message (a set of which is built 

into the NCHack item) in a Sticky Note as if it were the person selected as victim. 

3. Load screensaver – selecting this tool will bring up the screensaver on the 

workstation of the person selected as victim. 

4. Lock workstation – this will lock the workstation of the person selected as victim. 

5. Power off workstation – this tool will shut down Windows and power off the 

workstation of the person selected as victim. 



 

 

107

6. Kill all spoof notes – this allows the owner of the NCHack item to remove all of the 

spoof notes they have posted. 

7. Custom spoof note – this posts a Sticky Note seemingly from the victim to the NC 

board.  The owner of the NCHack item can then type messages in the Sticky Note as 

if it were their own (illustrated in Figure 5.17c). 

 
A: The NCHack item posted, 
Gilbert and his bag of tricks. 

B: Clicking on Gilbert’s bag 
yields a toolkit of toys: 

1. List of connected users 
to target 

2. Random spoof note 

3. Load screensaver 

4. Lock workstation 

5. Power off workstation 

6. Kill all spoof notes 

7. Custom spoof note 

8. Video vandalize 

9. Change desktop 
wallpaper 

 
C:  Using the NCHack item to post spoof notes 
from other people connected to NC. 

D:  Using the NCHack item to take someone’s 
video snapshot and apply graffiti. 

Figure 5.17 - The NCHack Item 



 

 

108

8. Video vandalize – if a victim has a Video Snapshot posted, this tool allows the 

owner of the NCHack item to mark the target’s video image with graffiti (illustrated 

in Figure 5.17d). 

9. Change desktop wallpaper – this will change the desktop wallpaper of the victim to 

be a picture of the NCHack item. 

These tools were all built for fun and are not intended for malicious use.  It should 

also be noted that the tools marked 3, 4, 5 and 9 all take advantage of system calls to the 

Win32 API, the system library in Windows, and they also require that the target of the trick 

have the NCHack item installed on their system.  While done for fun, it does suggest that a 

commercial version of the NC should have security safeguards built into it. 

5.4.5 The Mini Artist Item 

For our final example, Rosemary Sanchez built the Mini Artist media item (Figure 5.18) 

which inspired the SketchPic item described in chapter 4 and which appears as a stock 

media item in the NC distribution.  The Mini Artist is a simple groupware sketch pad that 

lets people connected to NC collaborate on a drawing and save the results in an image file.  

 

A: Blank master item posted with 
a blank canvas and tool palette 

B: Slave item shows 
thumbnail and name of 
posting artist 

C: Type a file-name and click the 
disk icon to save a copy of the 
drawing 

Figure 5.18 - The Mini Artist media item 



 

 

109

Figure 5.18a shows the item as it first appears to the owner when they post it.  The tool 

palette at the bottom of the canvas allows the artist to change colours and brush sizes, 

choose an erase tool, clear the canvas (only available to the owner of the item) and save the 

drawing to an image file.  Other people first see only a thumbnail of the drawing session 

with the name of the owner on it.  This thumbnail is actively updated as the drawing 

evolves (Figure 5.18b).  Double clicking the thumbnail allows others to join in on the 

sketching session.  After drawing for a while with several people, owners and artists who 

have joined the drawing session can all save the drawing as an image file using the text box 

and disk icon at the bottom of the canvas. When the image is saved, the item displays a 

message box with the name of the file (Figure 5.18c). This item is a very simple and 

elegant example of embedding groupware sketch tool (e.g., Greenberg & Bohnet, 1991) 

directly into the NC as a media item. 

5.5 Summary 

In this chapter, I have presented my new design for the Notification Collage architecture 

(section 5.1.2), motivated from four redesign goals (section 5.1.1): 

1. Use a robust shared dictionary that lets the Notification Collage distribute, store 

and control both simple data structures and multimedia across the internet.  I 

have adopted the Collabrary shared dictionary (section 5.2), a heavily featured 

shared dictionary system.  This robust client/server system works over the internet 

and provides important control of simple and multimedia data such that media item 

lifetime can be controlled independent of login status.  I have also designed a data 

model that is used by the overall media item architecture to capitalize on the new 

shared dictionary system. 

2. Media items should be dynamically added to the Notification Collage board 

without requiring recompilation or re-installation.  I have presented the 

IMediaItem interface, which when implemented within an ActiveX control creates a 

media item.  I have done this by describing the media item template (section 5.3.3), 



 

 

110

which is used as the development model for building new items.  As ActiveX 

controls, media items exist as separate and distinct objects from the NC board.  They 

are loaded dynamically into the NC board by using the media item host control 

(section 5.3.2), an ActiveX control which can contain media items.  This host 

provides the layer of abstraction necessary to completely separate the development 

and deployment of media items from that of the NC board. 

3. A media item should serve as both input and output.  This goal was important to 

remove the excess of client programs that were needed to run the initial NC 

(presented in chapter 3).  As ActiveX controls, media items are now able to 

incorporate both end-user input and output. 

4. Media items should provide a simple programming model so that average 

programmers can rapidly prototype new media items.  The development model 

was validated by giving undergraduate students in an interaction design course the 

template and only modest instruction. We saw them create and implement fifteen 

different media item designs, some which were quite sophisticated.  Five examples of 

these were presented in section 5.4.  However, I believe that an even simpler 

programming model could be developed if the NC were re-implemented in a true 

object-oriented language. 



 

 

111

Chapter 6. Conclusion 
This thesis concerned the design of a tool that supports informal awareness and casual 

interaction in a community of intimate collaborators.  In particular, I described the evolving 

development of the user interface, the architecture, and the implementation of the 

Notification Collage (NC).  I have shown how the initial version of the NC proved – in 

spite of its shortcomings – a successful medium for a partially co-located and partially 

distributed community of people to stay in touch (chapter 3).  A redesigned NC addressed 

these shortcomings. The user experience was illustrated in chapter 4, where its most 

significant difference from the previous version was that the board served as both input and 

output. Chapter 4 also included an explanation of how I designed a stock set of media items 

– each giving community members different awareness information and opportunities for 

moving into casual interaction – to be included with the distribution of the NC board.  The 

redesign was accompanied by a new Media Item architecture (chapter 5) that also 

supported how programmers could build new media items and add them onto the NC on the 

fly.  The ease of programming with this architecture was tested by having an average group 

of programmers use it to quickly create and deploy novel media item designs (chapter 5).   

In this final chapter, I comment on the success of the NC as a groupware system and 

architecture, and how several projects have spun off from this research.  I then conclude 

with future directions for this research, and by revisiting my original research problems and 

goals to highlight my contribution. 



 

 

112

6.1 The Successes of the NC board 
6.1.1 Usage 

As of Winter 2004, several generations of the NC have been in active use in our community 

for approximately three years.  In that time, membership in the NC community has changed 

considerably, with new members arriving and other members leaving.  One of the successes 

of the NC in this regard has been its acceptance.  New members in the community have 

quickly adapted it into their work practises and they have continued to use it consistently.  

As first mentioned in chapter 3, when people saw others interacting through the NC board, 

they immediately wanted to be able to participate as well.  This has lead to widespread – 

albeit not universal – use of the system by our research group and beyond. 

The NC board successfully bridged distance to allow remote community members to 

participate in our research group.  In chapter 3 I mentioned that one of the initial reasons for 

developing this system was that it allowed telecommuters to stay in touch with those 

residing in the physical laboratory more effectively via the internet.  This proved true in 

practice.  Many group members occasionally working from home as telecommuters, 

regularly connect to the NC.  Over the last three years, some community members left the 

laboratory for distant locations due to work internships, travel opportunities and sabbaticals 

in other cities and countries.  To overcome the distance barrier, they connected to the NC 

board from their new locations.  This let them maintain a collaborative link with their usual 

workmates.  In addition, people from outside our physical community joined the group via 

the NC.  For example, one current community member became friendly with group 

members after meeting at a conference in another city.  Since then, she ‘hangs around’ our 

laboratory via the NC, connecting to it almost daily in spite of residing in a different 

country and being almost 3500 kilometres away.  During this time, visitors to our physical 

laboratory, particularly research interns from Germany, have continued to connect and 

collaborate with laboratory members via the NC.  Some do this from their homes, from 

their workplace, and even during travels. 



 

 

113

The strongest testament to the success of the system is that the NC board has become 

the most actively (and continuously) used and observed groupware system in our 

community, with daily participation ranging from five to fifteen people at any one time. 

6.1.2 Technical design 

From a technical standpoint, the NC has also proven quite successful.  First, it has served as 

a good proving ground for the Collabrary toolkit’s Shared Dictionary client / server system. 

It helped define the need for several new features within the Collabrary, and encouraged an 

API that made it easier for people to capitalize on its shared dictionary when programming 

multimedia groupware. Media items also exploited the Collabrary’s multimedia facilities, 

validating the Collabrary as an excellent general purpose library.  Second, the media item 

architecture turned the NC board into an easily extendable groupware platform. This has 

made it possible for researchers to rapidly iterate and deploy groupware designs within a 

collaborative space that already contained a critical mass of users, which in turn meant they 

could get rapid user feedback of their designs.  Third and perhaps most importantly, the 

addition of novel media items requires little overhead of the people using the NC, enabling 

them to immediately include new items by clicking a button. 

6.1.3 Influences on other researchers 

The NC board has also spawned several other research projects and influenced other 

researchers.  

Within our laboratory, Charlotte Tang based her successful Masters of Science thesis 

on the NC board by building a logging facility called VisStreams (Tang, 2003; Figure 6.1).  

She did this by taking advantage of the data model in the shared dictionary described in 

chapter 5.  The idea was that the NC board had no way of reviewing past interactions, and 

that people could potentially benefit from reviewing particular interactions at a later date.  

In parallel, VisStreams lets sociologists collect usage data of the NC community over time, 

where they can analyze patterns of use and social relationships within the community. Tang 



 

 

114

generalized her experiences, where she presented a taxonomy of tasks for the development 

of logging tools in multimedia groupware.  

The NC has also become the cornerstone of several other grants. One (currently in 

progress) has as a goal to transform the NC into a form suitable for technology transfer, as 

well as deployment for use by other communities.  Another major grant, recently awarded, 

lists several projects that exploit the NC as is, and as it could be in future versions. 

The NC also influenced researchers outside our laboratory, mostly because it was one 

of the first systems to consider both co-located and distributed communities, and the public 

display of awareness information on a large display. In particular, 

a) Messydesk and Messyboard are applications intended to improve peoples’ memories of 

information as they work (Fass, Forlizzi & Pausch, 2002).  They do this by encouraging 

people to create a context for information using freeform decoration and organization 

(e.g., remembering that a set of papers about a particular topic was deliberately placed 

on a particular shelf).  Messydesk is an alternate desktop for a Windows system that 

allows the user to place information fragments (pictures, text and other objects) on their 

desktop.  Wishing to form a group context, Messyboard is essentially a networked 

 

Figure 6.1 – VisStreams and its conversation visualization window (From Tang 2003) 



 

 

115

version of Messydesk.  Similar to the NC, it is positioned both on peoples’ personal 

displays as well as projected on a large display.  Unlike NC, Messyboard has the same 

view for all people connected in order to encourage a group context or storage. 

b) The Everyday Computing Lab at the Georgia Institute of Technology has taken 

inspiration from the NC in their work on semi-public displays (Huang & Mynatt, 2003).  

They have chosen to support intimate collaborators as the NC does.  However, their 

focus is on co-located groups.  This is the reason for the semi-public description of their 

display:  it is public in that the group can view its contents, but private in that only the 

group can view it.  For the system, the designers took active stock of the types of 

information that people collected on a daily basis, and enhanced it while presenting it on 

a public display.  They include presence information on a group portrait, textual 

reminders of upcoming events, planned attendance by group members of upcoming 

events and a collaboration space similar to a whiteboard 

c) Microsoft Research has cited NC as an example of a peripheral awareness tool 

influencing their design of SideShow, first prototyped by Michael Boyle, a graduate 

student in our lab (Cadiz, Venolia, Jancke & Gupta, 2002).  It uses an extensible set of 

‘tickets’ to display awareness information (similar to the media item concept) on a 

vertical bar on the right side of the screen.  Like media items, they are discrete elements 

of information which can be added or removed on the fly.  Each ticket is designed to 

provide a brief overview of some information type, but can be moused over to reveal a 

tool-tip providing more detailed information.  Unlike NC, SideShow is focussed at 

individual awareness of information more personal to the viewer as opposed to informal 

awareness of the community.  For example, email inbox or frequent collaborators’ 

online status or local traffic on their route home are all acceptable data sets.  SideShow 

designers recognize that people may also want to see more information than cannot be 

represented by their default set of tickets, and so like NC also have a Software 

Development Kit (SDK) for building new tickets. 

d) The Plasma Poster network is a series of virtual bulletin boards placed in public spaces 

(Churchill, Nelson, Denoue & Girgensohn, 2003).  Each board is a plasma screen with 



 

 

116

an interactive layer placed on top of it, making it touch sensitive.  To it, information is 

posted in the form of pictures or posters.  The information is sourced from many 

locations including postings from authenticated users through a web or email interface 

(e.g., pictures of an event), or sampling from various web pages (e.g., .notices newly 

published tech reports).  Information on the board will change over time, with a different 

poster appearing every sixty seconds.  As well, each item has a maximum lifetime of 

two weeks, after which they are automatically removed from the system.  The posters 

are meant to be simply viewed, but web links can be followed directly and items of 

interest can be forwarded to people via email.  Unlike NC, interaction over information 

appearing on the displays occurs outside the system, in face to face interactions 

happening in common areas inhabited by the posters.  The developers of the system have 

gone even further to increase the similarity of the plasma posters to a real-world bulletin 

board by adding environmental effects to the display.  Items are attached to the board 

with virtual ‘pins’ and can be rotated to different orientations or blown about by the 

wind, just as in real life  (Denoue, Nelson & Churchill, 2003). 

e) The NC has also enjoyed citing by other projects in the research community not 

mentioned here, solidifying its role as an important contribution in a growing research 

area. 

6.2 Future Work 

While the NC board has been tremendously successful, we also recognize the need for 

further development and research to improve it.  A few topics and initial directions are 

listed below. 

6.2.1 Moving from awareness to collaboration and work 

We have long recognized that the Notification Collage and its media items should 

gracefully bridge from awareness to conversation to real-time collaboration and actual 

work. A hint of how this can be done was already provided by the SketchPic media item 



 

 

117

(see chapter 4), where people can move from the awareness of a sketching session into a 

fully developed groupware sketching and chat system directly through the NC board.   

This idea is now being refined within the PACE grant project, hosted by the Netera 

Alliance.  I serve as a consultant to this project, and have done some of the work on it.  

However, others are now taking over – thus its work is described here rather than in 

previous sections.  

First, the video snapshot item (see chapter 4) has been modified so that two people 

can use it to move into a high fidelity audio/video conversation (Figure 6.2). The 

redesigned item uses an h.323 compliant camera, which provides hardware based audio and 

video compression. The software drivers for the cameras also provide their own network 

links. If one notices that another is available for conversation (perhaps verifying it through 

a sticky note), one just double clicks that person’s video snapshot. Separate larger windows 

are raised displaying both partners in the full audio/video connection (Figure 6.2 right side). 

Other people not in the conversation see a label on the snapshot video saying that these two 

are in conversation.  

Second, we would expect that clicking the Desktop Snapshot item should lead to 

interaction, for example, by allowing both to view and collaborate over a shared live 

desktop.  Kathryn Elliot has prototyped this by linking this media item to third party 

software that creates a desktop sharing session.  SMART Technology’s Bridgit software 

was plugged into a desktop snapshot to add its functionality (http://www.smarttech.com/).  

 
Figure 6.2 – h.323 video connection built into Video Snapshots 

 



 

 

118

People double-click a desktop snapshot (Figure 6.3 left) to enter into a fully developed 

desktop sharing facility displayed in a different window (Figure 6.3 right). 

For both these projects, the NC itself was not modified. Rather, the media item 

architecture was exploited to explore these novel item designs by capitalizing on external 

SDKs built by third party developers. 

6.2.2 New metaphors for displaying media items 

In retrospect, the collage metaphor is perhaps not optimal for displaying media items. NC 

users generally tend to prefer an uncluttered space vs. one with many overlapping (and 

perhaps stale) items. Consequently, they spend time rearranging the display by moving 

items around rather than letting the collage form. This prompts the question of what  

display mechanisms and metaphors would better serve the group.  

Gregor McEwan, an MSc student in our laboratory, is looking at an alternate display 

metaphor for his Masters of Science project. He is creating the SideNC (Figure 6.4). 

Instead of taking up a large portion of a person’s display, the SideNC appears as a vertical 

 
Figure 6.3 - Moving from a desktop snapshot directly to a desktop sharing facility 



 

 

119

task bar on the right side of the screen (1 in Figure 6.4).  Media items are also designed 

with several granularities of awareness and interaction built in. For example, the video item 

can display either the name of the person to whom the video belongs (3 in Figure 6.4) or a 

very small snapshot frame (2 in Figure 6.4).  Moving the mouse over the snapshot makes a 

larger snapshot video slide out from the side of the SideNC’s bar (4 on Figure 6.4), and 

clicking on that will produce a window containing a full fidelity video link (5 on Figure 

6.4). This added granularity allows people to gracefully move from simple awareness to 

full-on conversation and collaboration. 

6.3 Research Problems and Goals Revisited 

In chapter 1, I listed three research problems and goals that I would address in this thesis.  

In this section I revisit each one, commenting on what I have done to address them. 

4. The first problem concerned impoverished awareness of the community.  I stated that 

present-day tools for informal awareness and casual interactions did not provide rich 

awareness of others within the context of the community.  My goal for this problem 

Figure 6.4 – SideNC, 
with permission from 
Gregor McEwan 

1. The SideNC bar 

2. Video Item 
Snapshots 

3. Video Item 
shrunk to text 
only 

4. Larger Snapshot 
View 

5. Full Fidelity 
Video Link 

 



 

 

120

foreshadowed the development of the Notification Collage Board, a tool that 

appropriately situated informal awareness cues and casual interactions of an entire 

community in a shared public space (see chapters 3 and 4).   

The NC board is now a successful system that enjoys considerable use and 

comment.  Indeed, it is the most used groupware system in our research group.  It 

bridged distance for distributed community members, allowing them to stay in touch 

from distant locations via the internet.  Several research projects have spun off locally 

from this project already, and future work in this research stream has already begun to 

be addressed. 

5. The second problem commented on closed systems.  I stated that present-day tools 

were closed systems offering a restricted set of channels for informal awareness and 

casual interactions.  It was difficult or impossible to rapidly extend them to afford 

new kinds of rich, multimedia-based interactions required by the community.  My 

goal for addressing this problem was the development of a Media Item Architecture 

(see chapter 5).  The Notification Collage Board was architected so that I and other 

developers could quickly and simply extend it with media items that afforded novel 

multimedia-based awareness and interactions. 

The architecture effectively separated the development of media items from the 

development of the NC board while keeping the two pieces in a single user interface.  

Also, it allowed people using the NC board to immediately take advantage of newly 

developed media items with very little overhead.  The architecture was then given out 

to a class of undergraduate students, who successfully developed several novel media 

items with no prior knowledge of the system.  The shared dictionary server system 

also proved to be a very useful and successful model to develop against, and the data 

model was exploited by other researchers to create additional tools for users of the 

NC board. 

6. My third research problem highlighted impoverished interactions in the community.  

Present-day tools for informal awareness and casual interactions often provided just 

one channel for awareness and one channel for interactivity.  Rich channels were 



 

 

121

available separately, but there was no one tool that brought them all together and 

situated them within the community.  My solution to this problem was the 

development of media items.  We built a stock set of media items that provide rich 

channels for informal awareness and casual interaction.  These items plug into the 

media item architecture so that they can appear on the NC Board as part of the 

community shared interaction space (see chapter 4).  Further to this, new media items 

are still being explored, with the goal of further supporting a bridge to real time 

conversation and work. 

6.4 Contributions 

In this thesis, I contributed an interface and an architectural model for developing 

multimedia groupware that supports informal awareness and casual interaction in a 

community of intimate collaborators. I also contributed a new way of thinking about 

groupware, where co-located and distributed participants are both supported via public and 

private displays. I showed how the Notification Collage was successful in maintaining 

social bonds of intimate collaborators over distance.  I also briefly mentioned how this 

research has directly and indirectly influenced new projects both inside and outside of our 

laboratory. 

I also contribute the idea of media items and how they should be deployable on the 

fly.  The use of media items in a universal public collaborative space makes exploration of 

novel groupware designs straightforward and quick, with the added advantage that a pool 

of users is there to immediately begin using and evaluating newly developed items. 

Finally, I contribute a practical system. As this thesis is written, the Notification 

Collage board is actively used by a community for daily casual interactions. 



 

 

122

References 
 

 

 

1. Bly, S.A., Harrison, S.R., and Irwin, S. (1993), Media Spaces: Bringing People 

Together in a Video, Audio, and Computing Environment, in Communications of 

the ACM, ACM Press, vol. 3, no. 1, pp. 28 47. 

2. Boyle, M. and Greenberg, S. (2002) GroupLab Collabrary: A Toolkit for 

Multimedia Groupware. In J. Patterson (Ed.) ACM CSCW 2002 Workshop on 

Network Services for Groupware, November. 

3. Cadiz J.,Venolia G., Jancke G., Gupta A. (2002) Designing and deploying an 

information awareness interface  Proceedings of ACM CSCW'02 Conference on 

Computer-Supported Cooperative Work 2002 p.314-323 

4. Churchill, E., Nelson, L., Denoue, L., Girgensohn, A. (2003)  The Plasma Poster 

Network:  Posting Multimedia Content in Public Places.  Submitted for 

publication at INTERACT 2003, Ninth IFIP TC13 International Conference on 

Human Computer Interaction, Zurich, Switzerland, 1 September, 2003. 

5. Clark and Brennan (1991) Grounding in Communication. P222-234, Text. 

6. Curtis, P., Nichols, D. A. (1993) MUDs grow up: Social virtual reality in the real 

world. In Proceedings of the Third International Conference on Cyberspace, May 

1993 

7. Denoue, L., Nelson, L., Churchill, E. (2003) AttrActive windows: dynamic 

windows for digital bulletin boards Short talks-Specialized section: peripheral and 



 

 

123

ambient displays.  Proceedings of ACM CHI 2003 Conference on Human Factors in 

Computing Systems 2003 v.2 p.746-747 

8. Dourish, P., and Bly, S. (1992), Portholes: Supporting Awareness in a Distributed 

Work Group, in Proceedings of the ACM/SIGCHI Conference on Human Factors in 

Computing Systems (CHI’92), Monteray, CA, pp. 541 547. 

9. Fass, A., Forlizzi, J., Pausch, R. (2002) MessyDesk and MessyBoard: two designs 

inspired by the goal of improving human memory.  In proc of Designing 

Interactive Systems (DIS) 2002, 303-311 

10. Fish, R.S., Kraut, R.E., and Chalfonte, B.L. (1990), The VideoWindow System in 

Informal Communications, in Proceedings of the Conference on Computer 

Supported Cooperative Work (CSCW’90), Los Angeles, pp. 1 11. 

11. Fish, R.S., Kraut, R.E., Rice, R.E., and Root, R.W. (1993), Video as a Technology 

for Informal Communication. In Communications of the ACM, ACM Press, vol. 36, 

no. 1, pp. 48 61. 

12. Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D., Segall, B. (2002) Supporting 

Public Availability and Accessibility with Elvin: Experiences and Reflections.  

Computer Supported Cooperative Work  2002 v.11 n.3/4 p.447-474 

13. Greenberg, S. and Bohnet, R. (1991).  GroupSketch: A multi-user sketchpad for 

geographically-distributed small groups. In Proceedings of Graphics Interface '91, 

p207-215, Calgary, Alberta, June 5-7, Morgan-Kaufmann. 

14. Greenberg, S. (1996), Peepholes: Low Cost Awareness of One’s Community. In 

Companion Proceedings of the ACM/SIGCHI Conference on Human Factors in 

Computing Systems (CHI’96), Vancouver, pp. 206 207. 

15. Greenberg, S. and Kuzuoka, H. (1999). Bootstrapping Intimate Collaborators. In 

OzCHI99 Workshop: Issues of Use in CSCW Technology Design (held as part of the 

OZCHI'99 Australian Conference on Computer Human Interaction). Organized by 

Robertson, T., Fitzpatrick, G. and Greenberg, S., November 27, Wagga Wagga 

Australia. 



 

 

124

16. Greenberg, S. and Roseman, M. (1999). Groupware Toolkits for Synchronous 

Work. In M. Beaudouin-Lafon, editor, Computer-Supported Cooperative Work 

(Trends in Software 7), Chapter 6, p135-168, John Wiley & Sons Ltd, ISBN 0471 

96736 X. 258pp 

17. Greenberg, S. and Rounding, M. (2001) The Notification Collage: Posting 

Information to Public and Personal Displays. Proceedings of the ACM Conference 

on Human Factors in Computing Systems [CHI Letters 3(1)], 515-521, ACM Press. 

18. Grudin, J. (2001) Partitioning Digital Worlds:  Focal and Peripheral Awareness 

in Multiple Monitor Use.  In Proceedings of the ACM/SIGCHI Conference on 

Human Factors in Computing Systems (CHI2001), Seattle, pp. 458-465 

19. Huang, E., Mynatt, E. (2003) Semi-public displays for small, co-located groups  

Proceedings of ACM CHI 2003 Conference on Human Factors in Computing Systems 

2003 v.1 p.49-56 

20. Jancke, G., Venolia, G. D., Grudin, J., Cadiz, J. J., Gupta, A. (2001) Linking Public 

Spaces: Technical and Social Issues.  Proceedings of ACM CHI 2001 Conference 

on Human Factors in Computing Systems 2001 p.530-537 

21. Kerne, A. (1997) CollageMachine: Temporality and Indeterminacy in Media 

Browsing via Interface Ecology Short Talks: Browsing and Navigation, Proceedings 

of ACM CHI 97 Conference on Human Factors in Computing Systems 1997 v.2 

p.297-298 

22. Kraut, R. E., Fish, R.S., Root, R.W., Chalfonte, B.L. (1990), Informal 

Communication in Organizations: Form, Function, and Technology, in Peoples 

Reactions To Technology, Oskamp and Spacapan eds., Sage Publications, pp. 145 

199. 

23. Kraut, R. E., Egido, C., and Galegher, J. (1988), Patterns of Contact and 

Communication in Scientific Research Collaboration, In Proceedings of  

Computer Supported Cooperative Work (CSCW’88), New York, pp. 1 12. 



 

 

125

24. Mantei, M.M., Baecker, R.M., Sellen, A.J., Buxton, W.A.S., Milligan, T., and 

Wellman, B. (1991), Experiences in the Use of a Media Space, in Proceedings of 

the ACM/SIGCHI Conference on Human Factors in Computing Systems (CHI’91), 

New Orleans, pp. 203 208. 

25. Nardi, B.A., Whittaker, S., and Bradner, E. (2000), Interaction and Outeraction: 

Instant Messaging in Action, in Proceedings of the Conference on Computer 

Supported Cooperative Work (CSCW’00), Philadelphia,  pp. 79 89. 

26. Patterson, J., Day, M. and Kucan, J.  (1996) Notification Servers for Synchronous 

Groupware.  Proceedings of ACM CSCW’96 Conference on Computer-Supported 

Cooperative Work p. 122-129, ACM Press. 

27. Roseman, M. and Greenberg, S.(1996) TeamRooms: Groupware for Shared 

Electronic Spaces. ACM SIGCHI'96 Conference on Human Factors in Computing 

System, Companion Proceedings, p275-276, ACM Press. 

28. Roseman, M. and Greenberg, S. (1997). Simplifying Component Development in 

an Integrated Groupware Environment. Proceedings of the ACM UIST'97 

Symposium on User Interface Software and Technology, p65-72, October 14-17, 

Banff, Alberta. ACM Press. 

29. Rounding, M. and Greenberg, S. (2000) Using the Notification Collage for Casual 

Interaction. ACM CSCW 2000: Position Paper for the Workshop on Shared 

Environments to Support Face-to-Face Collaboration. Philadelphia, Pennsylvania, 

USA, December. 

30. Stefik, M., Bobrow, D., Foster, G., Lanning, S. and Tatar, D. (1986) WYSIWIS 

Revised: Early Experiences with Multiuser Interfaces, in Readings in Groupware 

and Computer-Supported Cooperative Work, R. Baecker, Ed. Proceedings of the 1986 

ACM conference on Computer-supported cooperative work 

31. Tang, C. (2003) Capturing and Visualizing Histories of Multimedia-based Casual 

Interactions. M.Sc. Thesis, Department of Computer Science, University of Calgary, 

Calgary, Alberta CANADA. December. 



 

 

126

32. Whittaker, S., Frohlich, D., and Daly-Jones, O. (1994), Informal workaplace 

communication: What is it like and how might we support it?, in Proceedings of 

the ACM/SIGCHI Conference on Human Factors in Computing Systems (CHI’94), 

Boston, pp. 131 137. 

 



 

 

127

Appendix A. Table of Acronyms 
This is an alphabetical list of acronyms used in this thesis and what they represent. 

Table 2 - List of Acronyms 

API Application Programming Interface 

COM Component Object Model 

DLL Dynamic Link Library 

GUID Globally Unique Identifier 

GUI / UI Graphical User Interface / User Interface 

IM Instant Messaging 

MIME Multipurpose Internet Mail Extensions 

MUD Multi-User Dungeon 

MVC Model View Controller data model 

NC Notification Collage 

NSTP Notification Service Transfer Protocol 

ProgID Program Identifier 

SD Shared Dictionary 

SDK Software Development Kit 

URL Uniform Resource Locator 

VB6 (Microsoft) Visual Basic 6 

 



 

 

128

Appendix B. Co-Author Permission 
 

April, 2004 

 

University of Calgary 

2500 University Drive NW 

Calgary, Alberta 

T2N 1N4 

 

I, Saul Greenberg, give Michael Rounding permission to use co-authored work 

from our papers “The Notification Collage:  Posting Information to Public and 

Personal Displays” and “Using the Notification Collage for Casual Interaction” for 

Chapter 3 of his thesis and to have this work microfilmed. 

 

Sincerely, 

 

 

 

Saul Greenberg 



 

 

129

Appendix C. Student Release Form 
Email addresses of students blurred to protect the privacy of the individuals. 


