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ABSTRACT 
When using today’s productivity applications, people rely 
heavily on graphical controls (GUI widgets) as the way to 
invoke application functions and to obtain feedback. Yet 
we all know that certain controls can be difficult or tedious 
to find and use. As an alternative, a customizable physical 
interface lets an end-user easily bind a modest number of 
physical controls to similar graphical counterparts. The 
user can then use the physical control to invoke the 
corresponding graphical control’s function, or to display its 
graphical state in a physical form. To show how 
customizable physical interfaces work, we present 
examples that illustrate how our combined phidgets® and 
widget tap packages are used to link existing application 
widgets to physical controls. While promising, our 
implementation prompts a number of issues relevant to 
others pursuing interface customization. 

INTRODUCTION 
Typical productivity applications, such as those included in 
Microsoft Office suite, present its users with hundreds of 
different functions. All make the tacit assumption that users 
should access these functions through on-screen GUI 
controls (e.g., buttons, menus, sliders) by using the mouse 
or keyboard shortcuts. Yet GUI controls have known 
problems.  
1. Because space is at a premium, not all controls fit on the 

top-level display; many end up hierarchically nested in 
menus and dialog boxes. A person may find it difficult or 
tedious to discover and navigate to these controls.  

2. The controls that are visible in the top-most window 
(usually clustered into tool palettes) may not be the ones 
that the person needs. Yet these controls compete with 
the application itself not only for display space, but also 
for the user’s attention.  

3. While nearly all GUI controls rely on the mouse and 
display for input and output, a pointing device is not 
necessarily the best input device for any given control 
task [2,3,20]. For example, because graphical controls 

provide only visual cues to its behavior, they demand 
considerable attention. Because only a single mouse is 
usually available, almost all interaction is constrained to 
one-handed input.  

We challenge the assumption that all interaction must be 
through the mouse acting over GUI controls. Similar to 
other researchers who advocate tangible computing 
[2,8,9,12,15,17,19,20,21,22,24,25], we advocate 
supplementing interaction with physical interface controls. 
Input could be through physical push buttons, toggles, 
rheostats (dials and sliders), RFID tags, and light or 
pressure sensors. Output could be through LEDs, servo 
motors, or even off-the-shelf powered devices such as 
lamps and fans.  
Physical controls offer a number of advantages over their 
graphical counterparts.  
• Screen real estate is saved, leaving more room on the 

display for applications and diminishing competition for 
the user’s attention.  

• Physical controls are usually top-level. Controls are 
always visible, and are thus easier to locate and acquire. 

• More efficient input is possible, since a physical control’s 
form factor can more closely match the needs of the 
interaction [19,20,24]. For example, adjusting sound 
volume is easier through a rheostat slider vs a GUI slider 
because it constrains the user’s actions along just one 
dimension and because it provides tactile feedback [2]. 

• Two-handed input is possible. For example, the dominant 
hand can control a mouse while the other hand controls 
the physical device [2,8,20]. 

• Controls can be positioned ‘ready to hand’ by bringing 
them close by when needed, but pushed to the periphery 
when not needed [26]. 

• Spatial memory is better used. Physical controls do not 
move about the workspace of their own accord [18,19], 
and thus people can quickly remember where they are.  

• All of a person’s abilities are used [9]. Consider an 
electric fan instead of a GUI progress bar to illustrate the 
progress made on a lengthy operation, where the fan 
blows harder as the process nears completion. While a 
GUI progress bar relies solely on the visual sense, the 
fan’s output is perceived by many senses: seeing the 
moving fan blade, hearing its whir, and feeling its wind. 
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Given these advantages, why aren’t physical controls more 
prevalent in modern interfaces? Some problems are 
obvious. Physical controls consume desk space, different 
ones take time to learn, and they are costly [3]. They also 
scale poorly; having hundreds of devices—one for each 
application function—is simply impractical. Also, physical 
controls are not as malleable as graphical controls and are 
quickly rendered useless when one updates his/her software 
or switches to a competitor’s product.  
Thus we expect that we could give people only a modest 
number of physical controls, where they would be mapped 
onto the few functions that the person deems important or 
that one uses frequently. Yet this mapping is difficult to do. 
Although it has been repeatedly shown that people use only 
a small subset of the large number of functions available in 
most productivity applications, this subset (excepting a few 
universal functions) differs considerably from user to user 
[5,13]. Thus it is not possible to determine beforehand 
which functions should be mapped onto physical devices. 
Despite these problems, the advantages of physical controls 
motivate our desire to re-introduce them into the interface. 
We believe this can be accomplished through customizable 
physical interfaces, the main idea of which is: 

…to allow a person to easily bind a function from an 
application to a physical device, and to invoke the 
function through that device or see its state displayed on 
it. 

We also believe that customizable physical user interfaces 
will be realistic only if they work with existing unaltered 
applications. These could include not only well known 
productivity applications (e.g., Microsoft Office) but also 
niche software. In either case, customizing applications 
with physical devices should not need source code 
modifications. 
In this paper, we describe a software package for 
customizing existing applications with physical interfaces. 
Our approach is to ‘tap in’ to functions exposed by 
graphical controls, and to bind the GUI control semantics 
to physical controls with similar properties. 
To explain, we first describe what we have built, as seen 
from an end-user’s perspective, using various example 
physical interface customizations. We then transpose the 
examples to show how they are built from the end-
programmer’s perspective. Next, we give a small 
representative sample of the interface design possibilities 
afforded by our architecture. We then raise several issues 
arising from our implementation, and conclude with a brief 
historical overview of related work. 

AN END-USER’S PERSPECTIVE 
Our architecture allows one to craft many kinds of physical 
interface customizations. In this section, we show by 
examples what an end-user may see and what they must do 
to customize a particular set of controls. 

Example 1. The button 
Our first simple example illustrates a single customizable 
push button. Figure 1a shows the physical button. 
Figure 1b displays the on-screen controls that a person 
would use to customize the button: the annotated button on 
the left triggers a widget picker operation, while the button 
on its right is a standard GUI button. We consider a 
scenario where the end-user wants to customize both the 
physical and GUI buttons to open a new Microsoft Outlook 
e-mail message. 
1. The end-user clicks the picker button on the left of 

Figure 1b, which initializes the widget picker operation. 
The cursor changes its shape to indicate that a graphical 
widget should be selected, and the user moves it over 
the Outlook menu bar (see Figure 1b annotation). This 
particular picker recognizes ‘command’ widgets that 
invoke a single function, such as buttons, menu items 
and toolbar buttons. As the picker passes over a widget 
of this type, it indicates it is selectable by highlighting it 
in an orange box. 

2. Selecting the Outlook menu bar raises a dialog box 
listing the many menu items it contains (Figure 1c). The 
person selects the ‘File / New / Mail Message’ menu 
item. The dialog box disappears, and the on-screen 
button is automatically relabeled with the name of the 
menu item, i.e., ‘Mail Message’ (Figure 1d). 

3. When the person presses either the physical button or 
GUI button (Figure 1d, top and middle), a new Outlook 
mail message window appears (Figure 1d, bottom). 

a) a physical button 
  
 b) its on-screen counter-part 

c) dialog to select a menu  
    item 

  
 d) modified on-screen button  
     and the invoked application 

Figure 1: Storyboard interaction showing how one 
customizes and uses a physical button. 



Pressing either button is equivalent to selecting the ‘File 
/ New / Mail Message’ menu command. 

Example 2. RFID tags to invoke functions 
Although we could extend our previous example to include 
many buttons, this example instead shows how one can 
quickly assign RFID tags to different functions. 
Figure 2 (top) shows an RFID reader and several RFID 
tags taped onto the backs of small pieces of stiff paper (one 
is shown turned around, with the round tag visible). At the 
bottom of Figure 2 is the on-screen interface. While in the 
‘customize’ mode (Figure 2, bottom-left), a user assigns a 
function to a tag by first bringing the tag near the reader, 
and by then selecting a menu or button as in the first 
example. To differentiate among the many tags, the user 
then simply writes the action (in his or her words) on the 
stiff paper, as shown in the figure. When in the ‘recognize’ 
mode, the user invokes the function assigned to the tag by 

moving the tag near the reader. This displays the assigned 
function’s name and then executes it (Figure 2, bottom-
right). We see in Figure 2 that the end-user has assigned 
RFID tags to invoke several e-mail and media player 
functions, and has organized them on wooden trays. 

Example 3. A physical gauge as a progress bar 
One can also display output on a physical device. Figure 3 
shows one example, where a gauge was constructed using a 
servo motor, some paper, and a Lego™ piece. The end-user 
has picked and linked this physical gauge to the progress 
bar that displays the charge state of his/her laptop battery 
(Figure 3, bottom). As a result the motor automatically 
tracks the progress bar’s value, and rotates to a position 
relative to this value. 

Example 4. A console containing many devices  
The previous examples illustrate a few types of single-
device customizations. Of course, many other devices are 
available and we can combine them to create consoles. 
Figure 4 annotates an unassembled console. It includes: 
• three slider potentiometers that one can attach to any 

on-screen slider or scrollbar;  
• eight LEDs that one can attach to a Boolean control 

(such as a checkbox) to monitor its state;  
• six push buttons and one toggle that one can attach to 

any button, menu item or checkbox; 
• force, light and capacitive sensors that one can attach to 

any widget that recognizes a continuous range of 
values, for example, a slider or scrollbar 

For example, we can use this console to create a 
customized physical interface linked to the volume control 
pictured on the right of Figure 4. We attach the first 
physical slider to the volume slider, the second to the 
balance, and a button or toggle to the mute. We can also 
attach an LED to the mute checkbox so its light is on when 
the volume has been muted. 

AN END-PROGRAMMER’S PERSPECTIVE 
Our customizable physical interfaces architecture contains 
two main parts. First, phidgets® are physical widgets used 

 

 
Figure 2. The RFID example. 

Figure 3. A gauge made with a servo motor connected to a 
laptop’s power meter. 

 
Figure 4. A console made up of many inputs and outputs 
used to adjust a software volume control. 



by programmers to easily access a myriad of physical 
controls (buttons, dials, sliders, switches) and displays 
(gauges, lights) [6]. Second, widget taps are programmer 
objects that expose an application’s functionality as 
controlled by its GUI widgets so that one can send 
directives to the function and/or get the state of the 
function. That is, the widget tap ‘taps in’ to the 
functionality exposed by a GUI widget. End programmers 
write software that connects the phidgets and widget taps 
together, where the exposed application functionality is 
bound to physical devices. The four examples provided in 
the previous section are all examples of this type of 
software. 

Physical widgets 
Constructing and programming physical hardware is 
usually onerous and requires a great deal of specialized 
knowledge. To get around this, our physical interfaces are 
made with phidgets™, as reported in a previous UIST 
conference [6]. In this section, we briefly summarize what 
phidgets are and how they work, and show how they relate 
to this project.  
Phidgets are input and output hardware devices packaged 
in a way that makes them very easy to program. With 
phidgets, an average programmer with no hardware 
knowledge can quickly prototype various customizations 
without spending effort developing special hardware, 
firmware, or software. Several phidgets are listed below, 
and are illustrated in the previous examples and figures.  
• PhidgetInterfaceKit lets one plug in a combination of off-

the-shelf controls such as those used in Figures 1 and 4. 
Specifically, a programmer can control eight digital 
output devices (e.g., LEDs and solenoids); retrieve the 
state of eight digital input devices (e.g., push buttons and 
switches); and inspect the state of four analog sensors 
(e.g., potentiometers, heat, force, capacitive plates and 
light sensors, as shown in Figure 4). 

• PhidgetRFID is an RFID tag reader (Figure 2), where a 
program is notified of the unique identity of an RFID tag 
passing over the reader’s antenna.  

• PhidgetServo comprises one or more servo motors (one is 
illustrated in Figure 3) where a motor’s position is easily 
set through software. 

From a coding perspective, detecting a change in phidget 
status is easy. We illustrate this with the physical button in 
Figure 1. It is connected to a PhidgetInterfaceKit 
represented by the phidgetIK programmer object. When 
the button is pressed, an OnInputChange software event is 
raised and its callback exececuted. As shown below in our 
Visual Basic example, we check which digital input 
signaled the change (1 for the first button) and its new state 
(True for pushed) and then take the desired action. 
Sub phidgetIK_OnInputChange (Index, State) 
 If Index = 1 and State = True Then 

  ‘do something 
End If 

End Sub 

Similarly, PhidgetRFID raises an OnTag event when an 
RFID tag is detected near its antenna. From this the 
programmer can easily identify which tag was read.  
Sub phidgetRFID_OnTag(TagNumber) 
 Select Case TagNumber 
  Case TagNumber = "00041135a0" ‘one tag 
        ‘do something 
  Case TagNumber = "00053343a5" ‘another tag 
   ‘do something else 
  End Select 
End Sub 

Example 2 from above would extend this sample code by 
dynamically tracking these tag identifiers in an array, and 
by searching the array whenever it sees a tag. 
A programmer can also change the state of any physical 
output device. The source code below illustrates how to 
turn on the 2nd LED in a bank of LEDs attached to a 
PhidgetInterfaceKit, and rotate the first servo motor 
controlled by a PhidgetServo to the 90° position. 
 phidgetIK.Output(2) = True 
  phidgetServo.MotorPosition(1) = 90 

Using these phidgets, we can quickly create quite different 
control consoles. For example, we constructed the push 
button in Figure 1 in minutes: we cut off the top of a plastic 
bottle, drilled a hole in the cap, and embedded a switch in 
it. We gained access to the switch’s state by plugging it 
into the PhidgetInterfaceKit. The more complex console in 
Figure 4 uses sliders, buttons and rocker switches all 
connected to a PhidgetInterfaceKit. The RFID tags 
(Figure 3) are read with a PhidgetRFID, and the 
mechanical gauge in Figure 2 is actually a PhidgetServo. 

Widget taps 
An elusive goal of many research projects has been 
external attachment, where one can robustly attach external 
code to an application so that it can be remotely controlled 
[1,15,16,17,19,22]. Because of operating system 
limitations, no one has solved this problem completely, an 
issue we will explore later. Our own partial solution is our 
new widget tap library, which provides the programmer 
with objects that access the semantics of GUI widgets in 
existing applications. In turn, these expose the application 
function controlled by the selected widget which we can 
then link to a phidget. We illustrate this library by showing 
code fragments that drive the previous examples.  
Our widget tap library abstracts analogous widgets into 
meta-classes. For example, the CommandTap class 
represents different GUI widgets that invoke a single 
unparameterized function (a command); these include push 
buttons, toolbar buttons, and menu items. This class has 
several important methods and properties. The 
PickCommandTap class method begins a modal cycle 
asking the user to select a push button, toolbar button, or 
menu item with the mouse. It then returns a CommandTap 
instance linked to the selected GUI control. The 
programmer can then use the Text property of this 
CommandTap instance to retrieve any text label associated 



with that button or menu item, and the Click method to 
execute the application functionality triggered by the GUI 
widget i.e., as if the actual GUI widget were selected.   
The widget tap library has other classes as well. The 
ToggleTap class abstracts GUI widgets— checkboxes and 
radioboxes—that contain boolean state. While it shares the 
same methods and properties found in CommandTap, it also 
contains a property called Checked that sets or gets the 
current Boolean state. As another example, the RangeTap 
class abstracts GUI widgets that let a user choose a single 
value in a minimum/maximum bounded range. This 
includes scrollbars, sliders, up/down (a.k.a., spinner) 
controls, and progress bars. While there are differences 
between these widgets, the RangeTap class exposes their 
common important semantics through its Minimum, 
Maximum and Value properties.  
To show how the widget tap and phidget library are used 
together, the Visual Basic program in Figure 5 contains the 
key code fragments that sit behind the customizable button 
of Example 1.  
1. Using the Visual Basic interface builder, the 

programmer constructs the window in Figure 1b by 
dropping in: a picture named wPicker, and a button 
named GUIButton with its text set to the string “Select 
a button or a menu”.  

2. The programmer declares a CommandTap object called 
wTap, which will eventually be linked to a command-
type GUI widget. 

3. After the user clicks the wPicker picture, the program 
executes the wPicker_MouseDown callback. Its code 
first calls the CommandTap.PickCommandTap class 
method, which asks the user to interactively select a 
command widget. In the example, he chose Outlook’s 
New Mail Message menu item (Figures 1b+c). This 
returns a CommandTap instance that is stored in the 
wTap global variable. This instance is now linked to the 
New Mail Message menu item of Microsoft Outlook. 

4. The programmer retrieves the text label from the linked 
widget (i.e., “Mail Message”) via the wTap.Text 
property and displays it in the GUI button’s label 
property. (Figure 1d).  

5. When the end-user presses the GUI button, its 
GUIButton_Click callback is executed, which in turn 
calls the wTap.Click method. This invokes the 
equivalent semantic operation on the linked widget. In 
this case, a new Outlook mail message will appear 
(Figure 1d). 

6. Similarly, pressing the physical button automatically 
invokes the phidgetIK_OnInputChange callback. 
This also calls the wTap.Click method with the same 
results. 

The code behind the RFID example in Figure 2 is very 
similar except that it maintains an array of CommandTap 
objects, one for each RFID tag encountered. 

The third example provided a physical customization of the 
“battery charge” progress bar, where output is displayed on 
a physical control. To implement this, the RangeTap is 
attached to the progress bar of the battery meter. The 
program then periodically polls the Value property of the 
RangeTap instance, and updates the position of the phidget 
servo motor to reflect the current value.  This is illustrated 
in the subroutine below; its calculations just normalize the 
range value to fit between the 0 – 180 degree positions of 
the servo motor. 
Private Sub timerPoll_Tick(…) 

Dim ratio As Double  
ratio = (wTap.Value   - wTap.Minimum) /      
        (wTap.Maximum - wTap.Minimum) 

 Servo.MotorPosition(1) = 180 * ratio 
End Sub 

The fourth example includes a physical slider as input. In 
this case, the physical slider manipulates the RangeTap 
instance and its linked GUI control, again normalizing for 
differences. For example, when the first physical slider is 
moved, the code to adjust the linked GUI slider would look 
something like: 
Private Sub phidgetIK_OnSensorChange(…)  
  If Index = 1 Then 
  WTap.Value = SensorValue / 1000 *  

(WTap.Maximum - WTap.Minimum) + 
WTap.Minimum 

End Sub 

We should add that the tap library is reasonably robust.  If 
the original application were closed in the interim (e.g., the 
user linked to Microsoft Outlook and then closed Outlook), 
a call to the wTap.Click method would automatically 
restart the application, reconnect the widget tap to the new 
target widget instance, and invoke the application function. 
The examples above are simple, and we can construct far 
more interesting ones. What is important is that our widget 

‘This object will expose a command-type widget 
Dim wTap As CommandTap 

‘The user clicked on the wPicker icon (Figure 1b left side).  
Sub wPicker_MouseDown(…) 
 ‘Let the user select a command widget,  
 ‘and return an instance linked to this widget 
 wTap = CommandTap.PickCommandTap() 

‘Display the selected widget’s label in the GUI button  
‘visible on the right of Figure 1b 

 GUIButton.Text = wTap.Text  
End Sub 

 ‘When the GUI button is pressed, invoke the widget’s action 
Sub GUIButton_Click(…) 
 wTap.Click() 
End Sub 

‘When the physical button is pressed, invoke the widget’s action  
Sub phidgetIK_OnInputChange(Index, State) 
 If Index = 1 and State = True Then _ 
    wTap.Click() 
End Sub 

Figure 5. The code behind Example 1’s Button. Error 
handling is omitted for display purposes. 



tap library gives the programmer access to the semantics of 
any recognized GUI widget in any application. The 
programmer needs no access to the application source, nor 
does he or she need any prior knowledge of that 
application.  

DESIGN POSSIBILITIES 
While the basic idea of a customizable physical interface is 
simple, it opens the door to many design possibilities. A 
few are listed below, although we believe that many more 
compelling examples remain as yet undiscovered. 
Interfaces for people with special needs. While many 
people suggest that computers should help those with 
special needs (and this is even legally required in some 
instances [7]), most of today’s computers tend to have 
built-in help for only particular types of disabilities e.g., 
low vision. One of the problems is cost: unless many 
people have a particular type of disability, it is just too 
expensive to build in accessibility features. Customizable 
controls can lower this cost, as it would be fairly easy to 
create a custom physical control panel that (say) gives 
people with fine motor control problems easier access to 
their applications. Similarly, we can map an application’s 
state onto output devices to make them more perceivable. 
For example, if a progress bar is mapped to a fan, those 
with visual and/or aural impairments will benefit. 
It is important to mention that assistive technology product 
makers often use approaches similar to what we describe 
here. However, our phidget and widget tap library is much 
more general purpose: it does not focused on one or a few 
particular kinds of ability impairments, nor is it wholly 
restricted to the assistive technology domain. 
Construction kits. Instead of giving end-users pre-
assembled physical consoles, one can give them a 
construction kit that, for example, includes a 
PhidgetInterfaceKit and a multitude of switches and 
sensors mounted on Lego™-like blocks. End-users can 
then assemble their own custom panels using whatever 
controls they wish. On the software side, we can easily 
create movable controls representing the eight digital 
inputs and outputs, and the four sensor inputs. Users can 
match the type of input with what they actually attached to 
the PhidgetInterfaceKit through a shortcut menu, e.g., a 
particular sensor input could be set to look like a slider or a 
force sensor. Finally, users can position these movable 
controls on the display so they match the arrangement of 
physical controls, thus creating a mimic diagram. 
Customizable reactive environments. A reactive 
environment is one where computers sense the 
environment and take action depending on what is sensed. 
There are now many examples of reactive environments 
e.g., those reported in the ubiquitous and context aware 
computing literature. However, most are hard-wired to 
particular environments and situations. In contrast, 
customizable physical controls would make it simple for a 

person to ‘build’ his/her own—albeit limited—reactive 
environment. 
For example, let us say two people have created a voice 
connection through an instant messenger client (Figure 6) 
and wanted to leave it running. Because of privacy 
concerns, both parties only want the microphones to be 
enabled when people are close to their computers. They can 
easily achieve this by linking a capacitive sensor to the 
microphone volume level (circled in Figure 6), and then 
embedding that sensor into the chair. This would set the 
microphone to maximum when someone sits in the chair 
and off otherwise. Alternatively, one can plug in an 
ultrasonic proximity sensor and place it atop the computer. 
In this case, the microphone is sensitive when one is 
nearby, but decreases in sensitivity as one moves away 
e.g., one may only receive a slight murmur of those 
conversations occurring away from the computer. 
Linking smart appliances to applications. Looking ahead, 
as our appliances get smarter, there is nothing to stop them 
from becoming wireless physical devices that control 
similar applications on desktop PCs. For example, the 
controls of a physical MP3 player could be linked to a 
media player application running on a traditional PC 
desktop. If one presses a mode button, all the physical 
player controls (e.g., volume control, play, seek) could then 
be used to operate the media player application. If the MP3 
player device was Bluetooth™-enabled, it could become a 
kind of wireless remote control for the PC. 

ISSUES 
There is much promise in customizable physical interfaces, 
yet we have discovered many roadblocks to its robust 
implementation. Most are associated with problems related 
to external attachment i.e., how we can reliably tap into 
graphical widgets. While external attachment is only a 
secondary theme in this paper, it is the bottleneck to 
customizable physical interfaces and deserves further 
discussion. After first describing several approaches to 
external attachment, this section presents the major 
implementation issues as well as our partial solutions. 

Approaches to External Attachment  
In our wish to provide physical customizations of existing 
applications, we share an implementation goal with other 
researchers: the ability to invoke existing application 

 
Figure 6. Controlling Windows™ Messenger. 



functionality without having to see or modify its source 
code. While there are several approaches, many do not fit 
well with our needs.  
One approach invokes application functionality through 
hooks, APIs, scriptable object models and automation 
features predefined by the application itself. This is 
problematic. First, we can only access those functions that 
the application programmer decided to supply a priori. 
Second, these functions are hidden from the end user: they 
do not have a graphical, on-screen presence. Even if we 
exposed the function names, they are not in the end-user’s 
language. This makes it difficult for an end-user to identify 
which function he or she wishes to invoke. 
A second approach uses function aliases. For example, Siio 
and Mima [22] bind paper stickers holding a barcode to 
Apple Macintosh’s icon aliases. Scanning the barcode 
invokes the alias, which starts the application. This is too 
simplistic, as it does not provide access to the internal 
functions of an application.  
A third approach captures the user’s syntactic input, and 
replays it on the interface [1]. An advantage of this 
syntactic access is that it exactly mirrors how a user 
expresses a function, i.e., ‘I did X to get Y; the physical 
device just has to trigger the same action sequence’. The 
problem is that syntactic access is difficult to implement 
reliably. It fails in GUIs when things do not appear in 
constant locations or when the interface is rearranged from 
one invocation to the next. It is ignorant of the modes that 
the application may be in, and provides little opportunity to 
assess an application’s feedback.  
Our own approach remotely controls another application by 
accessing the semantics of its widgets, an approach shared 
by the Mercator [17] and parts of the Pebbles project 
[15,16]. The details as to how we tap into widgets is too 
involved to include here and we will simply summarize that 
our basic technique is common to various screen reader and 
accessibility utilities and to those used in Myers et al.’s 
semantic snarfing for Pebbles [16]. We synthesize 
notifications (messages) that are exchanged between the 
widget and the application. To invoke an application 
function, we masquerade as the GUI widget and send the 
application a message that appears as if it came from the 
widget. To query or modify the GUI widget state, we 
masquerade as the application and send the widget the 
appropriate message. However, our widget tap 
implementation goes one step further as it attempts to 
handle the following issues. 

Finding and Re-finding Widgets 
It is easy to get a ‘handle’ identifying an existing GUI 
widget. However, if the application is stopped and 
restarted, or if the widget is destroyed and recreated, we 
face serious problems locating the new instance of the 
widget. If we cannot find the widget in these cases, then the 
user will have to manually re-link the physical control to 
the GUI widgets between invocations.  

This problem arises because widgets have no instance-
invariant names in current windowing systems such as 
X11R6 and Microsoft Windows. That is, they do not have 
unique identifiers that remain the same when the widget is 
destroyed and recreated, or when it is moved around. While 
windowing systems do provide unique window handles at 
runtime, these are meaningless and change each time a 
widget is recreated. 
We solved this problem by inventing an instance-invariant 
naming scheme, which is comprised of a path of three 
colon-delimited parts: the first is the file name of the 
process that provides the widget; the middle part is the path 
to a heavyweight widget or widget container; the last 
optional part specifies a lightweight widget relative to its 
heavyweight container. (We should note that generating 
this path correctly is a technically difficult problem). This 
name is retrievable in each widget tap through its Path 
property. For example, if we were to display the 
wTap.Path property in Figure 5 after the New Mail 
Message menu item was assigned to wTap, we would see:  
outlook:Standard,MsoCommandBar:New/Mail Item 

This name allows us to re-find widgets in several ways. 
Because the first part of the name path specifies the process 
responsible for creating the widget, we now know which 
process to restart if the application is not running. The 
second part of the name allows us to find a heavyweight 
widget by querying the window system. If we are actually 
linked to a lightweight widget, the third part of the name 
allows us to find the lightweight widget relative to its 
heavyweight container. All this is done automatically by 
the library if the wTap.AutoReconnect property of the 
tap object is set to true.  
We should note that although the grammar of names will 
be necessarily platform-specific, the idea of instance-
invariant names is a general solution to re-finding widgets. 

Some Widgets are not Initialized with the Application 
If a tapped widget is destroyed, then the widget will be re-
found as a simple and direct consequence of restarting the 
application process that created the widget. Unfortunately, 
this only works for widgets that are initialized along with 
the application. Yet some programs create widgets on-the-
fly, e.g., those that live in short-lived or modal dialog 
boxes that are not part of the persistent UI for an 
application, or those that are created on demand as a user 
switches between panes in tabbed dialogs. We have no 
solution to this problem. However, we suspect most people 
will attach physical controls to permanent widgets 
representing standard application functions rather than 
these short-lived ones.   

Lightweight Widgets 
Widgets come in two flavors. Heavyweight widgets have a 
representation known to the windowing system i.e., they 
are true windows. Thus we can obtain information about 
them directly from the windowing system. In contrast, 



lightweight widgets are completely managed by the widget 
toolkit, and are not known by the windowing system. The 
problem is that there is no toolkit-independent way of 
finding these lightweight widgets.  
Our solution uses information obtained from the 
windowing system about the heavyweight container to 
deduce which toolkit provided it. Knowing this, we can 
proceed to use toolkit-specific techniques to locate and tap 
into the lightweight widget.  
This implies that we must know how all toolkits operate if 
we are to do this robustly. The widget tap library currently 
uses the Active Accessibility features of Microsoft 
Windows, an API intended to give people with disabilities 
alternate means for accessing computer functions (see 
msdn.microsoft.com). Unfortunately not all toolkits 
implement Active Accessibility. There are also language-
specific problems with other toolkits that limit how well we 
can support lightweight widgets. While we implemented a 
limited point solution, there is as yet no universal solution 
to this problem.  

Widgets are not Self-Describing  
For a library like widget tap to work, it needs to understand 
how each widget works. For example, the library provides 
two implementations of the CommandTap base class. One 
understands the various flavors of system-supplied push 
buttons. The other understands toolbars and menubars as 
they appear in Microsoft Office applications. A 
configuration file is used to determine which 
implementation is appropriate for a given widget.  
The problem is that there is no way of automatically 
discovering the semantic operations and messages 
implemented by a widget. That is, widgets are not self-
describing, nor do they describe their relationship with the 
containing application.  
Currently, we must consult each widget’s documentation, 
and manually write code in our library to handle that 
particular widget type. This is tedious to do, as it implies 
we need to write code that understands every single 
possible type of widget that fits within the meta class. Even 
if we went through this effort, this only accounts for the 
widgets available today. If a system release included new 
widgets, then new code would have to be written to handle 
them. Another serious problem is that there is no easy way 
of including undocumented widgets that were perhaps 
created as part of a custom application or from a non-
standard toolkit. 
A solution is in sight, for operating systems are 
encouraging toolkit designers to implement accessibility 
APIs. However, this is still not standard practice. Even if it 
were done, it may not apply to applications using older 
version of these toolkits.  

Modes are Difficult to Handle  
Many interfaces are moded, where operating a widget in 
some modes makes little sense. For example, a widget that 

draws a border in a table is of little use if a table is not 
selected. Conventional interfaces typically manage modes 
by visual feedback (graying out or hiding the widget) and 
by disabling the widget. 
These modes lead to two problems for customizable 
physical controls. First, a tap into a widget has only a crude 
and perhaps unreliable means of detecting whether it is in a 
valid mode. It can check if the widget is enabled, disabled, 
visible or hidden. Second, it is difficult to show that 
physical controls are disabled. Yet because they are always 
present, people feel that they can use them at any time. This 
means the end user may try to invoke a widget action at an 
inappropriate time through its physical control. At worse 
we hope this will lead to a null action that may be puzzling 
to the user.  

HISTORY AND RELATED WORK 
In 1963, Ivan Sutherland [23] demonstrated Sketchpad, the 
very first interactive graphical user interface. Films of 
Sketchpad [14] highlight how people use a light pen to 
manipulate drawings, which foreshadowed the widespread 
use of pointing devices for graphical interaction. What is 
often overlooked in these old demonstrations is that almost 
all user actions involved two hands—a person would 
simultaneously manipulate large banks of physical controls 
as they used the light pen. These physical controls had 
dedicated functions that modified the light pen actions, for 
example, to specify start and end points of lines, to make 
lines parallel or co-linear, to delete existing lines, to 
indicate centers of circles, to store drawing objects, and so 
on [14,23]. Physical controls were also used for other 
interactions, such as zooming and rotation of objects. As 
seen in Figure 7, these controls surround and dwarf the 7-
inch display containing the Sketchpad interface, and 
comprise physical knobs, push-buttons and toggle 
switches. 
Sketchpad’s use of physical interaction techniques was not 
atypical, as many computers of the 1960’s and earlier often 

Figure 7. Ivan Sutherland interacting with Sketchpad on the 
TX-2 computer console.



came with consoles packed with physical controls. For 
example, the operator console of the IBM Stretch machine, 
built in 1961, was immersed in a myriad of dials, lights, 
meters and switches. 
In 1967, Douglas Engelbart introduced a new way of 
interacting with technologies, where almost all physical 
controls were replaced by the mouse and the two keyboards 
pictured in Figure 8. Similar to Sketchpad, keyboard 
‘commands’ (instead of physical button presses) modify 
mouse actions [4].  
While Engelbart’s system did away 
with most special purpose physical 
controls, they appeared again as 
special purpose function keys in 
the Xerox Star [11]. Because there 
were relatively few function keys 
on the keyboard and a fairly large 
repertoire of system commands, 
the Star inventors came up with the 
notion of generic commands: a 
small set of commands, mapped 
onto the function keys in Figure 9 
that applied to all types of data. 
The active selected object 
interpreted these function key 
presses in a semantically reasonable way. 
Later desktop computers, as popularized by the Apple 
Macintosh in the early 1980’s, reduced even these special-
purpose keys by replacing them with the now-familiar on-
screen graphical user interface widgets. From this point on, 
graphical user interface controls reigned supreme on 
desktop computers. While most keyboards do allow some 
keys to be reprogrammed (including function keys), they 
are no longer a dominant part of interaction. In the last 
decade, the only other physical devices prevalent on 
desktop computers were games controls. Typically a 
generic input device (such as a joystick or steering wheel) 
controls a broad class of gaming applications, although one 
can also buy dedicated controls for particular games. 

Recent research in human computer interaction has 
reintroduced physical controls. There are new input devices 
e.g., [20], and novel ways to control new classes of 
computers e.g., tilting and panning actions for scrolling 
through items on a PDA [8]. Researchers are bridging 
physical world objects with computer objects through 
tagging and tracking [19,22,25], or by creating physical 
remote controls [15,16] that operate on conventional 
graphical user interfaces. Perhaps the closest to our work is 
tangible media [9,10], which describes how physical media 
can be attached to digital information and controls. An 
excellent example is Ullmer, Ishii and Glas’s mediaBlocks 
[24]. Similar to our Example 2, their mediaBlocks 
(electronically tagged blocks of wood) can be assigned to 
particular functions and bits of information, further 
depending upon the location of the block reader.  
There are many more exciting examples of how new 
technology can use physical devices. Almost all of them, 
however, interact with special purpose software rather than 
commonly used applications, thus limiting their immediate 
use in daily life. Overcoming this serious limitation was 
one of the motivations behind our work 

SUMMARY 
Customizing existing applications with physical interfaces 
allows us to immediately realize very diverse design 
opportunities for accessible, tangible, and context-aware 
computing, albeit in a limited way. However, we feel that 
the pendulum has been swung too far, and applications are 
now so dependent on GUI widgets that we have lost the 
benefits of judicious application of physical controls. 
In this paper, we presented our notion of customized 
physical interfaces to existing applications. We described 
how we combined our phidget and widget tap package to 
allow programmers to seize upon this design idea, and 
offered examples demonstrating its use. We also discussed 
many of the problems found in external attachment. While 
we have made good headway in solving the external 
attachment problem, there remain several impediments. In 
the end, some of these issues may be only addressable by 
windowing system and GUI toolkit makers. 
Our future work in this area will focus partly on finding 
solutions to the external attachment problems presented 
here, but mostly on the design opportunities afforded by 
customizable physical interfaces.   
Software and hardware availability. Phidget hardware and 
software is available through www.phidgets.com. The 
widget tap library and examples will be available fall 2002 
at http://www.cpsc.ucalgary.ca/grouplab/. 
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Figure 8. Engelbart’s mouse-keyset combination, including 
a one-handed chorded keyboard (from www.bootstrap.org)

Figure 9. Star’s left 
function key cluster. 



knowledgeable and gave excellent recommendations for 
improving it. 
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