
Customizable Physical Interfaces for Interacting with
Conventional Applications

Saul Greenberg and Michael Boyle
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

Tel: +1 403 220 6087
saul or boylem@cpsc.ucalgary.ca

ABSTRACT
When using today’s productivity applications, people rely
heavily on graphical controls (GUI widgets) as the way to
invoke application functions and to obtain feedback. Yet
we all know that certain controls can be difficult or tedious
to find and use. As an alternative, a customizable physical
interface lets an end-user easily bind a modest number of
physical controls to similar graphical counterparts. The
user can then use the physical control to invoke the
corresponding graphical control’s function, or to display its
graphical state in a physical form. To show how
customizable physical interfaces work, we present
examples that illustrate how our combined phidgets® and
widget tap packages are used to link existing application
widgets to physical controls. While promising, our
implementation prompts a number of issues relevant to
others pursuing interface customization.

INTRODUCTION
Typical productivity applications, such as those included in
Microsoft Office suite, present its users with hundreds of
different functions. All make the tacit assumption that users
should access these functions through on-screen GUI
controls (e.g., buttons, menus, sliders) by using the mouse
or keyboard shortcuts. Yet GUI controls have known
problems.
1. Because space is at a premium, not all controls fit on the

top-level display; many end up hierarchically nested in
menus and dialog boxes. A person may find it difficult or
tedious to discover and navigate to these controls.

2. The controls that are visible in the top-most window
(usually clustered into tool palettes) may not be the ones
that the person needs. Yet these controls compete with
the application itself not only for display space, but also
for the user’s attention.

3. While nearly all GUI controls rely on the mouse and
display for input and output, a pointing device is not
necessarily the best input device for any given control
task [2,3,20]. For example, because graphical controls

provide only visual cues to its behavior, they demand
considerable attention. Because only a single mouse is
usually available, almost all interaction is constrained to
one-handed input.

We challenge the assumption that all interaction must be
through the mouse acting over GUI controls. Similar to
other researchers who advocate tangible computing
[2,8,9,12,15,17,19,20,21,22,24,25], we advocate
supplementing interaction with physical interface controls.
Input could be through physical push buttons, toggles,
rheostats (dials and sliders), RFID tags, and light or
pressure sensors. Output could be through LEDs, servo
motors, or even off-the-shelf powered devices such as
lamps and fans.
Physical controls offer a number of advantages over their
graphical counterparts.
• Screen real estate is saved, leaving more room on the

display for applications and diminishing competition for
the user’s attention.

• Physical controls are usually top-level. Controls are
always visible, and are thus easier to locate and acquire.

• More efficient input is possible, since a physical control’s
form factor can more closely match the needs of the
interaction [19,20,24]. For example, adjusting sound
volume is easier through a rheostat slider vs a GUI slider
because it constrains the user’s actions along just one
dimension and because it provides tactile feedback [2].

• Two-handed input is possible. For example, the dominant
hand can control a mouse while the other hand controls
the physical device [2,8,20].

• Controls can be positioned ‘ready to hand’ by bringing
them close by when needed, but pushed to the periphery
when not needed [26].

• Spatial memory is better used. Physical controls do not
move about the workspace of their own accord [18,19],
and thus people can quickly remember where they are.

• All of a person’s abilities are used [9]. Consider an
electric fan instead of a GUI progress bar to illustrate the
progress made on a lengthy operation, where the fan
blows harder as the process nears completion. While a
GUI progress bar relies solely on the visual sense, the
fan’s output is perceived by many senses: seeing the
moving fan blade, hearing its whir, and feeling its wind.

Saul Greenberg
Greenberg, S. and Boyle, M. (2002) Customizable physical interfaces for interacting with conventional applications. Proceedings of the UIST 2002 15th Annual ACM Symposium on User Interface Software and Technology, ACM Press.

Given these advantages, why aren’t physical controls more
prevalent in modern interfaces? Some problems are
obvious. Physical controls consume desk space, different
ones take time to learn, and they are costly [3]. They also
scale poorly; having hundreds of devices—one for each
application function—is simply impractical. Also, physical
controls are not as malleable as graphical controls and are
quickly rendered useless when one updates his/her software
or switches to a competitor’s product.
Thus we expect that we could give people only a modest
number of physical controls, where they would be mapped
onto the few functions that the person deems important or
that one uses frequently. Yet this mapping is difficult to do.
Although it has been repeatedly shown that people use only
a small subset of the large number of functions available in
most productivity applications, this subset (excepting a few
universal functions) differs considerably from user to user
[5,13]. Thus it is not possible to determine beforehand
which functions should be mapped onto physical devices.
Despite these problems, the advantages of physical controls
motivate our desire to re-introduce them into the interface.
We believe this can be accomplished through customizable
physical interfaces, the main idea of which is:

…to allow a person to easily bind a function from an
application to a physical device, and to invoke the
function through that device or see its state displayed on
it.

We also believe that customizable physical user interfaces
will be realistic only if they work with existing unaltered
applications. These could include not only well known
productivity applications (e.g., Microsoft Office) but also
niche software. In either case, customizing applications
with physical devices should not need source code
modifications.
In this paper, we describe a software package for
customizing existing applications with physical interfaces.
Our approach is to ‘tap in’ to functions exposed by
graphical controls, and to bind the GUI control semantics
to physical controls with similar properties.
To explain, we first describe what we have built, as seen
from an end-user’s perspective, using various example
physical interface customizations. We then transpose the
examples to show how they are built from the end-
programmer’s perspective. Next, we give a small
representative sample of the interface design possibilities
afforded by our architecture. We then raise several issues
arising from our implementation, and conclude with a brief
historical overview of related work.

AN END-USER’S PERSPECTIVE
Our architecture allows one to craft many kinds of physical
interface customizations. In this section, we show by
examples what an end-user may see and what they must do
to customize a particular set of controls.

Example 1. The button
Our first simple example illustrates a single customizable
push button. Figure 1a shows the physical button.
Figure 1b displays the on-screen controls that a person
would use to customize the button: the annotated button on
the left triggers a widget picker operation, while the button
on its right is a standard GUI button. We consider a
scenario where the end-user wants to customize both the
physical and GUI buttons to open a new Microsoft Outlook
e-mail message.
1. The end-user clicks the picker button on the left of

Figure 1b, which initializes the widget picker operation.
The cursor changes its shape to indicate that a graphical
widget should be selected, and the user moves it over
the Outlook menu bar (see Figure 1b annotation). This
particular picker recognizes ‘command’ widgets that
invoke a single function, such as buttons, menu items
and toolbar buttons. As the picker passes over a widget
of this type, it indicates it is selectable by highlighting it
in an orange box.

2. Selecting the Outlook menu bar raises a dialog box
listing the many menu items it contains (Figure 1c). The
person selects the ‘File / New / Mail Message’ menu
item. The dialog box disappears, and the on-screen
button is automatically relabeled with the name of the
menu item, i.e., ‘Mail Message’ (Figure 1d).

3. When the person presses either the physical button or
GUI button (Figure 1d, top and middle), a new Outlook
mail message window appears (Figure 1d, bottom).

a) a physical button

 b) its on-screen counter-part

c) dialog to select a menu
 item

 d) modified on-screen button
 and the invoked application

Figure 1: Storyboard interaction showing how one
customizes and uses a physical button.

Pressing either button is equivalent to selecting the ‘File
/ New / Mail Message’ menu command.

Example 2. RFID tags to invoke functions
Although we could extend our previous example to include
many buttons, this example instead shows how one can
quickly assign RFID tags to different functions.
Figure 2 (top) shows an RFID reader and several RFID
tags taped onto the backs of small pieces of stiff paper (one
is shown turned around, with the round tag visible). At the
bottom of Figure 2 is the on-screen interface. While in the
‘customize’ mode (Figure 2, bottom-left), a user assigns a
function to a tag by first bringing the tag near the reader,
and by then selecting a menu or button as in the first
example. To differentiate among the many tags, the user
then simply writes the action (in his or her words) on the
stiff paper, as shown in the figure. When in the ‘recognize’
mode, the user invokes the function assigned to the tag by

moving the tag near the reader. This displays the assigned
function’s name and then executes it (Figure 2, bottom-
right). We see in Figure 2 that the end-user has assigned
RFID tags to invoke several e-mail and media player
functions, and has organized them on wooden trays.

Example 3. A physical gauge as a progress bar
One can also display output on a physical device. Figure 3
shows one example, where a gauge was constructed using a
servo motor, some paper, and a Lego™ piece. The end-user
has picked and linked this physical gauge to the progress
bar that displays the charge state of his/her laptop battery
(Figure 3, bottom). As a result the motor automatically
tracks the progress bar’s value, and rotates to a position
relative to this value.

Example 4. A console containing many devices
The previous examples illustrate a few types of single-
device customizations. Of course, many other devices are
available and we can combine them to create consoles.
Figure 4 annotates an unassembled console. It includes:
• three slider potentiometers that one can attach to any

on-screen slider or scrollbar;
• eight LEDs that one can attach to a Boolean control

(such as a checkbox) to monitor its state;
• six push buttons and one toggle that one can attach to

any button, menu item or checkbox;
• force, light and capacitive sensors that one can attach to

any widget that recognizes a continuous range of
values, for example, a slider or scrollbar

For example, we can use this console to create a
customized physical interface linked to the volume control
pictured on the right of Figure 4. We attach the first
physical slider to the volume slider, the second to the
balance, and a button or toggle to the mute. We can also
attach an LED to the mute checkbox so its light is on when
the volume has been muted.

AN END-PROGRAMMER’S PERSPECTIVE
Our customizable physical interfaces architecture contains
two main parts. First, phidgets® are physical widgets used

Figure 2. The RFID example.

Figure 3. A gauge made with a servo motor connected to a
laptop’s power meter.

Figure 4. A console made up of many inputs and outputs
used to adjust a software volume control.

by programmers to easily access a myriad of physical
controls (buttons, dials, sliders, switches) and displays
(gauges, lights) [6]. Second, widget taps are programmer
objects that expose an application’s functionality as
controlled by its GUI widgets so that one can send
directives to the function and/or get the state of the
function. That is, the widget tap ‘taps in’ to the
functionality exposed by a GUI widget. End programmers
write software that connects the phidgets and widget taps
together, where the exposed application functionality is
bound to physical devices. The four examples provided in
the previous section are all examples of this type of
software.

Physical widgets
Constructing and programming physical hardware is
usually onerous and requires a great deal of specialized
knowledge. To get around this, our physical interfaces are
made with phidgets™, as reported in a previous UIST
conference [6]. In this section, we briefly summarize what
phidgets are and how they work, and show how they relate
to this project.
Phidgets are input and output hardware devices packaged
in a way that makes them very easy to program. With
phidgets, an average programmer with no hardware
knowledge can quickly prototype various customizations
without spending effort developing special hardware,
firmware, or software. Several phidgets are listed below,
and are illustrated in the previous examples and figures.
• PhidgetInterfaceKit lets one plug in a combination of off-

the-shelf controls such as those used in Figures 1 and 4.
Specifically, a programmer can control eight digital
output devices (e.g., LEDs and solenoids); retrieve the
state of eight digital input devices (e.g., push buttons and
switches); and inspect the state of four analog sensors
(e.g., potentiometers, heat, force, capacitive plates and
light sensors, as shown in Figure 4).

• PhidgetRFID is an RFID tag reader (Figure 2), where a
program is notified of the unique identity of an RFID tag
passing over the reader’s antenna.

• PhidgetServo comprises one or more servo motors (one is
illustrated in Figure 3) where a motor’s position is easily
set through software.

From a coding perspective, detecting a change in phidget
status is easy. We illustrate this with the physical button in
Figure 1. It is connected to a PhidgetInterfaceKit
represented by the phidgetIK programmer object. When
the button is pressed, an OnInputChange software event is
raised and its callback exececuted. As shown below in our
Visual Basic example, we check which digital input
signaled the change (1 for the first button) and its new state
(True for pushed) and then take the desired action.
Sub phidgetIK_OnInputChange (Index, State)
 If Index = 1 and State = True Then

 ‘do something
End If

End Sub

Similarly, PhidgetRFID raises an OnTag event when an
RFID tag is detected near its antenna. From this the
programmer can easily identify which tag was read.
Sub phidgetRFID_OnTag(TagNumber)
 Select Case TagNumber
 Case TagNumber = "00041135a0" ‘one tag
 ‘do something
 Case TagNumber = "00053343a5" ‘another tag
 ‘do something else
 End Select
End Sub

Example 2 from above would extend this sample code by
dynamically tracking these tag identifiers in an array, and
by searching the array whenever it sees a tag.
A programmer can also change the state of any physical
output device. The source code below illustrates how to
turn on the 2nd LED in a bank of LEDs attached to a
PhidgetInterfaceKit, and rotate the first servo motor
controlled by a PhidgetServo to the 90° position.
 phidgetIK.Output(2) = True
 phidgetServo.MotorPosition(1) = 90

Using these phidgets, we can quickly create quite different
control consoles. For example, we constructed the push
button in Figure 1 in minutes: we cut off the top of a plastic
bottle, drilled a hole in the cap, and embedded a switch in
it. We gained access to the switch’s state by plugging it
into the PhidgetInterfaceKit. The more complex console in
Figure 4 uses sliders, buttons and rocker switches all
connected to a PhidgetInterfaceKit. The RFID tags
(Figure 3) are read with a PhidgetRFID, and the
mechanical gauge in Figure 2 is actually a PhidgetServo.

Widget taps
An elusive goal of many research projects has been
external attachment, where one can robustly attach external
code to an application so that it can be remotely controlled
[1,15,16,17,19,22]. Because of operating system
limitations, no one has solved this problem completely, an
issue we will explore later. Our own partial solution is our
new widget tap library, which provides the programmer
with objects that access the semantics of GUI widgets in
existing applications. In turn, these expose the application
function controlled by the selected widget which we can
then link to a phidget. We illustrate this library by showing
code fragments that drive the previous examples.
Our widget tap library abstracts analogous widgets into
meta-classes. For example, the CommandTap class
represents different GUI widgets that invoke a single
unparameterized function (a command); these include push
buttons, toolbar buttons, and menu items. This class has
several important methods and properties. The
PickCommandTap class method begins a modal cycle
asking the user to select a push button, toolbar button, or
menu item with the mouse. It then returns a CommandTap
instance linked to the selected GUI control. The
programmer can then use the Text property of this
CommandTap instance to retrieve any text label associated

with that button or menu item, and the Click method to
execute the application functionality triggered by the GUI
widget i.e., as if the actual GUI widget were selected.
The widget tap library has other classes as well. The
ToggleTap class abstracts GUI widgets— checkboxes and
radioboxes—that contain boolean state. While it shares the
same methods and properties found in CommandTap, it also
contains a property called Checked that sets or gets the
current Boolean state. As another example, the RangeTap
class abstracts GUI widgets that let a user choose a single
value in a minimum/maximum bounded range. This
includes scrollbars, sliders, up/down (a.k.a., spinner)
controls, and progress bars. While there are differences
between these widgets, the RangeTap class exposes their
common important semantics through its Minimum,
Maximum and Value properties.
To show how the widget tap and phidget library are used
together, the Visual Basic program in Figure 5 contains the
key code fragments that sit behind the customizable button
of Example 1.
1. Using the Visual Basic interface builder, the

programmer constructs the window in Figure 1b by
dropping in: a picture named wPicker, and a button
named GUIButton with its text set to the string “Select
a button or a menu”.

2. The programmer declares a CommandTap object called
wTap, which will eventually be linked to a command-
type GUI widget.

3. After the user clicks the wPicker picture, the program
executes the wPicker_MouseDown callback. Its code
first calls the CommandTap.PickCommandTap class
method, which asks the user to interactively select a
command widget. In the example, he chose Outlook’s
New Mail Message menu item (Figures 1b+c). This
returns a CommandTap instance that is stored in the
wTap global variable. This instance is now linked to the
New Mail Message menu item of Microsoft Outlook.

4. The programmer retrieves the text label from the linked
widget (i.e., “Mail Message”) via the wTap.Text
property and displays it in the GUI button’s label
property. (Figure 1d).

5. When the end-user presses the GUI button, its
GUIButton_Click callback is executed, which in turn
calls the wTap.Click method. This invokes the
equivalent semantic operation on the linked widget. In
this case, a new Outlook mail message will appear
(Figure 1d).

6. Similarly, pressing the physical button automatically
invokes the phidgetIK_OnInputChange callback.
This also calls the wTap.Click method with the same
results.

The code behind the RFID example in Figure 2 is very
similar except that it maintains an array of CommandTap
objects, one for each RFID tag encountered.

The third example provided a physical customization of the
“battery charge” progress bar, where output is displayed on
a physical control. To implement this, the RangeTap is
attached to the progress bar of the battery meter. The
program then periodically polls the Value property of the
RangeTap instance, and updates the position of the phidget
servo motor to reflect the current value. This is illustrated
in the subroutine below; its calculations just normalize the
range value to fit between the 0 – 180 degree positions of
the servo motor.
Private Sub timerPoll_Tick(…)

Dim ratio As Double
ratio = (wTap.Value - wTap.Minimum) /
 (wTap.Maximum - wTap.Minimum)

 Servo.MotorPosition(1) = 180 * ratio
End Sub

The fourth example includes a physical slider as input. In
this case, the physical slider manipulates the RangeTap
instance and its linked GUI control, again normalizing for
differences. For example, when the first physical slider is
moved, the code to adjust the linked GUI slider would look
something like:
Private Sub phidgetIK_OnSensorChange(…)
 If Index = 1 Then
 WTap.Value = SensorValue / 1000 *

(WTap.Maximum - WTap.Minimum) +
WTap.Minimum

End Sub

We should add that the tap library is reasonably robust. If
the original application were closed in the interim (e.g., the
user linked to Microsoft Outlook and then closed Outlook),
a call to the wTap.Click method would automatically
restart the application, reconnect the widget tap to the new
target widget instance, and invoke the application function.
The examples above are simple, and we can construct far
more interesting ones. What is important is that our widget

‘This object will expose a command-type widget
Dim wTap As CommandTap

‘The user clicked on the wPicker icon (Figure 1b left side).
Sub wPicker_MouseDown(…)
 ‘Let the user select a command widget,
 ‘and return an instance linked to this widget
 wTap = CommandTap.PickCommandTap()

‘Display the selected widget’s label in the GUI button
‘visible on the right of Figure 1b

 GUIButton.Text = wTap.Text
End Sub

 ‘When the GUI button is pressed, invoke the widget’s action
Sub GUIButton_Click(…)
 wTap.Click()
End Sub

‘When the physical button is pressed, invoke the widget’s action
Sub phidgetIK_OnInputChange(Index, State)
 If Index = 1 and State = True Then _
 wTap.Click()
End Sub

Figure 5. The code behind Example 1’s Button. Error
handling is omitted for display purposes.

tap library gives the programmer access to the semantics of
any recognized GUI widget in any application. The
programmer needs no access to the application source, nor
does he or she need any prior knowledge of that
application.

DESIGN POSSIBILITIES
While the basic idea of a customizable physical interface is
simple, it opens the door to many design possibilities. A
few are listed below, although we believe that many more
compelling examples remain as yet undiscovered.
Interfaces for people with special needs. While many
people suggest that computers should help those with
special needs (and this is even legally required in some
instances [7]), most of today’s computers tend to have
built-in help for only particular types of disabilities e.g.,
low vision. One of the problems is cost: unless many
people have a particular type of disability, it is just too
expensive to build in accessibility features. Customizable
controls can lower this cost, as it would be fairly easy to
create a custom physical control panel that (say) gives
people with fine motor control problems easier access to
their applications. Similarly, we can map an application’s
state onto output devices to make them more perceivable.
For example, if a progress bar is mapped to a fan, those
with visual and/or aural impairments will benefit.
It is important to mention that assistive technology product
makers often use approaches similar to what we describe
here. However, our phidget and widget tap library is much
more general purpose: it does not focused on one or a few
particular kinds of ability impairments, nor is it wholly
restricted to the assistive technology domain.
Construction kits. Instead of giving end-users pre-
assembled physical consoles, one can give them a
construction kit that, for example, includes a
PhidgetInterfaceKit and a multitude of switches and
sensors mounted on Lego™-like blocks. End-users can
then assemble their own custom panels using whatever
controls they wish. On the software side, we can easily
create movable controls representing the eight digital
inputs and outputs, and the four sensor inputs. Users can
match the type of input with what they actually attached to
the PhidgetInterfaceKit through a shortcut menu, e.g., a
particular sensor input could be set to look like a slider or a
force sensor. Finally, users can position these movable
controls on the display so they match the arrangement of
physical controls, thus creating a mimic diagram.
Customizable reactive environments. A reactive
environment is one where computers sense the
environment and take action depending on what is sensed.
There are now many examples of reactive environments
e.g., those reported in the ubiquitous and context aware
computing literature. However, most are hard-wired to
particular environments and situations. In contrast,
customizable physical controls would make it simple for a

person to ‘build’ his/her own—albeit limited—reactive
environment.
For example, let us say two people have created a voice
connection through an instant messenger client (Figure 6)
and wanted to leave it running. Because of privacy
concerns, both parties only want the microphones to be
enabled when people are close to their computers. They can
easily achieve this by linking a capacitive sensor to the
microphone volume level (circled in Figure 6), and then
embedding that sensor into the chair. This would set the
microphone to maximum when someone sits in the chair
and off otherwise. Alternatively, one can plug in an
ultrasonic proximity sensor and place it atop the computer.
In this case, the microphone is sensitive when one is
nearby, but decreases in sensitivity as one moves away
e.g., one may only receive a slight murmur of those
conversations occurring away from the computer.
Linking smart appliances to applications. Looking ahead,
as our appliances get smarter, there is nothing to stop them
from becoming wireless physical devices that control
similar applications on desktop PCs. For example, the
controls of a physical MP3 player could be linked to a
media player application running on a traditional PC
desktop. If one presses a mode button, all the physical
player controls (e.g., volume control, play, seek) could then
be used to operate the media player application. If the MP3
player device was Bluetooth™-enabled, it could become a
kind of wireless remote control for the PC.

ISSUES
There is much promise in customizable physical interfaces,
yet we have discovered many roadblocks to its robust
implementation. Most are associated with problems related
to external attachment i.e., how we can reliably tap into
graphical widgets. While external attachment is only a
secondary theme in this paper, it is the bottleneck to
customizable physical interfaces and deserves further
discussion. After first describing several approaches to
external attachment, this section presents the major
implementation issues as well as our partial solutions.

Approaches to External Attachment
In our wish to provide physical customizations of existing
applications, we share an implementation goal with other
researchers: the ability to invoke existing application

Figure 6. Controlling Windows™ Messenger.

functionality without having to see or modify its source
code. While there are several approaches, many do not fit
well with our needs.
One approach invokes application functionality through
hooks, APIs, scriptable object models and automation
features predefined by the application itself. This is
problematic. First, we can only access those functions that
the application programmer decided to supply a priori.
Second, these functions are hidden from the end user: they
do not have a graphical, on-screen presence. Even if we
exposed the function names, they are not in the end-user’s
language. This makes it difficult for an end-user to identify
which function he or she wishes to invoke.
A second approach uses function aliases. For example, Siio
and Mima [22] bind paper stickers holding a barcode to
Apple Macintosh’s icon aliases. Scanning the barcode
invokes the alias, which starts the application. This is too
simplistic, as it does not provide access to the internal
functions of an application.
A third approach captures the user’s syntactic input, and
replays it on the interface [1]. An advantage of this
syntactic access is that it exactly mirrors how a user
expresses a function, i.e., ‘I did X to get Y; the physical
device just has to trigger the same action sequence’. The
problem is that syntactic access is difficult to implement
reliably. It fails in GUIs when things do not appear in
constant locations or when the interface is rearranged from
one invocation to the next. It is ignorant of the modes that
the application may be in, and provides little opportunity to
assess an application’s feedback.
Our own approach remotely controls another application by
accessing the semantics of its widgets, an approach shared
by the Mercator [17] and parts of the Pebbles project
[15,16]. The details as to how we tap into widgets is too
involved to include here and we will simply summarize that
our basic technique is common to various screen reader and
accessibility utilities and to those used in Myers et al.’s
semantic snarfing for Pebbles [16]. We synthesize
notifications (messages) that are exchanged between the
widget and the application. To invoke an application
function, we masquerade as the GUI widget and send the
application a message that appears as if it came from the
widget. To query or modify the GUI widget state, we
masquerade as the application and send the widget the
appropriate message. However, our widget tap
implementation goes one step further as it attempts to
handle the following issues.

Finding and Re-finding Widgets
It is easy to get a ‘handle’ identifying an existing GUI
widget. However, if the application is stopped and
restarted, or if the widget is destroyed and recreated, we
face serious problems locating the new instance of the
widget. If we cannot find the widget in these cases, then the
user will have to manually re-link the physical control to
the GUI widgets between invocations.

This problem arises because widgets have no instance-
invariant names in current windowing systems such as
X11R6 and Microsoft Windows. That is, they do not have
unique identifiers that remain the same when the widget is
destroyed and recreated, or when it is moved around. While
windowing systems do provide unique window handles at
runtime, these are meaningless and change each time a
widget is recreated.
We solved this problem by inventing an instance-invariant
naming scheme, which is comprised of a path of three
colon-delimited parts: the first is the file name of the
process that provides the widget; the middle part is the path
to a heavyweight widget or widget container; the last
optional part specifies a lightweight widget relative to its
heavyweight container. (We should note that generating
this path correctly is a technically difficult problem). This
name is retrievable in each widget tap through its Path
property. For example, if we were to display the
wTap.Path property in Figure 5 after the New Mail
Message menu item was assigned to wTap, we would see:
outlook:Standard,MsoCommandBar:New/Mail Item

This name allows us to re-find widgets in several ways.
Because the first part of the name path specifies the process
responsible for creating the widget, we now know which
process to restart if the application is not running. The
second part of the name allows us to find a heavyweight
widget by querying the window system. If we are actually
linked to a lightweight widget, the third part of the name
allows us to find the lightweight widget relative to its
heavyweight container. All this is done automatically by
the library if the wTap.AutoReconnect property of the
tap object is set to true.
We should note that although the grammar of names will
be necessarily platform-specific, the idea of instance-
invariant names is a general solution to re-finding widgets.

Some Widgets are not Initialized with the Application
If a tapped widget is destroyed, then the widget will be re-
found as a simple and direct consequence of restarting the
application process that created the widget. Unfortunately,
this only works for widgets that are initialized along with
the application. Yet some programs create widgets on-the-
fly, e.g., those that live in short-lived or modal dialog
boxes that are not part of the persistent UI for an
application, or those that are created on demand as a user
switches between panes in tabbed dialogs. We have no
solution to this problem. However, we suspect most people
will attach physical controls to permanent widgets
representing standard application functions rather than
these short-lived ones.

Lightweight Widgets
Widgets come in two flavors. Heavyweight widgets have a
representation known to the windowing system i.e., they
are true windows. Thus we can obtain information about
them directly from the windowing system. In contrast,

lightweight widgets are completely managed by the widget
toolkit, and are not known by the windowing system. The
problem is that there is no toolkit-independent way of
finding these lightweight widgets.
Our solution uses information obtained from the
windowing system about the heavyweight container to
deduce which toolkit provided it. Knowing this, we can
proceed to use toolkit-specific techniques to locate and tap
into the lightweight widget.
This implies that we must know how all toolkits operate if
we are to do this robustly. The widget tap library currently
uses the Active Accessibility features of Microsoft
Windows, an API intended to give people with disabilities
alternate means for accessing computer functions (see
msdn.microsoft.com). Unfortunately not all toolkits
implement Active Accessibility. There are also language-
specific problems with other toolkits that limit how well we
can support lightweight widgets. While we implemented a
limited point solution, there is as yet no universal solution
to this problem.

Widgets are not Self-Describing
For a library like widget tap to work, it needs to understand
how each widget works. For example, the library provides
two implementations of the CommandTap base class. One
understands the various flavors of system-supplied push
buttons. The other understands toolbars and menubars as
they appear in Microsoft Office applications. A
configuration file is used to determine which
implementation is appropriate for a given widget.
The problem is that there is no way of automatically
discovering the semantic operations and messages
implemented by a widget. That is, widgets are not self-
describing, nor do they describe their relationship with the
containing application.
Currently, we must consult each widget’s documentation,
and manually write code in our library to handle that
particular widget type. This is tedious to do, as it implies
we need to write code that understands every single
possible type of widget that fits within the meta class. Even
if we went through this effort, this only accounts for the
widgets available today. If a system release included new
widgets, then new code would have to be written to handle
them. Another serious problem is that there is no easy way
of including undocumented widgets that were perhaps
created as part of a custom application or from a non-
standard toolkit.
A solution is in sight, for operating systems are
encouraging toolkit designers to implement accessibility
APIs. However, this is still not standard practice. Even if it
were done, it may not apply to applications using older
version of these toolkits.

Modes are Difficult to Handle
Many interfaces are moded, where operating a widget in
some modes makes little sense. For example, a widget that

draws a border in a table is of little use if a table is not
selected. Conventional interfaces typically manage modes
by visual feedback (graying out or hiding the widget) and
by disabling the widget.
These modes lead to two problems for customizable
physical controls. First, a tap into a widget has only a crude
and perhaps unreliable means of detecting whether it is in a
valid mode. It can check if the widget is enabled, disabled,
visible or hidden. Second, it is difficult to show that
physical controls are disabled. Yet because they are always
present, people feel that they can use them at any time. This
means the end user may try to invoke a widget action at an
inappropriate time through its physical control. At worse
we hope this will lead to a null action that may be puzzling
to the user.

HISTORY AND RELATED WORK
In 1963, Ivan Sutherland [23] demonstrated Sketchpad, the
very first interactive graphical user interface. Films of
Sketchpad [14] highlight how people use a light pen to
manipulate drawings, which foreshadowed the widespread
use of pointing devices for graphical interaction. What is
often overlooked in these old demonstrations is that almost
all user actions involved two hands—a person would
simultaneously manipulate large banks of physical controls
as they used the light pen. These physical controls had
dedicated functions that modified the light pen actions, for
example, to specify start and end points of lines, to make
lines parallel or co-linear, to delete existing lines, to
indicate centers of circles, to store drawing objects, and so
on [14,23]. Physical controls were also used for other
interactions, such as zooming and rotation of objects. As
seen in Figure 7, these controls surround and dwarf the 7-
inch display containing the Sketchpad interface, and
comprise physical knobs, push-buttons and toggle
switches.
Sketchpad’s use of physical interaction techniques was not
atypical, as many computers of the 1960’s and earlier often

Figure 7. Ivan Sutherland interacting with Sketchpad on the
TX-2 computer console.

came with consoles packed with physical controls. For
example, the operator console of the IBM Stretch machine,
built in 1961, was immersed in a myriad of dials, lights,
meters and switches.
In 1967, Douglas Engelbart introduced a new way of
interacting with technologies, where almost all physical
controls were replaced by the mouse and the two keyboards
pictured in Figure 8. Similar to Sketchpad, keyboard
‘commands’ (instead of physical button presses) modify
mouse actions [4].
While Engelbart’s system did away
with most special purpose physical
controls, they appeared again as
special purpose function keys in
the Xerox Star [11]. Because there
were relatively few function keys
on the keyboard and a fairly large
repertoire of system commands,
the Star inventors came up with the
notion of generic commands: a
small set of commands, mapped
onto the function keys in Figure 9
that applied to all types of data.
The active selected object
interpreted these function key
presses in a semantically reasonable way.
Later desktop computers, as popularized by the Apple
Macintosh in the early 1980’s, reduced even these special-
purpose keys by replacing them with the now-familiar on-
screen graphical user interface widgets. From this point on,
graphical user interface controls reigned supreme on
desktop computers. While most keyboards do allow some
keys to be reprogrammed (including function keys), they
are no longer a dominant part of interaction. In the last
decade, the only other physical devices prevalent on
desktop computers were games controls. Typically a
generic input device (such as a joystick or steering wheel)
controls a broad class of gaming applications, although one
can also buy dedicated controls for particular games.

Recent research in human computer interaction has
reintroduced physical controls. There are new input devices
e.g., [20], and novel ways to control new classes of
computers e.g., tilting and panning actions for scrolling
through items on a PDA [8]. Researchers are bridging
physical world objects with computer objects through
tagging and tracking [19,22,25], or by creating physical
remote controls [15,16] that operate on conventional
graphical user interfaces. Perhaps the closest to our work is
tangible media [9,10], which describes how physical media
can be attached to digital information and controls. An
excellent example is Ullmer, Ishii and Glas’s mediaBlocks
[24]. Similar to our Example 2, their mediaBlocks
(electronically tagged blocks of wood) can be assigned to
particular functions and bits of information, further
depending upon the location of the block reader.
There are many more exciting examples of how new
technology can use physical devices. Almost all of them,
however, interact with special purpose software rather than
commonly used applications, thus limiting their immediate
use in daily life. Overcoming this serious limitation was
one of the motivations behind our work

SUMMARY
Customizing existing applications with physical interfaces
allows us to immediately realize very diverse design
opportunities for accessible, tangible, and context-aware
computing, albeit in a limited way. However, we feel that
the pendulum has been swung too far, and applications are
now so dependent on GUI widgets that we have lost the
benefits of judicious application of physical controls.
In this paper, we presented our notion of customized
physical interfaces to existing applications. We described
how we combined our phidget and widget tap package to
allow programmers to seize upon this design idea, and
offered examples demonstrating its use. We also discussed
many of the problems found in external attachment. While
we have made good headway in solving the external
attachment problem, there remain several impediments. In
the end, some of these issues may be only addressable by
windowing system and GUI toolkit makers.
Our future work in this area will focus partly on finding
solutions to the external attachment problems presented
here, but mostly on the design opportunities afforded by
customizable physical interfaces.
Software and hardware availability. Phidget hardware and
software is available through www.phidgets.com. The
widget tap library and examples will be available fall 2002
at http://www.cpsc.ucalgary.ca/grouplab/.
Acknowledgements. The Microsoft Research Collaboration
and Multimedia Group, the National Sciences and
Engineering Research Council of Canada, and the Alberta
Software Engineering Research Consortium partially
funded this work. We also thank the referees who reviewed
an earlier version of this paper. They were very

Figure 8. Engelbart’s mouse-keyset combination, including
a one-handed chorded keyboard (from www.bootstrap.org)

Figure 9. Star’s left
function key cluster.

knowledgeable and gave excellent recommendations for
improving it.

REFERENCES
1. Bharat, K. and Sukaviriya, P. Animating User

Interfaces Using Animation Servers. Proc ACM
UIST’93, 69-79, 1993.

2. Buxton, W. and Myers, B. A Study of Two-Handed
Input. Proc ACM CHI’86, 321-326, 1986.

3. Card, S., Mackinlay, J. and Robertson, G. A
morphological analysis of the design space of input
devices. ACM Trans Information Systems, 9 (2), 99-
122, 1991.

4. Engelbart, D. and English, W. A Research Center for
Augmenting Human Intellect, AFIPS Conference Proc
Fall Joint Computer Conference (33), 395-410, 1968.

5. Greenberg, S. The computer user as toolsmith: The
use, reuse, and organization of computer-based tools.
Cambridge University Press, 1993.

6. Greenberg, S. and Fitchett, C. Phidgets: Easy
Development of Physical Interfaces through Physical
Widgets. Proc ACM UIST’01, 209-218, 2001.

7. Government of the United States of America. Section
508 of the Rehabilitation Act (29 US.C. 794d, Public
Law 10-24). http://www.section508.gov.

8. Harrison, B., Fishkin, K., Gujar, A., Mochon, C. and
Want, R. Squeeze Me, Hold Me, Tilt Me! An
Exploration of Manipulative User Interfaces. Proc
ACM CHI’98, 17-24,1998

9. Ishii, H. and Ullmer, B. Tangible bits: Towards
seamless interfaces between people, bits and atoms.
Proc ACM CHI’97, 234-241, 1997.

10. Ishii, H., Mazalek, A., Lee, J. Bottles as a minimal
interface to access digital information. Extended
Abstracts of ACM CHI, 2001.

11. Johnson, J., Roberts, T., Verplank, W., Smith, D., Irby,
C., Beard, M. and Mackey, K. The Xerox Star: A
Retrospective. IEEE Computer 22(9), 11-29, 1989.

12. Kaminsky, M., Dourish, P., Edwards, K. LaMarca, A.,
Salisbury, M. and Smith, I. SWEETPEA: Software
tools for programmable embodied agents. Proc. ACM
CHI’99, 144-151, 1999.

13. McGrenere, J., Baecker, R. and Booth, K. An
evaluation of a multiple interface design solution for
bloated software. Proc ACM CHI’02, 163-170, 2002.

14. MIT. Sketchpad. ACM CHI’83 Video Program in
SIGGRAPH Video Review Issue 13. 1983.

15. Myers, B., Peck, C., Nichols, J., Kong, D. and Miller,
R. Interacting At a Distance Using Semantic Snarfing,
ACM UbiComp'01, 305-314, 2001.

16. Myers, B., Miller, R. Bostwick, B. and Evankovich, C.
Extending the Windows Desktop Interface With
Connected Handheld Computers. 4th Usenix Windows
Systems Symposium, 79-88, 2000.

17. Mynatt, E and Edwards, W. K., Mapping GUIs to
Auditory Interfaces, Proc ACM UIST’92, 61-70, 1992.

18. Patten, J. and Ishii, I. A comparison of spatial
organization strategies in graphical and tangible user
interfaces. Proc ACM DARE’00, 41-50, 2000.

19. Pedersen, E., Sokoler, T. and Nelson, L. PaperButtons:
Expanding a Tangible User Interface. Proc ACM
DIS’00, 216-223, 2000.

20. Rekimoto, J. and Sciammarella, E. ToolStone:
effective use of the physical manipulation vocabularies
of input devices. Proc ACM UIST’00, 109-117, 2000.

21. Resnick, M. Behavior construction kits.
Communications of the ACM 36(7), 64-71.

22. Siio, I. and Mima, Y. IconsStickers: Converting
Computer Icons into Real Paper Icons. Proc HCI
International (Volume 1), 271-275, LEA Press. 1999.

23. Sutherland, I. Sketchpad: A man-machine graphical
communications systems, Proc Spring Joint Computer
Conference, 329-346, Spartan Books, 1963.

24. Ullmer, B., Ishii, H. and Glas, D. mediaBlocks:
Physical Containers, Transports, and Controls for
Online Media. Proc ACM SIGGRAPH’98, 379-386,
1998.

25. Want, R., Fishkin, K., Gujar, A. and Harrison, B.
Bridging Physical and Virtual Worlds with Electronic
Tags. Proc ACM CHI’99, 370-377, 1999.

26. Winograd, T., and Flores, F. Understanding
Computers and Cognition: A New Foundation for
Design, Ablex, 1986.

