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ABSTRACT 

Most of today’s complex software products rely solely on 
graphical controls (GUI widgets) for user interaction.  
However, GUI widgets can be difficult to find and use.  
Physical controls are often simpler to manipulate and 
arrange sensibly about one’s workspace.  Thus, we wish to 
link a physical interface to existing commercial 
applications, e.g., an office productivity suite.  To do so, we 
must tap in to its functionality in ways that do not require 
access to its source code.  We present our widget 
picker/taps package.  It gives developers access to the 
functionality of an existing application via the semantics of 
its GUI widgets.  This approach works well with many 
present-day commercial applications, unlike two other 
common approaches: hooking into application-specific 
APIs, and simulating raw user input.  We present examples 
that illustrate how this package is used to link existing 
application widgets to physical controls.  Our 
implementation prompts a number of issues relevant to 
makers of windowing systems and GUI toolkits. 

INTRODUCTION 

Almost all desktop computer interaction is done using 
keyboards and pointers (e.g., mouse, light pen) to interact 
with graphical UI components (e.g., buttons, menus, 
sliders).  The typical application may present the user with 
hundreds of different functions, each behind its own GUI 
control.  All systems make a tacit assumption that, with the 
exception of typing and keyboard shortcuts, these controls 
should be on-screen and should be accessed with the 
mouse.  Also, it is assumed that invoking functionality this 
way is an efficient interaction method. 

We challenge these assumptions.  First, it can be hard to 
find the GUI control needed for a given application 
function because the controls are hierarchically nested in 
dialog boxes and menus.  This is done to optimize use of 
screen real estate.  Second, to minimize the effort 
associated with this hierarchical navigation, some GUI 

controls are brought to the top-most level by clustering 
them into tool palettes.  These tool windows remain visible 
on the display at all times, and thus compete with the 
application itself not only for display space, but also for the 
user's attention.  Third, while nearly all GUI controls rely 
on the mouse and display for input and output, these are not 
necessarily the best devices for any given control task.  
They provide few cues as to their behaviour beyond mouse 
pointer shape and the use of shading and highlighting in the 
control’s graphical appearance.  Also, although the mouse 
offers (virtually) unlimited motion in a 2D plane, many GUI 
widgets do not need both degrees of freedom.  Consider, for 
example, a trackbar (slider) control: it can only be moved 
along a straight line.  Thus, the unconstrained 2D nature of 
mouse movement does not match the constrained 1D nature 
of a trackbar. 

By contrast, physical interface components—e.g., push 
button switches, rheostats (dials), sliders, and light or 
pressure sensors for input, and LEDs, servo motors, and DC 
power supplies for output—have a number of properties 
that complement graphical controls. 

• Screen real estate is saved, leaving more room for 
applications and diminishing competition for the user’s 
attention.  Navigation poses fewer demands as all physical 
controls are ‘top-level.’ 

• More efficient input is possible, since a physical control’s 
form factor can more closely match the needs of the 
interaction.  Consider, for example, that a rheostat makes 
a better volume control than a using a mouse to control a 
GUI trackbar because it constrains the user’s actions 
along just one dimension. 

• Two-handed input uses are possible when the dominant 
hand controls a mouse while the other hand controls the 
(better constrained) physical device. 

• Can be brought ‘ready to hand’ as needed and pushed to 
the periphery when not needed [18]. 

• Spatial memory is better used.  Physical controls do not 
move about the workspace of their own accord.  By 
contrast, GUI controls are often repositioned as an 
unexpected consequence of some unrelated user action. 

• All of a person’s abilities are used.  Consider an electric 
fan instead of a GUI progress bar to illustrate the progress 
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made on a lengthy operation.  The fan blows harder as the 
process nears completion.  While a GUI progress bar 
relies solely on the visual sense, the fan’s output is 
perceived by many senses: sight, hearing, and touch. 

Given these advantages, why aren’t physical controls more 
prevalent in modern interfaces?  Besides cost-related 
factors, physical interfaces scale poorly.  Having hundreds 
of devices—one for each application function—is simply 
impractical.  Also, physical controls are not as malleable as 
graphical controls and are quickly rendered useless when 
one updates his/her software or switches to a competitor’s 
product.  Consequently, there is substantial pressure to keep 
the number of physical controls small. 

Although it has been repeatedly shown that people use only 
a small subset of the large number of functions available in 
most productivity applications [2], this subset differs 
considerably from user to user [13] (beyond a few universal 
functions like cut and paste).  Thus, it is not possible to 
determine beforehand which functions should be mapped 
onto physical devices. 

Despite these problems, the advantages of physical controls 
motivate our desire to re-introduce them into the interface.  
We believe this can be accomplished through customizable 
physical user interfaces, the main idea of which is: 

…to allow a person to easily bind a function from an 
application to a physical device, and invoke the function 
through that device or see its state displayed on it. 

We also believe that customizable physical user interfaces 
will be realistic only if they work with existing unaltered 
applications.  These could include not only well known 
applications (e.g., Microsoft Office) but also niche 
products.  In either case, source code modifications should 
not be needed to customize them with physical devices. 

In this paper, we describe a software package for 
customizing existing applications with physical interfaces.  
Our approach is to ‘tap in’ to functions exposed by 
graphical controls, and to bind the widget semantics to 
physical controls with similar properties. 

To explain, we first describe what we have built, as seen 
from an end-user’s perspective, using various example 
physical interface customizations.  We then transpose the 
examples to show them from an end-programmer’s 
perspective.  We follow this with a description of our 
package’s internals, which raises issues relevant to makers 
of windowing systems and GUI toolkits.  We conclude by 
describing a small representative sample of the interface 
design possibilities afforded by our architecture and 
providing an historical overview of related work. 

WHAT WE BUILT: AN END-USER’S PERSPECTIVE 
Our architecture allows one to craft many kinds of physical 
interface customizations.  In this section, we show by 
examples what an end-user may see and what they must do 
to customize a particular set of controls. 

Example 1. The button 
Our first simple example illustrates a single customizable 
push button.  Figure 1a shows the physical button. 
Figure 1b displays the on-screen controls that a person 
would use to customize the button: the annotated control on 
the left is called a widget picker, while the button on its 
right is a standard GUI button.  We consider a scenario 
where the end-user wants to customize both the physical 
and GUI buttons to open a new Microsoft Outlook e-mail 
message. 
1. The end-user drags the widget picker over the Outlook 

menu bar (see Figure 1b annotation).  This particular 
picker recognizes ‘command’ widgets that invoke a 
single function, such as buttons, menus and toolbars.  As 
the picker passes over a widget of this type it indicates 
the widget is selectable by highlighting it in blue and 
changing the cursor shape. 

2. Because menu bars contain many items (commands), the 
drop action raises a dialog box listing all items 
(Figure 1c).  The person selects the ‘File / New / Mail 
Message’ menu item.  The dialog box disappears, and 
the on-screen button is automatically relabeled with the 
name of the menu item, i.e., ‘Mail Message’ (Figure 1d). 

3. When the person presses either the physical button or 
GUI button (Figure 1d, top), a new Outlook mail 
message window appears (Figure 1d, bottom).  Pressing 

 
a) a physical button 

    
b) its on-screen counter-part 

 
c) dialog to select a menu 
item 

 
d) modified on-screen button 
and the invoked application 

Figure 1: Storyboard interaction showing how one 
customizes and uses a physical button. 



either button is equivalent to selecting the ‘File / New / 
Mail Message’ menu command. 

Example 2. RFID tags to invoke functions 
Although we could extend our previous example to include 
many buttons, this example instead shows how one can 
quickly assign RFID tags to different functions.  
Figure 2 (top) shows an RFID reader and several RFID tags 
taped onto the backs of small pieces of stiff paper (one is 
shown turned around, with the round tag visible).  At the 
bottom of Figure 2 is the on-screen interface.  While in the 
‘customize’ mode (Figure 2, bottom-left), a user assigns a 
function to a tag by first bringing it near the reader, and by 
then dragging and dropping the widget picker as in 
Example 1.  To differentiate among the many tags, the user 
simply writes the action (in his or her own words) on the 
stiff paper, as shown in the figure.  While in the ‘recognize’ 
mode, user invokes the function assigned to the tag by 

moving the tag near the reader.  This displays the assigned 
function’s name and then executes it (Figure 2, bottom-
right).  We see in Figure 2 the end-user has assigned RFID 
tags to invoke several e-mail and media player functions 
and has organized them on wooden trays. 

Example 3. A physical gauge as a progress bar 
One can also display output on a physical device.  Figure 3 
shows one example, where a gauge was constructed using a 
servo motor.  The end-user has dropped a widget picker 
onto the progress bar that displays the charge state of 
his/her laptop battery (Figure 3, bottom).  As a result, the 
motor automatically tracks the progress bar’s value and 
rotates to a position relative to it. 

Example 4. A console containing many devices  
The previous examples illustrate a few types of single-
device customizations.  Of course, many other devices are 
available and we can combine them to create consoles.  
Figure 4 annotates an unassembled console. It includes: 
• three slider potentiometers that one can attach to any on-

screen trackbar (slider) or scrollbar;  
• eight LEDs that one can attach to a boolean control 

(such as a checkbox) to monitor its state;  
• six push buttons and one toggle that one can attach to 

any button, menu item or checkbox; 
• force, light and capacitive sensors that can be attached 

to any widget that recognizes a continuous range of 
values, for example, a trackbar or scrollbar 

For example, we can use this console to create a physical 
interface to the volume control pictured on the right.  We 
attach the first physical slider to the volume slider, the 
second to the balance, and a button (or toggle) to the mute.  
We can also attach an LED to the mute checkbox so its 
light is on when the volume has been muted. 

WHAT WE BUILT: A PROGRAMMER’S PERSPECTIVE 
Our customizable physical interfaces architecture contains 
three main parts.  First, phidgets™ are physical widgets 
used to construct a myriad of physical controls (buttons, 
dials, sliders, switches) and displays (gauges, lights) [3]. 

 
 

  
Figure 2. The RFID example. 

 

 
  

Figure 3. A gauge made with a servo motor connected to a 
laptop’s power meter. 

 
Figure 4. A console made up of many inputs and outputs 
used to adjust a software volume control. 



Second, the widget picker (seen by both user and 
programmer) and taps (object visible only to programmers) 
expose an application’s functionality as controlled by its 
GUI widgets so that one can send directives to the function 
and/or get the state of the function.  That is, a widget tap 
‘taps in’ to the functionality exposed by a widget.  Finally, 
connector software lets a user rapidly connect a physical 
device to a function exposed by the widget tap. 

Physical widgets 
Our physical interfaces are made with phidgets™ [3].  A 
phidget comprises a device, a software architecture for 
communication and connection management, a well-defined 
API for device programming, a simulation capability, and 
an optional on-screen component for interacting with the 
device.  Phidgets are ideally suited for this project, for it 
means one can quickly prototype various customizations 
without spending effort developing special hardware, 
firmware, or software.  Several phidgets in our toolkit are 
particularly well suited to this project. 
• PhidgetInterfaceKit lets one plug in a combination of off-

the-shelf controls such as those used in Figures 1 and 4. 
Specifically, a programmer can control through software 
up to eight digital output devices (e.g., LEDs and 
solenoids); retrieve the state of up to eight digital input 
devices (e.g., various types of push buttons and throw 
switches); and, inspect the state of various analog sensors 
connected to it (e.g., potentiometers, heat, force, 
capacitive plates and light sensors, as shown in Figure 4). 

• PhidgetRFID is an RFID tag reader (Figure 2), where a 
program is notified whenever an RFID tag passes over an 
antenna.  The notification includes the unique ID of that 
tag. 

• PhidgetServo comprises one or more servo motors (one is 
illustrated in Figure 3) where a motor’s position is easily 
set through software. 

• PhidgetPower varies the amount of power sent to an 
attached DC device such as a motor or light. 

From a coding perspective, detecting a change in phidget 
status is easy.  We illustrate this with the physical button in 
Figure 1.  It is connected to a PhidgetInterfaceKit 
represented by the phidgetIK programmer object. When 
the button is pressed, an OnInputChange software event is 
raised.  We check which digital input signaled the change 
and its new state (True for pushed) and then take the 
desired action. 
Sub phidgetIK_OnInputChange (Index, State) 
 If Index = 1 and State = True Then 

  ‘do something 
End If 

End Sub 
Similarly, PhidgetRFID raises an OnTag event when an 
RFID tag is detected near its antenna.  From this the 
programmer can easily identify which tag was read.  
Example 2 from above would dynamically track these tag 
identifiers in an array and search the array whenever it sees 
a tag. 

Sub phidgetRFID_OnTag(TagNumber) 
 Select Case TagNumber 
  Case TagNumber = "00041135a0" ‘one tag 
        ‘do something 
  Case TagNumber = "00053343a5" ‘another tag 
   ‘do something else 
    End Select 
End Sub 

Similarly, a programmer can change the state of any 
physical output device. The source code below illustrates 
how to turn on the 2nd LED in a bank of LEDs attached to 
the PhidgetInterfaceKit, and rotate the first servo motor 
controlled by a PhidgetServo to the 90° position. 
 phidgetIK.Output(2) = True 
  phidgetServo.MotorPosition(1) = 90 

Using these phidgets, we can quickly create quite different 
control consoles.  For example, we constructed the push 
button in Figure 1 in minutes: we cut off the top of a plastic 
bottle, drilled a hole in the cap, and embedded a switch in 
it.  We gained access to the switch’s state by plugging it 
into the PhidgetInterfaceKit.  The more complex console in 
Figure 4 uses sliders, buttons and rocker switches all 
connected to a PhidgetInterfaceKit.  The RFID tags 
(Figure 3) are read with a PhidgetRFID, and the mechanical 
gauge in Figure 2 is actually a PhidgetServo. 

Widget picker and tap 
Accessing existing system and application functions is 
difficult.  From a technical perspective, neither operating 
systems nor applications offer a convenient and 
standardized way to access their functionality without a 
large amount of programming effort.  Thus, our solution 
must abstract away from individual application or GUI 
toolkit differences and shield the programmer from the 
details of the lower-level window manager/operating system 
interfaces.  Furthermore, it is not even clear what we mean 
by ‘functionality’ as it can be defined a number of different 
ways: we discuss this aspect later in this paper. 

Our widget picker and taps package makes it easy for an 
end-user to select a particular GUI widget and for a 
programmer to access the semantic functions of that widget.  
Specifically, our widget picker is an interactive ActiveX 
control that lets an end-user select a graphical widget 
already on the display (e.g., as illustrated by the left control 
in Figure 1b).  When a widget is picked, the programmer is 
provided with a widget tap object that exposes the interface 
of that particular widget.  The widget tap can invoke the 
function controlled by the selected widget and retrieve 
information about the widget’s state. 

Currently, we have implemented three classes of widget 
taps.  Each widget tap may be used with a number of 
different types of widgets, each with distinct visual 
appearances and interaction paradigms yet all sharing the 
same logical operation. 
CommandWidgetTap for GUI widgets that invoke a single 

application function, e.g., push buttons, menu items, and 
toolbar buttons. 



RangeWidgetTap for GUI widgets that are used to select a 
discrete value between a minimum/maximum range: 
track bars (sliders), scroll bars, and progress bars. 

ToggleWidgetTap for GUI widgets such as checkboxes 
that toggle between yes/no values. 

We show how this works by walking through the complete 
code in Figure 5 that sits behind the example customizable 
button illustrated in Figure 1.  For now, we will only show 
how we connect the on-screen button at the right of 
Figure 1b to any command widget picked by the end-user. 

1. The programmer constructs the window in Figure 1b by 
dropping in: a widget picker named wPicker and a 
button named Button with its caption set to the string 
“Select a button or a menu”.  

2. In code, the programmer declares a widget tap called 
wTap.  Both the wTap and wPicker are initialized to 
understand the semantics of a ‘command’ widget.  The 
user can now drag and drop the wPicker over any 
supported widget (e.g., buttons, menus, and tool bars). 

3. When the end-user selects a widget (such as the “New 
Mail Message” menu item), the wPicker_Pick 
callback is automatically invoked, providing a handle to 
a widget tap object (Tap) that is now connected to the 
selected widget.  To use it, the programmer assigns this 
handle to the declared wTap variable, thereby exposing 
properties and methods specific to command widget 
taps.  For example, in Figure 5 we see that the 
programmer has retrieved the name of the command 
widget (i.e., the text label of the menu item) via the 
wTap.Name property and has assigned it to the button’s 
caption property. 

4. When the end-user presses the GUI button, the standard 
Button_Click event is raised and the programmer 
calls the wTap.Click method.  This invokes the 
equivalent semantic operation on the corresponding 
widget, i.e., it invokes the application function that 
would arise out of clicking the widget.  In this case, a 
new mail message will appear. 

Of course, this is just a simple example, and far more 
interesting ones can be constructed.  Other (quite different) 
widget classes, such as sliders and checkboxes, can be 
accessed and controlled in a very similar manner.  What is 
important is that our picker control and tap objects give the 
programmer access to the semantics of any recognized 
widget in any application.  The programmer needs no 
access to the application source, nor does he or she need 
any prior knowledge of that application.   

Connector software 
The final step is to connect the widget(s) exposed by the 
widget tap to the phidget(s).  This connector software is 
implemented by programmers using our picker/tap package 
and the phidget library.  Programmers build the physical 
interfaces, deciding which and how many devices to use, 
how they are packaged, and how they may be represented 
on the screen (e.g., as a mimic diagram). 

To completely implement the push button example in 
Figure 1, one adds the following code (as well as some 
phidget initialization code) to Figure 5: 
Sub phidgetIK_OnInputChange (Index, State) 
 If Index = 1 and State = True Then 
    wTap.Click 
 End If 
End Sub 

As before, phidgetIK is the PhidgetInterfaceKit object 
declared by the programmer.  Connecting an analog 
physical device (e.g., a physical slider) to a ‘range’ widget 
(e.g., a GUI slider) is just as easy.  Assuming the physical 
slider is the first sensor: 
Sub phidgetIK_OnSensorChange (Index, Value) 
 If Index = 1 Then 
    wTap.Value = Value 
 End If 
End Sub 

Finally, connecting an analog physical output device such 
as a servo motor to (say) a ‘range’ widget such as the 
battery recharge progress bar on a laptop computer is 
almost as easy.  The RangeWidgetTap provides a means 
to query the current progress bar value.  One can set up a 
timer to poll this value, and convert it to an angle between 
0° and 180° used to set the position of a servo motor. 
Sub tmrPoll_Timer() 
  ratio = (wTap.Value - wTap.Min) / _ 
              (wTap.Max - wTap.Min) 
   Servo.MotorPosition(1) = 180 * ratio 
End Sub 

WHAT WE BUILT: INTERNALS 
Our architecture provides two fundamental components: the 
phidget hardware and software [3], and the widget 
picker/tap software.  Programmers apply the API of each to 
build software that bridges physical and GUI controls.  
Thus our discussion of the internal workings of our 
architecture will concentrate on the widget picker/tap 
component. 

‘This object will expose a command-type widget 
Dim wTap As CommandWidgetTap 

Sub Form_Load() 
 ‘Initialize the picker to select only this type of widget 
 wPicker.TapClass=New CommandWidgetTap 
End Sub 

‘A person selected a widget  
Sub wPicker_Pick (Tap As Object) 
 Set wTap = Tap 
 Button.Caption = wTap.Name 
End Sub 

‘A person pressed the button  
Sub Button_Click() 
 wTap.Click 
End Sub 
Figure 5. The code behind Example 1’s Button. 



As mentioned, the WidgetPicker control allows the end-
user to interactively choose a widget: it is responsible for 
enumerating widgets on the display and getting the user to 
select just one.  WidgetTap objects allow programmers to 
inspect and manipulate the selected widget.  The picker and 
taps work together to identify which on-screen widgets are 
of a suitable class. 

The previous discussions also illustrated that a given widget 
tap class can support several logically similar yet visually 
and interactively dissimilar widget types.  In a sense, widget 
taps are “meta-classes” of widgets.  With our architecture, 
these meta-classes are easy to create, and existing ones are 
easily extended to include new GUI widgets that fit the 
class semantics. 

We implemented the picker/tap package on Windows XP as 
follows. As the user drags the WidgetPicker about the 
display, the picker uses standard Windows APIs to discover 
the widget beneath the mouse pointer.  It passes a handle to 
that widget to the programmer-specified WidgetTap class, 
which in turn uses windowing system APIs to discover the 
class name (and, in some cases, the class-specific styles) of 
that widget.  If the widget meets the criteria set by the 
WidgetTap class, the WidgetPicker highlights the widget on 
the display as being a suitable drop target. 

A lot of effort is spent deciding if a widget is of a supported 
class.  This is because many widget classes with similar 
looks and feels are known to the windowing system by very 
different class names.  Often, GUI toolkits will make it 
possible for the programmer to create new widget classes 
that override and extend existing ones.  This is inheritance 
and it is widely used, e.g., in the Java Swing toolkit and the 
gtkmm toolkit for GTK+.  Some toolkits provide 
equivalents of system-supplied widget classes that have 
been tweaked to work within the toolkit framework (e.g., 
Microsoft .NET Windows Forms). 

The problem is that the underlying windowing system is 
ignorant of these inheritance relationships.  Thus, while the 
system-supplied push button widget class is named 
BUTTON, the virtually identical Microsoft .NET 
counterpart is called WindowsForms10.BUTTON.app1.  
The relationship between base and derived widget classes is 
unknown to the windowing system and our widget taps 
(except through trial and error experimentation).  Worse, in 
some toolkits (e.g., GTK+), all widgets are known to the 
windowing system by the exact same class name.  Thus, to 
the windowing system, a GTK+ text box is the same as a 
GTK+ push button. 

Beyond participating in the selection of a widget, the 
WidgetTap must also invoke the functionality provided by 
the widget.  System-supplied widgets communicate with 
their containers (i.e., parent windows) through the exchange 
of well-documented messages.  The messages are 
exchanged using the same underlying mechanisms the 
windowing system uses to deliver mouse/keyboard input 

events to a widget.  For example, clicking a button widget 
sends (loosely speaking) a BN_CLICKED notification 
message to its container; the container then decides what 
action to take in response to this notification.  Thus, when 
tapping in to a system-supplied button widget, the Click 
method of CommandWidgetTap mirrors this process by 
sending a BN_CLICKED message to the button widget’s 
container, as though it had come from the widget itself. 

While this sounds simple, it is difficult to do in practice. 
For example, if application- or widget-specific messages 
carry pointers as arguments then they cannot be marshaled 
between processes as the windowing system is largely 
ignorant of the format of these widget-specific messages.  
Messages have no meta-data to describe parameter types 
and formats.  Careful use of various system-supplied hooks, 
however, will circumvent process boundaries. 

Each application/toolkit may implement its own widgets 
with idiosyncratic class names; these widgets are ignored if 
unknown to a WidgetTap class.  Thus, the user may not be 
able to pick whole sets of widgets, even if the widget 
‘looks’ and ‘feels’ like a system-supplied one.  Moreover, 
some toolkits use lightweight widgets: those that (as a 
resource-use optimization) have no representation known to 
the windowing system.  Because our widget picker relies 
solely on information available from the windowing system, 
it is thus ignorant of these lightweight widgets. 

One promising way around these issues draws upon the 
accessibility facilities of the operating system.  These 
features allow applications to support assistive technologies 
that help users with mobility, hearing, or visual impairments 
by giving them alternate interfaces.  This is very similar to 
what we wish to accomplish with our package.  For 
example, these accessibility facilities provide a standard 
way to access command bars: the menu bars and tool bars 
used in Microsoft Office products.  The individual buttons 
on command bars are lightweight widgets, and each is 
registered with the system’s accessibility facilities.  
Enumerating the accessible widgets is precisely how the 
dialog of menu items shown in Figure 1c is made. 

Sadly, there is no means to automatically register all 
widgets with the accessibility facilities.  Furthermore, the 
accessibility APIs themselves have poor support for output 
(i.e., user feedback).  Worse, a modest amount of 
programmer effort is needed to incorporate accessibility 
features into applications, and developers are often unaware 
of these facilities and their value.  Not surprisingly, only a 
handful of existing applications presently leverage 
accessibility features (e.g., Microsoft Office).  The U.S. 
government’s strong commitment to the development and 
deployment of assistive technology [16] does offer hope 
that this situation will improve with time. 

We should stress that this implementation is far from ideal. 
For example, most windowing systems do not use instance-
invariant widget identifiers, and so if a widget is destroyed 



and then subsequently recreated there is no convenient 
means to readily derive the new widget instance given the 
old one.  Consequently, with our package, if a user selects a 
widget and then restarts the application, the widget tap 
chosen is rendered useless.  Although some toolkits provide 
instance-invariant widget names (e.g., widget paths in 
Tcl/Tk) there is little consistency between them and the 
underlying windowing system remains ignorant of these 
names. 

In a subsequent section we summarize the implications to 
windowing system and GUI toolkit makers prompted by 
issues related to our package implementation. 

IMPLEMENTATION DESIGN SPECTRUM 
Our goal was to customize a broad base of applications 
already in wide use to work with physical controls.  As this 
in turn implies no modifications may be made to the 
existing applications, we designed our package to expose 
existing application functionality to programmers so that 
they can write software to customize these applications with 
physical interfaces.  Our solution represents only one point 
on a spectrum of possible solutions, each with its own set of 
advantages and issues.  In this section, we present this 
spectrum of approaches to the problem of accessing and 
exposing application functionality. 

In general, we can access an application’s functionality 
using a range of syntactic to semantic methods. 

At one extreme, syntactic access simulates raw user input: 
that is, the syntax of the interaction.  Syntactic access 
closely mirrors the low-level motor operations performed 
by users as they interact with the application, e.g., click the 
mouse at display coordinates (x,y), press the Ctrl+S key 
combination.  Programmable function keys of older 
character terminals illustrate this.  Pressing a function key 
inserts a user-programmable character stream into the 
terminal.  An advantage of syntactic access is that it exactly 
mirrors how a user expresses a function, i.e., ‘I did X to get 
Y; the physical device just has to do the same thing’.  The 
problem is that syntactic access is difficult to implement 
reliably.  It is ignorant of the modes that the application 
may be in, and provides little opportunity to assess an 
application’s feedback.  It also fails in GUIs when things do 
not appear in constant locations or when the interface is 
rearranged from one invocation to the next.  Also, while 
syntactic access lets us emulate user input, it does not give 
easy access to an application’s output, e.g., the name of a 
button visible on the display or the invisible minimum and 
maximum properties of a trackbar (slider). 

At the other extreme, semantic access uses high-level 
abstractions and hooks that expose access to the 
components and operations performed by an application, 
i.e., the semantics of the interaction.  Hooks, automation 
APIs and scriptable object models used by macros are 
examples of this kind of access.  The advantage of semantic 
access is that it provides reliable access to an application’s 

functionality, and provides the ability to respond to 
(significant) application events.  Ideally, these functions and 
events will mirror the high-level cognitive operations 
performed by users, e.g., save the document, delete the e-
mail message. 

Unfortunately, semantic access has disadvantages.  First, 
the only functions available are those that the application 
programmer a priori decided to supply through the 
application’s high-level object models and automation 
interfaces.  Second, the provided semantic functions may 
not match how the end-user actually thinks of their 
application.  For example, a user’s view of a ‘function’ may 
actually be a chain of automation calls and logic, e.g., as 
captured in a macro.  Lastly, these API calls are hidden 
from the user—they do not have a graphical, on-screen 
presence—and are not written in the user’s language (they 
are written in the programmer’s language).  Given this, how 
can the end-user specify which function he/she wishes to 
invoke? 

Straddling these two extremes is an application’s graphical 
interface, e.g., the types of widgets, their positions, styles, 
and properties.  Widgets simultaneously reveal both the 
semantics of their functionality and the syntax of their 
invocation.  Information about available functions normally 
provided intentionally through hooks and automation APIs 
are also expressed as a consequence of the GUI widgets 
presented to the user.  For example, we can infer that a 
menu item that displays the text “Save” invokes the 
application’s Save functionality.  A very important 
advantage of using widgets to access functions is that it is in 
the language of the end-user.  This makes it very easy for 
the end-user to specify a desired action simply by selecting 
the widget that invokes that action.  Another advantage is 
that the invoked function may actually execute a complex 
bit of application code; it is not limited to invoking only 
primitive automation calls.  

While a good solution, widget disadvantages concern 
implementation.  When an application’s widgets are of 
known standard types, we can use well-documented system-
supplied hooks and APIs to access them on a level that is 
more semantic than syntactic e.g., invoke the ‘Save’ menu 
item vs. ‘click the second item of the first sub-menu of an 
application’s main menu bar.’  This approach, sadly, cannot 
be applied universally as custom widgets used in an 
application may have no publicly viewable documentation.   
Given the diversity in application implementation, it is quite 
likely that no matter the technique used to gain access to 
functionality of one application, it will eventually fail for 
some other application. 

DISCUSSION 

Implications to application framework designers 
We summarize here the issues raised in the previous 
discussions that are most relevant to windowing system and 
GUI toolkit makers. 



1. Lack of instance-invariant widget identifiers makes it 
hard to find a widget after it has been recreated. 

2. Implementation inheritance relationships are not known 
to the windowing system.  GUI toolkits do not make 
each derived widget class look distinct to the windowing 
system. 

3. Accessibility features are not automatically applied to 
every widget, neither by the windowing system nor GUI 
toolkits.  Accessibility features are often poor at 
communicating application feedback. 

4. Lightweight widgets are inaccessible using standard 
windowing system APIs. 

5. Widgets are not self-describing, i.e., they do not reveal 
the semantic operations they support.  This is especially 
true of undocumented custom widgets. 

6. Windowing-system events carry no metadata about 
parameter types and formats.  There is no reliable means 
to learn of application-specific events. 

Design possibilities 
While the basic idea of a customizable physical interface is 
fairly simple, it opens the door to many design possibilities. 
A few are listed below, although we believe that many more 
compelling examples remain as yet undiscovered. 

Construction kits. Instead of giving end-users pre-
assembled physical consoles, one can give them a 
construction kit that, for example, includes a 
PhidgetInterfaceKit and a multitude of switches and sensors 
mounted on Lego™-like blocks.  End-users can then 
assemble their own custom panels using whatever controls 
they wish.  On the software side, we can easily create 
movable controls representing the eight digital inputs and 
outputs, and the four sensor inputs.  Users can match the 
type of input with what they actually attached to the 
PhidgetInterfaceKit through a shortcut menu, e.g., a 
particular sensor input could be set to look like a slider or a 
force sensor.  Finally, users can position these movable 
controls on the display so they match the arrangement of 
physical controls thus creating a mimic diagram. 
Interfaces for people with special needs. While many 
people suggest that computers should help those with 
special needs, most of today’s computers tend to have built-
in help for only particular types of disabilities e.g., low 
vision.  One of the problems is cost: unless many people 
have a particular type of disability, it is just too expensive 
to build in accessibility features.  Customizable controls can 
lower this cost, as it would be fairly easy to create a custom 
physical control panel that (say) gives people with fine 
motor control problems easier access to their applications.  
Similarly, we can map an application’s state onto output 
devices to make them more perceivable (e.g., mapping a 
progress bar to a fan, as mentioned earlier, benefits those 
with visual and/or aural impairments). 

It is important to point out here that assistive technology 
(AT) product makers often use approaches similar to what 
we describe here.  However, our widget picker/taps package 
is not a product focused on one or a few particular kinds of 
ability impairments, nor is it wholly restricted to the AT 
domain. 

Customizable reactive environments. A reactive 
environment is one where computers sense the environment 
and take action depending on what is sensed.  There are 
now many examples of reactive environments. e.g., those 
reported in the ubiquitous and context aware computing 
literature.  However, most are hard-wired to particular 
environments and situations.  In contrast, customizable 
physical controls would make it simple for a person to 
‘build’ his/her own—albeit limited—reactive environment. 

For example, let us say two people have created a voice 
connection through an instant messenger client (Figure 6) 
and wanted to leave it running.  Because of privacy 
concerns, both parties only want the microphones to be 
enabled when people are close to their computers.  They 
can easily achieve this by using a capacitive sensor instead 
of a physical slider, and embedding that into the chair (this 
would set the microphone to maximum when someone sits 
in the chair and off otherwise). Alternatively, one can plug 
in an ultrasonic proximity sensor and place it atop the 
computer.  In this case, the microphone is sensitive when 
one is nearby, but decreases in sensitivity as one moves 
away (e.g., one may only receive a slight murmur of 
conversations occurring away from the computer). 

Linking smart appliances to applications. Looking ahead, 
as our appliances get smarter, there is nothing to stop them 
from becoming wireless physical devices that control 
similar applications on desktop PCs. For example, the 
controls of a physical MP3 player could be linked to a 
media player application running on a traditional PC 
desktop.  If one presses a mode button, all the physical 
player controls (e.g., volume control, play, seek) could then 
be used to operate the media player application.  If the MP3 
player device was Bluetooth™-enabled, it could become a 
kind of wireless remote control for the PC. 

  
Figure 6. Controlling Windows™ Messenger. 



HISTORY AND RELATED WORK 
In 1963, Ivan Sutherland [9] demonstrated Sketchpad, the 
very first interactive graphical user interface.  Films of 
Sketchpad [7] highlight how people use a light pen to 
manipulate drawings, which foreshadowed the widespread 
use of pointing devices for graphical interaction.  What is 
often overlooked in these old demonstrations is that almost 
all user actions involved two hands—a person would 
simultaneously manipulate large banks of physical controls 
as they used the light pen.  These physical controls had 
dedicated functions that modified the light pen actions, for 
example, to specify start and end points of lines, to make 
lines parallel or co-linear, to delete existing lines, to 
indicate centers of circles, to store drawing objects, and so 
on [8].  Physical controls were also used for other 
interactions, such as zooming and rotation of objects.  As 
seen in Figure 7, these controls surround and dwarf the 7-
inch display containing the Sketchpad interface, and 
comprise physical knobs, push-buttons and toggle switches. 

Sketchpad’s use of physical interaction techniques was not 
atypical, as many computers of the 1960’s and earlier often 
came with consoles packed with physical controls.  For 
example, the operator console of the IBM Stretch machine, 
built in 1961, was immersed in a myriad of dials, lights, 
meters and switches. 

In 1967, Douglas Engelbart introduced a new way of 
interacting with technologies, where almost all physical 
controls were replaced by the mouse and the two keyboards 
pictured in Figure 8.  Similar to Sketchpad, keyboard 
‘commands’ (instead of physical button presses) would 
modify mouse actions [1].  

While Engelbart’s system did away with most special 
purpose physical controls, they appeared again as special 
purpose function keys in the Xerox Star ([6]).  Because 
there were relatively few function keys on the keyboard and 
a fairly large repertoire of system commands, the Star 
inventors came up with the notion of ‘generic commands:’  
a small set of commands, mapped onto the function keys in 

Figure 9 that applied to all types of data.  The active 
selected object interpreted these function key presses in a 
semantically reasonable way. 

Later desktop computers, as popularized by the Apple 
Macintosh in the early 1980’s, reduced even these special-
purpose keys by replacing them with the now-familiar on-
screen graphical user interface widgets.  From this point on, 
graphical user interface controls reigned supreme on 
desktop computers.  While most keyboards do allow some 
keys to be reprogrammed (including function keys), they 
are no longer a dominant part of interaction.  In the last 
decade, the only other physical devices prevalent on 
desktop computers were games controls.  Typically a 
generic input device (such as a joystick or steering wheel) 
controls a broad class of gaming applications, although one 
can also buy dedicated controls for particular games. 

Recent research in human computer interaction has 
reintroduced physical controls.  Many of the examples 
involve controls for new classes of computers e.g., tilting 
and panning actions for scrolling through items on a 
PDA [4].  Others try to bridge physical world objects with 
computer objects through tagging and tracking [17].  
Perhaps the closest to our work is tangible media [10,11], 
which describes how physical media can be attached to 
digital information and controls.  An excellent example is 
Ullmer, Ishii and Glas’s 
mediaBlocks [10].  Similar to our 
Example 2, their mediaBlocks 
(electronically tagged blocks of 
wood) can be assigned to particular 
functions and bits of information, 
further depending upon the location 
of the block reader.  

There are many more exciting 
examples of how new technology 
can use physical devices (e.g., [15]).  
Almost all of them, however, 
interact with special purpose 
software rather than commonly used 

 
Figure 7. Ivan Sutherland interacting with Sketchpad on 
the TX-2 computer console. 

Figure 8. Engelbart’s mouse-keyset combination, including 
a one-handed chorded keyboard (from www.bootstrap.org) 

 
Figure 9. Star’s left 
function key cluster. 



applications, thus limiting their immediate use in daily life.  
Overcoming this serious limitation was one of the 
motivations behind our work 

SUMMARY 
Customizing existing applications with physical interfaces 
allows us to immediately realize very diverse design 
opportunities for accessible, tangible, and context-aware 
computing.  This technique certainly does not apply to all 
of the capabilities afforded by an application.  However, we 
feel that the pendulum has been swung too far, and 
applications are now so dependent in GUI widgets that we 
have lost the benefits of judicious application of physical 
controls. 

We presented in this paper our notion of customized 
physical interfaces to existing applications.  We described 
our widget picker/taps package that allows programmers to 
seize upon this design idea, and offered examples 
demonstrating its use.  In implementing this package we 
have identified a number of impediments that could be 
addressed by windowing system and GUI toolkit makers. 

Our future work in this area will focus on finding solutions 
to the architectural problems presented here, in particular 
the problem that widget taps are rendered useless if the 
corresponding GUI widget is destroyed.  We will also focus 
on exposing application feedback so that it may be rendered 
using physical devices and techniques borrowed from calm 
computing. 

Software and hardware availability. Phidgets hardware 
and software is available through www.phidgets.com.  The 
widget picker/taps package and examples will be available 
summer 2002 at http://www.cpsc.ucalgary.ca/grouplab/. 
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