
Reducing Interference in Single Display 
Groupware through Transparency 
Ana Zanella and Saul Greenberg 
University of Calgary, Canada 
{azanella, saul}@cpsc.ucalgary.ca 

Abstract. Single Display Groupware (SDG) supports face-to-face collaborators working 
over a single shared display, where all people have their own input device. Although SDG 
is simple in concept, there are surprisingly many problems in how interactions within SDG 
are managed. One problem is the potential for interference, where one person can raise 
an interface component (such as a menu or dialog box) in a way that hinders what 
another person is doing i.e., by obscuring another person’s working area that happens to 
be underneath the raised component. We propose transparent interface components as 
one possible solution to interference: while one person can raise and interact with the 
component, others can see through it and can continue to work underneath it. To test this 
concept, we first implemented a simple SDG game using both opaque and transparent 
SDG menus. Through a controlled experiment, we then analysed how interference affects 
peoples’ performance across an opaque and transparent menu condition: a solo condition 
(where a person played alone) acts as our control. Our results show that the transparent 
menu did lessen the effect of interference, and that SDG players overwhelmingly 
preferred it to opaque menus. 

Introduction 
Single Display Groupware (SDG) is a class of Computer Supported Cooperative 
Work (CSCW) applications that supports the work of co-located groups (Stewart, 
Bederson and Druin 1999). The group shares the same display, which can be a 
large display or a monitor. Each member has his or her own input device, 
allowing all to interact simultaneously with the system. Figure 1 illustrates this, 

Zanella, A. and Greenberg, S. (2001) Reducing Interference in Single Display Groupware through 
Transparency. Proceedings of the Sixth European Conference on Computer Supported Cooperative Work 
(ECSCW 2001), Bonn, Germany, 16-20 September.  
 
© Kluwer Academic Publishers http://www.cpsc.ucalgary.ca/grouplab/papers/index.html



Reducing interfering in single display groupware - 2 - Zanella and Greenberg 

where we see two users, each with their own mouse, interacting simultaneously 
over a single monitor.  

SDG provides its users with many potential benefits. Of course, SDG users can 
profit from the technological powers offered by the actual SDG application, which 
may be specialized to fit their task. SDG collaborators also gain the richness of 
face-to-face interactions for free because they are co-located: they can easily look 
at each other, see each other’s gaze and gestures, have natural conversations, 
perceive each other’s behaviour, and so on (Tang 1991; Whittaker and O’Conaill 
1997).  

Although these SDG benefits are self-evident, there is a surprising dearth of 
research in the area. One of the reasons for this deficiency is the difficulty of 
building SDG applications on personal workstations. These computers typically 
assume one user per workstation. Its top-level graphical user interface (GUI) 
provides only one text focus for the single attached keyboard, and one cursor for 
the single attached mouse. Even when we physically connect multiple keyboards 
and mice onto a workstation, the operating system just merges the device inputs 
into a single stream that is then passed onto the GUI. For example, when two 
users are moving their mice at the same time, the single cursor provided by the 
standard operating system will respond to both movements. Underlying 
programming languages and their graphical toolkits also provide poor or non-
existent support for developers wishing to program SDG using multiple input 
devices. Events raised by keyboard or mice actions do not identify which 
keyboard or which mouse they came from. The standard graphical interface 
components—buttons, menus, list boxes, tool palettes and so on—are not 
designed to discriminate and respond to multiple users. This is disastrous for 
SDG, for by definition SDG users should be able to work simultaneously e.g., by 
raising and selecting from different menus at the same time. Similarly, SDG user 
actions must be treated separately e.g., people may be in different drawing modes 

 
Figure 1 – Two people in a Single Display Groupware situation, each with his own input 
device. 



Reducing interfering in single display groupware - 3 - Zanella and Greenberg 

as a consequent of selecting different colours from a palette, and each person’s 
drawing actions should reflect this mode. The consequence of all this is that SDG 
designers and implementers often have to start from scratch. Device drivers that 
recognize multiple input devices must be written; programming languages must 
be extended to discriminate input from multiple devices; and interface 
components must be totally redesigned if they are to respond efficiently to 
multiple users. 

Even when the technical problems above are solved, there are other SDG 
usability issues that must be addressed. One specific interface issue we are 
investigating, and the focus of this paper, is interference: one person can raise an 
interface component (such as a menu or dialog box) in a way that hinders what 
another person is doing i.e., by obscuring another person’s working area that 
happens to be underneath the raised component. Interference is a problem because 
it can distract and impeded SDG users from their tasks. 

After first summarizing related work in SDG, we will describe interference in 
more detail. We will then suggest that transparent interface components may be a 
possible solution to interference: while one person can raise and interact with the 
component, others can see through it and can continue to work underneath it. 
Next, we will describe our implementation of a simple SDG game that we will 
use to test the efficacy of transparent SDG menus. In the subsequent sections, we 
will present our controlled experiment and our analysis of how interference 
affects peoples’ performance when playing the SDG game using opaque vs. 
transparent menus: a solo condition (where a person plays alone) acts as our 
control. We close by describing the broader implications of our results to SDG 
design. 

Related Work 
Bier and Freeman (1991) built MMM—one of the first SDG systems—
comprising a toy rectangle and text editor. They explored many SDG issues: how 
input devices are registered in the system; how multiple users are identified and 
‘attached’ to particular devices; how different users can simultaneously 
manipulate the same data object; how individual mode information is captured 
and displayed; how multiple selections of data can be done; and so on. While a 
tour-de-force exposing many SDG issues and suggesting possible solutions, the 
authors did not, unfortunately, continue this line of research.  

Several years later, researchers re-discovered SDG. Most of their efforts 
concentrated on showing that SDG systems could have a positive impact in 
educational settings involving children. Inkpen, McGrenere, Booth and Klawe 
(1997) studied how children share a single mouse vs. multiple mice when using a 
single display containing only one cursor. For the multiple mice situation, two 
types of turn-taking were tested to mediate access to the single cursor: giving 



Reducing interfering in single display groupware - 4 - Zanella and Greenberg 

(where one passes control to the other) and taking (where one takes control from 
another). In either situation, their results suggest that collaboration increased and 
that children had more fun when using multiple input devices to control the single 
cursor. Inkpen et al  (1999) then explored the effectiveness of a true SDG setting, 
in this case testing pairs of children solving a puzzle in three conditions: a paper-
based setting, a one-mouse / one-cursor setting, and a two-mice / two cursor SDG 
situation. Results indicate the advantage of the true SDG situation: most children 
preferred the two-mice / two-cursor situation since they could play together 
simultaneously, and they exhibited significantly less off-task behaviour. Another 
research group based mostly out of the University of New Mexico also explored 
SDG use by children, in this case through an innovative SDG application called 
KidPad (Druin, Stewart, Proft, Bederson and Hollan 1997). In particular, Stewart, 
Bederson and Druin (1999) studied how pairs of children collaborated when 
creating stories in KidPad. Each pair interacted together in either a one or a two-
mice condition for three sessions, and then used the other condition for a last 
session. As before, children preferred the two-mice situation: they were more 
engaged in their task and they had more fun. Stewart, Raybourn, Bederson and 
Druin (1998) summarized several benefits they saw in true SDG: collaboration 
and communication increases, conflicts are reduced, and children offer and solicit 
help more often. Research in SDG use by children is continuing. For example, 
Hourcade, Bederson and Druin (2000) are now exploring how two children using 
a special-purpose SDG browsing tool can navigate to different parts of a shared 
library. Benford et al (2000) presents an enhanced version KidPad, where some 
tool functionalities are activated only when two children work collaboratively. For 
example, one child can draw with a basic colour, while two children can create a 
new colour by combining their colour tools. While we expect all the above 
findings will generalize to adults, this validation remains to be done. 

Another thread of research considers how input devices other than the mouse 
can be used in SDG settings. Myers, Stiel and Gargiulo (1998) explored personal 
digital assistance (PDAs) as input devices for SDG in their Pebbles Project. They 
described several advantages and disadvantages e.g., that PDAs can display output 
as well as input, that there are screen real estate problems associated with PDAs, 
and that PDAs can afford much more powerful interaction techniques when 
compared to a mouse. They created several applications demonstrating the 
capabilities of a PDA-based SDG system, including a shared editor, a scribble 
application, and a slide show system. Rekimoto (1998) takes a similar tack, where 
hand-held computers are used as tool and data entry palettes for inputting the 
SDG functions. Greenberg, Boyle and LaBerge (1999) considered how personal 
information created on the PDA could be brought into a face-to-face SDG setting, 
and how that information could then be manipulated on the PDA, the shared 
screen, or both. They were mostly concerned with the movement of personal 
information to a public space and back again, and concluded with a listing of 



Reducing interfering in single display groupware - 5 - Zanella and Greenberg 

problematic design issues that result from the distinctions made between personal 
and public information.  

Next, researchers in Group Decision Support Systems have a long history of 
developing special purpose computer-augmented meeting rooms (Stefik et al 
1987; Nunamaker et al 1992). The room often has a very large display with its 
own connected computer. Participants usually have their own computer as well, 
connected to each other and to the large display through a network. A facilitator 
often controls the large display, and uses it to collect and show information 
gathered from each individual. Alternately, each person can switch his or her 
computer so that it appears on the large display. While related, these meeting 
rooms are a genre of their own; they are not quite single display groupware. 

Finally, many game producers, such as Nintendo and Sony Play Station, have 
commercial SDG systems in every day use. Unlike standard commercial 
workstations, these specialized hardware boxes and many of the games often 
recognize up to four input devices and four players. The standard approach taken 
in most games is to split the screen, where each player has their own dedicated 
portion that is a viewport into the virtual world. Unfortunately, there is little in the 
way of research reporting within this arena.  

Interference and Transparency 
We now return to our description of interference in SDG. We define interference 
as the act of one person hindering, obstructing, or impeding another’s view or 
actions on a single shared display. Interference can arise when one person raises 
an interface component (such as a menu or dialog box) over another person’s 
working area. Because interface components are opaque, that other person cannot 
see beneath it, and is thus precluded from continuing his or her work. Any 
interface component that appears over the primary working area has potential to 
cause interference: pull down and popup menus, floating pallets, secondary 
windows, dialog boxes, and so on. These components may appear as a 
consequence of several activities: they can be raised directly by one user (e.g., by 
popping up a menu to make a selection: see Figure 3), or as a side effect of an 
action (e.g., a confirmation dialog box), or by the system itself (e.g., a system 
error or warning message appearing in a popup window).   

The obvious solution of dedicating a portion of the screen real estate for 
displaying these components does not really work. First, this will lessen the 
available working area, which is a serious disadvantage because screen real estate 
is already very tight in SDG settings. Second, raised components can be quite 
complex and thus too large to fit e.g., a dialog box or palette with many options. 
Third, when there is one component type per person (e.g., when it is a component 
that displays an individual’s mode), the number of components could increase 
with the number of collaborators. 



Reducing interfering in single display groupware - 6 - Zanella and Greenberg 

Another solution is to do away with these floating and transient components 
altogether. For example, Druin et al (1997) proposed the idea of local tools, where 
large simple tools sitting directly on the work surface would replace traditional 
floating tool palettes. That is, local tools are guaranteed to appear within the space 
rather than above it. While reasonable for certain applications (Druin applied this 
approach to interfaces for children), we believe it cannot be generalized to all 
applications. For example, functionally rich applications may have so many tools 
and options that it would be unreasonable to map each to a simple tool; they 
would consume too much screen space. 

Yet another solution is to display individual actions on the input device, as 
possible with PDAs. While promising, the problem here is that an individual’s 
actions are now hidden from view. Thus other participants may no longer be 
aware of the actions that a person is taking because they cannot see them (Gutwin 
and Greenberg 1988). 

Our own solution maintains the notion of floating and transient interface 
components while introducing the idea of making them semi-transparent. 
Transparency makes it not only possible to see the component itself but also what 
is underneath it. The effect is that when a semi-transparent component appears on 
top of a person’s working area, that person is able to see through it and can 
continue his or her work. To allow the person to work underneath, each 
component responds only to its owner’s inputs and passes all other inputs to the 
underlying working area. For example, a semi-transparent menu raised by one 
person will let only that person select from it; intercepted actions of other people 
working underneath the menu will be passed on, thus allowing those people to 
continue their interactions with the underlying working surface.  

Our own transparent interface components extend Harrison’s previous work on 
applying semi-transparent interface components to single user applications 
(Harrison, Ishii, Vicente and Buxton, 1995; Harrison and Vicente 1996). She was 
mostly interested in how a single person could use these components while still 
being able to see underneath them. She gave people menus with different degrees 
of transparency over various background textures, and then explored how well 
people could differentiate between these foreground and background layers: she 
found a reasonable compromise using objects that were 70% transparent. At the 
University of Calgary, researchers also used transparency, but this time as a way 
for a collaborating group to stay aware of one-another’s actions in a distributed 
groupware setting (Greenberg, Gutwin and Cockburn 1996; Cox, Chugh, Gutwin 
and Greenberg 1998). They used transparent overviews, where one user would see 
his or her detailed working area in one layer, with a transparent overview showing 
the entire workspace layered on the top of it. Their results also indicate that 
transparency is promising, particularly if used at the 70% level.  

Because our SDG transparent components are quite different than these other 
uses of transparent components, we were uncertain as to whether they would help 



Reducing interfering in single display groupware - 7 - Zanella and Greenberg 

or hinder SDG collaboration. To help us judge whether transparent interface 
components are an effective way to mitigate interference effects, we built and 
tested an SDG version of a two-person game. In this game, one person would try 
to complete a task as quickly as possible, while the other person would 
intentionally try to interfere with the first one by raising a menu in his or her way. 
The next section will describe this system and its implementation, with 
subsequent sections detailing the study and our results. 

The Game 
The SDG game used in the study is based on a “connect the dots” task. One player 
would try to draw a line connecting a series of numbered dots as quickly as 
possible, while the other player would try to slow down the first one by raising a 
menu in his or her way. The menu could be either semi-transparent or opaque.  

A screen snapshot of a game session is illustrated in Figure 2. The player 
connecting the dots (using the pencil cursor) has connected dots 1-6, and has 
almost reached dot number 7. The other player (the arrow cursor) has raised a 
transparent menu over the first player. 

We had three main implementation challenges when developing this SDG 
application. Although implementation of SDG is not the focus of this paper, we 
list these difficulties and how we solved them so that others wishing to replicate 
this (or similar) study can do so with less effort. These were: 

• 

recognizing and treating multiple input devices,  

 
Figure 2 – A snapshot of the SDG connect the dots game. One player has raised a semi-
transparent menu over the other player, who is working underneath it. See inset for detail. 

 
Inset: close up of the  
transparent menu



Reducing interfering in single display groupware - 8 - Zanella and Greenberg 

• 

designing interface components that respond appropriately to multiple input 
devices, and  

• implementing semi-transparent interface components. 

Multiple Input Devices 

As previously mentioned, conventional window and operating systems are not 
particularly adept at managing multiple input devices, particularly if they are 
mice. In many cases, it is up to the programmer to write device drivers that can 
interpret data generated by an input device attached to (say) a serial port e.g., as 
was done in MMM (Bier and Freeman, 1991).  

Fortunately for us, Hourcade and Bederson (1999) developed MID—a dynamic 
link library and Java package running on Windows 981—which implements an 
architecture that handles multiple Universal Serial Bus (USB) mice. MID extends 
the Java event mechanisms. In order to have access to multiple mice the standard 
Java events have to be replaced with the extended MID events. Programming with 
MID is very similar to programming with the Java events model. The main 
difference is that MID provides a unique mouse ID for each mouse seen by the 
system that can be retrieved when a mouse event occurs. In this sense, it is 
possible to know which mouse triggered the event, and to treat it accordingly. 
Consequently, our game was written in Java and used MID.  

Interface Components that Recognize Multiple Mice 

Each player can interact with the connect-the-dots game both simultaneously and 
independently of the other. Each player (and thus each mouse) is represented by 
its own cursor: a pencil for the first player who is connecting the dots, and an 
arrow for the second player who is raising the menu (Figure 2). Each player’s 
actions are interpreted differently: a mouse press and drag by the first player 
draws a line, while for the second player it raises a menu and positions the cursor 
over an item.  

To do this, we had to redesign and implement the interface components—the 
menu and the canvas—so they would recognize multiple mice. First, we assigned 
the drawing functionalities to mouse0 and the menu functionalities to mouse1. 
Second, we had to make the menu respond only to its owner’s input. A player 
using mouse0 should not be able to select from the menu raised by the other 
person, and should be able to continue to draw underneath it. Conversely the other 
player using mouse1 should be able to raise a menu and make a selection from it 
while not affecting the drawing surface. Yet other shared interface components, 
such as the pull down menu and the buttons seen on the top and bottom of Figure 
2, should respond to both players and consequently both mice. 
                                                 
1 As far as we know, it is not possible to get separate input streams for multiple mice in Windows 2000.  



Reducing interfering in single display groupware - 9 - Zanella and Greenberg 

While simple in concept, the problem is that no conventional widget set exists 
that recognizes multiple mice in this way2. This required us to completely re-
implement the interface components to take mouse identification into 
consideration. For example, the SDG popup menu in Figure 2 is our own 
implementation, using a Java panel containing sub-panels, which in turn contains 
a label (the menu items). This meant that we had to code all visible effects 
corresponding to menu interactions, such as the raising of the menu and the 
highlighting of selected items. The component code also had to make a decision 
concerning each mouse event it saw. For example, when the menu received an 
event from mouse0, we had to dispatch it to the drawing surface.  

The necessity of redesigning interface components to handle situations such as 
these is one of the main obstacles to rapid SDG development. Quite simply, 
existing programming languages do not provide interface components that know 
how to deal with multiple inputs. This requires them to be redesigned from 
scratch, adding considerably to the burden of programming SDG systems. 

Transparency 

The third implementation issue was implementing transparency on the popup 
menu. Fortunately, Java implements an alpha level for every colour; this can be 
adjusted to control the transparency level of the drawn object. Because we had 
already re-implemented the popup menus, it was fairly straightforward to specify 
the alpha level of its constituent components. For example, our semi-transparent 
popup menu uses an alpha level of 70 selected from a range from 0-255 to draw 
the panel and its sub-panels: this makes it slightly more than 70% transparent. 
However, we leave the text labels opaque for better readability3.  

While reasonable in our case, we recognize that other languages and graphical 
widget sets may not provide this ability to do alpha-blending. This could lead to 
significant implementation difficulties and/or performance penalties.  

User Study 
We ran a controlled user study4 in order to analyse the efficacy of semi-
transparent popup menus when compared to opaque popup menus, using our SDG 
version of the “connecting the dots game”. As we will describe below, we 
measured the level of interference that both types of menus create when users are 
                                                 
2 SDG Widget development is on-going in several labs: our own at the University of Calgary; at Simon 
Fraser University (Shoemaker 2000); at the University of Maryland (Hourcade, Bederson, Druin 2000); and 
previously by Bricker, Baker and Tanimoto (1997). 
3 Harrison et al, (1995, 1996) offers special fonts customized for transparent situations, which we did not use 
as they were not necessary in our application. 
4 A brief description and preliminary analysis of the study was reported in (Zanella and Greenberg 2001). 



Reducing interfering in single display groupware - 10 - Zanella and Greenberg 

doing their tasks as well as their levels of satisfaction. We focused the game 
towards the worst case of interference, i.e. where one user wanted to interfere with 
the other. While we do not normally expect SDG users to interfere intentionally 
with one another, we used this worst-case scenario to increase the number of 
interferences seen in a short time period, thus making it easier to measure the 
effect of the menu types. 

Null Hypothesis 

There is no difference in the time for a player to complete a connect-the-dots task 
or in player’s menu preferences (as measured by a questionnaire) when playing in 
a solo condition (i.e., by oneself) or in the opaque and semi-transparent blocking 
condition (i.e., when an opponent tries to slow down the player by raising a menu 
of a given type in his or her way).   

Subjects 

We recruited and ran 30 pairs (60 subjects) in our study. Subjects were solicited 
from undergraduate and graduate programs at the University of Calgary. Subjects 
were asked to sign up in pairs, and as a result all but one pair were friends who 
knew each other. All appeared comfortable playing a competitive game with each 
other. All subjects were well versed with computers, mice, and popup menus. 
When asked about familiarity with SDG systems, most answered that they had 
played multi-user videogames before. Each person was paid CDN$10. 

Materials 

Our study situation used the SDG game and MID software as described 
previously running on Windows ’98. Hardware included two USB mice, and a 
standard 1280x1024 19” display, and a modern PC. System performance was not 
an issue. The physical set up was similar to that seen in Figure 1, except that an 
observer was also seated behind both participants.  

The Task 

One subject, who we called player, was asked to connect 15 dots in numeric order 
as fast as possible. The player did this by drawing a line from one numbered dot 
to its successor using a left mouse button press and drag, and then marking each 
dot with an ‘X’ after it was connected by clicking on it with the right mouse 
button. A pencil distinguishes the player’s mouse cursor (see Figures 2 and 3). 

The other subject, the interferer, was asked to interfere or slow down the 
player as much as possible by popping up a menu in a location that would obscure 
the player’s view of where to go or what to do. The interferer could raise the menu 



Reducing interfering in single display groupware - 11 - Zanella and Greenberg 

in a given part of the display by right clicking over the desired position. The 
interferer was also instructed to quickly select the menu item labelled “Click 
here”. This item was randomly positioned in the menu each time the menu was 
raised, as shown by the differences between Figures 2 and 3. These figures also 
show that the interferer’s cursor is an arrow.  

This was a competitive task. The player’s goal was to connect all the dots as 
fast as possible, while the interferer’s goal was to slow the player down as much 
as possible. To keep the game ‘fair’ for the interferer, we slowed down the player 
by requiring them to right-click each dot as it was connected. This mitigates those 
cases where the player is otherwise much faster than the interferer (which we saw 
in some of our pre-tests). Similarly, we instructed interferers to select the ‘Click 
here’ menu option as fast as possible; this guards against them indefinitely 
blocking the player.  

Conditions 

There were three different types of trial conditions in the test, where a trial 
consisted of a single connect-the-dots game. 

Solo: the player connected the dots alone, without any interference. This is our 
control: we expect players will have their best performance in this 
condition, and we do not expect that they could better this time on average. 

Semi-transparent menus: both player and interferer play, and the menus are 
semi-transparent (see Figure 2). 

 
Figure 3 – The opaque menu version of the game. Notice that the player is ‘blocked’ by the 
interferer. While she can see her pencil cursor, she cannot see the next dot to connect as it is 
located on the drawing surface underneath the menu. See inset for detail. 

 
Inset: close up of the  
opaque menu 



Reducing interfering in single display groupware - 12 - Zanella and Greenberg 

Opaque menus: both player and interferer play, and the menus are opaque (see 
Figure 3). 

Procedure 

After they signed a consent form, we administered a pre-test questionnaire to each 
pair to collect information about their abilities with computer, mouse, popup 
menus and SDG systems. Each person in the pair was then randomly assigned to 
be either the player or the interferer. They kept these roles across all trials. 

Each pair played 24 games divided into 8 sets. Each set contains the three 
different game conditions—solo, semi-transparent, and opaque—presented in 
randomized order. Each game displayed 15 dots to be connected. As the dots were 
randomly repositioned for every game, no two games were identical for each pair. 
All pairs played the same games in the same order but in different conditions. 

We considered the first set of three games as training trials, where players and 
interferers could explore the system and ask questions. We did not include these 
trials in the analysis.  

For the remaining seven sets, we recorded the total time the player took to 
connect all the dots in a game. We also recorded the number of interferences as 
the number of times a popup menu was opened on the top of the player’s 
immediate working area. While not part of the study hypothesis, this later data is 
used to check for situations where gross performance differences exist between 
the player and the interferer. We also observed the reactions, behaviours, 
expectations, comments and strategies of participants. 

After playing all the games, the participants answered a post-session 
questionnaire that asked them about their menu preferences and how the menu 
types affected their tasks. 

Results 
We watched all the pairs as they played. We wanted to observe their reactions, 
behaviours, expectations, comments and strategies.  

All pairs engaged with the task. They appeared comfortable playing a 
competitive game. Interferers delighted in blocking the player’s view, and both 
tried to trick each other by developing game strategies. All played in an 
appropriate manner, i.e. the player connected a dot before going to the next, all the 
dots were connected before starting a new game, the interferer was selecting the 
right option from the menu and did not leave the menu opened for a long period 
of time, etc.  



Reducing interfering in single display groupware - 13 - Zanella and Greenberg 

Performance 

We analyzed how long the player took to connect the dots across the different trial 
conditions. As mentioned previously, this gives an indication of the efficacy of 
each menu type as contrasted to each other and to the solo control. We collapsed 
the data within each pair into an average time / condition type. To get a sense of 
this data, we first compared how each pair faired over these conditions. In almost 
all cases, the average within-subject time relationships when performing these 
conditions are: solo < transparent < opaque. A single factor ANOVA shows that 
these differences are statistically significant (F=16.36, p<0.05). A post-hoc t-test 
shows statistically significant differences between every condition. Thus the null 
hypothesis is rejected. Figure 4 illustrates these differences by displaying the 
average performance time and standard deviation to complete a game for all 
subjects in each condition.  

We performed a few other analyses to look for any hidden effects that could 
have influenced our results. First, it is entirely possible that people’s performance 
changed over time, perhaps due to learning or fatigue. We analyse each trial type 
separately, where we calculated the average time for completing a particular game 
in a particular trial. Results are graphed in Figure 5. 

In this graph, we do see a small increase in performance time over the first few 
games. This is likely a learning effect, where people are getting used to the 
mechanics of playing i.e., which mouse button to click, how to search for the next 
number and so on. However, what is immediately obvious by visual inspection is 
that the average time to complete a particular game is still solo < transparent < 
opaque. That is, it is unlikely that the statistical differences seen in our analysis 
are confounded due to some relative performance change in the game over time.  

We calculated the average number of interferences per game in each condition, 
to analyse the relation between interference and performance (Figure 6). While 

Average Times  Across all Games by Condition

0

10

20

30

40

50

60

solo transparent opaque

 
Figure 4 – Average performance time to complete a game for all subjects by each condition. 
Standard deviation is shown in each bar. 



Reducing interfering in single display groupware - 14 - Zanella and Greenberg 

the graph suggests that there are differences between interference levels in the 
opaque and transparent conditions, a single factor ANOVA shows that these 
differences are not statistical significant (F=4.6069, p=0.53). We do see a minor 
increase in the number of interferences on the first half of the games, likely a 
learning effect. The slight decrease in the end is probably a result of minor user 
fatigue.  

Although we see no statistical significant difference on interference levels 
between opaque and transparent menus (i.e., the number of interferences was 
similar in both situations) there are differences in performance in both situations. 
These results lead us to conclude that semi-transparent menus provide better 
performance than opaque menus when interference occurs. However, semi-

Average Times per Game by Condition

0

10

20

30

40

50

60

1 2 3 4 5 6 7
Game

Ti
m

e

Solo
Transparent
Opaque

 
Figure 5 – Average time for players to complete a particular game in a particular trial. 

Average Interference per Game 
by Condition

0

4

8

12

16

1 2 3 4 5 6 7

Game

In
te

rf
er

en
ce Opaque

Transparent

 
Figure 6 - Average number of interferences per game in a particular trial type.  



Reducing interfering in single display groupware - 15 - Zanella and Greenberg 

transparent menus do not eliminate all interference effects, as performance is not 
quite as fast as in the solo control condition. 

Preferences 

Through our post-session questionnaire, both the player and the interferer stated 
their opinions and preferences in terms of how the menus affected their task. 

Using a five-point scale, with opaque on one side and transparent on the other, 
we asked subjects which type of menu they preferred in the SDG situation (i.e., 
without regard to their player or interferer role). Their responses strongly indicate 
a preference for transparent menus over opaque ones, as illustrated in Table 1. 34 
of the 60 subjects strongly preferred transparent menus, and 9 more had a weak 
preference. Only 10 of the 60 liked the opaque menus.  

Of course, these preferences could depend on whether one was a player (where 
transparency helped) or an interferer (where it hindered). Using a three-point 
scale, we then asked subjects how the different menus affected their particular 
task when acting as player or interferer. In these responses, tabulated in Table 2, 
almost all players thought that transparent menus made it easier for them to 
continue their work in spite of interference (28 of the 30 players). On the flip side, 
almost all interferers thought that transparent menus made it harder for them to 
interfere with the players (25 of the 30 interferers). While these results are not 
analyzed statistically, they obviously enforce our rejection of the null hypothesis.  

 
Opaque  Transparent

Strong  Weak Neutral Weak Strong 
7 3 7 9 34 

Table 1: Which type of menu do you prefer (all subjects)?      

Players  Interferers 
Easier Same Harder  Easier Same Harder 

28 2 0  0 5 25 
Table 2: How do transparent menus help your task? 

Qualitative Observations 

We watched all pairs as they played in all conditions, and interviewed them 
afterwards. We saw that the pairs quickly engaged with the game, and became 
very competitive over time.  

It was obvious that players greatly preferred the transparent to the opaque 
menus because it was easier and faster for them to connect the dots. As one player 
commented:  

“After a while I did not even see the transparent menus anymore, it was like I learnt how to 
ignore them…” 



Reducing interfering in single display groupware - 16 - Zanella and Greenberg 

 
Players become frustrated when they were blocked with an opaque menu. As 

one player exclaimed to an interferer who was taking their time selecting the item 
from the opaque menu: “Can you make your selection faster?” 

As one would expect, the interferers preferred playing in the opaque over the 
transparent menu condition because it helped them block the player. This 
exchange, occurring at the beginning of an opaque menu game, highlights how a 
one pair’s reaction:  

Interferer:  “I am going to bug you now!” 
Player:  “I hate these opaque menus!” 

One specific pair (a boyfriend who was a computer scientist and girlfriend who 
was not) was very competitive. As a player, she celebrated every time a dot was 
connected under the transparent menu. As the interferer, he was noticeably 
excited when the opaque menus came up, and kept making fun of her when the 
popup menu blocked her view. In the end of the game, she playfully asked him to 
give her all the money he had earned; because she had done very well in spite of 
his merciless teasing, she felt she deserved it. 

In informal post-test interviews, one subject said he really liked the semi-
transparent menus in SDG, and that he would also want them even in a single user 
application. He explained: 

“Sometimes when you are making a search on [Microsoft] Word the result is positioned near 
the find window, so you have to move the window if you want to see the text related to the 
search. [Similarly,] the window to format text, to change a colour or font type, usually covers 
the text you are modifying … sometimes you open the window and you forget if you selected 
the right text.” 
We also observed that most players moved very quickly when playing in the 

opaque menus situation, for they wanted to minimize the actual times that the 
interferer raised the menu over their position. Although we told them to connect 
the dots as fast as they could, the players appeared more relaxed in the solo 
situation since they knew no interference would happen. We saw a similar relaxed 
attitude in the semi-transparent situation after players played a few games, 
probably because they knew they could still continue their job in spite of the 
interferer’s best efforts. While this apparent speed-up in the opaque menus could 
have confounded our results, we still see that, on average, it took longer for 
players to complete games with the opaque menus (Figure 4). That is, the 
differences between conditions still exist in spite of the player’s best effort to 
overcome the interferer. 

We also saw that most of the pairs developed strategies of play after a few 
games. At first, interferers moved their cursors by the next point to be connected, 
and then popped up the menu when the player arrived at that spot. After some 
time they realized they were sometimes helping the player, as it showed the player 
where the next point was. To offset this, the interferer moved their cursors around 
while waiting, or just following the players’ cursors before ‘pouncing’ on them. 



Reducing interfering in single display groupware - 17 - Zanella and Greenberg 

Some of the players tried to counteract this by first moving their cursors away 
from the correct dot (in order to ‘fake out’ the interferer into moving in the wrong 
direction) before quickly moving their cursor back to it. When this strategy 
worked, the interferer was unable to respond as quickly as normal. However, the 
relatively flat performance curve over all games (displayed in Figure 5) suggests 
that these opposing strategies counterbalanced each other over time, and they 
likely did not confound our results.  

Discussion 
Our results suggest that semi-transparent interface components can mitigate 
interference in Single Display Groupware. This is promising indeed, for it means 
that the existing genre of popup components (e.g., menus, windows, dialogue 
boxes, floating palettes) can be adapted to SDG, and that people can use these 
well-known techniques to interact with SDG systems. The only real difference is 
that users can see through them, and that they have to understand what component 
is their own and which belongs to others. From our observations, we saw that 
people quickly adapted to transparent components, and had no problem 
manipulating them or working underneath them. While ‘standard’ interface 
components would have to be redeveloped in order to work within SDG and to 
display themselves semi-transparently, the basic interaction technique remains the 
same. Ideally, transparency in SDG is only a programming issue rather than an 
interface issue. 

However, we recognize that the situation we tested was simple, and that there 
is a danger of over-generalizing our results to all SDG situations. 

First, we used only two users in a very controlled situation, and we are 
uncertain about what would happen if three or more collaborators were interacting 
simultaneously. For example, it may be possible for several semi-transparent 
components to be raised atop of each other. 

Second, we tested the worst case of interference, where one user intentionally 
tried to interfere with the other. Actual interferences in every-day SDG situations 
are probably far less numerous. If good feedback were provided to collaborators 
about what others intended to do, social protocols would likely lessen the number 
of actual interferences. People are, in fact, quite adept at informing others about 
possible conflicts and at mediating turn-taking when contention is unavoidable. 
Still there are times that collaborators in SDG cannot avoid interference. For 
example, one person may popup up a menu or dialog box without realizing that 
others would be affected. Or the system may have to raise a large error window, 
but there may be no place to position it that would not cause interference. Even if 
people do mediate their actions by resorting to turn-taking, we suspect that this 
sequential rather than simultaneous access to the space will lessen the amount of 



Reducing interfering in single display groupware - 18 - Zanella and Greenberg 

collaborations and people’s feeling of satisfaction (Inkpen, Ho-Ching, Kuederle, 
Scott and Shoemaker 1999).  

Third, we used a 1280x1024 resolution standard monitor as our shared display. 
Yet the probability of interference may decrease for larger, higher resolution 
screens (because people have more space to do their work), and increase for 
smaller ones (because people will likely contend for the same area).  

Fourth, the interface component we tested—the menu—is fairly small and 
usually does not stay long on the screen. Larger and longer-lasting interface 
components, such as a dialog box, could create more interference problems to 
users. For example, a ‘save as’ dialog box is quite large, and it often takes 
considerable time for a person to find the right folder and type the name of a file. 
In these cases, transparency could be even more helpful.   

Fifth, our game used a foreground and background conducive to transparency. 
Excepting the drawing marks and the numbered dots, the background was fairly 
sparse. Thus it was easy to separate visually the text of the menu from the 
background objects. As Harrison et al (1995, 1996) noticed, backgrounds rich in 
visual information—pictures, contrasting colours, dense text—may make the 
visual separation of the layers difficult. Similarly, complex foreground objects 
may be difficult to separate from the background e.g. the many fields of a 
complex dialog box. While there are a few design techniques within transparency 
that help make certain items stand out, these are still in their infancy (Harrison et 
al 1995, 1996).  

In summary, our transparency approach is successful in our test conditions, and 
we believe they are promising as a way to minimize interference in SDG 
applications. Users reacted positively to the semi-transparent popup menus, 
mentioning that the idea could also be applied to other widgets and even non-
SDG settings. Still, we recognize that real-world factors can that both increase or 
decrease the benefits of this technique. To truly understand these factors and their 
effects, we need to develop serious SDG applications, deploy them into real 
situations, and study what happens. 

Conclusions 
There are many issues involved in SDG development. Some are technical, for 
example, how multiple input devices are seen by the operating system and how 
programming languages support them. Other problems are related to the design of 
interface components that are adequate for several users sharing the same screen, 
such as recognizing multiple users’ input and responding accordingly to each 
input. 

In our study we investigated interference as one particular interface problem in 
SDG. We offered semi-transparent interface components as a way to mitigate 
interference effects. We then created a ‘worst case’ of interference, where one 



Reducing interfering in single display groupware - 19 - Zanella and Greenberg 

person intentionally tries to interfere and slow down another person by blocking 
him or her with popup menus. As our test results show, our approach of using 
transparency is appropriate for dealing with interference in our SDG situation. 
Although our setting was somewhat simplistic, we believe the idea of 
transparency could be generalized to a certain extent to other SDG applications.  

Acknowledgments 
Thanks for Ben Bederson and Juan-Pablo Hourcade from the University of Maryland for 
graciously allowing us to use their MID software. We also thank our research participants for 
participating in the study, as well as all Grouplab researchers for their input. We are grateful to 
Microsoft Research, the Alberta Software and Engineering Research Consortium (ASERC), the 
National Sciences and Engineering Research Council of Canada (NSERC) and Smart 
Technologies who provided funding, some equipment, and encouragement. 

References 
Benford, S., Bederson, B., Akesson., K., Bayon, V., Druin, D., Hansson, P., Hourcade, J., Ingram, 

R., Neale, H., O'Malley, C., Simsarian, K., Stanton, D., Sundblad, Y., and Taxen, G. (2000) 
‘Designing storytelling technologies to encourage collaboration between young children’, 
Proc ACM Conf Human Factors in Computing Systems (CHI'00), pp. 556-563, ACM Press. 

Bier, E. and Freeman, S. (1991) ‘MMM: A user interface architecture for shared editors on a 
single screen’, Proc 4th annual ACM Symposium on User Interface Software and 
Technology, pp. 79-86, ACM Press. 

Bricker, L., Baker, M., Tanimoto, S. (1997) ‘Support for cooperatively controlled objects in 
multimedia applications’, Extended Abstracts of the ACM Conf Human Factors in Computing 
Systems (CHI’97), pp.313-314, ACM Press. 

Cox, D., Chugh, J., Gutwin, C. and Greenberg, S. (1998) ‘The usability of transparent overview 
layers’, Summary Proc ACM Conf Human Factors in Computing Systems (CHI'98), pp. 301-
302, ACM Press. 

Druin, A., Stewart, J., Proft, D., Bederson, B. and Hollan, J. (1997) ‘KidPad: a design 
collaboration between children, technologists, and educators’, Proc ACM Conf Human 
Factors in Computing Systems (CHI’97), pp. 463-470, ACM Press. 

Greenberg, S., Boyle, M. and LaBerge, J. (1999). ‘PDAs and shared public displays: making 
personal information public, and public information personal’, Personal Technologies, vol. 
3, no.1, March, pp. 54-64.   

Greenberg, S., Gutwin, C. and Cockburn, A. (1996) ‘Using distortion-oriented displays to support 
workspace awareness’, In A. Sasse, R. Cunningham and R. Winder (eds.): People and 
Computers XI, pp. 299-314, Springer-Verlag.  

Gutwin, C. and Greenberg, S. (1998) ‘Design for individuals, design for groups: tradeoffs between 
power and workspace awareness’, Proc ACM Conf Computer Supported Cooperative Work 
(CSCW’98), pp. 207-216, ACM Press. 

Harrison, B. and Vicente, K. (1996) ‘An experimental evaluation of transparent menu usage’, Proc 
ACM Conf Human Factors in Computing Systems (CHI’96), pp. 391-398, ACM Press. 



Reducing interfering in single display groupware - 20 - Zanella and Greenberg 

Harrison, B., Ishii, H., Vicente, K. and Buxton, W. (1995) ‘Transparent layered user interfaces: an 
evaluation of a display design to enhance focused and divided attention’, Proc ACM Conf 
Human Factors in Computing Systems (CHI’95), pp. 317-324, ACM Press. 

Hourcade, J. and Bederson, B. (1999). ‘Architecture and implementation of a Java package for 
multiple input devices (MID)’, Report HCIL-99-08, Computer Science Dept, University of 
Maryland, MD USA. 

Hourcade, J., Bederson, B. and Druin, A. (2000) ‘QueryKids: a collaborative digital library 
application for children’, Workshop on Shared Environments to Support Face-to-Face 
Collaboration, held at ACM CSCW'00.  
http://www.edgelab.sfu.ca/CSCW/ shared_environments.html 

Inkpen, K., Ho-Ching, W., Kuederle, O., Scott, S and Shoemaker, G. (1999) ‘This is fun! We’re 
all best friends and we’re playing’, Proc ACM Conf Computer Supported Collaborative 
Learning (CSCL’99), pp. 252-259, ACM Press.  

Inkpen, K., McGrenere, J., Booth, K., and Klawe, M. (1997). ‘The effect of turn-taking protocols 
on children's learning in mouse-driven collaborative environments’, Proc Graphics Interface 
(GI'97), pp. 138-145, Morgan Kaufmann Publishers. 

Myers, B., Stiel, H. and Gargiulo, R. (1998) ‘Collaboration using multiple PDAs connected to a 
PC’, Proc ACM Conf Computer-Supported Cooperative Work (CSCW'98), pp. 285-294, 
ACM Press. 

Nunamaker, J., Dennis, A., Valacich, J., Vogel, D. and George, J. (1991) ‘Electronic meeting 
systems to support group work’, Communications of the ACM, vol. 34, no. 7, July, pp. 40-61, 
ACM Press. 

Rekimoto, J. (1998) ‘A multiple device approach for supporting whiteboard-based interactions’, 
Proc ACM Conf Human Factors Computing Systems (CHI’98), pp. 344-351, ACM Press. 

Scott, S., Shoemaker, G. and Inkpen, K. (2000) ‘Towards seamless support of natural 
collaborative interactions’, Proc of Graphics Interface (GI’00), pp. 103-110, Morgan 
Kaufmann Publishers. 

Shoemaker, G. (2000) ‘Supporting private information on public displays’, Extended Abstracts 
ACM Conf Human Factors and Computing Systems (CHI’00), pp. 349-350, ACM Press.  

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S. and Suchman, L. (1987) ‘Beyond the 
Chalkboard: computer support for collaboration and problem solving meetings’, 
Communications of the ACM, vol. 30, no. 1, pp. 32-47, ACM Press. 

Stewart, J., Bederson, B. and Druin, A. (1999) ‘Single display groupware: a model for co-present 
collaboration’, Proc ACM Conf Human Factors in Computing Systems (CHI'99), pp. 286-
293, ACM Press. 

Stewart, J., Raybourn, E., Bederson, B. and Druin, A. (1998) ‘When two hands are better than one: 
enhancing collaboration using single display groupware’, Extended Abstracts of the ACM 
Conf Human Factors in Computing Systems (CHI'98), pp. 287-288, ACM Press. 

Tang, J. (1991) ‘Findings from observational studies of collaborative work’, In S. Greenberg (ed): 
Computer support cooperative work and groupware, pp. 11- 26, Academic Press. 

Whittaker, S. and O'Conaill, B. (1997) ‘The role of vision in face-to-face and mediated 
communication’, In K. Finn, A. Sellen and S. Wilbur (eds): Video-Mediated 
Communications. LEA Press. 

Zanella, A and Greenberg, S (2001) ‘Avoiding interference through translucent interface 
components in single display groupware’, Extended Abstracts of the ACM Conf Human 
Factors in Computing Systems (CHI'2001), pp. 375-376, ACM Press. 

 


