

The Phidget Architecture:
Rapid Development of Physical User Interfaces

Chester Fitchett and Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

Tel: +1 403 220 608, E-mail: saul@cpsc.ucalgary.ca

Many ubiquitous computing environments rely on special
purpose physical devices to for input (sensors, etc.) and
output (motors, lights, etc.) Yet everyday programmers
interested in such environments face considerable hurdles
creating, developing and combining physical devices and
interfacing them to conventional programming languages.
They usually do not have adequate know-how; appropriate
off-the-shelf devices and construction kits are rarely
available; commercial hardware is at the wrong level of
abstraction or do not have an easily-programmable API.
Consequently, programmers either give up or find
themselves immersed in a quagmire of tediousness:
selecting and purchasing electrical components and hobby
kits, circuit board design, microprocessor programming,
wire protocol development, and so on.
As a consequence of these problems, we made a concerted
effort to think about how we could package physical
devices and their software for easy development of
physical user interfaces. Our approach was to develop
physical widgets, or phidgets, which are almost direct
analogs to how graphical user interface (GUI) widgets are
packaged and ‘dropped into’ software applications. Our
primary belief is:
 … just as widgets make GUIs easy to develop, so could

phidgets make the new generation of physical user
interfaces easy to develop.

In a previous paper1, we described the general idea of
phidgets and how we built them. We also showed that
everyday programmers could develop physical user
interface easily and with minimal training. Here, we detail
the phidget architecture and its design considerations.

Requirements for a phidget architecture
Before delving into details, we need to consider what a
phidget architecture has to support.
1. Insertable components. Like graphical widgets, a

phidget should be presented to the programmer as an
easily used component that can be inserted into an
application. The component should supply an
abstracted and well-defined interface to manage its
physical entity. It should hide details of how the entity
is implemented.

1 Greenberg, S. and Fitchet, C. (2001) Phidgets: Easy Development of

Physical Interfaces through Physical Widgets. Proc UIST 2001, ACM.

2. Connection manager. Physical devices may appear and
disappear. For example, during run time a device may
come on-line or go off-line, or it may have intermittent
connectivity (especially if it is wireless). The job of a
connection manager is to monitor and communicate
with attached devices, to inform the application
program about the appearance and disappearance of
particular devices, and to give the programmer a
‘handle’ to devices as they appear.

3. Identification. There must be a way to link a software
phidget with its physical counterpart. While not a
problem when there are only a few well-known devices
attached to a single computer, device identification can
become an issue when several devices of the same type
(but perhaps with different end uses) are attached to the
computer, or where the types and numbers of devices
are not known ahead of time. A clear identification
scheme is required.

4. Simulation mode. For software development purposes,
the same phidget code should work in a simulation
mode. That is, the software designer should be able to
program, debug and test the system even if the actual
physical device that comprises part of the phidget is
absent. This could include an extended API to set the
simulation characteristics of the device, and a graphical
representation that allows a person to see and optionally
interact with the device state.

Example Phidgets
We have completed several types of phidgets that support
the features listed above. Other phidgets are in progress.
GlabServo lets a programmer control a device containing
several servo motors. The position of each motor can be set
programmatically (Figure 2);
GlabPowerBar resembles a standard 120-volt power bar
with several outlets. The programmer can
programmatically and rapidly turn individual outlets on and
off (not shown);
GlabInterfaceKit is a general-purpose ‘construction’ kit,

Fitchett, C. and Greenberg, S. (2001) The Phidget Architecture:
Rapid Development of Physical User Interfaces. in UbiTools’01
Workshop on Application Models and Programming Tools for
Ubiquitous Computing. Held as part of UBICOMP ‘2001.

http://www.cpsc.ucalgary.ca/grouplab/papers/index.html.

Micro-controller

Digital in
connector

Analog
connectors

Figure 3 GlabInterfaceKit and a host of sensors, switches,
LEDs and solenoids that can be connected to it.

Micro-controller

Digital in
connector

Analog
connectors

Analog sensors:
light, force,
heat…

Digital in:
various
switches

Figure 2: GlabServo and its motors

Servos

Micro-
controller Digital out

connector

Digital out-
solenoids,
LEDs

where one can plug in a
combination of off-the-
shelf switches, LEDs,
solenoids, sensors and
so on (Figure 3).
Specifically, a
programmer can
control up to 8 digital
output devices (e.g.,
LEDs or solenoids),
can retrieve the state of
up to 8 digital input
devices (e.g., various types of switches); and can inspect
the state of various analog sensors that can be connected to
it (e.g., heat, force and light sensors.

Architecture
Our phidgets abstract out into the following architectural
units, illustrated in Figure 4. We will use the GlabServo
phidget to illustrate particular details.
The Physical Device is the packaged physical unit given to
the physical designer, who may then use it in whatever way
she wishes to create a physical interface that would be
given to the end user (Figure 4 left side). The physical
device includes the primitive input and output device
components (sensors, motors, switches, etc), a circuit board
with micro-controller, and a communications layer. For
example, the primitive device components of our
GlabServo are the actual Servo motors, while for the
GlabInterfaceKit it would be the various sensors and
switches that can be plugged into it. Most our phidgets are
built around a circuit board using a USB micro-controller
to control the on-board electronics. This communication
layer is based upon the USB communication standard, and
it is the USB micro-controller’s responsibility to handle the
communication protocol with the host computer. Finally,
device packaging depends on the device, as illustrated in
Figures 2-4 The GlabServo is delivered as a small circuit
board (~1.5 cm2) as illustrated in Figure 2, and device
designers can optionally attach one or two servo motors to
it. In contrast the GlabPowerBar is packaged as a full-size
power bar (we actually adapt a commercial one) with the
electronics hidden inside.
The Wire Protocol is the communication protocol between
the physical device and the host computer (we use MS
Windows 2000). It is not visible to end programmers. As
mentioned, our current phidget set communicates using
standard USB protocol2, where we wrote low-level
software for both the micro-controller and Windows 2000
to set up and manage basic communication. When our
physical devices are plugged in, Windows sees them as
USB devices. Atop this protocol, every device knows and
can transmit its phidget type (e.g., a GlabServo transmits

2 The current architecture is not limited to it. Because the Phidget Manager

abstracts the communication layer for all phidgets, this is the only
architectural component that would have to be extended to support other
communication links, such as X10, Ethernet, wireless, or RF.

the string “GlabServo”), and an identification number that
is unique for a phidget instance of that type (Point 3 in
requirements). Each device also transmits information
specific to its type e.g., particular events that indicate the
device state. Similarly, the host computer can transmit
device-specific requests. For example, a host can tell the
GlabServo device to set a motor’s position to a given angle.
The PhidgetManager is a COM3 object. It includes an
event-based API available to end-programmers for
connection management (Point 2 in requirements). Its
major API elements include:

Properties:
Count as Integer
Item (Index as Integer)

Events:

3 COM objects are Microsoft’s standard way of packaging, distributing

and including software modules. COM APIs are accessible from a
variety of programming languages.

Communication
layer Communication layer wire protocol

Microcontroller-
based
circuit board

Primitive
device components

Phidget Manager

Phidget-specific
COM object

ActiveX
control

Physical interface

Physical designer

 Software interface

 Programmer

End user

Figure 4 Phidget Architecture

The Physical Device Computer software

OnAttach (Phidget as IGlabPhidget)
OnDetach (Phidget as IGlabPhidget)

Programmers use this API to discover all attached devices.
Specifically, the OnAttach and OnDetach events are
automatically generated whenever a physical device is
connected or disconnected to or from the computer. These
events return a reference to an IGlabPhidget interface
that the programmer can use to identify the device (see
below). For example, if an end user plugged in a
GlabServo, the OnAttach event would automatically fire
and return a reference that the programmer can use to
discover that it is a GlabServo. Alternatively, the
programmer can find out how many phidgets are currently
attached via the Count property, and enumerate through
them via the Item(Index) property.
Internally, the PhidgetManager is implemented as a layer of
abstraction built atop the USB communications layer
(Figure 4 right). It monitors USB devices on the system to
see if they are phidgets: if they are, it creates a phidget-
specific COM object (Figure 4), and passes back an
IGlabPhidget interface to this object through the
OnAttach event. Behind the scenes, the Phidget Manager
also serves as a transport layer: it mediates all
communications between all upper layers and the USB
layer. This is not visible to the programmer.
Phidget-specific COM objects are created by the Phidget
Manager whenever a device is seen (Figure 4, right). These
objects correspond directly to physical devices e.g., a
GlabServo physical device corresponds to a GlabServo
COM object, a GlabPowerBar device to a GlabPowerBar
object, and so on. Internally, all phidget-specific COM
objects communicate to its matching physical device
through the PhidgetManager.
Because these objects have to be created at run time when a
device is plugged in, there are two interfaces (or APIs) to
this object: the generic IGlabPhidget interface, and the
specialized phidget-specific interface, as described below.
IGlabPhidget interface is a required interface provided by
all phidget-specific COM objects. Through this generic
API, end-programmers can identify basic properties of any
phidget-specific COM object returned by the Phidget
Manager whenever a device is seen.

Properties:
DeviceType As String
IsAttached As Boolean
SerialNumber As Long

Through this IGlabPhidget interface, the programmer
can discover what kind of device it references (and thus
assign it to an interface specific to the object, as described
shortly), its serial number, and whether the physical device
is still attached. For example, the programmer could test if
an attached device is of the DeviceType “GlabServo”,
optionally check its SerialNumber to discriminate
between multiple instances of attached GlabServos, and
then assign this object to its more specialized GlabServo
phidget interface (see below).

The phidget-specific interface is a superset of
IGlabPhidget in that it also exposes an API specialized to
the particular phidget-specific COM object (Point 1 in
requirements). For example, the GlabServo COM object
API also includes properties and events to handle its
various motors:

Properties:
MotorPosition(Index) as Integer
NumMotors as Integer

Events:
OnPositionChanged (Index as Integer
 Position as Integer)

Thus the programmer can find out how many motors are
available using the NumMotors property, can set a
particular motor’s position through the
MotorPosition(Index) property, and will receive
the OnPositionChanged event whenever a motor is
repositioned. Of course, other phidget-specific COM
objects will have their own device-specific API.
Essentially, specialized interfaces such as these allow a
programmer to directly control the device and get feedback
of its state.
Phidget ActiveX Controls4 wrap our various phidget-
specific COM objects to give each of them an on-screen
interface and a simulation capability (Figure 4 right).
Programmers have the choice of using either these visible
ActiveX controls with simulation capability or its simpler
phidget-specific COM counterpart as appropriate.
Unlike the phidget-specific COM object, the control
provides a visual interface to the device, where it displays
its real or simulated state as well as the optional means for
an end user to interact with its on-screen representation.
Programmers can easily drop its visual representation into
an interface builder (e.g., Visual Basic). Each control can
optionally operate in a simulated mode when no actual
physical device is connected to it (Points 1+4 in
requirements). Here, the software mimics the device’s
behavior. Finally, the control includes extensions to the
phidget-specific API for managing these new features.
For example, the GlabServo ActiveX Control (Figure 5)
has two graphical motors. Users can interactively rotate the
motors to new positions by dragging the motor platter,
which will also reposition the actual motors if the device is
attached. Some examples of its extended API include:

Properties:
BackColor as OLE_COLOR
FillColor as OLE_COLOR
Enabled as Boolean
SimulateWhenDetached as Boolean

Here we see a few properties for setting the colors in the
control (BackColor and FillColor), whether the control is
interactive (Enabled), and whether the control should
simulate a physical device if one is not attached
(SimulateWhenDetached).

4 ActiveX controls, specialized COM objects, are Microsoft’s

standard way of packaging graphical widgets containing a
visual region that can be displayed on-screen.

Private WithEvents PM As GlabPhidgetManager ‘The phidget manager

Private Sub Form_Load() ‘Initialization
 Set PM = New GlabPhidgetManager ‘Start the phidget manager
 Servo.SimulateWhenDetached = True ‘Simulate Servo if needed
 Servo.MotorPosition(1) = 45 ‘Position motor1 to 45 degrees
 Servo.MotorPosition(2) = 90 ‘and motor2 to 90 degree
 label.Caption = "Simulated: no device attached" ’On-screen feedback
End Sub

‘Event handler: Connect to the servo device when it is attached (or plugged in).
Private Sub PM_OnAttach(ByVal Phidget As GLABPHIDGET.IGlabPhidget)
 If Phidget.DeviceType = "GLAB Servo" Then ‘A servo device has appeared
 Set Servo.ServoPhidget = Phidget ‘We link it to the servo phidget
 label.Caption = Phidget.DeviceType & " attached" ’On-screen feedback
 End If
End Sub

‘Event handler: When the Servo phidget is disconnected, it automatically continues to simulate it.
Private Sub PM_OnDetach(ByVal Phidget As GLABPHIDGET.IGlabPhidget)
 If Phidget.DeviceType = "GLAB Servo" Then
 Set Servo.ServoPhidget = Nothing
 label.Caption = "Simulated: no device attached" ’On-screen feedback
 End If
End Sub

‘Event handler: The servo generates an event every time its position is changed.
‘We use this to reset the position of the sliders
Private Sub Servo_OnPositionChange(Index As Integer,Position As Integer)
 Slider(Index).Value = Position
End Sub

‘Event handler: As the user moves a slider, rotate the corresponding servo to the position indicated
Private Sub Slider_Scroll(Index As Integer)
 Servo.MotorPosition(Index) = Slider(Index).Value

End Sub
Figure 6 A complete Visual Basic program for interacting with two servo motors

Figure 5 A screen snapshot of
the example program

Example Program
While sounding complex, this
architecture is surprisingly easy
to use in practice. The Visual
Basic (VB) program in Figure 6,
shown running in Figure 5,
illustrates the complete source for
a toy application controlling two
servo motors. The programmer
used VB’s interface builder to
drop in a GlabServo ActiveX
control and three conventional
widgets: a label for displaying a
text message and two sliders set
to return values between 0 and
180. This takes seconds to do.
The label provides textual
feedback on whether the GlabServo is being simulated or if
the device is actually connected. The individual sliders are
used to position the motors.
The programmer sets the motor positions and the
simulation option in the Form_Load initialization routine.
He connects and disconnects to a physical servo device
using the OnAttach and OnDetach event handlers.
Because the end user can also set a motor’s position by
directly rotating its image of the motor platter, the
programmer must update the slider’s position when
notified by the OnPositionChanged event handler that
the motor position is changed. The exectuable program
works in both simulated and non-simulated mode. If no
servo is plugged in, its behavior is simulated on screen and
the end user can still interact with it. As soon as a
GlabServo device is plugged in, the physical motors will
automatically rotate to the current simulated motor settings.
Our other phidgets are programmed just as easily. For
example a GlabPowerbar phidget would be detected the
same way, and a particular outlet could be turned on by a
line of code resembling: PB.OutletState(2)=True. A
GlabInterfaceKit is slightly more complex as it has both
input and output values. Typically, changes to input values
(such as those generated by sensors) are returned via an
event. For example, this event handler would detect and
print out changes to values generated by a light sensor:

'Report a sensor’s value whenever it changes
Private Sub PS_OnSensorChange(_
 Index As Integer, SensorValue As Integer)
 Print "Sensor: " & Index & ":" & SensorValue
End Sub

Architecture extensions
One more software component enriches the kinds of
applications we can build: a shared dictionary. Any
distributed process can publish key/value pairs into this
dictionary. Similarly, any process can subscribe via pattern
matching to particular keys: by doing so, they are
automatically informed of changes to these key/value pairs
via events. It then becomes very simple to program
groupware based on physical devices. For example, an
application can capture a person’s presence using a well-
positioned GlabProximitySensor and publish that into the
shared dictionary. Other applications can subscribe to this
information and use it to activate other physical devices
e.g., by turning a lamp on and off with the GlabPowerBar.
We could create context-aware widgets similar by
combining, abstracting and publishing contextual readings
from various phidgets into the shared dictionary; other
applications can then use these values to monitor and react
to contextual changes.

