
Contrasting Stack-Based and Recency-Based Back Buttons 1 Greenberg, Ho and Kaasten

Contrasting Stack-Based and Recency-Based Back Buttons
on Web Browsers

Saul Greenberg1, Geoffrey Ho2 and Shaun Kaasten1

1Department of Computer Science and 2Department of Psychology
University of Calgary

Calgary, Alberta, Canada T2N 1N4
+1 403 220 6087

saul@cpsc.ucalgary.ca

ABSTRACT
People frequently use the ubiquitous Back button found in
most Web browsers to return to recently visited pages.
Because all commercial browsers implement Back as a
stack, previously visited branches of the tree are pruned;
this means that people can quickly navigate back up the
tree. The problem is that previously seen pages on alternate
child branches are no longer reachable through Back. An
alternate method is to implement Back on a recency model,
where all visited pages are placed on a recency-ordered list
with duplicates removed. This means that all previously
seen pages are now available via Back. Because advantages
and trade-offs exist in both methods, we performed a study
that contrasted how people used stack vs recency-based
Back. We found that people have a naïve mental model of
how the conventional stack-based Back works, typically
perceiving it as a recency list. People are also poor
predictors of what pages will be displayed with both types
of Back buttons. Finally, people seem evenly split over
their preference of a stack vs. recency-based Back button.

Keywords. History systems, revisitation, browser design.

1. INTRODUCTION
A person’s ability to find and navigate effectively to new
information and to new web sites is extremely important,
and this has driven many researchers to understand both
how people navigate within the Web, and how Web sites
and browsers should be designed [e.g., 5,6]. Equally
important is a person’s ability to return to pages he or she
has already seen: page revisitation is a regular and
surprisingly strong navigational occurrence. Tauscher and
Greenberg [7] found that around 60% of all pages an
individual visits are to pages they have visited previously.

Given this statistic, we believe that Web browsers should
go to great lengths to support effective page revisitation.
Indeed, most browsers do provide revisitation support

through various mechanisms: the Back and Forward
buttons, history lists, bookmark facilities, and even site
maps that graph the pages that a person has visited [2,7].

Of these revisitation mechanisms, it is the Back button
whose use predominates: Tauscher and Greenberg [7]
discovered that pressing the Back button comprised over
30% of all navigational acts. In contrast, other revisitation
facilities are used infrequently e.g., < 3% for bookmarks,
and < 1% for history systems. Greenberg and Cockburn [3]
detailed several reasons explaining Back’s popularity. First,
it allows people to rapidly return to very recently visited
pages, which comprises the majority of page revisits:
Tauscher and Greenberg [7] found that there is a 43%
chance that the next URL visited will match a member of a
set containing the 10 previous visits. Second, Back requires
little effort as a person merely clicks on it until the page is
reached. Third, people are willing to keep Back on
permanent display because it is visually compact. Finally,
people can use Back successfully even when they have a
naïve understanding of the way it works [1].

Back’s popularity as a revisitation tool means that it
deserves special attention. If we can improve it even
slightly, millions will feel the added benefit. Our particular
interest is in existing and alternate behaviors of the Back
and Forward buttons, and how people model and use the
buttons based on these behaviors. Somewhat surprising to
us is the wide-spread—and unchallenged—acceptance of
the stack-based navigation model underlying Back and
Forward in virtually all commercial browsers.

In the remainder of this paper, we describe and contrast
stack-based vs. recency-based Back button behavior. After
summarizing these behaviors in Section 2, we introduce our
study where we investigate how well people understand
and use these two buttons. We present and discuss our
results in Sections 4, and close by pointing out implications
of our work to the design of web browsers.

2. STACK VS. RECENCY-BASED BACK BUTTONS
This section summarizes two different behaviors for the
Back and Forward buttons: the stack-based behavior found
in today’s web browsers, and a recency-based behavior
proposed and implemented by Greenberg and Cockburn

Greenberg, S., Ho, G. and Kaasten, S. (2000) Contrasting
Stack-Based and Recency-Based Back Buttons on Web
Browsers. Yellow Series Report 2000-666-18, Department of
Computer Science, University of Calgary, Alberta, Canada.

http://www.cpsc.ucalgary.ca/grouplab/papers/index.html

Contrasting Stack-Based and Recency-Based Back Buttons 2 Greenberg, Ho and Kaasten

[3]. We will illustrate these two
behaviors by showing how people
navigate through the small page
structure shown in Figure 1.

We use the notation x→y where ‘→’
means that the person has selected or
typed a link on page x to go to page y.
Similarly, in y⇐x, the ‘⇐ ’ means
backtrack from page y to page x via
the Back button. We also define hub
and spoke navigation as an action where people follow
links from one parent (the hub) to two or more children (the
spokes). For example, when navigating b→c⇐b→h⇐b in
Figure 1, b acts as a hub while c and h are spokes. Of
course, c could also act as a hub page if the user navigates a
similar pattern to two or more of c’s children. This hub and
spoke behavior deserves special attention because it is a
common navigational act [7] and because it results in page-
pruning.

2.1 Stack
Description. The stack behavior underlying a conventional
Back button has three different types of operations, as
illustrated in Figure 2 and described below.
1. Clicking or typing links adds a page to the stack top.
2. Clicking Back and Forward moves the stack pointer

down and up the stack respectively, displaying the
page at that stack location. The actual stack contents
are not altered when navigating with these buttons.

3. When the user is at any position on the stack other than
the top and selects a link on a web page, all entries on
the stack above the current position are popped off the
stack before the new page is added. Pages popped off
the stack cannot be revisited using the Back and
Forward buttons.

For example, let us say a person follows the page links
from pages a through d in order (Figure 1), then presses
Back twice to return to page b, and then selects a new link
on page b to page h. Figure 2a shows the stack after a
person executes a→b→c→d, where all pages were added
at the stack top. In Figure 2b, the two clicks of the Back
button (d⇐c⇐b) moves the stack pointer down the stack to
b. Going from b→h pops pages c and d off the stack
(Figure 2c), and then adds page h to its top (Figure 2d).
Thus pages c and d are no longer reachable through the
Back /Forward buttons.

Advantages and Disadvantages. The power of the stack
algorithm is derived from the pruning of navigational
branches that automatically occurs when users use Back
followed by link selection. Essentially, each click on Back
moves up one level of a tree of navigational branches and
selecting a link from a position within the tree removes the
lower level branches. For example, in the navigational trace
described in Figures 1 and 2, the pages visited on the
branches below page b disappeared as soon as another child
of b (page h) was selected.

This approach has some merit: after exploring a branch and
selecting a new path of interest the user may no longer need
the previous branch of exploration.

A counter-argument is that there are many cases where
people do want to return to pages seen on a previously
visited branch. If a person wanted to go back to page d
from page h (perhaps because they now realized that
information on page d was important), they could no longer
do it via stack-based Back as page d has been pruned.

Still, we could argue that the Back button isn’t really
required for this case, because the person can first use Back
to go from h⇐b, and then use the normal links on b to re-
navigate b→c→d. While reasonable for short pages with
few links and simple navigational paths, this could be
onerous for more complex situations. Some pages are long
and complex: recalling and finding the correct link within
the page could be difficult for a variety of reasons. Some
web pages override the coloring of previously selected
links to make them indistinguishable from ones that had not
been selected. Finding the correct spot to re-click on an
image map may be challenging. If the person navigated a
complex path to a particular page, they may find it difficult
to remember and/or reconstruct that path later on.

Stack has another problem. Current systems do a poor job
of communicating stack’s tree-pruning behavior to its users
[1] (discussed further in Section 4.1). The labels Back and
Forward have affordances of linearity, rather than of a tree.
There are few cues at the interface to help users distinguish
between the underlying semantics of page display using
link selection (popping the stack and adding to the new
stack-top) versus the semantics of page display using the
Back and Forward buttons (moving within the stack).
Consequently, users sometimes wonder why pages are
seemingly ‘lost’ when using Back.

2.2 Recency
Description. Perhaps the greatest disadvantage of stack-
Back is that it cannot guarantee that previously visited
pages are reachable by successive Back clicks. As an

 a

b

h

d f

c

e g
Figure 1.
Example page
structure.

 page d
page c
page b
page a

Push
abcd

a) User visits pages a-d, in

order

 page d
page c
page b
page a

Move
pointer

b) User clicks Back

twice,
page d
page c
page b
page a

Pop

c) … selects link to h which

pops c & d off the stack…

 Push h
page h
page b
page a

d) …and pushes h
onto it.

Figure 2. An example navigational trace and its effect on
the stack. Note that pages c and d are popped off the stack.

Contrasting Stack-Based and Recency-Based Back Buttons 3 Greenberg, Ho and Kaasten

alternative, we could provide a complete history of all
visited pages by having Back and Forward move a person
through a recency-based list, where the buttons simply
navigate through the pages in reverse order to how they
were seen. Surprisingly, the design of a button interface to
complete history lists is not as simple as might be expected.
Although forming a list of all of the pages that a user visits
is trivial, designing a simple yet comprehensible interface
to list traversal is complex. Greenberg and Cockburn [3]
explored several models of Back based on variants of a
recency-ordered history list: here we describe only the final
one that they advocate: recency with duplicates removed
and a temporal ordering enhancement.

We begin with a side discussion: the management of
duplicate entries in the history list. Allowing duplicate
pages means that the system can offer a literal
representation of the order of pages that the user has seen.
The disadvantage is that the list could become
unnecessarily long and repetitious. Instead, we suggest
pruning duplicate pages by keeping only a single copy of it
in its most recent position on the list: this keeps recently
revisited pages near the top. Tauscher and Greenberg [7]
analyzed this, and found that substantially fewer Back
presses would be required to return to a desired page when
duplicates are pruned.

As with stack, navigating via links adds a page to the top of
the list, and selecting Back and Forward moves a pointer
through the history list (presenting the page after each
click). But what happens when we select a link to a new
page after using Back? We use a temporal ordering
algorithm: Back and Forward actions move through the
history list as before, but selecting a new link reorders the
list to the true temporal order that matches the sequence of
page as the user saw them (excluding duplicates). We
implement this technique by maintaining a second pure
recency list that traces the order of pages seen when a
person navigates the primary history list using Back and
Forward. As soon as the user displays a new page
(presumably by selecting a page link), the contents of the
secondary list are added in order to the main history list.
Figure 3 illustrates this using the same navigation example
as Figures 1 and 2. As before, visits to the pages
a→b→c→d produces the main list {a,b,c,d}. Going from
d⇐c⇐b creates a second list {c,b}. As soon as the person
selects the new link b→h, c and then b are added to the
main list giving {a,d,c,b,h} which is the correct temporal
sequence of pages (with duplicates removed) that the user
has just seen. This scheme works over any number of Back
and Forward actions.

Advantages and disadvantages. Recency has several
potential advantages. First, it maintains the ‘simple’ Back
and Forward button interface. Second, (and as already
stated) the list of previously visited pages is complete
because no pages are popped off the list. Therefore users
are guaranteed to be able to revisit pages already
encountered during their browsing session by using the

Back button. Third, because the underlying recency list can
grow indefinitely, it is feasible for Back to work across
browsing sessions. Fourth, the temporal reordering
algorithm means that users always see a temporally correct
retracing of their page path when using Back.

One disadvantage is if a user’s goal is to navigate back up
the tree (rather than to a previously seen spoke page),
superfluous pages may be seen as recency does not prune
the spoke pages visited on a different branch.

3. THE STUDY
Is recency a viable replacement for stack? To answer this,
we designed a study that examined people’s mental model
of stack, and then compared how well people could predict
the behavior of recency vs. stack-based Back navigation.
We then asked people which button they preferred.

3.1 Hypotheses
H1. Users have a poor mental model of stack-Back [1].
H2. When revisiting pages over different navigational

paths, users are better predictors of what pages will
appear when using recency-Back vs. stack-Back.

H3. After using both a stack-based and a recency-based
Back button for a similar set of tasks, people will
prefer recency.

3.2 Subjects and expertise
Thirty volunteers participated in this study. All had some
level of post-graduate education.

While subjects were not screened for Web experience,
answers to a pre-test questionnaire indicated a mixed but
generally web-savvy group. For web usage: 20 subjects
claimed to use a browser almost every day; 5 stated their
use as ranging from once every few days to once a week;
while the remaining 5 reported low Web use. Subjects
described themselves as: 4 being skilled experts, 13 having

 page d
page c
page b
page a

Add in
order

a) User visits pages a-d,
in order

 page d
page c
page b
page a

Move
pointer page b

page c Add to
2nd list

b) User clicks Back twice
which adds revisited items
to the 2nd list,

Add

page b
page c

page d
page c
page b
page a

page b
page c

c)
c) …and selects link to
h. This moves the 2nd list
to the main one while
removing duplicates…

 Add h

page c
page d
page a

page b
page h

Move
pointer

d) and then adds h onto it
and resets the pointer to the
top

Figure 3 The same navigational trace using a recency list.

Contrasting Stack-Based and Recency-Based Back Buttons 4 Greenberg, Ho and Kaasten

good (but not expert) skills, 7 having basic skills, and the
remaining 6 having beginner-level skills. All subjects stated
they used Netscape Navigator and/or Microsoft Internet
Explorer.

3.3 Materials
Subjects used Microsoft’s Internet Explorer version 5.0
running within Windows 98 on a modern PC with a
1024x768 24-bit color display. All pages used for the study
were stored on the local computer. In essence, this
configuration meant that navigations and resulting page
displays were uniformly rapid across pages and subjects.

Two non-standard software systems were added to the
browser. The first was a Back button that used a recency
with duplicates removed algorithm (Section 2.2): it was
cosmetically identical to Internet Explorer’s stack-based
Back button. Second was an artificial search bar used for
one of the tasks: while it resembled a typical search bar
result, it actually contained a pre-defined static set of links.

The web sites used simulated several commercial sites. We
created these sites by importing and modifying several
commercial sites, chosen because they seemed typical of
what we normally see on the web.

3.4 Method
Pre-test. We began with a pre-test questionnaire. In it,
subjects stated their web experience as reported in Section
3.2. We then asked subjects to articulate their mental model
of the conventional (stack-based) Back button they
normally use (Figure 4, question 1). We assessed this
understanding by giving them a simple web site—a book
table of contents containing links to several chapters—and
having them navigate the hub and spoke pattern:
a→b⇐a→c (subjects did not see this arcane notation; they
were told to go from the table of contents to Chapter 1, then
Back to the contents, and then to Chapter 2). The
participants were then asked how many clicks of the Back
button would take them from c to b i.e., from Chapter 2
Back to Chapter 1 (Figure 4, Question 2). No matter what
their answer, they were then told to try to return to b by
actually using the stack-Back button. Afterwards, they were
asked the remaining questions (3-5) about how the
observed stack-based Back behavior matched the mental
model previously stated in response to Question 1.

Navigation and prediction tasks. We then randomly
assigned subjects to one of two groups, where each group
saw either the stack- or recency-Back button first. We gave
each subject five different and increasingly complex tasks.
Instructions for all task are summarized below.
1. We reminded subjects to think aloud as they worked.
2. From a home page, we had subjects navigate through a

series of links to a destination page. Subjects had to
scan each page they saw in order to find and choose the
correct next link.

3a. We asked subjects to return to a particular previously
visited target page using only the Back button.

3b. Before each and every Back click in step 3a, subjects
had to predict what page they expected to see. They
described the expected page, clicked Back, and then
stated if their prediction was correct.

The tasks involve five different navigational sequences,
corresponding to the sequence illustrated in Figures 5-8.

Short linear sequence (Figure 5). The subject navigates
from page a (the home page of the Discover Alberta web
site we used) through two intermediate pages b and c to
reach the destination page d (a page describing hostels in
Edmonton) i.e., a→b→c→d; this is illustrated by the
straight arrows in the Figure. The subject then uses Back to
return to page a, making predictions before each click.
Correct predictions are denoted in Figure 6 as P1 to P3 (for
predictions 1 to 3). Because there are no branches, both
recency and stack behave identically i.e., a is returned to by
d⇐c⇐b⇐a (the curved arrows in the Figure).

Long linear sequence (Figure 6). This task is similar to the
one above, except that more intermediary pages are
involved. Reaching destination page i requires
a→b→c→d→e→f→g→h→i. Returning to a using both
recency and stack Back is by i⇐h⇐g⇐f⇐e⇐d⇐c⇐b⇐a

Hub and spoke with return to hub (Figure 7). Reaching
destination page h after visiting all the children of d
requires a→b→c→d→e⇐d→f⇐d→g⇐d→h. Returning
to revisit target hub a using the stack Back just goes up the
hierarchy by h⇐d⇐c⇐b⇐a (4 Back clicks). Recency
Back takes 7 clicks, as all d’s children are seen again
h⇐d⇐g⇐f⇐e⇐c⇐b⇐a. These paths and corresponding
predictions are denoted in the figure as PR1-7 for recency
predictions, and PS1-4 for stack predictions.

Hub and spoke with return to spoke, then hub (Figure 7).
This is almost identical to the task above (although using a
different set of pages). The only difference is that subjects
are first asked to revisit the child spoke page f of hub d, and
then the root page a. Spoke page f is not reachable via stack
as it is pruned. The revisitation path of both recency and
stack Back are identical to the hub and spoke task above.

Search bar (Figure 8). This complex task simulates a user
navigating through several sites by using the results of a

1. Describe how the back button works, and how the Back
button internally manages and stores the pages you visit.

Subjects were then asked to navigate through three pages
comprising a simple hub and spoke system a→b⇐a→c.
2. How many times would you have to click the Back button

to return to <page b>?
They were then told to try to return to a via Back.
3. Were there any problems?
4. Did this match your model of the back button in question 1?
5. Is the version of the Back button you are using is the same

as the one supplied with your normal web browser?
Figure 4. Pre-test questionnaire excerpt concerning
people’s mental model of the Back Button.

Contrasting Stack-Based and Recency-Based Back Buttons 5 Greenberg, Ho and Kaasten

A

Stack &
recency

a) Alberta

b) Edmonton

c) Lodging

d) Hostels

Revisit
Target

Destination

Figure 5: Short Linear

P1

P2

P3

Stack &
recency

Figure 6. Long Linear

Revisit Target

Destination

a) Alberta

b) Rockies

c) Jasper

d) B&Bs

e) Riv. Lodge

f) Rooms

g) Cabins

h) Rates

i) Reserve

P6

P7

P8

P5

P4

P3

P2

P1

Figure 8. Search bar.

Revisit Target 2

sb) Search Bar

P1

b) CarPrices.com f) Edmunds

Revisit
Target 1

c) Prices

e) Corolla,

d) Reviews g) Toyota

h) Corolla

i) Review

j) Toyota

k) 2000

P3

P2P4

P5
P6

P7
P8 PR9

Figure 7. Hub and Spoke: a) hub and b) spoke/hub results

a) Discover Alberta

b) Banff

c) Photo Gallery

Revisit hub

d) Sunrises

PS2

PS3

PS4

f) Photo 2 e) Photo 1 h) Photo 2g) Photo 1

PS1

PR2

PR3

PR1

PR4

PR5

PR6

PR7

Revisit
spoke

A) hub target

B) spoke then hub target

Contrasting Stack-Based and Recency-Based Back Buttons 6 Greenberg, Ho and Kaasten

search presented in a search bar. The order of navigation by
the subject (where sb denotes the search bar) is:
sb→b→c⇐b→d; sb→e; sb→f→g→h→i; sb→j→k. The
subject is then asked to return to target page f, and then to
c. The path of stack Back is k⇐j⇐i⇐h⇐g⇐f⇐e⇐d⇐b (8
Back clicks). Note that because stack Back pruned spoke
page c when the subject went back to b, target c is not
reachable. Recency Back takes 9 clicks, and includes target
page c k⇐j⇐i⇐h⇐g⇐f⇐e⇐d⇐b⇐c.

Comparison and post-test questionnaire. After completing
the entire set of tasks, subjects redid them with the other
type of Back button. They were then asked to comment on
each Back button type and which they preferred. The entire
procedure required approximately one hour.

4. RESULTS
We first describe subject’s mental model of stack-Back. We
then report prediction and preference data of only the first
15 subjects for reasons that will become apparent in the
subsequent discussion. Afterwards, we present the
preferences of the remaining 15 subjects.

4.1 Mental Model of the stack-based Back button.
When asked to describe how the conventional (stack-based)
Back button worked (Figure 4 question 1), all but two had
an incorrect or incomplete model of it i.e., hypothesis 1 is
supported. Most simply said that it takes you back to the
previously viewed pages. Some were more explicit (but
still incorrect), where they said that pages are stored and
displayed as a list of all pages in the order seen. A few
answers hinted that subjects were aware of the stack-Back
pruning behavior, but that they had an incorrect view as to
when and why this happened. To quote several subjects,
Back:
• goes to previous page, but sometimes you can’t…I

think it goes back to [a] different user;
• takes you back to previous pages in your navigation

path…does seem to fail;
• takes you back to last few pages you visited but after a

few clicks it takes you to the main pages (only).

Continuing the pre-test, we had people navigate a simple
hub and spoke pattern, and asked them to predict how
many Back clicks were required to return from the second
spoke to the first spoke. The correct answer is that it is not
possible, as a stack-based Back button will have pruned it
off the list. However, only two users correctly answered
this question (the same two that knew about the stack); the
28 others incorrectly predicted two Back button clicks.

Finally, when people were asked to try and navigate to that
page via Back (only to find that they could not) most, but
not all, admitted that it did not match their mental model as
stated when replying to Question 1. A few said that in
hindsight it did, but not for the correct reason. For example,
one person said that it does match because ‘there are often
errors…it often doesn’t work at all’. Two others said that

‘some sites just do this’. Also interesting is that about half
of all subjects thought that the Back button they just used
did not behave the same as the one they normally used,
even though it did.

This result accords with Cockburn and Jones’ [1] study
involving ten computer scientists. They too found their
subject’s mental model of Back was a recency-ordered list
instead of a stack, and that subjects were surprised when it
behaved differently than expected. As that study was done
in the fairly early days of web browsers, we could have
argued that today’s web users are more browser-literate.
This replication of their findings clearly demonstrates this
is not the case: users find the exact behavior of the Back
button as inscrutable now as it was then.

4.2 Predicting pages returned to by Back.
Fifteen of the 30 subjects were asked to predict what page
they would see before they pressed Back as they tried to
return to the revisit target. Eight of these began with
recency-Back, while the remaining seven used stack-Back.

Short linear sequence. Each subject made three predictions
P1, P2 and P3 for this sequence. With the exception of a
single prediction error at P1 by one subject, all subjects
successfully predicted what page would appear. The graph
in Figure 5 illustrates this: the prediction number is on the
X-axis, and the total number of errors made by the subjects
is on the Y-axis.

Long linear sequence. Each subject made eight predictions
P1 through P8 as they navigated back to the revisit target
(Figure 6). Unlike the short linear sequence, many errors
were made, as shown in Figure 6’s graph. While subjects
were more or less accurate for the first two predictions,
errors became frequent.

Hub and spoke with return to hub. In this task, the target
page was a hub up the hierarchy (the root page a). Four of
the seven subjects using stack-Back erred only in their
second prediction PS2 (Figure 7, graphs at top). That is,
there seemed to be some confusion as to where Back would
take them after reaching the hub page d. In contrast, the
eight subjects using recency-Back made many prediction
errors. As with stack, they were uncertain of what would
happen after first reaching hub page d (PR2) and then again
after seeing the second child (PR3)—most thought it would
return to hub page d again. Only one person made an error
on PR4, likely because they now realized they would see
all children in order. However, many then expected to see
hub page d again on PR5 rather than the hub’s parent c.

Hub and spoke with intervening child. The only difference
between this and the previous tasks is that subjects were
asked to revisit the spoke page f before revisiting hub page
a. We wanted to see if predictions were better or worse if
they were looking for a child spoke page instead of a page
up the hierarchical path. Comparing errors with the
previous hub and spoke navigation with stack-based Back
(where target page f is unreachable), we see two additional

Contrasting Stack-Based and Recency-Based Back Buttons 7 Greenberg, Ho and Kaasten

errors on PS3 (Figure 7, graphs at bottom). We surmise that
subjects thought they would see the other spoke pages at
this point. Recency-Back seems to have somewhat fewer
errors when going through the first few children (PS2 and
PS3), although the error rate is somewhat higher
afterwards. As before, many expected to see hub page d
after each spoke was revisited.

Search bar. The error rate for predictions on this complex
revisitation task was very high for both conditions (Figure
8). The only specific data point worth special mention is
Prediction 9 (PS9) for the stack: all predicted another page
would be seen. This is wrong: no more pages could be
revisited at this point since this was the top of the stack.

Preferences. After completing all tasks with one Back
button type, subjects repeated them with the other. We then
asked them which one they preferred, with 9 favoring
stack, 4 recency, and 2 undecided. Comments by subjects
suggested that predictions were easier to make with the
stack model as it skipped sub-pages.

Think-aloud. During all tasks, we observed subjects as they
formed their predictions and thought-aloud about how they
were making them. What was immediately obvious after
running just a handful of subjects was that predicting the
next page often required a great deal of cognitive work as
well as time. We saw subjects try to mentally reconstruct
where they had been: they would search the current page
for clues as to what its parent could be while trying to recall
what they had seen. They seemed to fare better on pages
that had a logical hierarchical or path structure, and less so
on pages whose structure was somewhat more arbitrary.

4.3 Discussion Part 1
On the surface, Hypotheses 2 and 3 are rejected: stack-
Back seems better than recency. Subjects’ error rate for
predictions appears lower, and a large majority of subjects
(9:4) preferred stack to recency.

Yet something is wrong with this story. For both
conditions, we saw subjects expend a great deal of time and
effort when making predictions; the error rate was also very
high. This does not accord to how we see people using
Back in everyday use: its selection is done without much
apparent thought, and people backtrack through successive
pages very quickly and successfully.

This discordance led us to rethink our study: we now
believe that instructing participants to make predictions is
unnatural. When users navigate, they do not usually sit and
think about which page they are going to return to. Instead
we suggest they use a ‘click until recognize’ strategy,
where they simply click the button until they recognize the
page being searched for. In contrast, it was clear from our
observations that the participants’ primary goal was
predicting the subsequent page when pressing Back button;
this interfered with the stated goal of returning to the
appropriate revisit target page. Our prediction task forced
subjects to be aware of the pages that would appear, which

in turn may have led to some preference bias for stack-
Back (which is likely easier to predict because one just has
to reconstruct how one moves up the hierarchy).

4.4 Comparing Back and Recency without predictions.
We decided to test how participants would react to the two
Back buttons if no predictions were made (hypothesis 2).
Because subjects would not have to concentrate on page
prediction, we expected them to stay focused on their
primary goal of returning to target pages.

We continued the study with the next fifteen subjects
exactly as before, except that we no longer asked them to
make predictions (we omitted step 3b in the procedure
outlined in Section 3.4). Subjects used both types of
buttons over all tasks, and then stated their preferences.

Unlike the previous results where subjects favored stack,
this new set of subjects had a slight preference for recency.
Eight preferred recency, six preferred stack, and one was
undecided. People who preferred recency commented:
• Go through the actual order more than not
• Pages come back sequentially as they should
• More predictable: goes through the actual order
• Doesn’t feel like more clicking
• Stack missed a whole bunch of pages
• More intuitive. Liked [that it had] no duplicates

People who preferred stack commented:
• More used to it
• Recency produced extra clicks
• Doesn’t take you back to sub-pages

4.5 Discussion Part 2
Unlike the first fifteen subjects that preferred stack-Back
when making prediction, this set slightly preferred recency-
Back. That is, hypothesis 3 is now weakly supported.

This change in attitude re-enforces our conviction that
people do not have an exact model of what pages they
expect to see as they use Back, and that they use a ‘click
until recognize’ strategy instead.

One recurring comment made in regards to the recency
model was the inability to recover ‘hub’ pages: subjects
expected to see the hub page after each visit to a child. The
recency with duplicates removed algorithm only showed
the hub page once, but the perception of the users was that
it did not. Instead, they expected a pure sequential model.
Does this suggest that hub pages should be duplicated
rather than only shown once? We think not. With more
extended use of recency Back, users may realize that the
hub pages are accessible and may find the duplication of
pages unnecessary. We also believe that seeing hub pages
several times will introduce a different type of confusion
i.e. that Back is merely cycling through the same sequence
of pages. Still, more testing is needed before drawing a
final recommendation of how duplicates are handled.

Contrasting Stack-Based and Recency-Based Back Buttons 8 Greenberg, Ho and Kaasten

5. IMPLICATIONS TO BROWSER DESIGNERS
At first impression, there is no compelling reason to change
the current stack-based Back button to a recency-based one.
People seem comfortable with Stack, even though they
have a poor model of it. This is because their ‘click until
recognize’ strategy does not require an accurate model of
its behavior. As well, people seem unconcerned about the
mysterious disappearance of pruned pages. Importantly,
there is no overwhelming preference by our subjects of
recency-Back over stack. While we could still argue that
recency is better than stack because no pages are lost, using
it as a replacement for the familiar stack-Back idiom could
introduce unnecessary risk.

However, the slight preference of recency over stack means
that new designs can include recency with no penalty. One
possibility, which
we have
implemented in a
prototype web browser, is to include both stack and
recency-based buttons. We relabel Stack Back and Forward
as Up and Down, as this more accurately reflects the
semantics of moving up and down the navigational
hierarchy that is a side product of pruning. Back and
Forward are now recency-based, as they reflect the
semantics of moving back and forward on the recency-
ordered history list. Nonetheless, we recommend caution.
Because users have a fuzzy notion of how stack and
recency behave, the differences between these buttons may
be unclear to them. As well, it adds complexity: yet another
decision must be made as to which revisitation method
should be chosen.

Perhaps a more compelling reason for using a recency-
based Back button is to remove the differences between
how Back and other revisitation systems work. In related
work, we are designing a new history system that integrates
Back, history, and bookmarks by unifying them to operate
over a single recency-based list [4]. Back and Forward
simply become mechanisms that navigate in linear order
item by item through the combined history / bookmark list.
If the history list is visible, then items are highlighted as the
user selects Back. This visually re-enforces how Back
works.

6. SUMMARY
Even though Back is probably the most highly-used
interface widget in existence today, there are (to our
knowledge) no other studies that scrutinize alternatives to
the widely-accepted stack algorithm. In this paper, we
proposed a recency-based behavior with duplicates
removed. We showed that people have a poor model of
both stack and recency Back, and that they make many
errors when predicting what pages will appear. We suggest

that this is not really a problem as people employ a ‘click
until recognize’ strategy, where they simply click Back
until they recognize the desired page. We also showed that
when people had the opportunity to use both buttons,
slightly more of them preferred recency to stack.

Because this preference of recency is not overwhelming,
we advocate the replacement of stack-based Back with
recency only if other design considerations warrant them.
We feel that good design opportunities do exist, especially
for a recency-based Back to be integrated with a recency-
based history list to produce a single model of how pages
can be revisited.

There is no question that the high usage rate of Back
warrants further research: millions will be affected by even
a small improvement in its design.

Acknowledgements. Microsoft and NSERC for funding
our research. Special thanks to Kent Sullivan, Robert Graf,
and Linda Tauscher for their intellectual contributions.

Study materials. In the interest of replication, all study
materials (including the experimental recency-based back
button) are available at: http://www.cpsc.ucalgary.ca/
grouplab/software/.

REFERENCES
1. Cockburn, A. & Jones, S. Which way now? Analysing

and easing inadequacies in WWW navigation. Int J
Human-Computer Studies 45(1), 105-129, 1996.

2. Cockburn, A. & Jones, S. Design issues for World Wide
Web navigation visualisation tools. Proc RIAO’97: The
5th Conference on Computer-Assisted Research of
Information. McGill University, Canada, 55-74, 1997.

3. Greenberg, S. & Cockburn, A. Getting back to Back:
Alternate behaviors for a web browser's Back button.
Proc 5th Annual Human Factors and the Web
Conference, NIST, Gaithersburg, USA, 1999.

4. Kaasten, S. and Greenberg, S. Designing an integrated
bookmark / history system for web browsing. Proc.
Western Computer Graphics Symposium, March 26-29,
2000. Available from http://www.cpsc.ucalgary.ca/
grouplab/papers/000/00-GrouplabPapers.Skigraph/
kaasten/kaasten.pdf

5. Nielsen, J. Designing Web usability. New Riders, 2000.
6. Sano, D. Designing large-scale web sites: A visual

design methodology. Wiley Computer Publishing, 1996.
7. Tauscher, L. & Greenberg, S. How people revisit web

pages: Empirical findings and implications for the
design of history systems. Int J Human Computer
Studies, 47(1), 97-138, 1997.

