
Change Awareness in Software Engineering Using Two
Dimensional Graphical Design and Development Tools

 James Tam Lorin McCaffrey Frank Maurer, Saul Greenberg
 Department of Computer Science Software Development Department of Computer Science
 University of Calgary Tec4 Systems Inc. University of Calgary
 2500 University of Calgary 215A 10th Street N.W. 2500 University Dr. N.W.
 Calgary, T2N 1N4 Canada Calgary, T2N 1V5, Canada Calgary, T2N 1N4 Canada
 +1 403 220 3532 +1 403 283 8876 +1 403 {220 3531, 220 6087}
 tamj@cpsc.ucalgary.ca lorin@tec4.ca {maurer, saul}@cpsc.ucalgary.ca

ABSTRACT
In this paper, we discuss several display mechanisms for
representing changes in the UML (Unified Modeling
Language) class diagrams: animated replays [5,6],
storyboards [3], iconic representations and a documentation
method. These display mechanisms were implemented in a
prototype UML editor. We present the results of an
empirical interface refinement study that was conducted to
determine the strengths and weaknesses of the four change
display mechanisms. The results show some preference for
the symbolic presentation of changes, specifically that most
study participants liked the documentation method best.
Qualitative result summaries are given for documentation
and the other mechanisms.
Keywords
Change Awareness, UML design, groupware

1 INTRODUCTION
Quite often software development projects are very large
and the documents produced are constantly evolving over
time. Not only does a developer have to keep up with what
changes have occurred, they might also have to determine
if these changes are relevant to them and if so how will
they will deal with these changes. If the project is even
moderately large, this process can be quite challenging. As
described by Luqi [8], “A change in one module can trigger
a change in another, which can trigger further changes in a
chain of indirect effects. The extent of such chains can be
difficult to predict without computer assistance, especially
for complex systems.” Change Awareness is the ability to
keep up with changes that were made to development
documents.

2 PURPOSE OF THIS STUDY
This study deals with only a subset of these problems. Its
focus is two-fold:
1) Evaluate examples of different asynchronous change
display mechanisms to determine the effectiveness of each
for models of software using a subset of the UML as an
example. In real time (synchronous) projects when a
developer modifies the work, the changes will immediately
show up for the other developers. For non-real time
environments (asynchronous), the changes made by one
person will not immediately show up for another person
until either explicitly requested or a specific period of time
has passed.
2) Gain some insight into how software engineers currently
handle the issue of Change Awareness.

3 THEORETICAL BASIS AND PREVIOUS WORK
Much of the theoretical basis for this study comes out of
the work of Gutwin and his Ph.D. Thesis [6], which
discussed the issue of workspace awareness in real time
groupware (collective workspace) environments. Even
though he concentrated on being aware of changes to a real
time groupware environment and we are focusing on
awareness of changes in a project in a non-real time
environment only a few adaptations of his framework were
necessary.

In his thesis, Gutwin described several different methods of
portraying change related information [6]. These methods
can be classified along two different dimensions, placement
and presentation.

In terms of placement, a change indicator can either have
situated or separate placement. The placement for a change
indicator is said to have situated placement if the change
related information is located with the item that changed.
The placement is said to be separate if the change related
information is located in a different place from where the
change occurred (perhaps in another part of the window or

Tam, J., McCaffrey, L, Maurer, F. and Greenberg, S. (2000)
Change Awareness in Software Engineering Using Two
Dimensional Graphical Design and Development Tools. Report
2000-670-22, Department of Computer Science, University of
Calgary, Alberta, Canada, October.
http://www.cpsc.ucalgary.ca/grouplab/papers/index.html

 2

in an entirely different window).

Another way of categorizing the method in which change
related information could be communicated is by how the
information is presented. Change related information could
either be communicated literally or symbolically. If all of
the change-related information is described in the same
form that it is gathered then the information is said to be
communicated literally. If only some subset of the
information or a synthesized version thereof is used to
describe a change, then the information is said to be
communicated symbolically.

In addition to this, Gutwin described several basic
questions, which we used as a starting point in determining
what type of information should be captured in a
groupware type of interface. The questions that we asked
during the study included the following:

• Did any changes occur and if so roughly how many
changes occurred?

• Who initiated the change?

• What were the changes made?

• When were the changes made?

• How were the changes made?

4 METHODOLOGY USED
HTML image maps were used to implement examples of
change indicators. Each participant could view and interact
with a prototype UML editor. There were four different
versions of the prototype created, one for each of the
different ways that changes could be presented. This
prototype simulated a software-modeling tool and depicted
a software project consisting of a number of classes that
had previously undergone a series of changes. The
diagrams were annotated with change information
presented in a variety of formats, and test participants were
asked a series of questions related to those changes. The
within-subjects design of the study also allowed us to ask
the participants for comparison opinions between sets of
indicators. The results can be used to determine which
types of visual indicators are the most useful in helping
developers keep track of changes in graphical
representations of software.

Because class diagrams commonly show a hierarchy of
information for each class (each class contains nested data
and method fields) our prototypes included two levels of
change indicators. At the class level, color was used to
indicate that a change has taken place in the class. Classes
that were changed were colored red while unchanged
classes retained their original (tan/yellow) color. In Figure
1, below class Bar is colored red to indicate that the class
has somehow changed while class Foo retains the original
color for class diagrams indicating that it hasn’t changed.

Figure 1: Using color to indicate if a class had changed or
not

In addition to this different intensities of color were used to
indicate how many changes had been made to the class.
For the purposes of this study, we define one change as
being the addition of a new method or attribute to a class,
the deletion or modification of an existing method or
attribute of a class or the spatial movement of a class.

The more changes that had been made to a class, deeper a
shade of red would be used. As shown in figure 2 below,
class Foo has undergone one change so it’s shading of red
is the faintest. Class Bar has undergone two changes so
that it is shaded in a deeper value of red. Finally class
Coca has been changed the most, having been changed
three times so that it has the deepest value of red.

Figure 2: Using color value (shading) to indicate how
much a class had changed.

Thus the color change indicator will therefore be used to
communicate two things:

• Has a particular class changed or not?

• Roughly how many changes have been made to the
class?

Essentially the method of using color to communicate
changes at the class level is a situated and symbolic means
of representing change. It is situated because the change
indicator is presented as a part of the class (where changes
have taken place). It is symbolic because the indicator does
not literally show all of the changes that have been made to
the class but merely shows some representation to indicate
that the class has been modified and how much that it has
been modified.

The reason that it was decided to use a symbolic and
situated change indicator at the class level is simple. This
was done in order to not overwhelm the user with all the
minute details of changes that occurred to the class. This
way the user is presented with a choice, they can either see
only the coarse view of the changes (communicated by
color values) or they can choose to see the detailed view of

 3

the changes that took place on a class-per-class basis (the
second level). Because the participant can always use the
four display mechanisms we implemented to see more
detail about class level changes (as well how those parts
changed) we wanted color to provide an at-a-glance method
of indicating to the user that a class had changed and
roughly how much it had changed. As mentioned by Lyn
Bartram [1] when referring to the work of Woods [10],
“…graphical representations such as shape, symbols, size,
color and position are very effective in information
visualization because they are mentally economical [you
can notice them without conscious effort]”. In a way these
color indicators are similar to the “wear” indicators that
were discussed by Hill et al. [7]. Hill suggested using color
in a spreadsheet to show how often each cell had been used.

When the amount of information needed about changes to a
diagram is more than can be answered by the class level
change display mechanism (color), the user of the
prototype looks to the method/attribute level change
mechanism. For this second level mechanism, we
compared the use of four different of methods of displaying
changes, animated replays [5,6], storyboards [3], icons, and
documentation (that provided textual descriptions of
changes that were made). The example implementations
that we used of these four methods are shown below in
table 1.

 Placement

 Situated Separate

Literal

1) Animated replay
[5,6]

2) Storyboard [3]

Pr
es

en
ta

tio
n

Symbolic

3) Iconic 4) Documentation

Table 1: Classifications of change indicators used in this
study

4.1 Literal and Situated

This change display mechanism employed playback
animations of changes that took place on selected classes in
the class diagram (c.f. Figure 3) to illustrate the changes
that were made. These animations would show an exact
replay [5,6] of the changes that were made. If a class were
deleted from the diagram then an animation of the class
gradually disappearing would be displayed. If a class was
moved within the display, then the animation would show
the class traveling from its original location to its new
location.

Since it was thought that playing back all of the of changes
made to the entire diagram all at once would a bit
overwhelming for test participants, it was decided in this
study to have changes displayed on a class-by-class basis.

When the tester clicks on a class for the animated replay
display method [5,6], all the changes that were made to that
class would be shown to the user. However this decision
created a few limitations for this study (please refer to the
section 8, titled “Limitations of the Study”).

Since it was decided not to make the relationships between
classes manipulatable by the test participants, all of the
relations pertaining to a class would also have their changes
replayed at the same time that the changes to the class were
shown.

4.2 Literal and Separate

This change display mechanism used a storyboard [3] to
display the changes that have occurred to the class diagram.
The storyboard technique [3] illustrates the changes that
took place by capturing them with a series of still frames.
There was a frame created in the storyboard [3] for each
change that was made (c.f. Figure 4). Users can enlarge
any storyboard [3] frame into an expanded view. Extra
information about the change (who executed it and when)
is given at the top of the expanded frame when this is done.

4.3 Symbolic and Situated

Iconic representations are attached to objects that have
changed (c.f. Figure 5). Icons could be attached differently
to graphics in order to distinguish specific field changes (to
attributes & methods) from changes made to classes as a
whole. Changes pertaining to the whole class would place
the icon in the upper left hand corner of the class diagram.
Changes that were made to the fields of the class would
place the icon on the right hand side of the field that had
changed. Additionally, the icon that indicated that the class
had changed would be larger than the icons that indicate
that fields in the class had changed. In both cases, extra
information about the change (who executed it and when)
was given in a text-callout if a participant clicked on an
icon.

4.4 Symbolic and Separate

This technique used written documentation that described
the changes that have taken place (c.f. Figure 6), which
appears in a separate window below where the window
where the changes occurred. The documentation describes
the executor of the change, as well as the date and time the
change took place.

5 TEST PARTICIPANTS
The test participants for this study were chosen from the
Computer Science and Computer Engineering programs at
the University of Calgary as well from industry. The
participants were expected to have at least a basic
understanding of UML. This study required the
participation of at least eight participants (four for the pilot
and four for the main study). Nine participants were run
through the study.

 4

Study participants would see
literal replays of the last user’s
actions on the class diagram.

Figure 3: Animated replay of changes (literal and situated representation of changes) [5,6]

Figure 4: Storyboard replay of changes (Literal, separate representation of changes) [3]

Storyboard pane

Detail pane

Extra change
information

 5

Figure 5: Iconic representations of changes (symbolic, situated representation of changes)

T h e d o c u m e n ta t io n m a k e s n o te
o f th e e x e c u to r o f th e c h a n g e s a s
w e ll a s th e d a te a n d t im e th e
c h a n g e to o k p la c e .

Figure 6: Documenting changes (symbolic, separate representation of changes) in the form of documentation

Field level change
indicator.

Extra change
information

Class level change
Indicator.

Ghosted image
indicating class
movement.

 6

6 Procedures Used
Beforehand, we prepared a mock-project using UML and
then, using this base project as our starting point each
time, performed four sets of changes to the class diagram.
Each change set included four basic changes: the addition
of information to a diagram, the deletion of existing
information from the diagram, the modification of
existing information on the diagram and the movement of
different parts of the diagram. The examples we chose
for each of those changes were ones we deemed to be
typical of changes an engineer might make to a UML
diagram, such as adding new subclasses, or adding and
removing class attributes. All test participants were
exposed to each change display mechanism (a within-
subjects design). Each change display mechanism was
shown displaying a different set of changes, to eliminate
memorization. As well, the order of change display
mechanisms was randomized so that learning would not
bias the results in favor of any one mechanism.

Each participant was first asked to fill out a pre-test
questionnaire. The main point of the pre-test
questionnaire was to determine the amount of experience
that the person has working in the field of Computer
Science as well as their skill and knowledge with the
UML. These questions could possibly be used later to
determine if there is any relation between computer
experience and UML knowledge and the preferences that
they have towards each type of change indicator. Each
person filled out the pretest questionnaire prior to
beginning the study.

Next, the test participant was shown the first test scenario.
They were told that they had been away from their work
project for a period of time and they must determine what
has changed (due to other members of their work group)
since the last time that they worked on the project. The
person was given a period of time in which they can
familiarize themselves with the prototype and the mock-
project. This period of time was not fixed so that
participants could take as long as they wished to
familiarize themselves with operation of the prototype.

After this brief exploratory period, the post-scenario
interview was administered to the person. The questions
during the post-scenario interview attempted to determine
if the person understood how the change display
mechanism worked. In addition to this, specific questions
about the changes that were made to the project were
asked, such as what parts of the project had changed and
how, and who made the changes and when.

Also, the participant was asked to rate the effectiveness of
the change display mechanism on a Likert scale from one
to five. One was described as “Useless” and five was
described as being “Very Effective”. The person was
then asked to provide details for their rating choice.

Finally the participant was asked for their opinions on
how to modify the change display mechanism so that it
would be more effective at portraying changes. This
procedure (exploring the diagram and answering the post-
scenario questions) was then repeated for the remaining
three scenarios.

When the participant had completed all four of their
assigned scenarios (and viewed all four change display
mechanisms), then the post-test interview was
administered. During this interview we asked the
participant to indicate which change display mechanism
they preferred and why they preferred it.

Additionally they were asked to describe any other
methods that they would employ if this were a real
software project that they were working on and they were
trying to keep up with the project. . This way we not only
discovered which change display mechanism performed
best for the participant but also gained some
understanding of how people currently cope with the issue
of change awareness in the absence of any change
awareness support.

7 FINDINGS
From the data we gathered, some general things can be
said about change awareness in software engineering,
independent of the change display mechanism used to
display those changes.

A common occurrence that was observed in all cases was
that the participants either did not like or were confused
by the representation of movement (c.f. Table 2). This is
likely because UML diagrams are two-dimensional
graphical representations of program code (where spatial
movements do not carry any semantic meaning). Even
though class diagrams can be shifted around in the two
dimensional UML representation, there is no analogy for

 Replay Storyboard Icons Documentation

Tester 1 X X

Tester 2 X X

Tester 3 X X

Tester 4 X X

Tester 5 X X

Tester 6 X X

Tester 7 X X X

Tester 8 X X

Tester 9 X X

Total 2 5 5 7

Table 2: Testers who had problems explaining the move
operation or missed it entirely cross-referenced by scenario.

 7

this type of change in the text based representation.

Also three of the test users mentioned that movement
should not be a spatial move but instead should be a
hierarchical one. A hierarchical move occurs when a
class has been deleted from one package and added to
another package. As expected, all three of these test
participants had mentioned that this type of move was
very important and should have been represented in the
Change Awareness system rather than representing spatial
moves.

In addition to this domain-specific confusion about
movement, the individual change display mechanisms
were able to show movement in only limited (and
sometimes unclear) ways, as will be mentioned in the
section called “Type II Findings”. Related to the issue of
movement is user configurability of the change display
mechanisms. There were many comments supporting
idea of being able to filter out irrelevant changes
(especially movement). As well, user modification of the
granularity of the change display mechanisms seemed to
be a recurring topic in the post-scenario and post-test
interviews.

Another observation made by several participants was
that displaying changes in hierarchical form was a good
idea. As previously mentioned, a coarse change indicator
(color) was used to indicate that some changes have
occurred. If the user was interested in seeing more
information related to the changes, then this information
could later be explicitly requested. Everyone who was
run through the study was successful in equating the
coarse indicator (color) with a changed item. However
many of the people misinterpreted the meaning of our use
of color value:

• Four people thought that different colors should be
used to represent different types of changes (they
indicated that currently classes that were colored
differently were changed but they did not explicitly
explain how color and change were related).

• One person had guessed that the color value
(shading) was correlated with the number of changes
that had been made but this person was unsure of
themselves and also indicated that they might have
thought color value was used to indicate the type of
change.

• Another person totally misinterpreted the use of color
and thought that color was already used to indicate
the type of changes that were made.

Obviously, some mechanism for indicating exactly how
color relates to change (the number or type of changes
made) must be clearly indicated to the user, otherwise
there is a great potential for confusion. Perhaps the use of
a legend or color key would be useful here. With a

customizable color-coding scheme a user could decide
how different changes were represented with different
colors.

In addition to these general findings, we were able to
determine the strengths and weaknesses of the specific
change display mechanisms we used. At first glance, it
appears there was a significant difference in preference
between the different change display mechanisms (c.f.
Table 3). Over half the users indicated that they thought
that Documentation was the best method.
Method of
Representing Changes

Number of test users who rated this method
as best

Replay [5,6] 1

Storyboard [3] 1

Iconic 2

Documentation 5

 TOTAL 9

Table 3: Summary of User Preferences

However, the participants’ comparative ratings did not
suggest such a significant difference. Documentation
rated, on average, only 0.5 points higher than the second
place mechanism on a five-point scale (c.f. Figure 6)

Comparative Ratings

1
1.5

2
2.5

3
3.5

4
4.5

5

Replay Storyboard Iconic Documentation

Display Mechanism

 Figure 6: Comparative ratings of mechanisms

In addition to these comparative numbers, we collected a
large amount of qualitative data about the usability of the
individual display mechanisms. For any change display
mechanism, the strengths and weaknesses can be
classified at three levels:

I. Strengths and weaknesses that are due to
qualities inherent in the specific quadrant in the
presentation/placement table (Table 1) and
would be present in any examples of such. We
will describe these as a ‘Type I’ findings.

II. Strengths and weaknesses that are due to the
example method of implementation we chose to
represent the specific quadrant (storyboards [3],
for example) and would be present in any
implementation of that example. We will use the

 8

term ‘Type II’ to classify these findings.

III. Strengths and weaknesses that are due to our
own implementation of the specific mechanism
(our version of the storyboard [3] as opposed to
someone else’s, for example). Weaknesses in
this category can be considered confounds and
will be discussed as such in the limitations
section.

7.1 Type I findings
Situated vs. Out-of-Place
One noticeable trend in the qualitative data collected was
the user’s comments on gaze shifting when using separate
change indicators (storyboard [3] and documentation). In
these mechanisms, the system is queried for change
information by a mouse click on the part of the user. The
results of this query appear in a separate window from
where the action occurred. This forces the user to gaze-
shift, or look back and forth between the change
information and the location to which it refers. Many of
our test participants found this to be a lot of work.

Symbolic vs. Literal
Participants expressed a liking for symbolic methods over
literal methods, especially in terms of speed. It seems the
symbolic methods (iconic and documentation) can
abstract a complicated series of change steps into a
quickly readable format. The information presented by
the literal methods actually seemed to take longer for
participants to absorb.

7.2 Type II findings
Documentation
A typical reason given as to why documentation was the
preferred method was because it was described as being,
"fast and efficient". You could see all of the changes
related to a class with only one mouse click. Several of
the users thought that it provided the richest potential for
describing changes but that an automated system should
also provide the ability for users to append their own
custom documentation to system generated
documentation of changes.

However, almost every test user had trouble with the
movement change in the case of the documentation
method. This was expected because what the
documentation used was a text description of changes and
it is difficult to be able to describe how an item moves in
space using only written descriptions.

Iconic
Changes were displayed symbolically using icons. The
time it took our participants to learn the meanings behind
the icons was reassuringly short, although is still worth
mentioning that the familiarization process was not
automatic. The main benefit of this method was the quick
recognition of how many changes had occurred and what
these changes were.

What was somewhat more surprising to us was that many
of the test participants mentioned that they had problems
with movement in the case of the Iconic representation as
well. Since there is a sort of “ghosted out” image (c.f.
Figure 5) showing the path the class had been moved, it
was thought that this change indicator for the movement
of items would have been clearer than it was.

Storyboard [3]
The major drawback of the storyboard representation was
the fact that the user was still doing before-after
comparisons, only this time on a frame-by-frame basis.
Far too much clicking (back and forth between frames)
and comparing between frames was needed to retrieve all
the change information. However, the storyboard
representation provided a chronological overview, and a
convenient way to determine approximately how many
changes had occurred since the user last saw the project
(one need only count the frames).

As well, some actions do not lend well to storyboard
display. It was thought that movement might be a
problem in at least some of the cases since the only way
that users could determine that something had moved
from one frame to the next was by comparing the position
of classes from frame to frame. This is supported by the
fact that over half the people tested noted difficulties with
movement in the case of the storyboard (c.f. Column 2 in
Table 2). Deletions proved to be quite hard to identify as
well.

Replay [5,6]
The data collected suggests that most actions are
immediately identifiable to a user when an exact replay is
shown. User control of the replay (speed, level of detail
or frame rate) was not available in our prototype, and
elicited some negative responses from our participants. It
is suggested that any future implementations strive to
address these concerns.

Yet another comment that was made by the test
participants was that they wanted to have the option of
seeing the current version of the project. This was often
found to be a comment made in the case of the replay
method (c.f. Figure 3) where two users said they would
have wanted an overlay of the current version of the
project that they could compare to while the animations
showing changes took place. This is consistent with the
fact that six of the users said that in the absence of any
automated change awareness support, they would do
some sort of before and after comparison of changes in
order to track the changes that occurred.

7.3 Information Indirectly Derived From This
Study
Indirectly this study also provided some insight into some
of the information that users thought was important with
regard to a change. This study asked questions about:

 9

What changed? How did these things change? Who
made these changes? When did they make these
changes?

It was noted by most of the test participants that in real
life that if this was a real software project that they were
working on and they were trying to track the changes
made to it, the person would simply ask the person who
made the changes. This indicates that it is important that
the “who” information be imparted.

Additionally, three of the test participants indicated that it
was very important to determine why a change was made.
They mentioned that quite often this is one of the most
important pieces of information related to a change. As
was noted by one participant, the higher meaning behind
the change, such as the change in requirements as
demanded by the customer, could be invaluable
information.

8 LIMITATIONS OF THE STUDY
There are a number of limitations / simplifications that
were made for the purposes of this study:

Although test participants are told to imagine that they are
software designers / developers that are working in a real
world software project, in reality, a software designer
would have seen the project before and therefore have
some memory of the project before the changes were
made. Our participants were asked to act out this role
without the benefit of this memory.

The test participants included computer science students
who were currently enrolled in or had completed
undergraduate software engineering courses as well as
graduate software engineering students who were working
in industry. It is likely that the experience and knowledge
of these groups differ and this may have an effect on the
findings of the study.

Medium fidelity prototypes were used instead of fully
implemented systems. Consequently this meant that not
all features were available. One effect was that not all of
the change indicators presented enough information to be
able to answer the questions in the questionnaires and
interviews. For instance, the replay method did not allow
test users to determine who made a change, when the
change occurred or the order in which the changes took
place. In addition, many elements in the class diagram
did not provide the same level of detail. For example,
class relationships – the ‘arrows’ in UML – were not
clickable and could not be queried for more information
about the changes made to them (addition, deletion, etc).

Most of the data that was gathered from this study is
qualitative in nature and took the form of summaries of
the interview responses as well as observations. The
possibility for bias from the researchers in these recording
techniques should not be ruled out.

9 CONCLUSION
Showing change information in a software engineering
project is a daunting task. Tool developers have a variety
of means of displaying change information in UML
editors, with some benefits and drawbacks to each
method. In this study, medium fidelity prototypes were
used to test the effectiveness of several change display
mechanisms, one from each quadrant of Gutwin’s [6]
presentation/placement table. Situated methods required
less shifting of the user’s gaze, while symbolic methods
were able to abstract complicated change actions into a
quickly readable format. Out of the four change display
mechanisms the authors implemented – animated replay
[5,6], storyboards [3], icons, and documentation – the
documentation method was best liked among test
participants.

As the comparative data was not overwhelmingly in any
one method’s favor, we are not able to suggest any of our
implementations of change display as the best for
software engineering. However, the results do suggest
that future research should be directed towards symbolic
methods for representing change, as their abstraction
abilities seem to provide the most benefits. A multi-
leveled approach as used in our prototypes (class color
indicating some changes have occurred, followed by
querying of the system for more detail) is promising.
Flexibility of the display mechanism to change with
changing work situations such as the inclusion of a user
configurable filtering mechanism, should also be given
high priority in future projects.

REFERENCES
1. Bartram, L. Perceptual and Interpretative Properties

of Motion for Information Visualization, Technical
Report (CMPT-TR: 1997-15) from Simon Fraser
University, 1997.

2. Booch, G., Rumbaugh, J., Jacobson, I. The Unified
Modeling Language User Guide, Addison Wesley
Longman, 1999.

3. Dix, A., Finlay, J., Abowd, G., Beale, R. Human-
Computer Interaction, Prentice Hall, 1993, 176 &
367.

4. Fowler, M., Scott, K. UML Distilled, Addison
Wesley Longman, 1997.

5. Gutwin, C., Greenberg, G. Design for Individuals,
Design for Groups: Tradeoffs Between Power and
Workspace Awareness, Proceedings of the
Conference on Computer-Supported Cooperative
Work, Seattle, ACM Press, 1998, 207- 216.

6. Gutwin, C. Workspace Awareness In Real-Time
Distributed GroupWare, A Ph.D. Thesis, University
of Calgary, 1997. Available from
http://www.cs.usask.ca/faculty/gutwin/publications/

 10

7. Hill, W., Hollan, J., Wroblewski, D. and
McCandless, T. Edit Wear and Read Wear,
Proceedings of the Conference on Human Factors in
Computing Systems, New Orleans, The Association
for Computing Machinery, 1991, 3 – 9.

8. Luqi. A Graph Model for Software Evolution, IEEE
Trans. Software Eng., 16, 8 (Aug. 1990), 917 - 927.

9. Rumbaugh, J., Jacobson, I., Booch, G. The Unified
Modeling Language Reference Manual, Addison
Wesley Longman, 1999.

10. Woods, D. Towards a theoretical base for
representation design in the computer medium:
Ecological perception and aiding human cognition.
In, Flach, Hancock, Caird and K. Vicente (Eds.), An
Ecological Approach to Human-Machine Systems I:
A Global Perspective, pages 157-188. Lawrence
Erlbaum Associates, 1995.

