
6

Groupware Toolkits for
Synchronous Work

SAUL GREENBERG and MARK ROSEMAN

University of Calgary

ABSTRACT

Groupware toolkits let developers build applications for synchronous and distributed
computer-based conferencing. This chapter describes four components that we believe
toolkits must provide. A run-time architecture automatically manages the creation, inter-
connection, and communications of both centralized and distributed processes that com-
prise conference sessions. A set of groupware programming abstractions allows develop-
ers to control the behavior of distributed processes, to take action on state changes, and to
share relevant data. Groupware widgets let interface features of value to conference par-
ticipants be added easily to groupware applications. Session managers let people create
and manage their meetings and are built by developers to accommodate the group’s work-
ing style. We illustrate the many ways these components can be designed by drawing on
our own experiences with GroupKit, and by reviewing approaches taken by other toolkit
developers.

6.1 INTRODUCTION

Building groupware for synchronous, distributed conferencing can be a frustrating experience.
If only conventional single-user GUI toolkits are available, implementing even the simplest
systems can be lengthy and error-prone. A programmer must spend much time on tedious
but highly technical house-keeping tasks, and must recreate interface components to work
in a multi-user setting. Aside from the normal load of developing a robust application, the
programmer of groupware must also attend to the setup and management of distributed pro-
cesses, inter-process communication, state management and process synchronization, design
of groupware widgets, creation of session managers, concurrency control, security, and so on.

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c 1999 John Wiley & Sons Ltd

136 GREENBERG and ROSEMAN

Consequently, a variety of researchers have been exploring groupware toolkits. Their pur-
pose is to provide tools and infrastructures powerful enough to let a programmer develop
robust, high-quality groupware with reasonable effort. Some in-roads have been made, but we
are far from a complete solution. Realistically, most of today’s groupware toolkits are best
seen as breakthrough research systems used either to explore particular architectural features
of groupware toolkits, or as platforms to build experimental groupware prototypes. While they
have not reached the maturity of single-user GUI toolkits, these pioneering efforts have laid a
foundation for the next generation of toolkit design.

This chapter examines the technical foundations of groupware toolkits. The toolkits we
consider are those that construct real-time distributed multi-point groupware applications,
where two or more people in different locations would be able to visually share and manip-
ulate their on-line work. Typical applications produced by these systems would be electronic
whiteboards, games, multi-user text and graphics editors, distributed presentation software,
textual chat systems, and so on. The discussion is heavily influenced by our experiences with
our own groupware toolkit called GroupKit [Ros96a, Ros92, Gre94b] as well as the issues
raised by other researchers doing similar work.

The chapter highlights four critical features that such toolkits should provide to reduce
implementation complexity:

� Run-time architectures can automatically manage processes, their interconnections, and
communications.

� Groupware programming abstractions can be used by a programmer to synchronize inter-
action events and the data model between processes as well as the views presented across
displays.

� Groupware widgets can let programmers add generic groupware constructs of value to
conference participants.

� Session managers, crafted by programmers, can let end-users create, join, leave and man-
age meetings.

An important omission from this list are the audio and video links necessary for the inter-
personal communication channel between conference participants. This is a large area in it-
self. For simplicity, we will assume that audio and video are handled out of band, where
toolkits can include hooks to bring up other audio/video systems. However, we do point the
reader to Chapter 4 in this book [Ish99], which provides an excellent example of an inte-
grated audio/video/computational space. It should go without saying that future toolkits must
incorporate audio and video as first-class building blocks.

6.2 RUN-TIME ARCHITECTURES

Real-time distributed groupware systems are almost always composed of multiple processes
communicating over a network. Because this can be complex to create, we feel strongly that
toolkits should provide not only programming facilities for creating groupware, but also the
run-time architecture for managing the run-time system. In this section, we will concentrate
only on the tension between centralized vs. replicated architectures, and its impact on the
design of toolkits. In Chapter 7 in this book [Dew99], Dewan continues this theme by revis-
iting the issues and by explaining further architectural differences possible in collaborative
applications.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 137

6.2.1 Centralized vs. Replicated Architectures

Groupware researchers have long argued the merits of centralized vs. replicated architectures
[Ahu90, Gre90, Lau90a, Lau90b, Pat91, Gre94a, Wil95, Hil94, Pat94, Dou96, Gra96a].

� Centralized architectures use a single application program, residing on one central server
machine, to control all input and output to the distributed participants. Client processes
residing at each site are responsible only for passing requests to the central program, and
for displaying any output sent to it from the central program. The advantage of a centralized
scheme is that synchronization is easy — state information is consistent since it is all
located in one place, and events are always handled from the client processes in the same
order because it is serialized by the server.

� Replicated architectures, on the other hand, execute a copy of the program at every site.
Thus each replica must coordinate explicitly both local and remote actions, and must attend
to synchronizing all copies so they do not get out of step.

Because of their simplicity in handling concurrency and in maintaining a single state model,
centralized architectures for groupware have had many advocates [Ahu90, Gre90, Lau90a,
Wil95, Hil94, Gra96a], and one may wonder why a replicated approach would ever be con-
sidered. The main issues are latency, bottlenecks, and heterogeneous environments. First, a
centralized scheme implies sequential processing, where user input is transmitted from the
remote machine to the central application, which must handle it and update the displays (if
necessary) before the next input request can be dealt with. If the system latency is low, this is
not a problem. But if it is high, the entire system will become sluggish. While sluggishness
is annoying when others’ actions are delayed, it is devastating when the system is unrespon-
sive to a person’s own local actions, especially in highly interactive applications. Second, the
central system can become a performance bottleneck. Highly interactive and graphical appli-
cations can push even the fastest CPUs to their limits when several screens must be updated.
Similarly, the relaying of all activities to and from a single process can create a traffic jam in
some environments. Third, centralized architectures will have problems dealing with hetero-
geneous environments, as it is unlikely that a single process can update properly remote clients
running on (say) a Windows95 and a Macintosh environment, as they all have a different look
and feel.

A replicated scheme, on the other hand, implies parallel processing, where the handling
of interactions and screen updates can occur in parallel at each replication. If done properly,
communication is efficient as replicas need only exchange critical state information to keep
their models up to date. While remote activities may still be delayed, a person’s local activities
can be processed immediately. Process bottlenecks are less likely — each replica is responsi-
ble for drawing only the local view, unlike the central model which must update the graphics
of all screens. Consequently, heterogeneous environments are easily handled, for the com-
munication protocol can act as a device-independent graphics layer, and views can be drawn
using the native look and feel.

The cost of replication is increased complexity. We are now programming and synchro-
nizing a distributed system, and must handle issues such as concurrency control. Different
replicated toolkits handle this in a variety of ways. For example, Share-Kit [Jah95] has no di-
rect concurrency control, and it must be programmed in from scratch if a programmer requires
it. Others do provide concurrency capabilities. DistEdit [Kni90] uses atomic broadcasts. Ob-
jectWorld’s shareable objects have the ability to detect messages that have arrived out of order,

138 GREENBERG and ROSEMAN

and allow programmers to do non-optimistic locking [Tou94]. GroupKit [Ros96a] can force
serialization for some actions by funneling selected activities through one of the replicated
processes.

Somewhere in-between are semi-replicated hybrid architectures that contain both central-
ized and replicated components. For example, Patterson [Pat96] advocates a centralized noti-
fication server, whose sole job is to maintain a shared state, to respond to state change requests
by clients, and to notify others when the state has changed. It would be up to the replicas to
decide what the view should look like, and to update the display accordingly.

6.2.2 Impact on Toolkit Design

System designers often argue that a good toolkit will hide implementation and architectural
concerns, leaving the programmer to concentrate on the semantics of the task. Yet architec-
tures cannot be completely hidden in groupware toolkits, for the type of architecture may
have profound impacts on the way programmers code their systems, and on the system per-
formance. For example, centralized systems often have performance limitations that must be
well understood, so that they can be mitigated by the application programmer. Similarly, repli-
cated architectures are distributed systems, and programmers must be concerned with issues
such as concurrency control, communications, and fault tolerance.

The run-time architecture also affects the programming paradigm style. For example, many
toolkits separate the underlying data abstraction (i.e. the data model) from the way a graphical
view of that data is generated on the display [Kra88, Hil92] (discussed further in Section 6.3).
Figure 6.1 illustrates this. The abstract data model here is an array with three numbers, and
the view is generated separately from this abstraction. Views of the abstract model may differ.
In this case, two participants view the data as a bar chart, and the third participant sees it as a
pie chart. Whenever a value in the data model is changed, the views are regenerated to keep
themselves consistent with it. In terms of the run-time architecture, the way the abstraction and
views are dealt with depend upon how they are distributed across the system. For example,
we could have the data abstraction and view generation done wholly by a central process.
Alternatively, the abstraction may be centralized, and the mechanisms to create the views
replicated. Or perhaps all components are replicated. Whichever variation is used, the abstract
data model should be kept consistent across the entire groupware system, and synchronization
must be maintained between the model and the individual views generated from it. This means
that the infrastructure to support a separate abstraction and view, as well as the nature of the
programming API provided by the toolkit, are highly dependent on the nuances of the run-
time architecture.

A good toolkit will provide programmers with high-level constructs to deal with all the
issues mentioned above, but not mask them [Dou95, Dou96, Gra96a, OGr96]. To illustrate
this point, the rest of this section will show why programmers need to know about concurrency
control, synchronization of abstract models and views, communications, and fault tolerance.

6.2.2.1 Concurrency Control

Greenberg and Marwood [Gre94a] argue that no generic concurrency control scheme can han-
dle all groupware applications, simply because the user is an active part of the process. For
example, conservative locking and serialization schemes that block processing until concur-
rency can be guaranteed can have deleterious effects on highly interactive user actions owing

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 139

Figure 6.1 An example of an abstract data model, and views generated from the model

to processing delays and latency, while optimistic schemes have problems when on-going
events have to be undone. They also argue that some conflicting interactions are best left to
the users to solve by social means, implying that some feedback of conflicting actions be
shown within the interface.

Because of this, toolkits should provide a variety of concurrency control schemes and feed-
back mechanisms, and programmers must explicitly decide which of them to deploy when
designing the application. Note that this argument becomes moot when latency is not perceiv-
able, since the users would not notice any effects of concurrency control. In this case, either
a centralized approach and its implicit serialization of events, or a replicated approach using
hidden concurrency control, would work well.

Many groupware researchers have investigated concurrency control. While it is beyond the
scope of this chapter to do a comprehensive survey, readers are referred to the surveys by
Greenberg and Marwood [Gre94a], and the earlier work of Ellis and Gibbs [Ell89]. Further
discussions of consistency and concurrency control are found within Chapters 5, 8 and 7 in
this book [Pra99, Dou99, Dew99].

6.2.2.2 Synchronization

As mentioned earlier, specific architectures usually lend themselves to particular ways of sep-
arating the underlying abstract data model from the graphical views generated from it. A
centralized system keeps both model and view in the same place, so synchronization is easy.
In contrast, replicated architectures maintain copies of both the data state and the view at
all sites. In-between is Patterson’s [Pat96] Notification Server, which keeps the abstract data
model in a central server, with replicas deciding how to display the view of that information
when state changes are transmitted to them.

At the toolkit level, this division of model and view as well as its distribution across pro-
cesses is usually visible to the programmer — the programming abstractions provided are
used by them to update the abstract model or the view, and to synchronize replicas when

140 GREENBERG and ROSEMAN

needed. Similarly, the way the toolkit provides the abstractions to process user events and
to synchronize models and views often depends upon the way the model and the views are
distributed in the architecture. This topic will be taken up again in more detail in Section 6.3:
Programming Abstractions.

6.2.2.3 Communication

Inter-process communication can be a complex task, especially when efficiency is a concern.
Centralized models are particularly vulnerable to communications bottlenecks, as the server
must not only handle input from the client, but update all displays as well. Replicated archi-
tectures can be more efficient, for the events sent across the network can be short messages
containing semantic changes to state. At the toolkit level, the programmer would rarely want
to deal with all the annoyances of setting up communications connections. However, they
should have the means to decide what to communicate between processes for efficiency pur-
poses, and also the means to decide priorities.

For example, consider a drawing application containing telepointers, where the telepoint-
ers are not supplied as a widget. In terms of what to communicate, the complete telepointer
graphics need not be shipped. Instead, a message can be sent specifying the pointer shape,
with subsequent messages sending out a pointer id and its x-y coordinates. In terms of pri-
ority, when a pointer is moved the programmer should be able to specify that only that last
pointer location need be transmitted if there is a communications bottleneck, and that this
should have a lower priority than (say) a drawing message.

6.2.2.4 Fault Tolerance

Because almost all groupware systems are distributed in one way or another, fault tolerance
becomes a concern. At the toolkit level, the programmer should be able to determine the
system’s response to particular faults. These include degradation or complete loss of commu-
nications between processes, excessive delays, and so on. This implies that the toolkit must
have a notification mechanism that indicates faults to the program. It also implies that the
programmer is aware of the faults that are inherent in the particular architectural design.

6.2.3 Examples

6.2.3.1 WScrawl: A Centralized Architecture that Leverages X Windows

WScrawl [Wil95] is a multi-user sketchpad built using the X Window System. While WScrawl
is not a toolkit, the author describes how his program leverages the communications and
display capabilites of X Windows, as well as its client/server architecture [Sch86]. X Windows
allows a programmer to open several displays, to read input from each workstation, and to
write graphics to the screen. Groupware such as WScrawl is created by tracking the display
and input stream for each user, all within a single program. Each stream is monitored for input
events. For every input event (such as a mouse move that initiates a draw line action), the event
is processed, and all displays can be updated accordingly.

For example, the pseudo-code below handles a trivial conference of two users, each using
separate displays named Display1 and Display2, where the conference just draws a point on
each display [Wil95]:

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 141

display[1] = XOpenDisplay ("Display1");
display[2] = XOpenDisplay ("Display2");
for (i=1; i<=2; i++) {

XDrawPoint (display[i], 20, 100);
XCloseDisplay(display[i]);

}

6.2.3.2 Rendezvous: A Centralized Architecture

The Rendezvous groupware toolkit [Hil94, Pat90, Pat91, Hil92] is heavily modeled on the idea
of maintaining a single abstract data model that is shared by everyone. As mentioned earlier,
multiple views of that model can be drawn differently on each person’s display. Rendezvous
places both the single abstraction and the view models on a single processor. Its developers
claim that the single abstraction always contains the correct state of the application. Conse-
quently, all copies or view updates derived from this abstraction will be correct. The problem
is that Rendezvous is slow, because all views run off the same processor. Its designers suggest,
but have not implemented, a semi-replicated approach that keeps that shared abstraction at a
central site, with views being replicated at other sites.

6.2.3.3 The Notification Server: A Centralized Component of a Hybrid Architecture

Patterson, one of the authors of Rendezvous, revisited the idea of a semi-replicated hybrid
architecture [Pat96]. He is now constructing a centralized “Notification Server” that could be
provided as a toolkit component in an otherwise replicated architecture. Its job is to provide
a central service for managing common state information, akin to the shared abstraction seen
in Rendezvous. While the natural use of the server is to centralize the abstract data model, the
choice of what state information to centralize is ultimately up to the designer.

The Notification Server contains two kinds of objects: Places and Things.

� Places identify what common states are accessed by which applications. Clients who enter
a particular place are notified about any state changes in that place.

� Things are the actual objects that maintain state, and are essentially property–value pairs
extended to contain attributes that specify access control and types of notifications trig-
gered (e.g. on creation, change or deletion).

What is important here is that the server has no understanding of application semantics. Vir-
tually any state can be represented, as long as it can be described as a property–value pair. It
is left up to the replica how to deal with state changes upon notification. Patterson argues that
this centralized Notification Server simplifies concurrency control because locking is done in
one place through Thing’s attributes, and that serialization is a natural consequence of cen-
tralization. He also argues that the availability of a consistent, centralized state makes it easier
to update newcomers — participants who have just entered a conference that is already in
progress. Finally, this dedicated server model implies that attention can be devoted to making
it efficient and robust — in Patterson’s words, “a lean, mean notification machine”.

6.2.3.4 GroupKit: A Mostly Replicated Architecture

The GroupKit groupware toolkit [Ros96a, Gre94b] includes a mostly replicated run-time
infrastructure. It actively manages the creation, location, interconnection, and teardown of

142 GREENBERG and ROSEMAN

Figure 6.2 An example of GroupKit’s run-time architecture and process model

distributed processes; communications setup, such as socket handling and multicasting; and
groupware-specific features such as providing the infrastructure for session management and
persistent conferences. Its infrastructure consists of a variety of distributed processes arranged
across a number of machines. Figure 6.2 illustrates an example of the processes running when
two people are communicating to each other through two conferences ‘A’ and ‘B’. The three
large boxes represent three different workstations, the ovals are instances of processes running
on each machine, and the directed lines joining them indicate communication paths. Three
types of GroupKit processes are shown: a single registrar, session managers, and conference
applications.

� The registrar (top box in Figure 6.2) is a centralized process that acts as a connection point
for a community of conference users. Its address is “well-known” in that other processes
know how to reach it. This is the only centralized process required by GroupKit’s run-time
infrastructure.

� The session manager is a replicated process, one per participant (side boxes). It provides
both a user interface and a policy dictating how conferences are created or deleted, how
users are to enter and leave conferences, and how conference status is presented (see Sec-
tion 6.5: Session Management). When session manager processes are created, they connect
to the registrar. The registrar maintains a list of all conferences and the users in each con-
ference. It thus serves as an initial contact point to locate existing conference processes and
their addresses.

� Finally, a conference application is a GroupKit program (e.g. shared editor, game) invoked
by the user through the session manager. Conference applications typically work together
as replicated processes, in that a copy of the program runs on each participant’s worksta-
tion. They are connected via peer to peer communication channels. Two conferences, each
with two distributed replicas, are shown in Figure 6.2.

GroupKit programmers build both session managers and conference applications, and the
two are separate from one another. Programmers are aware that they are building distributed
applications, and must attend to issues such as concurrency control, fault-tolerance, and syn-

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 143

chronization. The programming abstractions let the programmer choose and mix several styles
of coding: view synchronization through multicast RPCs, or state synchronization of a repli-
cated abstract data model (see Section 6.3: Programming Abstractions). The toolkit provides a
few simple concurrency control schemes for the programmer to choose from, mostly available
within the shared data model. Communications are mostly hidden away; while it is possible
to massage communication events for efficiency, this is mostly done by working around the
system rather than with it. Fault tolerance is done by primitive events that notify a program-
mer when participants have “left” the conference and when a conference has “died”. However,
they are not notified nor can they easily handle performance degradation.

This run-time infrastructure is maintained entirely by GroupKit. The conference application
code does not need to take any explicit action in process creation or communication set-up.
Instead, the application may just ask to be notified through an event when particular session
activities occur. The conference processes that comprise a conference session can also coordi-
nate with each other through the high-level programming abstractions provided by GroupKit,
as discussed in Section 6.3.

6.2.3.5 Clock: A Flexible Architecture

The main goal of the Clock language and ClockWorks programming environment [Gra96] is
to support the development of groupware applications at a very high-level, hiding all details
of the underlying implementation architecture. This high level has two consequences. First,
programmers do not need to be concerned with the details of distribution, networking and
concurrency control. Second, implementations of Clock are free to use any implementation
architecture, as long as the semantics of the Clock language are preserved. (Unlike other
languages for groupware development, Clock has precisely defined semantics, independent of
any implementation [Gra95].)

The abstract architecture of Clock programs is developed using the visual ClockWorks
programming environment. This abstract architecture captures the structure of Clock pro-
grams, but does not specify how the program will be implemented in a distributed context.
The abstract architecture language is based on separating the abstract model from its views,
similar to Rendezvous [Hil92] and the Model–View–Controller (MVC) paradigm used in
Smalltalk [Kra88]. Because of its high-level, the architecture language supports rapid de-
velopment and easy modification of groupware programs [Gra96b].

Abstract architectures can be mapped into a variety of implementation architectures. By
locating the complete architecture on a server machine and using the X Window System to
post windows on different client machines, a centralized architecture can be obtained. By
locating the shared components of the Clock architecture on a server machine and replicating
private components on client machines, a semi-replicated hybrid architecture is obtained. By
replicating both shared and private components, a replicated architecture can be obtained.
Currently, Clock programs can be implemented as either centralized or semi-replicated.

There are several advantages with the Clock approach to flexible implementation architec-
tures. Since the run-time system is completely responsible for implementing network com-
munication and concurrency control, complex optimizations may be built into the system that
would be too hard to develop on a per-application basis [Gra96a]. Also, programmers can eas-
ily experiment with what kind of architecture is most appropriate for their application without
having to extensively modify the program. The primary disadvantage of the Clock approach is
that programmers give up control over precisely how different components are going to com-

144 GREENBERG and ROSEMAN

municate. For example, the Clock semantics demand that concurrency control be pessimistic,
which is not practical over networks with very bad latency.

6.2.4 Discussion

There is no real answer to whether a centralized or replicated scheme works best for group-
ware. Rather, it is a set of tradeoffs that revolves around the way they handle latency, the ease
of program startup and connection, programming complexity, synchronization requirements,
processor speed, the number and location of participants expected, communication capacity
and cost, and so on. For example, a centralized system would likely work just fine for a very
small group of users (e.g. pairs), given a high-bandwidth, low-latency network and an applica-
tion that makes only modest demands of the processor. Replicated systems are probably better
for larger groups, for slower networks, and for applications that demand local responsiveness.

Because these situations are neither static or universal, no single solution will suffice. Per-
haps what is required is a “dynamic and reactive” groupware architecture, where the deci-
sion of what parts of the architecture should be replicated or centralized can be adjusted
to fit the needs of particular applications and site configurations. We have already seen that
Clock components can be configured to run as centralized or semi-replicated objects [Gra96a].
O’Grady [OGr96] takes this one step further in his design of GEN, a prototype groupware
toolkit based upon distributed objects that allows a high degree of run-time configuration.
GEN not only allows application designers to chose whether individual objects are central-
ized or replicated, but also allows designers to create their own strategies for data distribution
and concurrency control. For example, GEN was altered to allow for object migration, where
centralized objects are automatically moved to the site that uses them the most frequently. In
parallel work, Dourish’s chapter in this book presents his design of Prospero, a groupware
toolkit that also allows decisions on data distribution and other aspects to be made on the fly
[Dou95, Dou96, Dou99]. Essentially, toolkits such as GEN and Prospero are designed to be
highly flexible. Not only can developers choose between a variety of strategies, but they can
also extend the toolkit to cover situations not envisaged by the original toolkit creators.

6.3 PROGRAMMING ABSTRACTIONS

Groupware toolkits must provide programmers with abstractions for coordinating multiple
threads and distributed processes, for updating a common abstract data model, and for con-
trolling the view derived from that model. The actual abstractions supplied usually depend
upon the run-time architecture (as described in Section 6.2), as well as the schemes used to
share state information.

Patterson [Pat94] argues that the degree to which abstract data models are separated from
the views generated from them leads to several different shared state architectures, with con-
sequences to the programming abstractions provided.

1. In an unshared system, neither data nor view model are shared. It is up to the programmer
to maintain the underlying data models (if any exists), the graphical views, and the links
between the views and the model (if any).

2. In a shared model, the data model is shared by the entire system. Programming abstrac-
tions allow one to access and change the shared model, and to specify how the (possibly
different) unshared views are to be created from the shared model.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 145

Figure 6.3 Using multicast RPCs for a simple chat application

3. In a shared view, both views and models are shared. Programming abstractions are avail-
able to change the view or the model, with changes automatically propagating from one to
the other.

This section describes several programming abstractions that are now common: multicast
remote procedure calls, events and notifiers, shared data, and shared data and views. Each
lends itself to the three architectures mentioned above.

6.3.1 Multicast Remote Procedure Calls

With replicated processes, replicas can communicate, share information, and trigger common
program execution through multicast remote procedure calls (RPCs). As with conventional
RPCs, a programmer specifies the procedure and arguments that should be executed in remote
processes. It is multicast because several processes can be designated in a single call.

Through this simple yet powerful abstraction, any unshared system can be synchronized.
For example, traditional callbacks to a user’s input can be replaced by a multicast RPC
that causes the resulting action to be performed in all processes. The following pseudo-code
illustrates this by showing how the simple text chat system shown in Figure 6.3 can be imple-
mented. The main window contains the dialog transcript, and is common across all displays.
Each participant types their text into their private text input field at the bottom. Whenever a
person presses the “transmit” button, their name and the text they composed are sent to all
others for insertion into the transcript.

Set this_user to the name of the local user
When transmit button is pressed

Set message to the contents of the input field
Multicast to everyone:

Insert into your chat box "this_user: message"
Clear the input field

In the above example, there is no data model. Only the view is synchronized by explicitly
manipulating the widgets in the view. Data can be synchronized as well by multicast RPCs,
although it is the programmer’s responsibility to do all the housekeeping and to generate the
view from the data model.

146 GREENBERG and ROSEMAN

6.3.1.1 Examples

Several systems use multicast RPCs as their sole programming abstraction. Share-Kit [Jah95]
uses C and the Unix RPC mechanism to build its multicast layer; its programmers must regis-
ter a procedure and its argument formats as an RPC and use special keywords to invoke them.
The Conference Toolkit [Bon89] uses a routing table to let developers specify the routing of
data between application instances; that is, how commands from one replica are directed to
other replicas. The Notification Server [Pat96] provides a “back door” that allows program-
mers to channel multicast messages between clients; these messages could be constructed in
a way that simulates multicast RPCs.

GroupKit [Ros96a, Gre94b] simplifies multicast RPCs by allowing RPCs and arguments to
be specified in the same way as normal procedure calls, and by hiding routing and commu-
nications details. To do this, GroupKit’s run-time system tracks the addresses and existence
of other application processes, and decides how to multicast the RPCs to some or all confer-
ence processes. This means that the programmer does not have to track details such as the
file descriptors, socket management, and so on. GroupKit provides three forms of RPCs, and
each differs in who the messages are sent to. The first, called gk toAll, multicasts the pro-
cedure to all conference processes in the session, including the local user. This results in the
same procedure being executed everywhere. The second, called gk toOthers, multicasts
a command execution to all other remote conference processes in the session except the lo-
cal process that generated the call, which is useful when local actions differ somewhat from
remote ones. The third form directs the command to a particular conference process. This is
valuable for handling special cases, such as updating a new arrival to an on-going conference
about the current state of the application. Additionally, GroupKit’s RPCs are non-blocking.
Once the request for an RPC invocation is made, the local program continues its execution
without waiting for a reply from remote processes. This ensures that conference processes are
not delayed or blocked in the event of network latency or crashes on remote machines.

As an example, we implemented the simple text chat system shown in Figure 6.3 in Group-
Kit (which extends the Tcl/Tk scripting language by John Ousterhaut [Ous94]) using the
gk toAll RPC. The complete code is shown below, excluding a few minor bits that for-
mat the widgets on the display. What is important to realize is that only a few lines of code
are required to make this program group-aware: gk initConf initializes the runtime archi-
tecture for the conference; gk defaultMenu includes GroupKit’s menu widget, [users
local.username] retrieves the name of the local user, and gk toAllmulticasts the RPC
to insert the user’s name and text into the chat box. All other lines are just the standard Tcl/Tk
code necessary to create the interface.
gk_initConf $argv # Initialize the conference

#== Create widgets
gk_defaultMenu .menubar # Add the default groupkit pulldown menu bar
listbox .chat # The shared chat box is actually a listbox
entry .input # Users type their text into this entry box
button .b -text Transmit \ # Create a button labelled ’Transmit’

-command "broadcastLine" # and attach a callback to it

#== Not shown: code to format widgets on the display

#== This callback multicasts an RPC to all replicas (using gk_toAll)
#== along with this user’s name and text
proc broadcastLine {} {

gk_toAll doAddLine \ # Multicast the doAddLine RPC + arguments

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 147

[users local.username] \ # 1st argument: the user’s name
[.input get] # 2nd argument: the text

.input delete 0 end # Now clear the input field
}

#==This is executed as an RPC at all sites.
#==It inserts the name and text into the chat box
proc doAddLine {name text} {

.chat insert end [concat $name ": " $text]
}

While simple, GroupKit’s multicast RPC model provides a powerful yet flexible approach
to distributed programming. The programmer does not have to know the addresses of other
conference processes or track process creation and destruction as people enter and leave the
session. The calls work the same way whether one user or twenty users are in the conference
session.

6.3.2 Events and Notifiers

A second programming abstraction allows a programmer to synchronize changes to either
views or models by specifying interesting events and how others are notified when these
events occur. Because events can be tied to anything, they can serve both unshared and shared
systems.

An event provides a way for conference applications to track when various things happen.
Events can be generated automatically by the run-time architecture, such as when participants
join or leave the conference session, or from (say) communications failures. They can also be
generated directly from the programmer in application-specific circumstances. Either way, the
programmer can take action on a specific event by attaching a notifier to it, which typically
executes a callback whenever the event occurs (notifiers are also known as handlers in some
systems).

6.3.2.1 Examples

Patterson’s Notification Server [Pat96], described previously in Section 6.2, illustrated an ar-
chitecture that supports notification. Here, events are simply changes in the state of the under-
lying data (“Things”). Notification is controlled by the attribute field of the Thing, and occurs
automatically whenever a state changes.

GroupKit contains an event/notifier mechanism as well as events automatically maintained
and generated by the run-time infrastructure [Ros96a]. Events are typically used to handle
arriving and departing participants, updating latecomers, synchronizing distributed processes,
and noticing changes to shared data. Events consist of an event type and a set of attribute/value
pairs that provide information about the event. While in some ways similar to Patterson’s
Notification Server, state information is replicated rather than centralized. Programmers trap
particular events by attaching a notifier, with desired actions specified through callbacks that
are automatically executed when the event occurs.

GroupKit’s run-time infrastructure automatically sends three different event types to confer-
ence processes. The first two event types are generated when users join and leave the session,
as a conference process may want to take special action when this happens. For example, the
code fragment below tells everyone that a new participant has arrived by printing a message

148 GREENBERG and ROSEMAN

on all screens. The first line attaches a notifier to a “newUserArrived” event, which is au-
tomatically generated by GroupKit when a new user joins the conference. This will trigger
execution of the subsequent lines.

gk_bind newUserArrived { # Attach code to this event
set new_user_name [users remote.%U.username] # Get the new person’s name
puts "$new_user_name just arrived!"} # Print message to the screen

The third event automatically generated by GroupKit is used to handle latecomers to con-
ferences that are already in progress. When a latecomer arrives, its conference process is
brought up to date by one of the other conference processes in the session, usually by sending
it the existing state of the conference. Details of how to update the newcomer is left up to the
programmer by having them create an appropriate callback.

Finally, application developers can generate their own custom events. This can be useful
in more complex applications, where a change being handled in one part of the program can
generate an event to notify other parts of the program (or other processes) of the change. For
example, a programmer can create a shared data model and use events to generate views from
it. Changes to the model’s state can be attached to events, with notifiers created to update the
view accordingly. Different views are handled by attaching different callbacks to the notifiers.

A variety of other toolkits use some type of event/notification scheme; e.g. Rendezvous
[Hil92], Chiron-1 [Tay95], and Weasel [Gra92]. However, these are typically tied to directly
linking the shared views with a data model, discussed next.

6.3.3 Shared Models and Views

While multicast RPCs and events can be used to coordinate conference replicas, they do
demand more housekeeping as the application becomes complex. Consequently, several
groupware toolkits provide programming abstractions to maintain and update a shared data
model, and some means for attaching a view to the model.

The idea of separating a data model from its view originated in Smalltalk’s Model–
View–Controller [Kra88], later extended to groupware [Pat91, Hil92, Gra92, Tou94]. In most
implementations, the system maintains a consistent shared data model (i.e. by handling con-
currency and synchronization), and either notifies processes of changes to the data or auto-
matically updates views whenever changes occur.

6.3.3.1 Examples

GroupKit provides a shared data model called an environment, a dictionary-style data struc-
ture containing keys and associated values [Ros96a]. While instances of environments run on
different processes, the run-time system makes sure that changes to one instance are prop-
agated to other instances. What makes GroupKit’s environments powerful are that changes
to an environment’s state can be tracked as events that trigger notifiers (as discussed previ-
ously). The programmer can bind callbacks to an environment, and receive notification when
a new piece of information is added to it, when information is changed, or when information
is removed. Corresponding actions are then triggered at all sites.

This scheme can generate different views from the same data abstraction. Events can be
monitored by the interface code, and the view adjusted to reflect the state of the data model
contained in the environment. For example, the code fragment below creates a shared environ-

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 149

ment called “data”, which contains a field called “number”. A groupware button is displayed
that shows the current value of the number, incremented whenever any user presses the button.

gk_newenv -bind -share data # "Data" is a shared environment
button .button -command \ # Create a button. Whenever it is

[data number [expr [data number]+1] # pressed, increment "number", a
key in the "data" environment

data bind changeEnvInfo { # Update the view of the number in the
.button configure -text [data number]}# button whenever its value changes

data number 0 # Initialize "number" to 0

A programmer uses GroupKit’s environments to implement synchronized views and mod-
els. In contrast, the Rendezvous toolkit treats views, models and the links between them as
first-class citizens [Hil94]. The system encourages developers to create groupware applica-
tions using its powerful abstraction–link–view (ALV) model [Hil92], whose constructs are:

� a shared underlying data abstraction,
� a view of the abstracted entity that may differ for each user,
� a constraint (called a link) that automatically adjusts the view when the data abstraction is

changed.

Rendezvous differs architecturally from GroupKit, in that the data model and the prop-
agation of constraints are centralized. As well, constraints are more powerful than the
event/notifier scheme, because complex relationships are automatically maintained by the sys-
tem through a one-way constraint solver. The Clock system [Gra96b] also uses constraints to
link views with the underlying model.

A variety of other systems also have a strong notion of maintaining the relation between a
model and a view. The Chiron-1 user interface system has abstract data types (abstractions),
dispatchers (links) and views; however, a simpler event-based architecture rather than con-
straints are used to propagate changes [Tay95]. While Chiron-1 was not explicitly designed to
be a groupware toolkit, a multi-user Tetris game was developed to show the flexibility of its
architecture. In Weasel [Gra92], programmers use a special declarative language called RVL
to specify the relations between abstractions and views, how views are customized, and the
coordination required.

Populated virtual environments also use an abstract model/view paradigm. The model is
the 3-D abstraction, while the rendered views of the model are perspectives generated from a
particular (x; y; z) viewpoint into the model. The model is typically spatial. People enter the
spatial environment, where they are represented as “avatars” to others (icons or even video
images of themselves). They can move through the space and manipulate artifacts within it.
They are usually aware of the presence and (perhaps pseudo-) identity of others, can see where
others are attending, and can begin text or voice based communications with them. Examples
are DIVE [Car93] and Moondo [Intel].

6.3.4 Discussion

Programming abstractions such as the ones described above ease considerably a programmer’s
task of building groupware. For example, since multicast RPCs are a natural extension of the
way normal callbacks are used, novice GroupKit programmers were able to create simple
groupware applications with minimal training. The event/notifier and shared data abstractions

150 GREENBERG and ROSEMAN

are more elegant, but demand that the programmer learn a new coding style, for it usually
takes more planning and initial coding to separate the data model from its view.

However, groupware programming abstractions do not eliminate all coding complexity. The
programmer must consider the interaction between the processes that are being coordinated
by multicast RPCs, by events, and by shared data; unconsidered side effects can cause the
unexpected to happen. There is also a craft to using the programming constructs effectively.
For example, multicast RPCs usually demand that the programmer consider what local actions
should be taken and what variables should be set before the procedure and arguments are
multicast. The shared data abstractions have their own problems. When data model and views
are separated, the programmer has to handle exceptions that often occur when most, but not
all of the view is identical. When views intentionally differ (such as when one person sees
an array as a bar chart and the other as a pie chart, as in Figure 6.1), the programmer has to
make difficult interface design decisions that will allow people to interact over disjoint views.
In all cases, debugging can be hard when problems do occur, because the interaction between
conference processes can be non-deterministic and difficult to envisage.

6.4 GROUPWARE WIDGETS

Perhaps the greatest benefit of today’s graphical user interface toolkits is their provision of
tried and tested interface widgets. Programmers can typically configure and position them
in a few lines of code, perhaps with the help of an interface builder. When done properly,
pre-packaged widget sets provide a consistent look and feel to the interface. Because widgets
are often designed by interface experts, the everyday programmer can insert them into the
application with some assurance that they are usable.

Because many groupware applications will be graphical, groupware programmers have the
same need for widgets. The toolkit should therefore make it easy for programmers to add
groupware features to applications that conference participants will find valuable. However,
groupware widgets differ from normal widgets. They have different semantics; actions per-
formed on them must be reflected across displays; and novel widgets have to be designed that
address needs specific to groupware. In this section, we consider two classes of groupware
widgets: groupware versions of single-user widgets, and group-specific widgets that support
activities found only in group work.

6.4.1 Groupware Versions of Single-User Widgets

Some researchers have created multi-user analogs of conventional single-user widgets, such
as buttons, menus and simple text editors, and investigated how to make the sharing of wid-
gets between conference participants flexible enough to fit different applications and group
situations.

To highlight several issues, let us consider the problems we face when redesigning a button
widget to fit groupware. Buttons are simple devices in conventional interfaces. When a user
presses the button, its look changes to reflect that it is being selected. Upon release, the button
shape returns to normal and an action is executed. If the cursor is moved off the button during
a mouse press, the button reverts back to its original appearance and the release will have no
effect.

When the button is redesigned as groupware, several issues arise.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 151

1. When should feedback of one user’s actions be shown to their partners as feedthrough?
Should feedthrough be shown for every interface action (e.g. highlighting that matches
button presses and releases), or only for the final action (that the button press resulted in
an action)? Should feedthrough appear graphically identical to the local user’s feedback,
or should it be stylized to communicate only the essence of the other’s actions?

2. How does the button handle multiple and simultaneous access? Does it contain an idea of
ownership, so only one person is allowed to press it? If so, how is access control handled?
Or does the button implement turn-taking so that only one person can press it at a time,
and if so, how does it show other users that they cannot press the button? If simultaneous
access is allowed, what are the semantics of simultaneous presses, and how is feedthrough
displayed?

3. How are resulting actions handled? For example, are attached callbacks automatically
invoked in all replicas on one person’s button press, or must the programmer distribute
its effects explicitly?

4. What happens when people are viewing different parts of the display? If one person can-
not see the button because they have scrolled to another area, is feedthrough shown in a
different manner, and if so, how?

5. If different representations are used (e.g. two differing native look and feels because group-
ware is running across two different platforms), how can the interface syntax of one button
be translated to the perhaps different syntax of the other button?

These issues become much more problematic when we move to multi-user equivalents of
complex widgets that have a high interaction component, such as list boxes, text entry fields,
graphical canvases and so on. None of these problems has a trivial solution, and designers of
groupware toolkits have to make hard decisions on what to do in each case. Part of the design
space includes how much flexibility they can provide the programmer to allow them to make
their own application-specific decisions.

A few researchers have begun to address these issues by creating generic programming at-
tributes for groupware widgets. Several have concentrated on a widget’s coupling level and
access control. Others have tried to redesign conventional widgets to make them more appro-
priate to groupware settings.

6.4.1.1 Coupling

Dewan [Dew91, Dew92] defines coupling as the means by which interface components share
interaction state across different users. In tight coupling, state is shared by all aspects of the
interface component, and a person’s actions in one display results in immediate update on
another display. In loose coupling, one person’s actions propagate over to another display
only when a critical event is performed; the final state is the same, but intermediate states are
not seen. For example, a tightly coupled button would appear identical on all displays as it
was being pressed, moved across, and released. A loosely coupled button would only show
the release action, with intermediate feedthrough eliminated.

Dewan and Choudhary [Dew92] argue that flexible coupling is important for a variety of
reasons. First, groupware programs range from fully synchronous, to nearly synchronous, to
asynchronous; coupling is just another way of setting synchronicity. For example, we can
argue that the only difference between a real-time text program that shows characters as they
are being typed (text chat), vs. complete messages (e-mail) is their coupling level! Second,

152 GREENBERG and ROSEMAN

tightly coupled actions showing intermediary steps may be annoying to users in situations
where they are pursuing their own individual work. Alternatively, tightly coupled systems are
critical during highly-interactive exchanges between people [Tat91]. Third, loosely coupled
systems exchange state less frequently, which means there are less performance demands on
the system. Finally, coupling can control the degree that people work in private spaces, and
how and when they wish to make that space public.

Dewan and Choudhary [Dew92] implemented coupling in their Suite groupware toolkit by
allowing programmers and users to set coupling attributes that are associated with individ-
ual interaction entities (although these can be arranged in a multiple inheritance structure).
Attributes indicate the level of coupling, as well as how they should be applied selectively
to members of a group. Suite also divides interaction entities into disjoint coupling sets. For
example, the data state, the view state, and a format state can be coupled independently (the
latter allows the view of the data to be formatted in different ways across displays). Further-
more, action coupling can be set to determine how the commands (or callbacks) attached to
user actions are executed at other sites.

Reconsider the button example. The coupling levels can define: the way button presses are
tied to underlying data models by coupling data state; the level of feedthrough desired in
the view by coupling views; and how callbacks are invoked by coupling actions. Ideally, the
groupware programmer would consider coupling levels to be just another set of attributes that
can be configured when creating the button. The same idea can be applied to more complex
widgets, and Suite has several examples of how coupling can be applied to complex editing
and form-filling systems.

Coupling is available in other toolkits as well. The Rendezvous toolkit [Hil94] allows flex-
ible coupling because of the way views are separated from data. Because the links in Ren-
dezvous’ ALV model specify how views and models are synchronized [Hil92], different levels
of coupling can be specified by the programmer. The difference is that the programmer has to
code the way coupling is achieved, rather than simply set the attributes of a widget.

6.4.1.2 Access Control

Access control determines who can access a widget and when. Access control may be required
for several reasons. First, people may wish to have their own “private” widgets, where only
they can manipulate (or even view) them. An example is a text field in a groupware outliner,
where the person editing the field wishes to maintain ownership of it, perhaps just for the
duration of the edit or for the length of the session. Second, it may not make sense for users
to simultaneously manipulate some widgets. Perhaps only one person at a time should be able
to press a button, manipulate a scroll bar (to prevent “scroll wars”), or insert text into a field.
As with coupling, the demands for access control may be highly dependent on the particular
interface being constructed, and groupware programmers need to be able to control this.

Few groupware toolkits let programmers manipulate access control in a light-weight, fine-
grained fashion. If anything, they group it into concurrency control, with access being me-
diated by locks and other tedious mechanisms. The notable exception is again Suite. In it,
Shen and Dewan [She92] associate the fine-grained data displayed by a groupware applica-
tion with a set of “collaboration rights”, where the rights are specified by either programmer
or user through a multi-dimensional, inheritance-based structure. Collaboration rights include
read and write privileges, viewing privileges, and coupling. Through the inheritance structure,

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 153

Figure 6.4 The Calliope multi-user editor, with permission from Alex Mitchell

access control can be specified at both a group and individual level. Sets of objects can be
clustered together, with specific access definitions overriding general ones.

Smith and Rodden’s [Smi93] “shared interface object layer” SOL, an architectural layer
rather than a toolkit, considers how shareable versions of single-user widgets such as buttons
and text entry fields can be created. They provide a set of generic access control mechanisms
that determine what people could do with these shareable objects. Settable options include
who can see the widget, who can use it, who can move it, and so on. The same group has
created a more generalized shared object service called COLA [Tre94].

6.4.1.3 Widget Redesigns

Most single-user widgets should be completely redesigned to fit their groupware settings,
because they would otherwise be too limiting. While there is no recipe for doing this, we can
illustrate by example several groupware redesigns of single-user widgets.

Our first example is the multi-user scrollbar, first seen in the SASSE text editor [Bae93].
It differed from conventional scrollbars in that two thumbs (the selectable box) are displayed.
Participants are allowed to scroll independently, and the thumbs’ positions would reflect each
person’s relative position in the document. While SASSE’s scrollbar was hard-wired into the
editor, GroupKit developers turned it into a real multi-user widget that can be attached to
any scrollable object in one or two lines of code [Ros96a, Gre94b]. As shown on the right
side of Figure 6.4, the right half of the scrollbar is a normal single-user scrollbar, allowing the
user to move within the document. To its left are vertical bars showing the relative locations of
each conference user, identified by a unique colour. The bar’s position and size is continuously
updated as participants scroll through the document or change their window size. Additionally,
the name of the bar’s owner is displayed as a popup by mousing over it, and a “Follow this
user” option allows participants to toggle the coupling status from independent scrolling to
linked scrolling.

Our second example is a multi-user text widget. Single-user text widgets are simple text ed-
itors, while a true multi-user text editor should have features that allow simultaneous editing.

154 GREENBERG and ROSEMAN

Mitchell [Mit96] used GroupKit [Ros96a] to create Calliope, a multi-user text editor. While
not packaged as a widget, Calliope does indicate how such a widget could behave. As seen
in Figure 6.4, Calliope provides a window displaying a shared text editor, and people can
scroll independently through the text through GroupKit’s multi-user scrollbars. Access con-
trol is user-selectable via a “sharing” menu option, and can range from the selection, word,
line, paragraph or document level. As a region is selected, the lock request is automatically
made. When another person attempts to select a locked region, the cursor changes to show
conflict (the lock icon in Figure 6.4). Calliope also has extra tools, such as the ability to attach
external notes to text for commentary that can be seen by others, to create private text which
is added to the shared view only when desired, and access to a shared whiteboard for brain-
storming activities. Text can also be queried to find who wrote it and when it was written, and
colour-coded to show authorship.

6.4.2 Group-Specific Widgets

While group-aware versions of single-user widgets should be a part of any groupware toolkit,
they are not enough. Toolkits should strive to provide novel widgets that support particular
aspects of group work. In this section, we show several examples of group-specific widgets
that are implemented or prototyped in GroupKit [Ros96a, Gre94b]. These include widgets for
participant status, telepointers, and awareness.

6.4.2.1 Participant Status

As people enter and leave a conference, other participants should be able to see their comings
and goings, much in the same way that we can see people arrive into a room. Because these
people may be strangers, it can be useful to find out some information about them. GroupKit
provides a rudimentary participants widget, illustrated in Figure 6.5, that can be included
in any application. It lists all participants in the current conference session (left side), and
the list is automatically updated as people enter and leave. When a participant is selected, a
“business card” containing further information about them is displayed. This could include
contact information (as shown), a picture of the person, and any other material that person
wished to pass on about themselves.

An experimental variation of this widget displays participants in several ways, dependent
on the information available about them: charicatures, still photos, and (if available) video
snapshots whose images are updated every ten to twenty seconds. The video snapshots im-
plement our version of the Portholes system [Dou92b]. These widgets also include the ability
to monitor the activity of participants, such as whether they are actively using their computer.
This is useful for facilitating contact between partners [Coc93, Gut96a].

6.4.2.2 Telepointers

Studies of small face-to-face groups working together over a shared work surface reveal that
gesturing comprises about 35% of the group’s activities [Tan91]. Gestures are a rich commu-
nication mechanism. Through them, participants indicate relations between the artifacts on
the display, draw attention to particular artifacts, show intentions about what they are about
to do, suggest emotional reactions, and so on. Many groupware systems now use telepoint-
ers (also known as multiple cursors) to provide a simple but reasonably effective mechanism

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 155

Figure 6.5 GroupKit’s Participants widget

for communicating gestures [Hay94]. Unfortunately, modern window systems are tied to the
notion of a single cursor, and application developers must go to great lengths (and suffer per-
formance penalties) to implement multiple cursors. By supplying telepointers as widgets that
can be attached to a view with a few lines of code, a programmer’s burden is decreased sig-
nificantly, and they are more likely to include this important feature within their application.
For example, GroupKit programmers can add telepointers to an application with two lines of
code:

gk_initializeTelepointers
gk_specializeWidgetTreeTelepointer .canvas

GroupKit’s telepointers can partially handle displays where people may not see exactly the
same thing because widgets are laid out in different locations. Instead of tying a telepointer to
a window, a programmer can attach it to particular widgets and their children (this is the pur-
pose of line 2, which adds telepointers only to the “canvas” widget). The telepointer is always
drawn relative to the widget, rather than the application window. Similarly, we have applied
telepointers to groupware text widgets that may format their contents differently on different
displays. The telepointer in this case is tied to the position of the underlying text, rather than
the Cartesian coordinates of the window. To illustrate the value of this approach, we applied
these techniques to GroupWeb, a groupware web browser [Gre96e]. Because people have
different sized windows, the HTML text and images can be laid out quite differently across
participant’s displays. However, their telepointers are always on top of the correct character
or image.

An experimental version of GroupKit’s telepointers allows them to be overloaded with se-
mantic information to provide participants a stronger sense of awareness of what is going on,
with little consumption of screen real-estate. Because telepointers tend to focus participants’
attention, any information attached to them is probably noticed quickly. For example, we al-
low programmers to overload telepointers to indicate identity information (such as people’s
names), state information (such as what mode each participant is in), and action information
(such as what action a person is taking). Figure 6.6 illustrates an example of how a telepointer
can be overloaded with both action and identity information. The left window shows partici-
pant Carl’s display, where he is navigating through a pop-up menu. We see a second cursor on
the bottom of the display, which identifies its owner “Saul”. The right window shows Saul’s

156 GREENBERG and ROSEMAN

Figure 6.6 Overloaded telepointers, showing both action and identity information

display. Showing the complete menu that Carl has popped up on Saul’s display could be an-
noying, especially if Saul were working in the area immediately underneath it. Instead, Carl’s
telepointer image and labels are altered to indicate a menu selection is being made (the mode),
and what item is being selected (the action). In this case, the same semantic information of a
menu action is shown on other displays concisely and with little loss of meaning.

6.4.2.3 Workspace Awareness

In real-life working situations, we are kept aware of what others are doing, sometimes by
speech, and sometimes by seeing what others are working on through our peripheral vision
and through glances. This helps us coordinate our work. These cues may not be available in
the groupware channel, especially when people are allowed to have different viewports into a
large workspace. Consequently, workspace awareness widgets must be provided that inform a
participant about where other people are working in the shared work-surface and what they are
doing [Dou92a, Gut96a, Gut95, Gut96b]. We should mention that workspace awareness does
not have the same meaning as collaboration awareness (mentioned in this book in Chapter 7
by Dewan [Dew99] and in Chapter 5 by Prakash [Pra99]): workspace awareness concentrates
on how a person’s up to-the-moment awareness of what others are doing can be supported
by representations and extensions of the actual shared workspace, which is a more restrictive
definition.

An example of awareness widgets are radar overviews [Smi89, Bae93]. These displays
present a miniature overview of the document overlaid by colored areas that show the actual
viewport of each participant in the session. GroupKit contains several widget prototypes based
on this idea [Gut96a, Gut95, Gut96b]. The radar overview shown in Figure 6.7 is one example.
It includes an overview of a large shared workspace containing a concept map (a graph of
ideas). Viewport outlines, one for each participant, contain portraits identifying their owners,
and indicates what each can see. In addition, telepointers are displayed. The overview is tightly
coupled to the main view of the document (not shown), and any changes are immediately
reflected. A usability study has shown radar overviews to be an effective way for people to

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 157

Figure 6.7 A miniature overview of a concept mapping system built in GroupKit, showing other’s
viewports, portraits, and telepointers. System created by Carl Gutwin, used with permission

maintain awareness of others in a spatial layout task [Gut96d]. They see changes as they
occur, they know where others are working, and telepointers in the overview are used for
deictic references.

We have developed a variety of other prototype widgets supporting workspace awareness.
Detail views are miniatures showing exactly what another can see [Gut95, Gut96b]. The
Headup Lens combines an overview with a person’s main viewing area as transparent lay-
ers, one on top of the other [Gre96c]. The Fisheye Lens uses a fisheye view with multiple
focal points to show where others are in the global context, and to magnify their area of work
on all displays [Gre96b]. These and other awareness widgets are illustrated in two videos
[Gre96a, Gut96c].

6.4.3 Discussion

The design of groupware widgets is still a young area. While many interface components exist
in groupware applications that have potential as widgets, much work remains to be done in
generalizing and packaging them as self contained widgets that are easily added to any appli-
cation. We need strong programming abstractions, such as the notions of coupling and access
control, to provide a programmer with the flexibility to specify a widget’s behavior in differ-
ent groupware settings. We need to redesign today’s single-user widgets into reasonable yet
powerful groupware counterparts. Finally, we need to create the next generation of groupware
widgets, which includes refining their design and testing their worth through usability testing.

On the technical side, there is the issue of how widgets can be created by toolkit developers.
Current tools are poor or non-existent. Rendezvous and Clock creators, for example, had
to build all their widgets from scratch from graphical primitives [Hil94, Gra96]. GroupKit
creators constructed a rudimentary “class builder” and were thus able to use and extend the
existing GUI widgets supplied by the Tcl/Tk toolkit [Ros96a]. However, the class builder is
awkward to use, and suffers run-time efficiency problems which can affect the performance
of highly interactive widgets.

158 GREENBERG and ROSEMAN

Finally, programmers of groupware could still benefit from interface builders as found in
conventional GUI toolkits, which greatly eases the task of widget placement and attribute set-
ting. Unfortunately, most groupware toolkits now available do not provide interface builders,
with the exception of Visual Obliq [Bha94]. Similar to most modern conventional toolkits,
groupware applications in Visual Obliq are created by designing the interface with an in-
terface builder and then embedding callback code in an interpreted language. The resulting
application can be run from within the interface builder for rapid turnaround time.

6.5 SESSION MANAGEMENT

Groupware developers often concentrate on building applications, such as multi-user sketch-
pads, games, and text editors. While it is important for developers to provide good groupware
once people are connected and working together, it is just as important to provide a com-
munity with “session managers” for actually establishing their groupware connections. We
firmly believe that toolkits must allow developers to construct or select from a large library
of session management interfaces in a flexible enough fashion to accommodate the diverse
requirements of different communities. Unfortunately, most of today’s toolkits force a single,
often rudimentary, session management interface onto its applications.

A session manager typically controls and presents an interface to the following tasks
[Ros94]:

� creating new conferences
� naming conferences
� deleting conferences
� locating existing conferences
� finding out who is in a conference
� joining people to conferences
� controlling access to conferences
� allowing latecomers
� allowing people to leave conferences, and
� deciding whether conferences persist when all users exit.

For example, the interface of the session manager could present these as explicit steps that a
user takes to begin and maintain the collaboration. These could also be implicit actions, where
(say) the act of jointly editing an artifact automatically initiates the collaboration [Edw94].

Being able to provide different interfaces for session management is an important aspect of
supporting the working patterns of a group. We believe that one of the obstacles to groupware
use is the difficulty of starting up a groupware session [Coc93]. The obstacle may be in terms
of usability (e.g. the system is difficult to initiate) or social (e.g. the policy the system imposes
is not acceptable to the group). Session management must be more than an afterthought added
to the applications, and should be tuned to the needs and collaboration patterns of the target
user group.

6.5.1 Policies and Metaphors for Session Management

Session managers can implement and provide a broad variety of policies to users, as illustrated
by the examples in this section.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 159

Figure 6.8 The Open Door session manager. Two conference sessions are shown, with three
participants present in the “Post-It” conference

6.5.1.1 Rudimentary Policy

When session managers are not attended to, users are forced to handle session manager aspects
themselves. That is, it is entirely up to the user to decide who to connect to, often by specifying
low-level addressing such as Internet host names and TCP/IP port numbers. An example of
this is the session manager for early versions of the NCSA Collage groupware system, which
presents a form asking the user to supply one’s login name, the IP address of the Collage
server, and the server port number.

6.5.1.2 Open Door

The basic session manager provided by GroupKit [Ros96a, Gre94b] offers an “Open Door”
permissive policy of creating and joining conferences, where people think in terms of confer-
ences and participants instead of IP addresses. Figure 6.8 shows an example. Each conference
contains a single groupware application (the application windows are not shown in the figure).
In the “Conferences” pane, the local person (Saul Greenberg) sees that two conferences are in
progress: “Post-It” and “Design Session”. By selecting one of them, he can then see who is in
a particular conference (the list in the “Participants” pane).

Conferences are entered in several ways: joins, invitations, and creation. First, Saul can join
a conference by double clicking any conference name. This adds him to the list of participants
and causes the particular application to appear on the display. Second, a person already in a
conference can invite Saul into the session via a menu option, and a dialog will appear on the
screen asking him if he wishes to join in. An example of this is shown in the figure. Third,
Saul can create a new conference via the Conference menu: when he selects from a list of
applications, a window running the application appears on the display and others are informed
of its availability through the Conferences pane. This session manager also handles departure,
and exiting attendees disappear from the Participants pane. When the last one leaves, that
person is asked if the conference application should persist; i.e. that its state should be saved
so it can be re-entered later with its contents intact.

160 GREENBERG and ROSEMAN

6.5.1.3 Rendezvous Points

A quite different policy provides common rendezvous points. People go to a “place”, and
are automatically connected to all others in that place. The best known example of these are
the popular Multi-User Dungeons (MUDs). When a person connects to a MUD via a well-
known Internet address, they enter one of several rooms where they can engage in a text-based
chat dialog with all others in the room. TeamRooms [Ros96b] carries the ideas of MUDs to
graphical groupware by a rooms-based metaphor. Users of a community can create virtual
meeting rooms, and stock them with groupware meeting tools. To create opportunities for
collaboration, anyone can see what rooms are available, who is around, what rooms they are
in, and how active they are. People can freely move between rooms. When they enter a room
they are joined to all the conferencing tools located in the room; when they leave the room,
any tools used in the room are left behind. If only one person is in a room, then it behaves as a
single-user system. If no one is in a room, the tools and groupware artifacts remain available
as they are treated as persistent conference sessions. This system could serve the needs of
collaborators working on many tasks over a period of time, allowing them to easily move
between tasks. It also serves as a meeting place, where people can see who is around in what
room, and converse with them after entering the room. We expect place-based systems such as
TeamRooms to have wide appeal, and other researchers are also pursuing this policy [Tol95].
For example, Lee et al [Lee96] are developing a general software architecture and API to such
systems.

6.5.1.4 Other Policies

Many other session managers are possible. For example, a facilitated meeting session man-
ager has been implemented in GroupKit, where a chairperson has complete control over what
applications are part of a meeting, and who can participate. Other policy examples follow the
model of telephone calls, or the way conference calls are established through a central switch-
ing point. A session manager can also be document-centric. For example, if a person opens
a file that is currently being edited by someone else, the groupware connection can be made
automatically. The point is that a developer requires the tools to modify packaged session
managers or create new ones that fit the community.

6.5.2 Building Blocks for Session Managers

Most toolkits provide only rudimentary and hard-wired session management facilities. Share-
Kit, for example, provides only basic connection facilities, although it does allow informa-
tion about participants and about the session to be transmitted to others upon connection.
Similarly, Rendezvous has a built-in session manager which they call a startup architecture
[Pat90]. There have been a few investigations into architectures for flexible session manage-
ment (e.g. Intermezzo [Edw94, Lee96]) but these are not really toolkits. Excepting GroupKit,
most toolkits do not let programmers build both applications and session managers, or do not
separate the two concepts.

Because few toolkits support session management as a first-class entity, we are a long way
from knowing exactly what primitives and API should be provided to the developer. In our
own experiences with GroupKit, we have developed flexible session management facilities
around the idea of open protocols [Ros93]. Briefly, the Registrar central server (Figure 6.2)

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 161

provides a replicated data structure that tracks meetings and attendees, but specifies no pol-
icy for how the data structure is to be used. Session managers are clients to the Registrar,
and specify the policy by the selection of operations they perform. Maximum flexibility is
achieved by providing open access to the Registrar’s data structure via a protocol or interface
of small but powerful operations (e.g. add or delete conference). Clients may be different, as
long as they are well behaved with respect to each other and to the policy.

In terms of programming session managers, programmers can trap session manager events
and take actions upon them via callbacks. Different session managers will use these in dif-
ferent ways to create their policy. To ease the programmer’s chore, GroupKit also provides
default callbacks to handle routine operations. The programmer can override these when nec-
essary. Using these events, the programmer can create different access control mechanisms,
start new applications or end existing ones, and build the interface in a way that shows the
user what is going on. Examples of some of the events are described below:

� userRequestNewConf: the user has requested that a new conference be created
� newConfApproved and deleteConfApproved: the request for a new conference or termina-

tion of an existing one has been approved
� foundNewConf and foundDeletedConf: a new conference has been created, or an existing

one has been removed
� foundNewUser and foundDeletedUser: a user has entered or left a conference
� newUserApproved: the user’s admittance into the conference has been approved
� lastUserLeftConf : the last user in a conference has left
� conferenceDied: a conference process we created has terminated.

6.5.3 Discussion

Both good groupware applications and good session managers are needed for groupware to
succeed. Without good session managers, it is hard to make electronic contact and get group-
ware started; many opportunities for collaboration will likely fall by the wayside. We believe
that next-generation toolkits will, like GroupKit, include session management as an important
building block. At the very least, the toolkit should provide a reasonable set of stock session
managers that implement a broad range of policies. If adequate primitives are provided, the
programmer should be able to modify existing session managers and create new ones to fit
the particular needs of a work community.

It is even possible that session management toolkits can be developed that are completely
independent from the application component and its run-time architecture. As evidence, the
GroupKit session manager was recently repackaged as a stand-alone toolkit. Since then, it has
been adapted to work with the Clock groupware development tool [Gra96] to manage both
centralized and semi-replicated sessions. While minor code changes were required, it works
well in spite of the radical differences between the run-time system and underlying language
of Clock and GroupKit.

6.6 CONCLUSION

This chapter has presented four components that we believe toolkits must provide to group-
ware programmers. A run-time infrastructure automatically manages the creation, intercon-
nection, and communications of the distributed processes that comprise conference sessions,

162 GREENBERG and ROSEMAN

greatly simplifying a programmer’s job of managing a distributed system. Groupware pro-
gramming abstractions allow developers to control the behavior of distributed processes, to
take action on state changes, to share relevant data, and to generate views. Groupware widgets
let a programmer quickly add interface features of value to conference participants. Session
managers that let users create and manage their meetings are built by developers to accom-
modate the group’s working style. Examples were taken from a variety of different toolkits to
illustrate how these components can be provided in practice.

The class of groupware toolkits considered in this chapter consider only real-time dis-
tributed applications. This is just a subset of groupware, and many groupware toolkits ad-
dress disparate application domains. For example, ConversationBuilder [Kap92] and Strudel
[She90] are used for constructing speech act protocols. Oval is used to build semi-structured
messaging and information management systems [Mal92]. Lotus Notes, although not a pro-
gramming toolkit, lets people develop and tailor a wide variety of asynchronous applications
(Lotus Inc.). Even toolkits within the domain of real-time interaction handle different niche
problems. Dewan and Choudhary’s Suite toolkit [Dew92] applies only to highly structured
text objects and investigates how flexible access control mechanisms are incorporated into
them. Knister and Prakash’s [Kni90] DistEdit provides groupware primitives that could be
added to existing single-user text editors to make them group-aware. DistView, produced by
the same group, is oriented towards a fairly strict view-sharing approach to sharing window
components and underlying data via an object replication scheme [Pra94]. Smith and Rod-
den’s SOL considers design features for making single-user widgets shareable [Smi93].

The chapter also limited its discussion to four components. While we believe these are
fundamental building blocks, there are certainly other components that must be included in a
commercial, robust groupware toolkit. A few examples follow (see Urnes and Nejabi [Urn94]
for a further list of features).

� Security and privacy. Groupware could be a large security hole unless great care is taken
in determining that only the right people are allowed in a meeting, and that permissions to
execute actions at sites other than their own does not compromise the system. Similarly,
communication channels should be encrypted in case the conference deals with sensitive
information. These should all be supplied as part of the stock toolkit.

� Audio and video support. Most of the toolkits mentioned do not directly support audio and
video. Yet almost all real-time groupware requires at least audio. These can be provided out
of band, through telephones, videoconferencing systems, and media spaces (see Chapter 3
in this book [Mac99]). Still, there is a trend in application design to integrate audio, video,
and computational groupware. The ClearBoard system described in Chapter 4 [Ish99], for
example, allows participants to see through their computational space to a video image
that portrays correct eye gaze position and hand gestures relative to the surface (see also
[Ish92]). There is also the problem of synchronizing audio/video with actions in the com-
putational space, for even a few seconds of delay between the two can be disconcerting to
the group members. A further discussion on multimedia in groupware can be found in this
book in Chapter 8 [Dou99].

� Communication channel and networks. All groupware systems depend upon communica-
tion channels. Ideally, the underlying network will be tuned to support the performance
demands of groupware, and the API should reflect the programmer’s needs. Example ex-
tensions to standard networks are MBone [Mac94], an Internet multicast backbone that lets

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 163

one send multimedia on wide-area networks such as the Internet, and Isis [Bir93], which
guarantees correct serialization of events over the network.

� Fault tolerance. As network loads increase and connections become less reliable, fault tol-
erance becomes increasingly important. Groupware toolkits must include facilities to allow
the application to degrade gracefully, to checkpoint failed conferences for later resumption,
and to seek alternate communication paths when a channel fails. Dourish also addresses
some of these issues in this book in Chapter 8 [Dou99].

� Versioning and downloading. In replicated architectures, problems arise when one site is
missing software or has a different version of it. The system should be able to check ver-
sions, and download software when necessary.

� Session capture and replay. Records of meetings are sometimes crucial. While capturing
video is straightforward, capturing computational actions is more difficult [Man95]. The
challenge remains on how to capture automatically the highlights of lengthy meetings in a
concise manner.

� Multi-user undo. Many single-user systems contain undo facilities. Yet undo in groupware
is a hard problem. While a few researchers have been working in this area [Pra92, Ber94],
we still have a long way to go before we can package undo facilities so that groupware
programmers can include it easily within their application. Chapter 5 in this book contains
a detailed discussion of the role of undo in a group editor [Pra99].

� Concurrency control. While mentioned as part of the run-time architecture, concurrency
control in groupware is a sub-field in its own right. Much work remains to be done crafting
appropriate tools, architectures, and abstractions that make concurrency control easy for
the programmer, while minimizing its impact on the end-user’s interface.

� Application domains. In all probability, some groupware toolkitswill have to be specialized
to handle the nuances of particular real-time applications domains. DistEdit, for example,
concerns itself only with text editing [Kni90]. Others will deal with the structured meetings
found in group support systems [Pen95], or with extending capabilities of existing single-
user systems; e.g. primitives to make the emacs text editor group-aware [Pat95].

� Alternate models. The separation of model and view is only one of the many ways that
groupware can be configured. For example, Karsenty and Beaudouin-Lafon [Kar95] have
defined the seven-layer SLICE model. Some of these layers are: an abstract document (the
model), a document layer (the displayed view), a direct manipulation layer (the means to
interact with the view); a view representation layer (to control how views are displayed);
and a cursor layer that tracks the mouse and shows telepointers. In Chapter 7 in this book,
Dewan considers other architectural models as well [Dew99].

� Development environments. All the toolkits mentioned have inadequate development en-
vironments. For example, debugging groupware is hard because it is a distributed system,
and we need appropriate debuggers. Interface builders are lacking. Appropriate tools for
testing are non-existent.

� The Web. The recent popularity of the World Wide Web, as well as the network and multi-
platform properties of the Java programming language, implies that the Web could be-
come the delivery vehicle for real-time groupware. While the Web, Java and the Internet
itself have particular features that lend themselves towards groupware (e.g. its ubiquity,
its client/server model, its telecommunications constructs), it also includes constraints that
may challenge the design of groupware toolkits (e.g. security, performance, session man-
agement styles). While the Web does provide incredible opportunities for groupware (some

164 GREENBERG and ROSEMAN

are surveyed in this book in Chapter 8 [Dou99]), we may find ourselves compromised by
its technical constraints and by the way it is commonly used.

While the next generation of toolkits are now being built, groupware systems still have a
long way to go to catch up to their single-user counterparts. We look forward to the day when
all toolkits will incorporate multi-user features. When that day comes, the artificial distinction
between constructing single and collaborative systems will disappear.

ACKNOWLEDGEMENTS

Carl Gutwin and Ted O’Grady participated in many discussions about what is required for
groupware toolkits, and helped influence the contents of this chapter. Prasun Dewan, Nicholas
Graham, and John Patterson reviewed versions of this manuscript. They contributed both con-
structive comments and further system description. Comments by anonymous referees helped
improve this document. Funding by the National Science and Engineering Research Council
of Canada and by Intel Corporation are gratefully appreciated.

REFERENCES

[Ahu90] Ahuja, S.R., Ensor, J.R. and Lucco, S.E., A comparison of applications sharing mechanisms
in real-time desktop conferencing systems. In Proceedings of the ACM COIS Conference on
Office Information Systems, pages 238–248, Boston, April 25–27, 1990.

[Bae93] Baecker, R., Nastos, D., Posner, I. and Mawby, K., The user-centered iterative design of
collaborative writing software. In Proceedings of ACM InterCHI’93 Conference on Human
Factors in Computing Systems, pages 399–405, Amsterdam, the Netherlands, April 24–29,
1993.

[Ber94] Berlage, T., A selective undo mechanism for graphical user interfaces based on command
objects. ACM Transactionson Computer-Human Interaction, 1(3):269–294, September 1994.

[Bha94] Bharat, K. and Brown, M., Building distributed, multi-user applications by direct manip-
ulation. In Proceedings of the ACM UIST’94 Symposium on User Interface Software and
Technology, pages 71–80, Marina del Rey, California, November 2–4, 1994.

[Bir93] Birman, K.P., The process group approach to reliable distributed computing. Communications
of the ACM, 36(12):37–53, December 1993.

[Bon89] Bonfiglio, A., Malatesta, G. and Tisato, F., Conference Toolkit: A framework for real-time
conferencing. In Proceedings of the EC-CSCW ’89 First European Conference on Com-
puter Supported Cooperative Work, pages 303–316, Gatwick, London, UK, September 13–
15, 1989.

[Car93] Carlsson, C. and Hagsand, O., DIVE – A platform for multi-user virtual environments. Com-
puters and Graphics, 17(6), 1993.

[Coc93] Cockburn, A. and Greenberg, S., Making contact: Getting the group communicating with
groupware. In Proceedingsof the ACM COOCS’93 Conferenceon Organizational Computing
Systems,, pages 31–41 Milpitas, California, November 1–4, 1993.

[Dew91] Dewan, P., Flexible user interface coupling in collaborative systems. In Proceedings of
the ACM CHI’91 Conference on Human Factors in Computing Systems, pages 41–48, New
Orleans, Louisiana, April 28–May 2, 1991.

[Dew92] Dewan, P. and Choudhary, R., A high-level and flexible framework for implementing multi-
user user interfaces. ACM Transaction on Information Systems. 10(4):345–380, 1992.

[Dew99] Dewan, P., Architectures for collaborative applications. In Beaudouin-Lafon, M. (Ed.),
Computer Supported Cooperative Work, Trends in Software Series 7:169–193. John Wiley
& Sons, Chichester, 1999.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 165

[Dou92a] Dourish, P. and Bellotti, V., Awareness and coordination in shared workspaces. In Proceed-
ings of the ACM CSCW’92 Conference on Computer Supported Cooperative Work, pages
107–114, Toronto, Canada, October 31–November 4, 1992.

[Dou92b] Dourish, P. and Bly, S., Portholes: Supporting awareness in a distributed work group. In
Proceedings of the ACM CHI’92 Conference on Human Factors in Computing Systems, pages
541–547, Monterey, California, May 3–7, 1992.

[Dou95] Dourish, P., Developing a reflective model of collaborative systems. ACM Transactions on
Computer–Human Interaction. 2(1):40-63, March 1995.

[Dou96] Dourish, P., Consistency guarantees: Exploiting application semantics for consistency man-
agement in a collaboration toolkit. In Proceedings of the ACM CSCW’96 Conference on
Computer Supported Cooperative Work,, Boston, Mass., November 16–20, 1996.

[Dou99] Dourish, P., Software infrastructures. In Beaudouin-Lafon, M. (Ed.), Computer Supported
Cooperative Work, Trends in Software Series 7:195–219. John Wiley & Sons, Chichester,
1999.

[Edw94] Edwards, W.K., Session management for collaborative applications. In Proceedings of
the ACM CSCW’94 Conference on Computer Supported Cooperative Work, pages 323–330,
Chapel Hill, North Carolina, October 22–26, 1994.

[Ell89] Ellis, C.A. and Gibbs, S.J., Concurrency control in groupware systems. In Proceedings of
the ACM SIGMOD International Conference on the Management of Data, pages 399–407,
Seattle, Washington, 1989.

[Gra92] Graham, T.C.N. and Urnes, T., Relational views as a model for automatic distributed im-
plementation of multi-user applications. In Proceedings of the ACM CSCW’92 Confer-
ence on Computer Supported Cooperative Work, pages 59–66, Toronto, Canada, October
31–November 4, 1992.

[Gra95] Graham, T.C.N., Declarative development of interactive systems. Volume 243 of Berichte
der GMD, R. Oldenbourg Verlag, Munich, July 1995.

[Gra96] Graham, T.C.N., Morton, C.A. and Urnes, T.. ClockWorks: Visual programming of
component-based software architectures. Journal of Visual Languages and Computing, Aca-
demic Press, July 1996.

[Gra96a] Graham, T.C.N., Urnes, T. and Nejabi, R. Efficient distributed implementation of semi-
replicated synchronous groupware. In Proceedings of the ACM UIST ’96 User Interface
Software and Technology, Seattle, Washington, November 6-8, 1996.

[Gra96b] Graham, T.C.N. and Urnes, T., Linguistic support for the evolutionary design of software ar-
chitectures. In Proceedings of the ICSE’18 Eighteenth International Conference on Software
Engineering, pages 418–427, IEEE Press, March 1996.

[Gre90] Greenberg, S., Sharing views and interactions with single-user applications. In Proceedings
of the ACM COIS Conference on Office Information Systems, pages 227–237, Boston, Mass.,
April 25–27, 1990.

[Gre94a] Greenberg, S. and Marwood, D., Real time groupware as a distributed system: Concurrency
control and its effect on the interface. In Proceedings of the ACM CSCW’94 Conference
on Computer Supported Cooperative Work, pages 207–217, Chapel Hill, North Carolina,
October 22–26, 1994.

[Gre94b] Greenberg, S. and Roseman, M., GroupKit. In ACM SIGGRAPH Video Review, Issue 108,
Videotape available from ACM Press, 1994.

[Gre96a] Greenberg, S. and Gutwin, C., Applying distortion-oriented displays to groupware. In Video
Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooperative Work,
Boston, Mass., November 16–20, 1996. Videotape available from ACM Press.

[Gre96b] Greenberg, S., Gutwin, C. and Cockburn, A., Awareness through fisheye views in relaxed-
WYSIWIS groupware. In Proceedings of Graphics Interface’96, pages 28–38, Toronto, On-
tario, May 1996. Distributed by Morgan-Kaufmann.

[Gre96c] Greenberg, S., Gutwin, C. and Cockburn, A., Using distortion-oriented displays to support
workspace awareness. In A. Sasse, R.J. Cunningham, and R. Winder, (Eds.), People and
Computers XI (Proceedings of the HCI’96), pages 299–314, Springer-Verlag, 1996.

[Gre96d] Greenberg, S. Gutwin, C. and Roseman, M., Semantic telepointers for groupware. In Pro-
ceedings of OZCHI ’96: The Sixth Australian Conference on Computer–Human Interaction,
Hamilton, New Zealand, November 24–27, 1996.

166 GREENBERG and ROSEMAN

[Gre96e] Greenberg, S. and Roseman, M., GroupWeb: A WWW browser as real time groupware. In
ACM SIGCHI’96 Conference on Human Factors in Computing System, Companion Proceed-
ings, pages 271–272, Vancouver, Canada, April 13–18, 1996.

[Gut95] Gutwin, C., Stark, G. and Greenberg, S., Support for workspace awareness in educational
groupware. In Proceedings of the CSCL’95 Conference on Computer Supported Collabora-
tive Learning, pages 147–156, Bloomington, Indiana, October 17–20, 1995. Distributed by
Lawrence Erlbaum Associates.

[Gut96a] Gutwin, C., Greenberg, S. and Roseman, R., Supporting awareness of others in groupware.
In ACM SIGCHI’96 Conference on Human Factors in Computing System, Companion Pro-
ceedings, pages 205–215, Vancouver, Canada, April 13–18, 1996.

[Gut96b] Gutwin, C., Greenberg, S. and Roseman, M. (1996) Workspace awareness in real-time dis-
tributed groupware: Framework, widgets, and evaluation. In A. Sasse, R.J. Cunningham, and
R. Winder, (Eds.), People and Computers XI (Proceedings of the HCI’96), pages 281–298,
Springer-Verlag, 1996.

[Gut96c] Gutwin, C., Greenberg, S. and Roseman, M., Staying aware in groupware workspaces. In
Video Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooperative
Work, Boston, Mass., November 16–20, 1996. Videotape available from ACM Press.

[Gut96d] Gutwin, C., Roseman, M., and Greenberg, S., A usability study of awareness widgets in a
shared workspace groupware system. In Proceedings of the ACM CSCW’96 Conference on
Computer Supported Cooperative Work, Boston, Mass., November 16–20, 1996.

[Hay94] Hayne, S., Pendergast, M. and Greenberg, S., Implementing gesturing with cursors in Group
Support Systems. Journal of Management Information Systems, 10(3):43–61, 1994.

[Hil92] Hill, R.D., The Abstraction-Link-View paradigm: Using constraints to connect user interfaces
to applications. In Proceedings of the ACM SIGCHI’92 Conference on Human Factors in
Computing Systems, pages 335–342, Monterey, California, May 3–7, 1992.

[Hil94] Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. and Wilner, W., The Rendezvous architec-
ture and language for constructing multi-user applications. ACM Transactions on Computer–
Human Interaction, 1(2):81–125, June 1994.

[Intel] Intel Corporation, Software available through the World Wide Web,
http://www.intel.com/iaweb/moondo/index.html.

[Ish92] Ishii, H. and Kobayashi, M., ClearBoard: A seamless medium for shared drawing and conver-
sation with eye contact. In Proceedings of the ACM CHI’92 Conference on Human Factors
in Computing Systems, pages 525–532, Monterey, California, May 3–7, 1992.

[Ish99] Ishii, H., Integration of Shared Workspace and interpersonal space for remote collaboration.
In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:83–102. John Wiley & Sons, Chichester, 1999.

[Jah95] Jahn, P., Getting started with Share-Kit. Tutorial manual distributed with Share-Kit ver-
sion 2.0. Communications and Operating Systems Research Group, Department of Computer
Science, Technische Universitat, Berlin, Germany, 1995. Available via anonymous ftp from
ftp.inf.fu-berlin.de/pub/misc/share-kit.

[Kap92] Kaplan, S.M., Tolone, W.J., Bogia, D.P. and Bignoli, C., Flexible, active support for collab-
orative work with conversation builder. In Proceedings of the ACM CSCW’92 Conference
on Computer Supported Cooperative Work, pages 378–385, Toronto, Canada, October 31–
November 4, 1992.

[Kar95] Karsenty, A. and Beaudouin-Lafon, M., Slice: A logical model for shared editors. In S.
Greenberg, S. Hayne and R. Rada, Editors, Groupware for Real Time Drawing, A Designer’s
Guide, pages 156–173, McGraw-Hill Europe, 1995.

[Kni90] Knister, M.J. and Prakash, A., DistEdit: A distributed toolkit for supporting multiple group
editors. In Proceedings of ACM CSCW’90 Conference on Computer Supported Cooperative
Work,, pages 343–355, Los Angeles, California, October 7–10, 1990.

[Kra88] Krasner, G.E. and Pope, S.T. (1988), A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80. Journal of Object Oriented Programming, 1(3):26–49,
August/September 1988.

[Lau90a] Lauwers, J.C. and Lantz, K.A., Collaboration awareness in support of collaboration trans-
parency. In Proceedingsof the ACM SIGCHI’90 Conferenceon Human Factors in Computing
Systems, pages 303–211, Seattle, Washington, April 1–5, 1990.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 167

[Lau90b] Lauwers, J.C., Joseph, T.A., Lantz, K.A. and Romanow, A.L., Replicated architectures for
shared window systems: A critique. In Proceedings of the ACM COIS’90 Conference on
Office Information Systems, pages 249–260, Boston, Mass., April 25–27, 1990.

[Lee96] Lee, J.H., Prakash, A., Jaeger, T. and Wu, G., Supporting multi-user, multi-applet workspaces
in CBE. In Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooper-
ative Work,, Boston, Mass., November 16–20, 1996.

[Mac94] Macedonia, M.R. and Brutzman, D.P., MBone provides audio and video across the Internet.
IEEE Computer, 27(4):30–36, IEEE Press, 1994.

[Mac99] Mackay, W.E., Media spaces: Environments for informal multimedia interaction In
Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Se-
ries 7:55–82. John Wiley & Sons, Chichester, 1999.

[Mal92] Malone, T.W., Lai, K.Y. and Fry, C., Experiments with Oval: A radically tailorable tool for
cooperative work. In Proceedings of the ACM CSCW’92 Conference on Computer Supported
Cooperative Work, pages 289–297, Toronto, Canada, October 31–November 4, 1992.

[Man95] Manohar, N.R. and Prakash, A., The session capture and replay paradigm for asynchronous
collaboration. In Proceedings of the ECSCW’95 Fourth European Conference on Computer
Supported Cooperative Work, pages 149–164, September 1995.

[Mit96] Mitchell, A., Communications and shared understanding in collaborative writing. M.Sc.
Thesis, Department of Computer Science, University of Toronto, Canada, 1996.

[OGr96] O’Grady, T., Flexible data sharing in a groupware toolkit. M.Sc. Thesis, Department of
Computer Science, University of Calgary, Calgary, Alberta, Canada. November 1996.

[Ous94] Ousterhout, J., Tcl and the Tk Toolkit. Addison Wesley, Reading, Mass., 1994.
[Pat90] Patterson, J. F., Hill, R. D., Rohall, S. L. and Meeks, W. S., RendezVous: An architecture

for synchronous multi-user applications. In Proceedings of the CSCW’90 Conference on
Computer Supported Cooperative Work, pages 317–328, Los Angeles, California, October
7–10, 1990.

[Pat91] Patterson, J.F., Comparing the programming demands of single-user and multi-user applica-
tions. In Proceedings of the UIST’92 Symposium on User Interface Software and Technology,
pages 87–94, Hilton Head, South Carolina, November 11–13, 1991.

[Pat94] Patterson, J.F., A taxonomy of architectures for synchronous groupware applications. Paper
presented to the Workshop on Software Architectures for Cooperative Systems, held as part of
the ACM CSCW’94 Conference on Computer Supported Cooperative Work, 1994.

[Pat95] Patel, D. and Kalter, S.D., Commercializing a real-time collaborative toolkit. In S. Greenberg,
S. Hayne and R. Rada (Eds.), Groupware for Real Time Drawing, A Designer’s Guide, pages
198–208, McGraw-Hill Europe, 1995.

[Pat96] Patterson, J.F., Day, M. and Kucan, J., Notification servers for synchronous groupware. In
Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooperative Work,
Boston, Mass., November 16–20, 1996.

[Pen95] Pendergast, M., GroupGraphics: Prototype to product. In S. Greenberg, S. Hayne and R. Rada
(Eds.), Groupware for Real Time Drawing, A Designer’s Guide, pages 209–227, McGraw-
Hill Europe, 1995.

[Pra92] Prakash, A. and Knister, M.J., Undoing actions in collaborative Work. In Proceedings of
the ACM CSCW’92 Conference on Computer-Supported Cooperative Work, pages 273–280,
Toronto, Canada, October 31–November 4, 1992.

[Pra94] Prakash, A. and Shim, H.S., DistView: Support for building efficient collaborative ap-
plications using replicated objects. In Proceedings of the ACM CSCW’94 Conference on
Computer-Supported Cooperative Work, pages 153–164, Chapel Hill, North Carolina, Octo-
ber 22–26, 1994.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Ros92] Roseman, M. and Greenberg, S., GroupKit: A groupware toolkit for building real-time con-
ferencing applications. In Proceedings of the ACM CSCW’92 Conference on Computer Sup-
ported Cooperative Work, pages 43–50, Toronto, Canada, October 31–November 4, 1992.

[Ros93] Roseman, M. and Greenberg, S., Building flexible groupware through open protocols. In Pro-
ceedings of the ACM COOCS’93 Conference on Organizational Computing Systems, pages
279–288, Milpitas, California, November 1–4, 1993.

168 GREENBERG and ROSEMAN

[Ros94] Roseman, M. and Greenberg, S., Registration for real time groupware. Research Report
94/533/02, Department of Computer Science, University of Calgary, Alberta, Canada, 1994.

[Ros96a] Roseman, M. and Greenberg, S., Building real time groupware with GroupKit, a groupware
toolkit. ACM Transactions on Computer–Human Interaction, 3(1):66–106, March 1996.

[Ros96b] Roseman, M. and Greenberg, S., TeamRooms: Network places for collaboration. In Proceed-
ings of the ACM CSCW’96 Conference on Computer Supported Cooperative Work, Boston,
Mass., November 16–20, 1996.

[Sch86] Scheiffler, R.W. and Gettys, J., The X-Windows system. ACM Transactions on Computer
Graphics, 5:79–109, 1986.

[She92] Shen, H. and Dewan, P., Access control for collaborative environments. In Proceedings of
the ACM CSCW’92 Conference on Computer Supported Cooperative Work, pages 51–58,
Toronto, Canada, October 31–November 4, 1992.

[She90] Shepherd, A., Mayer, N. and Kuchinsky, A., Strudel — an extensible electronic conversation
toolkit. In Proceedings of ACM CSCW’90 Conference on Computer-Supported Cooperative
Work, pages 93–104, Los Angeles, California, October 7–10, 1990.

[Smi89] Smith R. B., O’Shea T., O’Malley C., Scanlon E. and Taylor, J., Preliminary experiences with
a distributed, multi-media, problem environment. In Proceedings of the EC-CSCW ’89 1st
European Conference on Computer Supported Cooperative Work, Gatwick, UK, September
13–15, 1989.

[Smi93] Smith, G. and Rodden T., Using an access model to configure multi-user interfaces. In Pro-
ceedings of the ACM COOCS ’93 Conference on Organizational Computing System, pages
289–298, Milpitas, California, November 1–4, 1993.

[Tan91] Tang, J.C., Findings from observational studies of collaborative work. International Journal
of Man–Machine Studies, 34(2):143–160, 1991. Republished under the same title in Saul
Greenberg, editor, Computer Supported Cooperative Work and Groupware, Academic Press.

[Tat91] Tatar D. G., Foster G., and Bobrow D. G., Design for conversation: Lessons from Cognoter.
International Journal of Man–Machine Studies, 34(2):185–210, February 1991. Republished
under the same title in Saul Greenberg, editor, Computer Supported Cooperative Work and
Groupware, Academic Press.

[Tay95] Taylor, R.N., Nies, K.A., Bolcer, G.A., MacFarlane, C.A., Anderson, K.M. and Johnson, G.F.,
Chiron-1: A software architecture for user interface development, maintenance, and run-time
support. ACM Transactions on Computer-Human Interaction, 2(2):105–144, June 1995.

[Tol95] Tolone, W., Kaplan, S. and Fitzpatrick, G., Specifying dynamic support for collaborative
work within wOrlds. In Proceedings of the ACM COOCS ’95 Conference on Organizational
Computing System, pages 55–67, Mipitas, California, August 13–16, 1995.

[Tou94] Tou, I., Berson, S., Estrin, G., Eterovic, Y. and Wu, E., Prototyping synchronous group appli-
cations. IEEE Computer, 27(5):48–56, May 1994.

[Tre94] Trevor, J., Rodden, T. and Mariani, J., The use of adaptors to support cooperative sharing. In
Proceedings of the ACM CSCW’94 Conference on Computer Supported Cooperative Work,
pages 219–230, Chapel Hill, North Carolina, October 22–26, 1994.

[Urn94] Urnes, T. and Nejabi, R., Tools for Implementing Groupware: A Survey and Evaluation. Tech-
nical report CS-94-03, Department of Computer Science, York University, Toronto, Canada,
1994.

[Wil95] Wilson, B., WSCRAWL 2.0: A shared whiteboard based on X-Windows. In S. Greenberg,
S. Hayne and R. Rada (Eds.), Groupware for Real Time Drawing, A Designer’s Guide, pages
129–141, McGraw-Hill Europe, 1995.

