Int. J. Human—Computer Studies (1998) 48, 777-801 @

The design and evolution of TurboTurtle, a collaborative
microworld for exploring Newtonian physics

ANDY COCKBURN

Department of Computer Science, University of Canterbury, Christchurch, New Zealand
email: andy@cosc.canterbury.ac.nz

SAUL GREENBERG

Department of Computer Science, University of Calgary, Calgary, Canada
email: saul@cpsc.ucalgary.ca

(Received 22 January 1998)

TurboTurtle is a dynamic multi-user microworld for the exploration of Newtonian
physics. With TurboTurtle, students can alter the attributes of the simulation environ-
ment, such as gravity, friction, and presence or absence of walls. Students explore the
microworld by manipulating a variety of parameters, and learn concepts by studying the
behaviours and interactions that occur. TurboTurtle has evolved into a “group-aware”
system where several students, each on their own computer, can simultaneously control
the microworld and gesture around the shared display. TurboTurtle’s design rationale
includes concepts such as equal opportunity controls, simulation timing, concrete vs.
abstract controls, recoverability, and how strictly views should be shared between
students. Teachers can also add structure to the group’s activities by setting the simula-
tion environment to an interesting state, which includes a set of problems and questions.
Observations of pairs of young children using TurboTurtle highlight extremes in collab-
oration styles, from conflict to smooth interaction. Finally, the technical work in making
TurboTurtle group-aware is slight, primarily because it was built with a groupware
toolkit called GroupKit. © 1998 Academic Press

1. Introduction

The 1990s and the new millenium will see the Internet pervade through the educational
system. Approximately half of the US public schools are already connected to the
Internet (Press, 1996), and many politicians advocate Internet access in every classroom
(for example, US President Bill Clinton’s 1996 State of the Union Address). For many
people the Internet is synonymous with the World Wide Web. However, the Internet
also provides a network infrastructure for real-time communication that enables a var-
iety of novel computer applications for supporting collaboration. These applications
include audio and video conferencing, shared electronic white-boards, collaborative text
editors and so on. Commercial vendors are rapidly developing applications that exploit
the real-time communication capabilities of the Internet and examples include Intel’s
“ProShare”,t Netscape’s “CoolTalk”f and MicroSoft’s “NetMeeting”.§ While these

thttp://ww.intel.com/comm net/proshare/.
thttp://cgi.netscape. com eng/ nozillal/3.0/rel notes/cool tal k/.
§http://ww. m crosoft.conf net meeting/.

1071-5819/98/060777 + 25$25.00/0/hc970179 © 1998 Academic Press

778 A. COCKBURN AND S. GREENBERG

preliminary computer supported collaboration tools evolve, we expect educators to
consider how the Internet can support collaboration between students in real-time.

We are investigating the application of real-time collaboration-aware software sys-
tems within educational environments. Our background is that of researchers in com-
puter-supported cooperative work (CSCW), an interdisciplinary research field which
attempts to understand cooperative activities and to mould computer technology so that
it supports and enhances those cooperative activities (Baecker, 1993). The software
systems resulting from CSCW research are termed “groupware”. Although much has
been learned about how adults work together through groupware, little attention has
been paid to how children collaborate through real-time groupware.

In this paper, we discuss the critical issues of design and usability within the context of
the construction and use of an educational collaborative artifact. The purpose of the
artifact is to provide a focal-point of discussion and interaction for children. In our case,
this artifact is a Newtonian microworld called TurboTurtle, and the students could be
children as young as 7 years and as old as 17 years. Critical issues in the design and
motivation of TurboTurtle include the following.

1. Much of our design rationale in developing the TurboTurtle user interface is
directed at producing an educational environment that is both engaging and easy
to use. Students will only explore the microworld if it is engaging (Soloway &
Pryor, 1996).

2. As a free-form microworld, students can manipulate TurboTurtle as they wish.
However, teachers can tailor TurboTurtle to display a prescriptive set of tasks
containing questions, lines of investigation and hints of things to try. We believe
that this allows teachers to scaffold the student’s passage through TurboTurtle’s
educational domain.

3. TurboTurtle is a truly collaborative microworld, where students have their own
displays, their own mouse and an ability to do anything at any time. We believe
that communication around the microworld is reinforced by explicitly providing
support for simultaneous collaborative activities such as mutually setting simula-
tion properties, gesturing around the display and pointing to microworld objects.
Since students do not have to be co-located, we assume that they can talk to each
other over an audio channel such as a speaker-telephone. It provides a platform for
investigating styles of collaboration beyond shared use of single-user systems.

We intend that TurboTurtle should be pedagogically worthwhile within its Newtonian
domain, but to date our primary interests in this research project lie in the design and
usability issues of computer support for real-time collaboration for children.

We present the design of TurboTurtle, and how it evolved into a collaborative
microworld. The paper begins by briefly reviewing microworlds and educational issues.
Section 3 introduces the single-user version of TurboTurtle and its facilities for tailoring
its educational support to the teacher’s curriculum, and Section 4 describes the final
collaborative version. Each section describes what the system looks like to the student,
and highlights the design rationale for the features we believe critical to make Turbo-
Turtle a useful educational system. Section 5 describes our preliminary observation-
based evaluation of collaborative TurboTurtle with pairs of primary school children.
Section 6 reviews and contrasts related work on collaborative microworlds. The paper

THE DESIGN AND EVOLUTION OF TURBOTURTLE 779

closes by examining the technical effect involved in making the microworld group-aware
through a groupware toolkit called GroupKit (Roseman & Greenberg, 1992, 1996).

2. Background: microworlds

Microworlds, or computer simulations of restricted environments, are an intuitively
appealing way to promote discovery and exploratory learning (Smith, Cypher & Speh-
rer, 1994). One type of microworld, and the subject of this paper, simulates an adjustable
Newtonian universe. In it, students can experiment with concepts such as gravity,
friction, force, velocity and so on, and see how changes in their value affect the objects
moving within the simulation.

Microworlds—Newtonian or otherwise—are not new. They were first conceptualized
by Papert in his 1980 book “Mindstorms”, but in that era they were implemented as
crude systems that required students to adjust the simulation via cryptic and error-prone
command line interfaces, e.g. Logo. The wide-spread introduction of graphical interfaces
in the late 1980s and the early 1990s then changed the way educators presented
microworlds to students. The simulations became dynamic environments that students
could alter on the fly, usually by changing property settings on control panels and by
directly manipulating the objects within the world. The Alternative Reality Kit, an
intriguing Newtonian microworld built in 1987, is one such example (Smith, 1987). In
this paper, we claim that another evolutionary step is about to take place: microworlds
will become group-aware by actively allowing several students to view and manipulate
the simulation.

Papert called computer-supported microworlds “incubators for knowledge” when he
described the potential of computer-aided learning to encourage exploration and thus
self-education by children (Papert, 1980). His educational philosophies stem from
Piaget’s work on learningt which, simplistically, state that much of children’s learning
occurs without being taught: children construct their skills and understanding from seeds
of knowledge. Many accepted Papert’s beliefs on the educational value of exploratory
learning as established fact (Maddux, 1985).

Yet not all educators agree with Papert. In sharp contrast to microworlds, many
educational systems are highly prescriptive. They direct students through small in-
crements of information, and test whether the student has mastered the material before
advancing. The advantage derived from such directed learning is that teachers make the
learning goals explicit, and that students can advance at their own pace. Exploratory
systems such as microworlds, on the other hand, have little or no motion of predeter-
mined trails that students must follow. Students are equally free to test personally
derived hypotheses, or meander (some would say mindlessly) through the uncontrolled
environment.

Rather than strongly advocate either exploratory learning or perspective learning, as
software developers we believe that software systems should provide tailorable scaffold-
ing support which allows teachers, mentors or parents to configure and adapt the system

T A review of Piaget’s work, or that of any educational psychologist is beyond the scope of this paper.
Interested readers should consult Gruber and Voneche (1987) or Papert (1993) for further reference.

780 A. COCKBURN AND S. GREENBERG

to different students and learning styles (Soloway & Pryor, 1996; Rossen & Carroll,
1996). TurboTurtle’s scaffolding support is described in Section 3.4.

Aside from issues of appropriate scaffolding, microworld proponents claim that
a major part of their educational value comes from providing an artifact around which
children can discuss their work (Maddux & LaMont-Johnson, 1988). In current practice,
this discussion and sharing is realized by having two or more students view and
manipulate a “single-user” microworld. They collaborate by sharing access to the
computer’s input devices (keyboard, mouse) and its output (the screen)—related work
with alternative sharing mechanisms is discussed in Section 6. The fact that there is only
one set of input controls means that only one student can be “driving” the simulation at
a time. While control of the mouse is not a reliable indicator of who is controlling the
group collaboration (Cole, 1995), it does often cast the group members into roles that
may be hard to relinquish, or that have certain social overtones. For example, the role of
a mouse driver can vary between passive scribe (Mantei, 1988; Cole, 1995) to decision
maker (Klawe & Phillips, 1995). People who are not controlling the mouse may feel a loss
of power, even when the driver is obeying their directions (Cole, 1995). Because only one
person at a time can use the single mouse, it becomes an introduced artifact that can alter
the group’s dynamics in unpredictable ways. TurboTurtle’s support for collaboration
(Section 4), in which user has their own display and input devices, allows us to investigate
childrens’ collaborations around a shared work surface without these constraints on
shared hardware devices.

The following two sections detail the design of the TurboTurtle microworld. Its
usability as a single user system including support for scaffolding are described, followed
by a description of the evolution of its support for real-time collaboration.

3. The solitary microworld

This section considers the usability of a solitary microworld designed for one student,
concentrating on the design rationale we used to construct the student’s interface. Since
many of our choices were motivated by the look-and-feel of contemporary microworlds,
the interface style follows the current genre. What is important is that we highlight what
we believe are the more unusual but still critical factors that affect the system usability.

3.1. TURBOTURTLE-1

Our work with microworlds began in 1986 (described in Cockburn, 1994). TurboTurtle-1
supported a full interpreted dialect of Logo with standard list processing, program
control-flow constructs and turtle-graphics. We transformed Logo into a Newtonian
microworld by providing a new set of “dynamic turtle graphic primitives”. Through
a command-line interface, students controlled various Newtonian properties of the
world, such as gravity, friction and the presence or absence of walls. For example, they
could turn off gravity by typing G- avi t y 0. Students could also manipulate the “turtle”
(a movable ball) by adjusting its position, velocity and mass; changing its kinetic and
potential energy; and applying a force to it by strapping a rocket to its back. For
example, Rocket 50 10 would propel the turtle with a force of 50 units for 10 time units.
Students then viewed the effects of their commands on the simulation, where the turtle

THE DESIGN AND EVOLUTION OF TURBOTURTLE 781

would be seen moving across the display according to the current set of Newtonian
values. Unfortunately, hardware limitations prohibited students from dynamically alter-
ing an on-going simulation. They had to stop the animation, reset the values and restart.

The capabilities of the system were encouraging, but the command line interface
lacked the potential of engaging the users. Students had to learn and remember the
syntax and commands of the language. They had to type accurately, a far from trivial
task for young children. Changing simulation parameters was slow, and viewing the
results was incremental.

3.2. TURBOTURTLE-2

Our second iteration, TurboTurtle-2 (Cockburn, 1994) moved away from Logo and the
command-line interface towards a fully graphical system. We wanted to provide a seam-
less interface that allowed all the student’s cognitive effort to be directed at the contents
of the microworld. Beyond the “see and point” premise of modern graphical user
interfaces (Shneiderman, 1987), we wanted TurboTurtle-2 to make extensive use of
sound, colour and animation to capture the interest of young users.

What do students using TurboTurtle-2 see and do? Figure 1 is a snapshot of
a student’s session. The lower-half displays the simulation with the turtle being the ball at
its centre. The turtle’s location can be changed directly by dragging it with the mouse,

Fle Velocity Walls Trall laws Sound. Home |u| Explak\[J7 Time| > |
Turlle size Friction Turlle speed Resultant direction
Vidth | JEI]E| Speed ; pesre
[T 18 J I e
44 Gravity Dge e oot E
5 cuon iz, 5
Helght | [- B
[EE -4 | 2| .
- Mass 125
33 l =0 Distance Duration
6 Speed I 0 3 [5051 | 632

FIGURE 1. The main window to TurboTurtle2.

782 A. COCKBURN AND S. GREENBERG

and its direction and velocity altered by “throwing” it. The top of the figure shows
a control panel, where tangible properties are set through constantly visible graphical
sliders. These include the controls to change the turtle’s size, mass, speed, the degree of
friction and gravity and so on. Students use the pull-down menus to access advanced
features of TurboTurtle-2.

Within the simulation, the turtle’s trail, a line of ink that follows the turtle’s movement,
can be switched on or off. The walls in the microworld can be changed as well. The turtle
bounces off “hard” walls and passes through “transparent” ones (which causes it to
wrap-around the display). When only the ground is hard, the relative location of the
ground to the turtle is remembered as it wraps through successive screens. Students can
also display a mountain scenery backdrop (visible in Figure 3), which provides additional
visual cues to the altitude of the turtle. As the turtle gains altitude the backdrop changes
to show smaller mountains, a row of acroplanes and then satellites. Of course, the trails
and the mountain backdrop can be cleared at any point.

Figure 1 shows the turtle’s trail after a series of user-driven changes to the micro-
world.T Starting in the middle of the screen, the turtle moved down and to the right with
no mass or gravity. After seeing and hearing it bounce off the walls four times, the student
added mass and positive gravity, causing the turtle to bounce under gravity (the sin
curve). She then changed gravity to a small negative value, causing the turtle to bounce
off the roof of the microworld. Finally, she added friction, causing the turtle to eventually
slow to a stop.

3.3. DESIGN DECISIONS

Several of the design decisions that are part of TurboTurtle-2 are not immediately
obvious from the interface description. These are presented as a set of concepts that we
believe are applicable to microworld simulations.

Equal opportunity controls incorporate the idea that interface controls can serve as both
input and output (Thimbleby, 1990). This reduces interface clutter by avoiding duplica-
tion of screen components for control and feedback. For example, TurboTurtle-2
includes equal-opportunity sliders. Students can (say) set the speed and direction of the
turtle by using the two sliders shown in the top-middle of Figure 1. But Newtonian effects
such as gravity will cause these values to change as the simulation is running. Instead of
keeping the slider static, it will automatically update and animate itself to reflect the
instantaneous values of the property it is monitoring.

As well as being a good interface approach, equal opportunity controls have educa-
tional value. First, students now have a quantitative measure of what the turtle is doing
at any point in time. Second, individual properties of the simulation that are perceptually
hard to view can be teased out. For example, the turtle’s rate of movement can
be displayed as its vector components of speed and direction. Finally, the movement of
the slider thumb gives additional information on the turtle’s activity by animating the

T Naturally, the figure fails to show the turtle’s movement, the dynamically changing slider values, the colour
and the audio output that are fundamental to the user’s sense of engagement.

THE DESIGN AND EVOLUTION OF TURBOTURTLE 783

monitored value: for instance, the rate of change of velocity is vividly revealed by slider
movement, but is hard to visualize in a textual display.

While sliders represent how input controls can show output, so can output act as
input. The turtle itself is an equal opportunity control. As mentioned earlier, students can
grab the turtle and drag it to a new position causing corresponding changes to its
potential energy. When they ‘throw’ it with the mouse, it starts moving in the given
direction at the speed it was thrown. Of course, all these changes are continuously
reflected by the sliders.

Timing. In TurboTurtle, the microworld clock (set by the time button) lets the student
freeze the microworld at any point. This allows specific values to be set prior to running
a new experiment. Time can run smoothly, giving a continuous real-time simulation, or
discretely which allows students to scrutinize the change in variable values at critical
instants. For example, the student could investigate changes in potential and kinetic
energy by discretely stepping through the turtle’s motion as it hits the floor and as it
reaches the apex of its motion under gravity.

The user controlled clock also allows the user to pause the dynamic behaviour of the
equal opportunity interface controls. Without it, our extensive use of equal opportunity
could make parts of the simulation hard to control. With the clock running, the student’s
attempts to set a specific value would be constantly affected by the system’s dynamic
modifications to the same set of controls.

A design limitation in the current version is that time can only run forwards. The
ability to run time backwards is pending implementation.

Concrete and abstracted controls. TurboTurtle is intended for students ranging from
7 to 17 years in age, and for peer groups where individuals have different knowledge and
talents. How can this divergent audience be handled in a microworld?

Our solution was to create two sets of controls: concrete and abstract. Con-
crete controls, which are continuously visible, present concepts that are familiar and
frequently accessed by the youngest students (as shown in Figure 1). Abstract controls
for more sophisticated manipulations are revealed on demand by mature users.
For example, TurboTurtle-2 lets advanced users view and manipulate values in
Kinematic equations, which are selected as menu options in the “Laws” pulldown
menu (Figure 2, left-side). Choosing the first “Energy” equation creates a window
into the microworld that dynamically displays the turtle’s potential and kinetic en-
ergy. The second “Rocket” equation creates a control panel (Figure 2, right-side)
that allows students to attach rockets of varying force and fuel times to the turtle, which
lets them examine the inter-relation between force, acceleration, mass, gravity and
friction. Other kinematic equation options provide dynamic simulations of the behav-
iour of a user-specified set of formula values: essentially they provide an animated
calculator.

Recoverability is an important property in any interface that encourages exploration.
Even a seemingly benign microworld has elements of the risk for students. Recoverability
allows users to experiment with features, safe in the knowledge that they can get back to
their starting state.

784 A. COCKBURN AND S. GREENBERG

Rocket law: F =M * A [ESEEENEEININ
r—

‘To bravely go where no turtle has
Energy: mv? & mgh gone before...
2

Set the direction, fuel time, and force
¢ for the rocket, then click ‘Launch’.

Rocket:

Horatio, our brave {but slightly mad)
turtle will rocket on his way to...
nowhere in particular.

v=U+at “Hoadi

V&= l’_l2+ 2as

s=ut+g§2

2

Abort Misslon?

FIGURE 2. Selecting and using “formal” experiments in TurboTurtle.

Exploring a dynamic microworld is risky because it can change rapidly. In Turbo-
Turtle-2, for instance, a student may arrange a group of slider values to simulate a rocket
working against a certain friction, gravity and mass. When the rocket is launched, the
simulation runs and slider values will change to reflect the dynamically changing
environment. In early trials of the system, we would note that students frequently forgot
or mistook one or more slider values. When they ran the simulations, they were often
immediately aware of their error, and found it annoying to have to reset the values that
the system had changed. Similarly, students may be reluctant to change system para-
meters away from an interesting state for fear of corrupting them.

TurboTurtle-2 lets students recover from their ventures by allowing them to save and
reload named states of the microworld. Of course, this is an explicit action that students
must take, and they will likely do this only for highly interesting states. The proposed
time control extensions mentioned previously, whereby the simulation can be run
backwards, is also a type of undo, allowing students to return to prior critical points.

3.4. SUPPORTING THE TEACHER’S CURRICULUM

As described so far, TurboTurtle is a free-form exploratory microworld that provides no
guides to appropriate paths through the environment that it simulates. TurboTurtle
therefore includes a scaffolding facility that lets teachers, mentors or parents provide
students with directions that guide and assist exploration of the Newtonian world.
Rossen and Carroll (1996) describe the roles of “scaffolding examples” as “sample
problems of realistic size whose complexity is gradually revealed in steps that leverage
and reinforce the intrinsic structure of the problem-solution process... Scaffolding
examples exploit the natural dependencies among a domain’s concepts, tasks and
procedures”.

THE DESIGN AND EVOLUTION OF TURBOTURTLE 785

The main idea of TurboTurtle’s scaffolding facility is that an “interesting” state of
a microworld simulation is used by the teacher to create a task. The teacher first uses
TurboTurtle to run the simulation until it reaches a desired configuration. The teacher
saves this state (through TurboTurtle’s state saving facility) to create a “scenario” that
specifies a set of values in the microworld. They can then annotate this scenario with
directions, questions and hints.

The students start their explorations by calling up the scenario (which could be
assigned to them by the teacher). Because the state of the microworld is established
automatically, all students using this scenario start with the correct settings, and avoid
the errors that occur if they had to recreate the settings themselves. As part of the
scenario, the teacher’s directions are displayed (bottom right window in Figure 3).
Student’s then carry out the actions described, and (optionally) type in their observa-
tions, conclusions or answers in another dialog box (not shown). Of course, students are
not forced to follow the teacher’s instructions. In keeping with the exploratory micro-
world philosophy, the teacher’s guidance is a recommended track that people can
experiment around, rather than follow strictly.

Figure 3 shows TurboTurtle immediately after a student has loaded a scenario. In this
case, the teacher wants students to learn that objects with zero mass are not influenced by
gravity. The scenario gives the turtle zero mass and the world no gravity, and the turtle is
slowly moving across the screen leaving a trail in front of a mountain scene. Students
continue their experiments from this point. They are first asked to form a hypothesis on
what will happen when gravity is added. They are then directed to actually do this, and to

(8 turbo #2
[pies — — T
Fle Veloclty Walls Trall laws Sound Home 1t Exploin © Tne|»| Show Participants [
Turtio sike | _Friction = —
Sl EETT T | xcomponont (oft-right speed) e
= 1 R ml Par in Turbo
52 Gravity 4 O Ty e e
Helght) JEER] Y. (up-down speed) 4‘* Saul Greenberg
- O == LA 3 Andy Cockburn | fn
o e y i/ PatDeavol Pz |
| 8 A labiaddd SR |
g x value | 4 y valuo | ° i oy

[@ task

Carry out the task below...

Notice that the turtle is moving slowly from left to right.
Its mass and gravity are both zero.

Question: What do you think would happen if the gravity was set
o a small positive value?

Question: Try it out. What do you see? Is this what you expected?
Question: Why do you think this happened.

F T - B

FIGURE 3. Setting a scenario and task.

786 A. COCKBURN AND S. GREENBERG

comment on whether the results they see are the ones expected. The hint, when selected,
will tell them to add mass to the object.

Teachers have full control of the contents of perspective tasks which lets them adapt
TurboTurtle to particular teaching and learning styles. Teachers can vary the amount of
explicit direction by deciding on the degree of freedom that a scenario should offer, by
controlling the number of directions and hints provided, and so on.

4. The communal microworld

The next step was to redesign the microworld into a communal one, where small groups
of students (diads or triads) could manipulate and talk about the simulation. We wanted
to reuse much of the design of the solitary world for several reasons. From a learning
view, we wanted the same system to be usable by a single student as well as a group of
students. From a design view, we were interested in the interface design decisions
necessary to convert TurboTurtle-2 into a multi-user system. From a technical view, we
wanted to see how much implementation effort was required to make the existing system
group-aware.

This section is primarily concerned with the multi-user interface design decisions that
governed the development of TurboTurtle-3 (Cockburn & Greenberg, 1995). It begins
with an overview of the system, and continues with the design decisions made.

4.1. TURBOTURTLE-3

In static images, such as the screen snapshots in this paper, TurboTurtle-3 appears to be
almost identical to TurboTurtle-2. Its group awareness, however, makes it style of use
significantly different. In the description below, we focus on these differences by assuming
that two or three distance-separated students, each with their own computer, are looking
at the screen and are talking to each other by a speaker-phone.

Each student sees exactly the same running simulation on their display. The turtles are
in the same position and move at the same speed, the trails are in the same place and the
background scenery is identical. Similarly, the controls are mostly identical. They are in
the same window location and have the same setting. However, students can decide to
change their view of some of the controls. For instance, one could be examining turtle
speed by its x—y components, and the other by speed and direction (Turtle meets
Pythagoras!). Similarly, one could display independently some of the advanced control
panels, such as the Energy panel.

In TurboTurtle-3 all students can work simultaneously doing anything they want at
any time. For example, one student might move the turtle, while another adjusts its
speed, and another alters the world’s gravity. As in real life, they could even try to adjust
the same control, which would cause it to “bounce” back and forth as they fight over its
position! As any control is being adjusted, the new position is immediately reflected on
all displays.

Only two new interface components were added to TurboTurtle-3. First, students see
the other person’s location on the screen by a telepointer, shown as the multiple cursors
in Figure 3. Not only is a student’s own cursor continuously drawn and updated on the
display, but so are the cursor’s of their partners. Next, a special menu option called

THE DESIGN AND EVOLUTION OF TURBOTURTLE 787

“collaborations” is added to TurboTurtle-3. This presents a dynamic list of all the
students in the learning session (Figure 3, top right). Pressing a student’s name will raise
an information window describing that student.

4.2. DESIGN DECISIONS

In spite of the conceptual simplicity of interface changes, many design decisions had to be
made. These included how students viewed the simulation, how they would control it,
and how they could share their deictic references.

Viewing the simulation. What does it mean to have several students view the simula-
tion? We considered four alternative approaches to view sharing.

1. Strict WYSIW IS views.T Every student would view exactly the same thing on their
display: the ball as it was bouncing; the changes in background scenery; the ball’s
location in the scene; the tracing of ball movements; and so on.

2. Relaxed WYSIW IS views. While the state of the simulation would be the same,
every student could have different viewports on it. That is, one student could be
looking at (say) a zoomed out view, while the other could be zoomed in on
a particular scene.

3. Unconnected views, same simulation parameters. The parameters of the simulation
would be the same across all systems, but the effects of the parameters on the ball
would be local. This could simply be a matter of each student’s computer moving
the ball at its own speed, but since performance of the computers would differ
slightly, so would the position of the ball. Alternatively, a student could create
a smaller simulation room by shrinking the window, which means that the ball
would be bouncing off the walls at different places and frequencies. In either case,
the ball position in the simulation would differ across the views.

4. Unconnected views, different simulation parameters. The parameters of each stu-
dent’s simulation would differ, thus affecting not only the position of the ball on
a local display, but its overall behaviour as well.

We wanted the view to act as a conversational prop providing a focus for the students
discussion (Hill, Brinck, Patterson, Rohall & Wilner, 1993). We therefore thought the
strict WYSIWIS view would be the best choice to encourage this. The display becomes
a shared cognitive artifact, and speech references would remain within the context of the
shared image. Strict-WYSIWIS would allow students to pose questions and comments
to each other such as “why did the ball bounce that way?” or “the ball just moved into
outer space” or “look at the shape of the trace”.

In contrast, views 2 through 4 would cause progressively greater breakdown in the
discussion, probably resulting in greater confusion and ultimately less interaction be-
tween students (a similar observation was made by Tatar, Poster & Bobrow, 1991).
Relaxed WYSIWIS causes people to ask “can you see this?” or respond “which one?”

T What-you-see-is-what-I-see, or WYSIWIS was coined by Stefik, Bobrow, Foster, Lanning & Tatar (1987)
in a discussion about a shared whiteboard system.

788 A. COCKBURN AND S. GREENBERG

Students using the unconnected view with the same parameters would have to explain
what their ball is doing on their display. With different parameters, they would also have
to explain the settings.

Although the relaxed and unconnected approach does give the student the ability to
customize their view, the strict WYSIWIS view seems preferable as it reinforces the
microworld’s role as a conversational prop.

Controlling the simulation. The simulation is directed by manipulating the controls on
the control panel: sliders, buttons, menu selections and by directly moving the ball
position in the view. Given a strict WYSIWIS view and identical simulation parameters
across the system, there remains several options for presenting the controls and for
having students interact with them.

First, how do students view the controls? Controls could be identical on the displays
(strict WYSIWIS), or different students may see different controls in their view (relaxed
WYSIWIS). The choice is not clear here. In a complex simulation system such as
TurboTurtle, the number of controls, including the pull-down menus and the pop-up
panels, are huge and can clutter the display quickly. It seems reasonable to have a strict
WYSIWIS view of the primary controls, while having a relaxed WYSIWIS view of
advanced controls.

Second, how do students see the setting of a changed control? In a “parcel post” model
(Tatar et al., 1991), the changed value of the control would be delayed until the student
had completed their action. For example, if one student adjusted the gravity slider from
0 to 20, the other student would only see the slider jump instantly to 20. In contrast, the
“interactive” model causes the control’s state to be transmitted as it is being manipulated.
Sliders move, buttons get pressed, pulldowns selected. Clearly, the interactive model is
preferable, as students will be able to see the changes as they are made, and are less likely
to miss the actions of the others.

Finally, who has permission to use what controls? Several choices are possible.
Students could be assigned to a mutually exclusive subset of controls. Alternatively,
a turn-taking model could be enforced, where only one student at a time can manipulate
the controls. Or students may be allowed simultaneous access to all controls, constrained
perhaps by some mechanism to minimize confusion if two people try to manipulate the
exact same control. We have opted for simultaneous access because we believe it will
encourage each student to explore and control the simulation. Anyone is allowed to do
anything at any time. The key to making this work is to provide rich dynamic feedback
between students that leaves them constantly aware of each other’s actions (Greenberg
& Marwood, 1994), and encourages them to talk.

In summary, students have mostly the same image of the core controls, with advanced
controls being optional to avoid screen clutter. Anyone can manipulate any control at
any time, and all the user’s manipulations are constantly visible.

Deictic references allow people to point to things and refer to them using words such as
“there”, “this one” and “that” (Tatar et al., 1991). A strict WYSIWIS view by itself does
not provide enough information to let students understand each other’s deictic refer-
ences, for they cannot tell what part of the screen they are attending. Breakdown of deixis
has been a common failing of groupware (Tatar et al., 1991).

THE DESIGN AND EVOLUTION OF TURBOTURTLE 789

The easiest way to support deictic reference is through telepointers (Greenberg,
Roseman, Webster & Bohnet, 1992; Tang, 1991), which are cursors, one for each student,
that are continuously visible on all displays (as in Figure 3). Telepointers are useful in
microworlds for deictic and other types of references. First, they act as a locus of
attention; one student can assume that the other is directing their gaze at their cursor.
Second, they become an artifact that they can talk around, e.g. the phrase “look at this” is
tied to the spot on the screen that the person is pointing to. Third, their animation
becomes a gesture. For example, a student circling an area of the screen tells others to
attend to all of the items in that area. Finally, they provide a cue of someone’s intent. If
the telepointer is moving towards a slider, then one expects that the next action could be
to change the setting of the slider. This helps mediate who is doing what on the display
(Greenberg & Marwood, 1994).

Telepointers were included in most parts of TurboTurtle. People can gesture around
the shared view, focus attention to settings on the control panels and implicitly indicate
both their intent and their action when manipulating a control.

5. Preliminary evaluation

At all stages of its development, TurboTurtle has been subject to informal usability
analysis by HCI professionals and by University students. Only the most recent collab-
orative version, TurboTurtle-3, has been evaluated on children, and our observations are
described in this section.

The aim of the evaluation was to detect user interface flaws and to investigate
how children, rather than adults, collaborate in synchronous groupware. Many
studies have examined the collaboration styles used by adults when sharing an artifact
such as a sketchpad (Tatar et al., 1991; Minneman & Bly, 1991; Ishii, Kobayashi
& Grudin, 1992; Greenberg, Hayne & Rada, 1995). We wanted to see whether children’s
collaboration styles were similar to those of adults, and to see whether they encoun-
tered any unforseen problems when interacting through TurboTurtle as a shared artifact.
Issues of the pedagogical value of the Newtonian microworld were not investi-
gated—until the coarse grained usability and collaborative issues are addressed and
understood they will continually confound any investigation of the subtle pedagogical
issues. For similar reasons, at this early stages of usability analysis, we did not investigate
the effectiveness of the built-in scaffolding facilities.

Section 5.1 describes the evaluation method. Section 5.2 identifies flaws in the user
interface that are independent of the collaborative properties of the microworld. Sec-
tion 5.3 describes the interaction styles used by the students and discusses their problems
with sharing the microworld.

5.1. METHOD

The evaluation was based on a combination of think-aloud (Lewis, 1982) and construc-
tive interaction (O’Malley, Draper & Riley, 1984; Miyake, 1982) evaluation techniques. It
was a preliminary study on the general effectiveness of the microworld, and was designed
to give quick access to high-level issues such as students’ collaboration styles. We felt that
more formal techniques, such as controlled experiments, video transcription and so on,
would provide too much low-level detail too early.

790 A. COCKBURN AND S. GREENBERG

Twelve students, all aged 10 or 11 years old, used the system in mixed sex pairs for
a single half-hour session. We used mixed sex pairs because we wanted to make
preliminary observations on whether boys dominate the collaboration. Earlier work on
the sharing of a single-user interface in mixed sex young students pairs observed that
boys tended to dominate the single set of input and output devices (Bensemann, 1993;
Inkpen, Booth, Klawe and Upitis, 1995), although a later study suggests that this may
not really indicate who is in control of the group’s interaction (Cole, 1995). Additionally,
we believed that the use of mixed gender pairings would provide a testing situation rich
in potential for collaborative breakdowns—Yelland (1995) reports that mixed gender
pairings tend to focus on disagreements rather than clarifications.

The students were seated on swivel-chairs approximately 2 m apart with a clear view
of their partner and their partner’s screen (pair 1 in Fig. 4). There were several reasons for
using a face-to-face evaluation environment. First, we wanted to see whether collabora-
tion through the shared artifact was feasible for young students. If the students chose to
get up and walk to their partners’ machine this would be a strong indication of the failure
of the shared environment: such behaviour would be impossible if students were phys-
ically separated. Second, we wanted to see if the students would use eye-to-eye contact as
a method of resolving conflicts and breakdowns. Third, if the students chose to watch
their partner’s screen rather than their own it might indicate a failure of engagement at
the interface, or a lack of faith in WYSIWIS.

To promote think-aloud and constructive interaction, all pairs were advised that
they should continuously tell their partner what they were doing and why. The
components of the system and specific tasks with it were verbally presented to the
subjects.

Table 1 shows the order in which system components were introduced to the students.
It also shows the higher-level issues that were being implicitly introduced at each stage.
The specific tasks that the students carried out varied between subject pairs, but the core
of the evaluation was constant, as shown in Table 1. The tasks began by familiarizing
students with TurboTurtle as a collaborative tool. For example, initially they were asked
to directly manipulate the turtle, with the intended effect that they learn, through their
experiences, concepts such as telepointers, collaborative manipulation, and how Turbo-
Turtle can behave as a shared sketchpad. Tasks became increasingly complex, ending

|
‘0!

Subject 1 6\ /
6\, Subject 2

Observer

FIGURE 4. Layout of the evaluation environment.

THE DESIGN AND EVOLUTION OF TURBOTURTLE 791

TaBLE 1

Order of introduction of system components, and the implicit objective of doing so

Feature introduced

Implicit topic

Direct manipulation of the
turtle

Manipulation of turtle size
and shape

Trail control: on, off, clearing

System clock, speed, direction,
wall-types

X and Y component view of
speed

Friction, gravity, mass
Rocket

With the time off and trail on the sytem behaves as a shared
sketch-pad. Telepointers and collaborative manipulation are
introduced

Introducing sliders as the main mechanism for controlling the
microworld. Negotiation over slider control introduced

Introducing menu selection and absence of WYSIWIS on
pulldown menus

Introducing dynamic behaviour of the simulation

Previously Speed had been shown as a vector. Demonstrates
a relaxation of WYSIWIS: different views possible

Newtonian properties of the turtle
Further Newtonian properties of the turtle

with the introduction of Newtonian properties such as friction, gravity, mass, the effects
of rockets, and so on. The teacher’s module for setting prescriptive tasks (Section 3.4) was
not used in this preliminary study. Finally, it should be emphasized that subjects were
frequently prompted to think-aloud and to predict system behaviour.

5.2. PROBLEMS WITH THE INTERFACE

Before discussing styles of collaboration and collaborative breakdowns it is necessary to
place these issues in context by examining the user’s interaction with the system
independent of the collaboration. An excess of problems with the single-user aspects of
the interface would preclude successful collaboration through it.

Although children were mostly computer literate, they were unfamiliar with the
particular widget set used by TurboTurtle. For example, almost all of the children
initially had difficulty setting precise values using Tk/Tcl’s scale widgets (sliders). This
problem was eased when the subjects were shown that clicking to the side of the scale
grab-bar, rather than on it, achieved discrete increments of the scale’s value.

All student pairs encountered problems with the rocket controls. Most TurboTurtle
controls are dynamic—changing a value results in immediate changes in the microworld.
The rocket controls are the only exception, with values remaining static for the burn time
of the rocket. The problem is severe because the sliders remain active, allowing students
to change the visible values of the sliders while, counter intuitively, the internal values
remain unchanged. This “obvious” user interface flaw was simple to fix, and all rocket
controls are now dynamic.

There were several other minor problems with the single-user’s interface, but nothing
so severe that is precluded successful collaboration.

792 A. COCKBURN AND S. GREENBERG

5.3. STYLES OF COLLABORATION AND COLLABORATIVE BREAKDOWNS

We were interested in seeing how children would collaborate through the microworld. In
particular, we wanted to see how they managed (or mis-managed) their interactions in
a microworld that not only allowed parallel activity, but that made no attempt to
structure turn-taking or mediate conflicting actions.

5.3.1. Observations
Table 2 summarizes the styles of collaboration used by six pairs of users. It shows that
different pairs talked to each other in quite different ways (from almost no speech to
continuous speech), and that they had various collaboration styles in the ways they
jointly manipulated the microworld (from sequential turn-taking to negotiated actions to
parallel activity). The table generalizes collaboration styles which evolved during the
sessions. For instance, three of the six pairs behaved chaotically in the first moments of
the session, changing properties of the simulation rapidly without considering their
partners. Two of these three pairs rapidly amended their collaboration styles, without
prompting, to allow more considered use of the microworld.

How do students attempt to control, or negotiate control of the system? Our observa-
tions show a wide spectrum of styles. Four of the six pairs made some effective use of
their ability to simultaneously control the microworld. In particular, pairs two and five

TABLE 2

Summary of the styles of collaboration across the six pairs of users

Pair Person

Computer
familiar

Individual speech

Pair observation

1 Boy Very Rapid speech and The boy dominated the collaboration
manipulation with continuous fast speech and rapid
manipulation of the microworld
Girl Little Little speech or The girl almost totally excluded except
manipulation when invited to do something by the boy
2 Boy Very Continuous discussion Fluid and dynamic shared control of the
microworld
Girl Very Continuous discussion Periodic breakdowns with appropriate
admonishment “You aborted the
mission!”
3 Boy Very Conversation after Extensive negotiation over the
breakdown management and ordering of activities
Girl Very Continuous “think with the girl taking the leading role
aloud”
4 Boy Very Continuous speech The boy primarily drove the
collaboration, with continuous
Girl Moderate Continuous response invitations for the girl to carry out
activities
5 Boy Very Continuous discussion Good shared control of the microworld
Girl Very Continuous discussion
6 Boy Very Almost no speech Very poor use of the microworld, each
Girl Little Almost no speech user attempting to make single user use

THE DESIGN AND EVOLUTION OF TURBOTURTLE 793

continually discussed their actions and managed their collaborations successfully.
Interestingly, these successful pairs were vocal about the undesired actions of their
partners. For instance, in pair two, the boy closed off the rocket control dialogue (by
clicking the “Abort Mission” button) without prior warning. The girl immediately turned
to the boy and scolded him with “You aborted the mission!”

Other pairs demonstrate extremes of collaborative breakdown. Pair one, for instance,
demonstrated the problems that arise when one person dominates the collaboration. The
boy changed the properties of the simulation so rapidly that the girl could not keep pace.
The girl initially took her hands away from the mouse, clearly attempting to follow the
frenetic activity of her partner. Shortly afterwards she shouted “Leave it!” The boy briefly
capitulated. For instance, when about to delete the turtle’s trail, he asked “Do you want
that to stay there?” However, he continued to dominate the session, grabbing the turtle
or sliders whenever the girl hesitated. This behaviour is consistent with the observations
of Bensemann (1993) who notes that strong-willed and highly independent children failed
to collaborate successfully, and that boys tend to dominate the control of input devices
when sharing a single-user system.

In contrast, pair three followed sequential activity, in which they negotiated control to
the almost total exclusion of simultaneous activity. For example, when asked to set the
rocket heading to zero, its fuel to 50, and its force to 100, the girl said “You set the
heading, then I'll set the fuel and force. Then you can launch the rocket”. The sequence of
actions was carried out in that order, with no overlapping of actions, and with an explicit
“OK” once each stage was completed.

Pair six almost ignored the fact that they were in a collaborative microworld. They
were almost silent despite being frequently encouraged to speak to each other. They
struggled against the actions of each other, even though the telepointers showed the
cause of their difficulty (the evaluator confirmed that they were aware of the purpose of
the telepointers). At the end of their session they stated that the microworld would be
much easier to use on their own. Their reticence during the evaluation cannot be
attributed to shyness as they were open and articulate when interviewed at the end of the
session.

5.3.2. Conflicts and breakdowns

The “successful” collaborations, indicated by pairs 2-5, were far from seamless, with
breakdowns frequently occurring. Many of the collaborative “breakdowns”, however,
were positive contributions to the overall interaction, with the breakdown becoming
a focal point for negotiation about what the microworld should do next. Conflicts over
the sliders and turtle were frequent, especially if a task consisted of a single unit task (such
as “Move the turtle to the top-right of the screen”, or “Make the Mass 5”). The result of
such conflicts is the TurboTurtle equivalent of Window-Wars (Stefik, Foster, Kahn,
Bobrow, Lanning & Suchman, 1988) where the turtle or slider position jerks in response
to simultaneous manipulation. However, such conflicts are not necessarily a bad thing.
Greenberg and Marwood (1994) argue that simultaneous access to controls can be
mediated by showing people that conflict is occurring, and that the participants can
repair the conflict through their natural social skills, much as they do in the real world. In
TurboTurtle, the children could see the two telepointers on the slider as well as the
bouncing slider position as both tried to move it. The resulting problem was more in

794 A. COCKBURN AND S. GREENBERG

their own immaturity at negotiating control. For example, in some cases the subjects
were tenacious in their desire to be last one in control, even though they were well aware
of the cause of the problem as revealed by the telepointer.

What distinguished a successful “breakdown” from an unsuccessful one was the extent
of discussion that accompanied the conflict. Pair two, for instance, normally managed
the sliders without difficulty, but at one point they argued over the desired mass of turtle:
the girl trying to set the mass to 20, while the boy tried to make it 30. Their conflict lasted
approximately 8 seconds and was accompanied by continuous comments such as “Make
it 20!”, “No! Make it 30!” and so on. Finally the girl set the mass to 20, and the boy
commented “Well I'll make it bigger then”. What is important here is that the conflict
stems from the task, rather than the interface. In contrast, pair six encountered the same
problem of simultaneous access to a slider, but it was not clear to the observer (or to the
collaborators) whether the values that they were trying to set were the same or
different—the confusion being caused by a total absence of speech.

5.3.3. “Bugs’’ in the support for collaboration

The importance of mutual activity awareness in groupware was emphasised by a flaw in
the rocket controls. As described earlier, TurboTurtle’s “telepointers” allow each user to
maintain awareness of the activity of their colleagues by communicating each user’s
cursor position. GroupKit, the underlying groupware toolkit (Roseman & Greenberg,
1996), is limited to a single set of primitive telepointers within an application’s top-level
main window. Telepointers were unavailable when changing rocket properties because
the rocket controls were implemented in a separate top-level window.

The absence of awareness information when working with the rocket was a significant
problem for all the students. Frustrated comments such as “Hey, how did that happen”,
and “What are you doing?” were frequent.f Clearly, the absence of telepointers in this
part of the dialog and the associated breakdowns indicates how important it is to
maintain the children’s awareness of each other’s activities.

Other “bugs” in the collaborative support are harder to pin-point. Our general
impression on WYSIWIS was that successful collaboration pairs wanted a more rigid
implementation of WYSIWIS: for instance pairs four and five wanted to be able to see
their partner’s menu selections (pull-down menus were only shown to the user executing
the action), and they wanted to maintain a shared view of the speed controls. Pairs one,
three and five said that the telepointers should be bigger or brighter to help maintain
awareness, and pair six stated that they found it hard to see the actions of their partner,
but that the cursors should not be made bigger or brighter. All these comments clamour
for more awareness of each other’s actions in all parts of the microworld (Gutwin, Stark
& Greenberg, 1995).

5.4. SUMMARY OF THE EVALUATION

The children had fun. All students indicated that they enjoyed using the system, and
advised that more colours, sounds and better graphics would improve the system. None

+To provide telepointers in a separate rocket window would require additional functionality at the toolkit
level. Until this is provided, telepointers will be enabled by attaching rocket controls to the main TurboTurtle
window.

THE DESIGN AND EVOLUTION OF TURBOTURTLE 795

of the students chose to leave their machine and work directly with their partner on
a single machine. Eye-to-eye contact was very rare, but during breakdowns it was
common for one subject to glance at their partner, without reciprocation, and then
return their gaze to their own screen. After an initial confirmation of the system’s
WYSIWIS behaviour, by glancing at their partner’s screen at the start of the session,
each user’s gaze did not return to their partner’s screen. These observations indicate
a generally successful implementation of WYSIWIS.

We see the evaluation as encouraging. We believe the interaction styles witnessed are
somewhat comparable to those previously reported for collaboration between adults.
However, children’s negotiation of control are almost caricatures of adult negotiation.
Even in this small subject set, we saw extremes in the way individual children’s personal-
ities affected the successes of their partnerships. Although we have not been surprised by
the breakdowns that occurred, we were surprised by the extreme behaviours we ob-
served, and by the persistence of some children to continue actions that limit the
effectiveness of the partnership. In retrospect, we should have predicted this outcome
given the youth of our users and the (sometimes) oil and water relationships caused by
boy/girl partnerships (Yelland, 1995).

The TurboTurtle study also supports Cole’s argument that students’ control of
a collaborative activity is a social process developed by group dynamics, rather than an
artifact induced by mouse possession (Cole, 1995). Cole noticed that the single mouse can
serve both as a symbol of subordination when the mouse-holder is obeying group
instructions, or as a symbol of control when the mouse-holder makes the decisions. In
TurboTurtle, which provides multiple mice and parallel activity, the issue of control was
clearly a social one. Even though mouse possession played no role, we still saw a flux
where students assumed subordinate positions, fought for control or dominated the
collaboration.

In summary, our observations support the argument that groupware cannot make
a bad team good, but we have been sufficiently encouraged to continue development and
evaluation. We believe TurboTurtle to be an iteration towards a collaborative and
educational virtual laboratory. We have to consider how collaborative systems can both
give children the freedom to explore the world at their own pace and personal style, while
adding structure to minimise the risk of breakdowns expected because of the immaturity
of the audience.

6. Related work

Single-user microworlds have been developed since Papert envisaged them in Min-
dstorms (1980). Smith’s Alternative Reality Kit (1987) is one example, and was a direct
stimulus for our initial work on TurboTurtle. Our current research interests, however,
are on the design and use of synchronous collaborative artifacts by children. The works
most closely related to these interests stem from the Envisioning Machine (Roschelle,
1991; Roschelle & Clancey, 1992) and from SharedARK (Smith, O’Shea, O’Malley,
Scanlon & Taylor, 1991).

The Envisioning Machine is a single-user system for examining acceleration and
velocity. Despite being a single-user system, Roschelle and Clancey (1992) examine
collaborative learning with pairs of students sharing the Envisioning Machine’s single set

796 A. COCKBURN AND S. GREENBERG

of input and output devices. Their work emphasises the user’s formation of a mutual
understanding through simultaneous coordination of the three following activities:
perception of the shared artifact, gesture around it, and language. They report that, in
order to understand the students’ interactions, it is necessary to analyse all three
communicative channels. Our observations with TurboTurtle concur that all three
channels are fluidly mixed in effective collaboration, and that the breakdown of one
channel corrupts the overall interaction. For instance, pair one’s failure to talk destroyed
their collaboration (a language failure), and the absence of telepointers in the rocket
dialogue severely damaged its effectiveness in support for collaboration (a gestural and
artifact failure). It is notable that, in contrast to the Envisioning Machine, gestures
around TurboTurtle are part of the artifact (telepointers) rather than being an activity
external to it.

Like TurboTurtle, SharedARK is a synchronous groupware application that simu-
lates a variety of physical objects. The primary question motivating the research reported
in Smith et al. (1991) is “What is different when members of a problem-solving pair are
physically separated then reconnected via [different types of] computer and com-
munications technology?” Their study, then, focuses on comparing physically remote
collaboration supported by video-tunnels, with physically remote audio-only collabora-
tion, with face-to-face collaboration in a variety of different seating positions. The
subjects in the study were mainly postgraduate research students with some technical
and managerial employees of a University. To our knowledge, SharedARK has not been
used to examine collaboration between young students.

Other related work, reported in CSCL’95 (Schnase & Cunnius, 1995), reveals a variety
of techniques for supporting and examining collaborative work. For instance, Bricker,
Tanimoto, Rothenberg, Hutama & Wong (1995) examine collaboration between eighth
grade math students and between college students using a suite of small shared artifacts
such as the The Color Matcher. In the Color Matcher users adjust red, green and blue
colour values to match a ‘target’ colour. Although all of the systems in the suite provide
multiple input devices (each student has a mouse to control a private cursor), they only
support a single output device (a shared screen). Furthermore, there are severe con-
straints on the GUI components that each user can control. Each input wilget, such as
the slider controlling the “Red” value, can only be manipulated by the user with the red
cursor. They report that allowing multiple input devices (mice) made for “very little
conflict between the users as there was no contention for the input resources”, but that
the restriction on simultaneous control caused problems—“some students did get slight-
ly frustrated in discovering that they could not manipulate another player’s color”. Also
reported in CSCL’95 are two analyses of mixed gender pairings when sharing single-user
software (Inkpen et al., 1995; Yelland, 1995). Inkpen et al. note the problems that young
students have when sharing a single mouse, and stress the potential of systems that
support close collaborative work as well as individual exploration.

7. Technical design experiences

This section briefly examines the implementation efforts of the three TurboTurtle
iterations. Our most significant observation is that building computer-supported
cooperative learning (CSCL) systems is no longer solely the domain of computer hackers

THE DESIGN AND EVOLUTION OF TURBOTURTLE 797

and technical gurus. The availability of graphical and groupware toolkits alleviate much
of the complexity.

The command-line TurboTurtle-1 was implemented in approximately 5000 lines of
C on a VAX 11/780 using a BBC Model B micro-computer to display the graphical
output. Its hardware demands made it highly inappropriate for general classroom use,
but it was a valuable point system for our further work.

The graphical TurboTurtle-2 was written in approximately 1000 lines of Tcl/Tk code
(Ousterhout, 1993) on a Unix environment. That its implementation is only one-fifth the
size of the original version, in spite of the much higher complexity, is indicative of the
state of the art in graphical user-interface (GUI) toolkits. In our particular case, the
interpreted scripting language of Tcl made it easy to describe TurboTurtle’s flow of
control, and the widget sets provided by Tk dramatically simplified the actual construc-
tion of the controls and the simulation.

The collaboration-aware TurboTurtle-3 was built in GroupKit, a groupware toolkit
(Roseman & Greenberg, 1992; Roseman & Greenberg, 1996). Because GroupKit is an
extension to Tcl/Tk, we directly modified TurboTurtle-2 to make it group-aware. Minor
modifications were made to about 80 lines, and only about 50 new lines of the code were
added to the original 1000. This took about 8 hours to do. As a result, TurboTurtle
gained its extensive facilities for group-awareness, such as telepointers and WYSIWIS
display. It also acquired the ability to bring latecomer to a session up to date, ensuring
that their view of the microworld is same as their fellow students.

The fact that minor changes and very little effort was required to make TurboTurtle
group-aware is a direct result of GroupKit. Since this toolkit foreshadows the kinds of
groupware tools that CSCL developers will have at their disposal, it is worth summaris-
ing GroupKit’s features.

1. A runtime infrastructure automatically creates the necessary distributed processes
on all machines, and manages their interconnection and communication require-
ments.

2. A simple set of groupware programming abstractions gives the developer most of the
tools required to coordinate their groupware applications. Primitives include
remote procedure invocation between application instances, sharing of data, and
generation and tracking of conference events (such as the arrival and departure of
participants).

3. A set of groupware widgets lets developers easily add generic interface constructs of
value to conference participants. These include telepointers, participant widgets
that display who is in a conference and provide information about them, and
widgets that promote awareness of where others are working in a relaxed
WYSIWIS view.

4. Session managers, interfaces that let people connect to groupware conferences, are
separated from the groupware applications. This means that the application devel-
oper can concentrate on the application itself, rather than on how people connected
to each other.

Most of the changes to TurboTurtle-2 simply required us to use GroupKit’s remote
procedure call facility to tell all processes to execute an action at all sites. Examples
include telling all to move the turtle to a new position, or updating the display on a slider.

798 A. COCKBURN AND S. GREENBERG

The telepointers were added with two lines of code, as was the widget listing the students
using the microworld. There were a few special things that had to be done, but none were
onerous. Perhaps the best part was that many technically complex aspects of groupware
could be ignored, simply because they were handled automatically by GroupKit (exam-
ples include session management and communication setup).

While TurboTurtle-3 was easy to code, we are not implying that adding group-
awareness is a trivial matter. The point is that the simplicity of GroupKit allowed us to
concentrate more on the design of TurboTurtle-3, rather than its coding.

8. Summary

TurboTurtle has gone through several design iterations, starting from a command-line
system and ending as a collaborative simulation environment. The paper described its
design evolution, and listed several of the design rationales behind our decisions.

There are many directions for further work in TurboTurtle. With respect to refine-
ments of the microworld, the world’s our oyster: there is no obvious end to the types of
domain that can be covered by a group-aware simulation. There is, of course, much to be
done investigating the nuances of adding collaboration to learning environments. Al-
though we have run several ad hoc usability studies and one larger collaborative usability
study we believe that, as yet, we are only detecting the “large grain” usability flaws.
Extensive observation over the coming years will refine our understanding of the nature
of computer-supported collaborative learning.

Our observations and experiences in developing a collaborative microworld should be
of interest across the various disciplines in computer supported learning. Of note is the
small effort required to convert our single-user microworld to a collaborative one.
Toolkits for real-time groupware, such as GroupKit, are greatly reducing the prerequi-
sites of technical knowledge demanded to build a new generation of multi-user educa-
tional systems.

The collaboration between the two was made possible by the University of Canterbury’s Erskine
Fellowship. The GroupKit part of this research is (gratefully) supported in part by the National
Engineering and Research Council of Canada, and by Intel Corporation. Many people at the
University of Calgary, with Mark Roseman in particular, have contributed in one way or another
to GroupKit’s development.

References

BAECKER, R. M. (1993). Readings in Groupware and Computer-Supported Cooperative Work. Los
Altos, CA: Morgan Kaufmann.

BENSEMANN, G. (1993). Capturing the Interest of Young Children in Computer Science. B.Sc.
(Honours) Project, Department of Computer Science, University of Canterbury,
Christchurch, New Zealand.

BRICKER, L. J., TANIMOTO, S. L., ROTHENBERG, A. 1., HUTAMA, D. C. & WONG, T. W. (1995).
Multiplayer activities that develop mathematical coordination. ACM Conference on Computer
Supported Cooperative Learning (CSCL '95), pp. 32-39. Bloomington, IN, 17-20 October.
London: Lawrence Erlbaum Associates, Inc.

CLEMENTS, D. H. & GULLO, D. F. (1984). Effects of computer programming on young children’s
cognition. Journal of Educational Psychology, 76, 1051-1058.

THE DESIGN AND EVOLUTION OF TURBOTURTLE 799

COCKBURN, A. & GREENBERG, S. (1995). Turbo-Turtle: a collaborative microworld for
exploring Newtonian physics. ACM Conference on Computer Supported Cooperative Learning
(CSCL ’95), pp. 62—-66. Bloomington, IN, 17-20 October. London: Lawrence Erlbaum Associ-
ates, Inc.

COCKBURN, A. J. G. (1994). Turbo-Turtle: educating children in an alternative reality universe.
Proceedings of the Computer Human Interaction Specialist Interest Group of the Ergonomics
Society of Australia (OZCHI'94). 28 November—1 December, pp. 99-105, Melbourne.

CoLE, K. A. (1995). Equality issues on computer-based collaboration: looking beyond surface
indicators. ACM Conference on Computer Supported Cooperative Learning (CSCL ’95),
pp. 67-74. Bloomington, IN, 17-20 October, London: Lawrence Erlbaum Associates, Inc.

GREENBERG, S. & MARWOOD, D. (1994). Real time groupware as a distributed system: concur-
rency control and its effect on the interface. Proceedings of the ACM Conference on Computer
Supported Cooperative Work, 22-26 October, pp. 207-217. Chapel Hill, North Carolina.

GREENBERG, S., ROSEMAN, M., WEBSTER, D. & BOHNET, R. (1992). Issues and experiences
designing and implementing two group drawing tools. Proceedings of the 25th Annual Hawaii
International Conference on the System Sciences, Vol. 4, pp. 139-150. Hawaii, January.

GREENBERG, S., HAYNE, S. & RADA, R. (1995). Groupware for Real Time Drawing: A Designer’s
Guide. New York: McGraw-Hill

GRUBER, H. E. & VONECHE, J. J. Eds. (1987). The Essential Piaget: An Interpretive Reference and
Guide. New York: Basic Books.

GUTWIN, C., STARK, G. & GREENBERG, S. (1995). Support for workspace awareness in educational
groupware. ACM Conference on Computer Supported Cooperative Learning (CSCL '95), pp.
147-156. Bloomington, IN, 17-20 October. London: Lawrence Erlbaum Associates, Inc.

HADFIELD, O. D., MADDUX, C. D. & HART, C. (1989). Effectiveness of Logo instruction in reducing
mathematics anxiety among eight-grade students. Computers in Schools, 6, 103—-112.

HiLL, R. D., BRINCK, T., PATTERSON, J. F., ROHALL, S. L. & WILNER, W. T. (1993). The rendezvous
language and architecture. Communications of the ACM, 36, 62—67.

INKPEN, K., BoOTH, K. S., KLAWE, M. & UpPITIS, R. (1995). Playing together beats playing
apart, especially for girls. ACM Conference on Computer Supported Cooperative Learning (CSCL
'95), pp- 177-181. Bloomington, IN, 17-20 October. London: Lawrence Erlbaum Associates,
Inc.

IsHi, H., KOBAYASHI, M. & GRUDIN, J. (1992). Integration of inter-personal space and shared
workspace: ClearBoard design and experiments. Proceedings of the ACM Conference on
Computer Supported Cooperative Work, pp. 33-42. Toronto, Canada, 31 October—4
November.

KLAWE, M. & PHILLIPS, E. (1995). A classroom study: electronic games engage children as
researchers. ACM Conference on Computer Supported Cooperative Learning (CSCL '95),
pp- 209-213. Bloomington, IN, 17-20 October. London: Lawrence Erlbaum Associates, Inc.

LEwis, C. (1982). Using the ‘thinking-aloud’ method in cognitive interface design. Technical Report
RC9265, IBM T.J. Watson Research Center, Yorktown Heights, NY.

MADDUX, C. (1985). The need for science versus passion in educational computing. Computers in
Schools, 2, 9-10.

MADDUX, C. D. & LAMONT-JOHNSON, D. (1988). Methods and Curriculum for Teachers. Hawthorn
Press.

MANTEIL M. (1988). Capturing the capture lab concepts: a case study of in the design of computer
supported meeting environments. Proceedings of the 2nd Conference on Computer Supported
Cooperative Work, pp. 257-270. Portland, Oregon, 26-28 September.

MINNEMAN, S. L. & BLY, S. A. (1991). Managing a Trois: a study of a multi-user drawing tool in
distributed design work. Proceedings of CHI'91 Conference on Human Factors in Computing
Systems, pp. 217-223. New Orleans, May.

MIYAKE, N. (1982). Constructive interaction. Technical Report, CHIP Report 113, Center for
Human Information Processing, University of California at San Diego.

O’MALLEY, C., DRAPER, S. & RILEY, M. (1984). Constructive interaction: a method for studying
human-computer—human interaction. Interact ‘84. The Ist International Conference on Hu-
man—Computer Interaction, pp. 269-274. London, UK, 4-7 September.

800 A. COCKBURN AND S. GREENBERG

OUSTERHOUT, J. K. (1993). An Introduction to Tcl and Tk. Reading, MA: Addison-Wesley.

PAPERT, S. (1980). Mindstorms—Children, Computers, and Powerful Ideas. Harvester Press.

PAPERT, S. (1993). The Children’s Machine: Rethinking School in the Age of Computer. New York:
Basic Books.

PRrESS, L. (1996). Seeding networks: The federal role. Communications of the ACM, 39, 11-18.

ROSCHELLE, J. (1991). Students’ Construction of qualitative physics knowledge: learning about
velocity and acceleration in a computer microworld. Ph.D. Thesis, University of California,
Berkeley.

ROSCHELLE, J. & CLANCEY, W. J. (1992). Learning as social and neural. Educational Psychologist,
27, 435-453.

ROSEMAN, M. & GREENBERG, S. (1992). GroupKit: a Groupware Toolkit for building real-time
conferencing applications. Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pp. 43-50. 31 October—4 November, Toronto, Canada.

ROSEMAN, M. & GREENBERG, S. (1996). Building real time Groupware with GroupKit, a Group-
ware Toolkit. ACM Transactions on Computer—Human Interaction (in press).

ROSSEN, M. B. & CARROLL, J. M. (1996). Scaffold examples for learning object-oriented design.
Communications of the ACM, 39, 46-47.

SCHNASE, J. L. & CUNNIUS, E. 1, Eds. (1995). ACM Conference on Computer Supported Cooperative
Learning (CSCL '95), Bloomington, IN, 17-20 October. London: Lawrence Erlbaum Associ-
ates, Inc.

SHNEIDERMAN, B. (1987). Direct manipulation: a step beyond programming languages (excerpt). In
R. M. BAECKER & W. A. S. BUXTON, ed. Readings in Human—Computer Interaction: A Multidis-
ciplinary Approach. Los Altos, CA: Morgan Kaufmann.

SMITH, D. C., CYPHER, A. & SPOHRER, J. (1994). KIDSIM: programming agents without a pro-
gramming language. Communications of the ACM, 37, 55-67.

SMITH, R. B. (1987). Experiences with the alternate reality kit: an example of the tension between
literalism and magic. Proceedings of ACM CHI + GI'87 Conference on Human Factors in
Computing Systems and Graphics Interface, pp. 61-67.

SMITH, R. B., O’SHEA, T., O’'MALLEY, C., SCANLON, E. & TAYLOR, J. (1991). Preliminary experi-
ments with a distributed, multi-media, problem solving environment. sharedARK. In J. M.
BOWERS & S. D. BENFORD, Eds. Studies in Computer Supported Cooperative Work: Theory,
Practice and Design, Amsterdam: North-Holland.

SOLOWAY, E. & PRYOR, A. (1996). The next generation in human—computer interaction. Commun-
ications of the ACM, 39, 16-18.

STEFIK, M., BOBROW, D. G., FOSTER, G., LANNING, S. & TATAR, D. (1987). WYSIWIS revised:
early experiences with multiuser interfaces. ACM Transactions on Office Information Systems, 5,
147-167.

STEFIK, M., FOSTER, G., KAHN, K., BOBROW, D. G., LANNING, S. & SUCHMAN, L. (1988). Beyond
the Chalkboard: computer support for collaboration and problem solving in meetings. In 1.
GREIF, Ed. Computer Supported Cooperative Work: A Book of Readings. Los Altos, CA: Morgan
Kaufmann.

TANG, J. C. (1991). Findings from observational studies of collaborative work. International Journal
of Man—Machine Studies, 34, 143-160.

TATAR, D. G., FOSTER, G. & BOBROW, D. G. (1991). Design for conversation: lessons from
Cognoter. International Journal of Man—Machine Studies, 34, 185-2009.

THIMBLEBY, H. (1990). User Interface Design. New York, Reading, MA: ACM Press, Addison-
Wesley.

VAIDYA, S. & MCKEEBY, J. (1985). Conceptual problems encountered by children while learning
Logo. Journal of Educational Technology Systems, 13, 33-39.

YELLAND, N. (1995). Collaboration and learning with Logo: does gender make a difference? ACM
Conference on Computer Suported Cooperative Learning (CSCL ’95), pp. 397-401: Bloomin-
gton, IN, 17-20 October. London: Lawrence Erlbaum Associates, Inc.

Paper accepted for publication by the Editor, Dr. B. Gaines.

THE DESIGN AND EVOLUTION OF TURBOTURTLE 801

Availability

A world wide web page describing GroupKit, and providing access to it via anonymous

ftp, isin htt p: / / www. cpsc. ucal gary. ca/ groupl ab/ gr oupki t

While GroupKit is not without its limitations, it is an excellent tool for CSCL

researchers who wish to prototype groupware systems and examine how they are used.
TurboTurtle is available directly from the first author of this paper.

	TABLES
	TABLE 1
	TABLE 2

	FIGURES
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4

	1. Introduction
	2. Background: microworlds
	3. The solitary microworld
	3.1. TURBOTURTLE-1
	3.2. TURBOTURTLE-2
	3.3. DESIGN DECISIONS
	3.4. SUPPORTING THE TEACHER'S CURRICULUM

	4. The communal microworld
	4.1. TURBOTURTLE-3
	4.2. DESIGN DECISIONS

	5. Preliminary evaluation
	5.1. METHOD
	5.2. PROBLEMS WITH THE INTERFACE
	5.3. STYLES OF COLLABORATION AND COLLABORATIVE BREAKDOWNS
	5.3.1. Observations
	5.3.2. Conflicts and breakdowns
	5.3.3. ''Bugs'' in the support for collaboration

	5.4. SUMMARY OF THE EVALUATION

	6. Related work
	7. Technical design experiences
	8. Summary
	References
	Availability

