
Revisitation Patterns in World Wide Web Navigation

Linda Tauscher and Saul Greenberg
Department of Computer Science,

University of Calgary
Calgary, Alberta CANADA T2N 1N4

Tel: +1-403-220-6087 (phone)
 +1 403 284 4707 (fax)

E-mail: tauscher or saul@cpsc.ucalgary.ca

Cite as: Tauscher, L. and Greenberg, S. (1997) Revisitation patterns in World Wide Web
navigation. In ACM SIGCHI ‘97 Proceedings of the Conference on Human Factors
in Computing Systems, Held in Atlanta, Georgia, USA, March 22-27. ACM Press.

©Association for Computing Machinery, Inc (ACM).
Permission to make digital/hard copy of all or part of this material without fee is granted provided that
copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice,
the title of the publication and its date appear, and notice is given that copyright is by permission of the
Association for Computing Machinery, Inc (ACM). To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires specific permission and/or a fee.

Revisitation Patterns in World Wide Web Navigation
Linda Tauscher and Saul Greenberg

Department of Computer Science, University of Calgary
Calgary, Alberta CANADA T2N 1N4

+1-403-220-6087
tauscher or saul@cpsc.ucalgary.ca

ABSTRACT
We report on users’ revisitation patterns to World Wide
Web pages, and use these to lay an empirical foundation for
the design of history mechanisms in web browsers.
Through history, a user can return quickly to a previously
visited page, possibly reducing the cognitive and physical
overhead required to navigate to it from scratch. We
analyzed 6 weeks of usage data collected from 23 users of a
commercial browser. We found that 58% of an individual’s
pages are revisits, and that users continually add new web
pages into their repertoire of visited pages. People tend to
revisit pages just visited, access only a few pages
frequently, browse in very small clusters of related pages,
and generate only short sequences of repeated URL paths.
We compared different history mechanisms, and found that
the stack-based prediction method prevalent in commercial
browsers is inferior to the simpler approach of showing the
last few recently visited URLs with duplicates removed.
Other predictive approaches fare even better. Our results
suggest new approaches to managing history in browsers.

Keywords
History mechanisms, WWW, web, hypertext, navigation.

INTRODUCTION
The World Wide Web (WWW) is a large, distributed
hypertext repository of information, where people navigate
through links and view pages through browsers. Browsers
typically provide history mechanisms that allow people to
select and revisit pages they have viewed previously. If
people revisit pages often, such history mechanisms can
mitigate three problems people face when navigating the
WWW. First, they can help the user navigate through the
vast amounts and poor structure of WWW information by
providing easy access to previously visited pages. Second,
they can decrease resource use by supplanting search
engines for finding old pages, and by eliminating
navigation through intermediate pages en-route to the
destination. Third, they can reduce a user’s cognitive and
physical navigation burdens, as pages can be returned to

with little effort, and users can see where they have been.

However, today’s design of history mechanisms tends
toward ad-hoc approaches that do not appear to take
advantage of previous research into history support within
user interfaces [e.g., 5,6]. In particular, their designs are not
based upon actual studies of how people revisit web pages,
and their actual use has been examined only superficially.

Our goal is to place the design of history mechanisms
within browsers on an empirical foundation. We had two
sub-goals.

1. We wanted to understand people’s revisitation patterns
when navigating the WWW, yet little empirical data is
available. The proportion of web pages that are revisited
by a particular user has not been quantified, and no
research has examined patterns of page reuse.
Consequently, we will present quantitative results about
page revisits, and examine five possible patterns of reuse.

2. We wanted to evaluate current approaches in today’s
history mechanisms, validate successful solutions, and
suggest better alternatives. Yet today’s history
mechanisms are rarely evaluated. From previous research
by Catledge and Pitkow [2], we know that Back is
heavily used to return to a page, but the history list is not.
Cockburn and Jones [3] performed a usability study that
illuminated user’s difficulties with current stack-based
history mechanisms. However, the goodness of
predictions offered by this and other history schemes
have not been evaluated, which we will do shortly.

This paper summarizes our findings. A thesis [8] and
journal paper [9] provides further detail, a review of history
mechanisms, and guidelines for browser redesign.

DATA COLLECTION
XMosaic 2.6 was modified to record a user’s browsing
activity. Each activity record included time, URL visited,
page title, final action, method of invoking the action, user
id, and several other items. Volunteer participants then used
the browser for approximately six weeks; all were practiced
web users with at least one year of experience (see [9] for
details of subject selection). At the end of the study, we
analyzed logs from 23 participants. This was followed by
hour-long individual interviews, done to gather qualitative
data about personal browsing methods and to help use
understand why the patterns seen in the analysis arose.

RESULTS: HOW PEOPLE REVISIT WEB PAGES
Six analyses pertaining to web page reuse are presented
here. We begin by reporting the rate that web pages are
revisited. The remaining analyses concern five different
patterns that may suggest effective approaches to
presenting revisited pages for future access. First, we
examine how users visit both old and new web pages over
time. Second, we look at the distance (in terms of URLs)
between repeated visits to the same URL. Third, we assess
the frequency of URL visits. Fourth, we determine the
extent to which users repeatedly browse within locality
sets (page clusters). Last, we identify repeated sequences
of URLs as an estimate of path-following behaviour.

Recurrence of Web Page Visits
History mechanisms within web browsers are only useful
if users actually repeat their activities. Yet we do not know
how often people revisit their pages. This is important, as it
gives us a bound for how useful a history mechanism can
be. In other domains, research has quantified this repetition
of user actions [5] e.g., telephone numbers dialed (57%),
how information is retrieved in a technical manual (50%),
and how Unix command lines are entered (75%). We
analyzed our own data and the Catledge and Pitkow [2]
data to derive the recurrence rate R: the probability that
any URL visited is a repeat of a previous visit. Each user’s
data was analyzed independently, and the statistics below
represent either averages across all users, or representative
individuals.

We found an overall recurrence rate of R=58% (σ = 9%)
for our 23 subjects, and 61% (σ = 9%) for 55 subjects from
the Catledge and Pitkow study. These numbers clearly
show that users revisit web pages heavily, although it also
means that ~40% of all page navigations are to new pages.
These recurrence rates qualify web browsing activity as a
recurrent system. Greenberg [5] coined this term to
characterize systems where users predominately repeat
activities they had invoked before, while still selecting new
actions from the many that are possible.

In post-study interviews, people gave us their major
reasons for visiting new pages and revisiting old ones. They
revisit pages because: the information contained by them
changes; they wish to explore the page further; the page has
a special purpose (e.g. search engine, home page); they are
authoring a page; or the page is on a path to another
revisited page. People visit new pages because: their
information needs change; they wish to explore a particular
site; a page is recommended by a colleague; or they notice
an interesting page while browsing for another item.

Since web browsing is a recurrent system, we believe that
browser interfaces should support page revisits by
minimizing a user’s effort to return to a page when
compared to the effort of navigating there from scratch.
The key is to give preferential treatment to the large

number of repeated actions. This involves identifying
patterns in history use, as discussed in subsequent sections.

Growth of URL Vocabulary
The first pattern considered shows the distribution of old
and new page visits over time. We generated vocabulary
graphs for each subject, where the URL vocabulary—the
number of unique URLs seen so far—is plotted over the
total number of URLs visited. These plots illustrate how
users extend their vocabularies, and how recurrences are
distributed over time.

For example, Figure 1 shows the plot for participant 15.
The curve All represents the overall URL vocabulary size at
any moment in time. Major navigation actions are also
plotted as separate curves shifted above the vocabulary line
by a constant amount (for ease of illustration): Open URL,
Back, Reload, Forms, and Helper Applications. The Other
category includes all remaining navigation actions. These
curves show when the most common navigation actions
were invoked and, taken together, comprise the All curve.

URL vocabulary growth graphs for all subjects exhibit a
linear slope, typified by the line in Figure 1. Both data and
interviews indicate that users incorporate new URLs into
their repertoire at a regular rate, and that revisits are fairly
evenly distributed.

These plots are only roughly linear, and many local
variations to the slope are also evident. We noticed that the
nature and extent of these vary amongst individuals. We
analyzed these variations and their corresponding
navigation actions, and asked participants questions about
them during interviews. Consequently, we identified seven
browsing patterns, four of which are illustrated in Figure 1.

1. First-time visits to a cluster of pages is evident at the
steeply sloped area between URLs 510 to 525.

2. Revisits to pages. Plateau areas show revisits to pages.
For example, the long plateau in combination with the
Back or Open URL actions between URLs 240 to 280

Figure 1. URL Vocabulary for participant 15

occurred when this participant reviewed a set of online
course notes.

3. Authoring of pages. These manifest themselves as
plateaus, where the subject used Reload extensively to
view the modified page e.g., between URLs 480 to 510.

4. Regular use of web-based applications. Between URLs
50 to 150 (x-axis), there is a moderately sloped area with
a combination of Open URL, Back and Forms activity.
This was caused by the subject’s revisits to a knowledge
elicitation tool packaged as a web application.

Three other browsing patterns were seen in other subjects.
5. Hub-and-spoke. People visit a central page (hub) and

navigate the many links to a new page (spoke) and back
again. This is akin to a breadth-first search.

6. Guided tour. Some page sets include structured links
(e.g., next page), and people can choose to follow these.

7. Depth-first search. People follow links deeply before
returning to a central page, if at all.

Browsers and history mechanisms should support the many
browsing patterns users exhibit. For example, stack-based
history mechanisms and the Back button found in most
browsers supports both hub-and-spoke and depth-first
search patterns. The Reload button is very convenient for
authoring. Guided tours contain hyperlinks that encourage
a linear pattern of navigation. Yet improvements in history
designs are possible. Perhaps the excessive backtracking
that results from depth-first navigation styles and the hub-
and-spoke could be reduced by a graphical overview map,
or by retaining the index page within the browser window,
as often done with Netscape Navigator 2.0’s frames feature.

In this section, we saw that both old and new web pages are
visited regularly over time. The huge number of pages in
the vocabulary implies that we cannot simply offer all
previously visited pages within a visual history mechanism,
as this would be unmanageable. Instead, we must offer the
user only a handful of candidate pages that have a high
probability of being revisited. Researchers in other domains
have noticed that recently used actions are the ones most
likely to be repeated [5,6]. This warrants an investigation
into recency effects by considering URL visits as a function
of distance.

URL Visit Frequency as a Function of Distance
For any URL visited, the probability that it has already
been seen by the user is quite high (R=58%). But how do
particular URLs contribute to this probability? Do all URLs
visited have a uniform probability of recurring, or do the
most recently visited URLs skew the distribution? If a
graphical history mechanism displayed the previous p page
titles or URLs as a list, what is the probability that this
includes the next page to be visited [5]?

The recurrence distribution as a measure of distance was
calculated for each subject. Distance is determined by
counting the number of items between the current URL

being visited from its first match on the history list. For
example, a distance of 1 occurs when the user reloads the
current page, or successfully interrupts the transmission of
a page. A distance of two occurs when the current page is a
revisit to the one seen two pages ago. Figure 2 plots this
data up to a distance of 50, averaged across all subjects.
The horizontal axis shows the distance of the repeated URL
on the history list relative to the one being entered. The
vertical axis represents the rate of URL recurrence at a
particular distance, denoted as Rd. According to Figure 2,
there is a Rd1 = 10% probability that the current URL is a
repeat of the previous URL (distance = 1), Rd2 = 19% for a
distance of 2, Rd3 = 2%, Rd4 = 5%, and so on. The spikes at
distances of 2, 4, 6 and 8 arise from users’ navigating back
to previous pages by the ‘Back’ navigation action.

The most striking feature of this data is the extreme recency
of the distribution. The 6 or so URLs just visited contain
the majority of pages visited next, although the probability
values of Rd rapidly decrease after the second item. Beyond
a distance of 8, the low values (< 1% each) and low rate of
decrease make items equivalent for practical purposes.

This is illustrated further in the inset of Figure 2, which
reports the same data for all subjects as a running sum of
the probability, denoted as RD. The horizontal line at the top
of the graph is the maximum mean recurrence rate for all
subjects of 58%. The most recently visited URLs are
responsible for most of the cumulative probabilities. For
example, there is an RD6=39% chance that the next URL
visited will match a member of a set containing the 6
previous submissions. In comparison, all further
contributions are slight (though their sum total is not).

Frequency of URL Accesses
Frequency is a popular method for ranking items of
interest. We examined this pattern in two ways. First, we
generated a frequency graph for each subject. Second, we
developed a taxonomy of conceptual page types for
frequently visited pages from our post-study interviews.

Figure 2. URL recurrence rate as a function of distance (all
participants); inset plots recurrence rate as a running sum

All subjects produced a similar frequency distribution,
where only a small number of URLs are highly visited, and
a very large number of URLs have very low usage
frequencies. Over all subjects, 60% of pages were only
visited once, 19% were visited twice, 8% were visited 3
times, and 4% were visited 4 times. Relatively few pages
were frequently accessed, and these tend to fall into
categories that explained their popularity: personal pages,
start-up documents, indices, search engines, individual and
organization home pages, web applications, navigation
pages, and authored pages.

Locality
While recency characterizes recurrences in terms of
distance, locality considers recurrences in terms of periods
of time where repeated references are made solely to a
small and related group of items, called a locality set [6].
We applied the locality detection algorithm [7] to the
WWW data to determine whether users generate locality
sets, that is, whether they browse within clusters of pages.

While locality sets were found [8,9], they do not appear to
offer much value in terms of predicting the user’s next
activity within web browsing. There are several reasons for
this claim. First, most locality sets were very small,
consisting of only one or two unique URLs. Second, these
sets lasted for only a short time, usually 2.5 to 4.5 URLs.
Third, few locality sets were repeated; those that were
repeated tended to be of size one or two. Fourth, only 15%
of URLs visited were part of a locality set.

Longest Repeated Sequences
The concept of paths, an ordered traversal of hypertext
links, has been associated with hypertext ever since
Vannevar Bush envisioned hypertext in 1945 [1]. If paths
exist, it may be useful to capture and offer them via history,
thus simplifying people’s efforts to retrace a path. Also, if
users follow paths solely as a route to a destination,
shortcuts could allow a user to go directly there.

We applied the Pattern Detection Module (PDM) algorithm
[4] to the WWW browsing data in an attempt to identify
longest repeated sequences (LRSs) of page visitations. As
with locality, we discovered that LRSs are not particularly
useful for predicting web browsing for a variety of reasons.
We found that though LRSs do exist, they tend to be short
[8,9]. The few longer LRSs usually reference only one or
two pages as sequence elements. In terms of repetition, the
average frequency for LRSs of all lengths hovered around
two, which is the minimum requirement to be considered a
LRS. Also, there is a strong recency effect: repeats of LRSs
occur within a short distance of each other.

CONDITIONING THE DISTRIBUTION
The recurrence distributions used above were derived by
creating a trace of all page visits for a user, with no barriers
placed between browsing sessions. We have already seen

that although a small set of recently visited URLs accounts
for a high proportion of revisits, others lie outside.
Consider a set of the 10 previous URLs on the history list.
From the inset in Figure 2, there is a 42% chance that the
next URL the user would like to visit has not appeared
before, an RD10=43% chance that it has occurred within the
last 10 visits, and a 15% chance that it appeared at
distances greater than 10. This section explores the
possibility that the distribution can be conditioned, first to
increase the recurrence probabilities over a set of a given
size, and second to evaluate methods that are currently in
use. Eight conditioning methods are presented within four
major categories: recency, frequency, stack, and
hierarchically structured. A later results section will
consider how effective each method is.

We will illustrate these methods by using the small sample
trace in Table 1, which shows the last 16 pages visited by a
user. Pages are numbered by order of visit, with #16 being
the most recently visited page. The user’s action to navigate
to those pages are shown on the right. Italicized pages are
revisits. Each conditioning method is then applied to this
trace, and the ordering of items that will be shown to the
user in the conditioned history list is given in Table 2.

Recency Ordered History Lists
Three types of recency ordered history lists were evaluated.
The first is sequential ordering, the time-ordered list of all
URLs visited by the user, including revisits to the same
URL. Thus the history list as shown in Table 2a is a literal
trace, and is an exact match to the trace in Table 1.

The problem is that repeated items have multiple entries,
which occupy valuable space on a history list of a limited
length. Hence, two strategies for pruning redundant URLs
were applied: saving the URL only in its original position
on the history list, and saving the URL only in its latest
position. Tables 2b and 2c provide an example of both
approaches to pruning duplicates. Note that there are fewer
URLs on these lists as compared to the strict sequential
version that retains all URLs. Also, note that the user’s
StartUp document (a heavily accessed page) occupies the
bottom position on the list (#1) when URLs are saved in
their original position, while it is propagated up the list
when they are saved in the latest position (#10). Thus we
expect the ‘latest position’ approach to perform better,
because just revisited URLs will stay at the top of the list
(whereas they migrate to the bottom on ‘original position’),
and because local context is maintained [5].

Greenberg [5] claims two benefits of recency-based history.
First, the URLs presented are the ones the user has just
visited. Thus, the user will remember and can effectively
predict which URLs will appear on the list. Second,
recency does not suffer from the initial startup instability
that other methods do when there are only a few URLs
available to present to the user.

Frequency Ordered History Lists
Frequency ordering, where the most revisited page appears
at the top of list and the least visited page appears at the
bottom, is an obvious way of ranking URLs. Frequency
ordering could be problematic. While user’s needs and
interests change quickly, the newer URLs need to be
revisited frequently before they can migrate to the top of
the list. Similarly, older frequently used items that are no
longer of interest remain near the top. Still, there are certain
types of pages that users tend to frequent regularly, and
perhaps we can expect useful offerings of frequency
ordering after periods of extended browsing (which
stabilizes the frequency distribution).

An issue associated with frequency ordering is how to
break ties with URLs that have the same frequency.
Greenberg [5] evaluated two schemes for secondary sorting
within frequency ordered lists: recency and reverse-
recency. Recency was found to perform better so that is the
method of secondary sorting that we have applied. Table 2d
shows the effect of frequency ordering with secondary
sorting by recency upon the navigation session in Table 1.

Stack-Based Approaches
Current web browsers maintain a history list that operates
as a stack; the most recently visited page is usually pushed
onto the top of the stack, so older pages appear underneath.
Unlike recency, pages can be popped off the stack and lost.
The way browsers push and pop pages from the stack
depends upon three techniques the user employs for
displaying the page: loading, recalling, and revisiting [5].
In this terminology, loading a page causes it to be added to
the top of the stack, possibly resulting in all pages above
the current position to be lost. Recalling a page changes the
pointer to the currently displayed page in the stack.

Revisiting a page occurs when the user reloads the page,
and has no effect upon the stack.

We expect that the stack method will perform reasonably
well for very short recurrence distances, as it will appear
similar to recency. It will lag at modest distances because
some recent URLs are popped off the stack when the user
loads a page while at some point other than the stack’s top.
It will do poorly for long distances because current
browsers clear the stack between sessions. Table 2e shows
the history list based on this sessional stack at the end of
the example navigation session. Note that the trace in Table
1 shows that a new session started on page #10 (indicated
by the startup document action), so earlier pages are lost.

Because we may want to revisit pages from previous
sessions, we constructed a persistent stack that retains the
stack from the prior session. While the persistent stack will
perform similar to the sessional stack for short distances, it
should do better for long distances because some URLs are
retained between sessions. Still we do not expect this
method to perform better than recency ordering with no
duplicates due to the absence of some URLs. Also, the
persistent stack will be longer than necessary due to the
presence of duplicates. Table 2f shows this persistent stack;
it now includes a pointer to a page from the first session.

Hierarchically Structured History Lists
Two methods that employ hierarchical structuring were
examined: recency ordered hyperlink sublists, and context-
sensitive web subspace history lists.

Recency ordered hyperlink sublists is similar to the recency
ordered history list with duplicates saved only in their latest
accessed position. The difference is that for each URL on
the normal list, a secondary recency-based history list can
be raised containing only those pages that the user had

Visit # URL Action
16 acsl.cs.uicu.edu/kaplan/applets Open URL

15 acsl.cs.uicu.edu/kaplan/worlds-environ Open URL

14 acsl.cs.uicu.edu/kaplan/worlds Open Hotlist

13 www.acm.org/sigchi/chi96/forms/Proc Open URL

12 www.acm.org/sigchi/chi96/call/index Open URL

11 www.acm.org/sigchi/chi96/ Open URL

10 www.acm.org/sigchi/homepage StartUp Doc.

9 www.acm.org/sigchi/homepage Back

8 www.acm.org/sigchi/cscw96/ Back

7 www.acm.org/sigchi/cscw96/dates Open URL

6 www.acm.org/sigchi/cscw96/ Open URL

5 www.acm.org/sigchi/homepage Back

4 www.acm.org/sigchi/chi96/ Back

3 www.acm.org/sigchi/chi96/Deadlines Open URL

2 www.acm.org/sigchi/chi96/ Open URL

1 www.acm.org/sigchi/homepage StartUp Doc.

Table 1. A trace of the last 16 pages visited, and the user actions
to get them. The top page (16) was just visited.

a) Sequential ordering by recency
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

b)Recency, duplicates in latest position
16, 15, 14, 13, 12, 11, 10, 8, 7, 3

c) Recency, duplicates in original position
16, 15, 14, 13, 12, 7, 6, 3, 2, 1

d)Frequency, second key recency
10, 11, 8, 16, 15, 14, 13, 12, 7, 3

e) Stack, non-persistent
16, 15, 14, 13, 12, 11, 10

f) Stack, persistent
16, 15, 14, 13, 12, 11, 10, 1

g) Context-sensitive web
subspace

h) Hyperlink sublist
(session 1 only)

14 (16, 15) 16 12 (13) 7

10 (13, 12, 11, 8, 7, 3) 15 (16) 11 (12, 3) 3

14 (15) 10 (11, 6)

13 8 (7)

Table 2. Examples of history lists conditioned by different
methods. Numbers represent the URLs in Table 1.

visited by selecting a hyperlink from the current page. The
user first scans down i entries in the normal list for an exact
match that terminates the search, or for an entry that
contains the desired hyperlink. In the latter case, the sublist
of hyperlinks is displayed (perhaps as a cascading menu)
and the search continues until an exact match is found j
entries later. The distance of a matching recurrence is
simply i + j. Table 1h shows the hyperlink sublist. The
hierarchy in this example is not very full because it is
generated from a short trace; we expect that longer traces
would fill the slots in the secondary lists.

We expect recency ordered sublists to perform better than
recency with duplicates saved in their latest position. First,
more URLs are accessible through a hierarchy. Second, if
the user needed to visit a page only because it contained a
hyperlink to the desired page, that page can now be
selected directly from a sublist. Third, because sublists
contain only URLs that the user has already accessed from
a particular page, the user may find it easier to find a
specific URL on the sublist, especially if the jump-off page
is long and contains many irrelevant links.

The context-sensitive web subspace is based upon a
graphical history display designed by Cockburn and Jones
[3]. The display creates a new web ‘subspace’ each time
the user directly accesses a page. This page is added as an
item in a webs menu. Any pages accessed until the next
directly-accessed page (the subspace) are added to a
secondary menu that cascades from the original webs menu
entry. For our analysis, we considered the following actions
as a direct access to a URL: typing a URL, selecting a
Hotlist item, cloning or opening a new window, and
accessing a URL via client-dependent hard-wired buttons
or menus. Within the main and secondary menu, we sort
the URLs based on recency, and remove duplicates, saving
according to the latest position. A URL can thus occur only
once in the main menu or a particular secondary menu, but
it may be found within several subspaces if the user
navigated to it in different ways. This is appropriate since
subspaces seem to be a reasonable method for inferring a
user’s context when browsing. That is, when the user
follows a series of hyperlinks, many of the pages visited
will tend to be related in some way.

Table 1g shows the history list at the end of the navigation
session. There are 2 URLs in the main menu indicating that
2 different URLs were direct accessed (the StartUp
Document and the Open Hotlist). The last subspace the user
browsed is located at the top of the list. The sublists show
the contents of the web subspace sorted in recency order.

Evaluation Methods
We evaluated all methods described above. We took our
subjects’ traces, and implemented algorithms to process the
trace so that it simulated a user’s optimal use of a selected
method. Our evaluation accounts for the following factors.

1. Theoretical performance. A perfect predictor of revisits
could not better, on average, the recurrence rate R=58%,
which is reached only if the user reuses previous URL
visits at every opportunity. Thus we can compare a
method’s performance to this upper bound.

2. Presentation. We assume predictions will be displayed to
users as some kind of visible list, perhaps with a
hierarchical sub-list (e.g., cascading menu). Calculations
are made on data structures that mimic these lists.

3. Number of items. While showing a history list of the
complete trace would give optimum performance, this is
not realistic given the large number of items that users
would have to scan through. Pragmatically, each list
should contain only a small set of previous submissions
and offer them to the user as predictions. We consider
how well a method performs with different list sizes by
calculating predictability as a running sum over distance,
where a chosen distance now indicates the maximum
number of items scanned in the history list. Figure 3 was
created this way. We have already introduced RD to
indicate the cumulative recurrence rate R at a particular
distance D. We will also use RD10 (R at a distance of 10)
as a comparative benchmark. This is reasonable: as seen
in Figure 3, the first few items (D<10) of all methods
contribute the most to the running sum, and there are
diminishing returns for showing lists with D>10.

4. This analysis does not account for the conceptual model
that the history list presents. Yet this is important, for a
person’s ability to predict whether the item they seek is
present on the list is generated from their conceptual
model. Consequently, we will discuss (but not measure)
the simplicity of the method’s conceptual model.

5. Our analysis does not compare a user’s cognitive and
physical effort involved in choosing items from each
history method. For example, selecting items from a
hierarchical sublist would be more effort than choosing
from a sequential list, because a user must decide what
branches to follow, raise cascading menus, and so on.
There will be a tradeoff between predictability
(especially with complex methods) and effort, and future
research should measure this as well.

Results
A strict sequential list of URLs ordered by recency
performs reasonably well when ten URLs are listed e.g. RD10

= 43% vs. the upper bound of 58%. A benefit of this
method is that its conceptual model is simple and familiar.
That is, a person knows what they have just done and can
thus predict if an item will be on the history list. We will
use this value as a benchmark to contrast other methods.

Pruning duplicates is a simple way of improving the
performance of a recency-ordered list when duplicates are
saved only in their latest position (RD10 = 47% vs. 43% for
strict recency). While this type of list does not show the
exact sequence of URLs visited by the user, it still presents
a clear conceptual model, and we expect that the user can

easily understand how the lists contents are ordered. Saving
duplicates in only their original position is very poor (RD10 =
29%), as frequently used items remain at the bottom. The
striking differences between these three recency orders are
illustrated by the plots in Figure 3.

Frequency ordering is the worst predictor of the 8 evaluated
for short lists, with RD10 = 27% vs. 43%. While it does
improve as distance is increased, it does not catch up to
strict recency (Figure 3). Frequency has other problems.
Users may find it more difficult to predict which pages
would appear on a frequency-ordered list beyond the two
or three that they visit the most. As well, frequency
ordering suffers instability when few items are on the
history list, and excessive inertia when the list is long. Still,
frequency could be applied to a few key URLs, possibly
used as an auxiliary method in conjunction with another
history mechanism that gives better overall performance.

The sessional stack method found in most web browsers is
slightly better than strict recency at very short distances
(RD5 = 40% vs. 37%) and slightly worse at RD10 (42% vs.
43%). As seen in Figure 3, it is much worse as the list gets
long. The persistent stack is an improvement over the stack
and strict recency methods in terms of its recurrence
probabilities over distance (RD10 = 47% vs. 43%). Both
approaches suffer problems as users typically form an
incorrect conceptual model with this method—Cockburn
and Jones [3] discovered in their usability study that users
were often surprised at the behaviour of their history list,
and they could not predict how it worked. Because other
methods are equal or better than even the persistent stack in
terms of predictiveness (such as recency with duplicates
removed), they are better choices.

Recency ordered hyperlink sublists have the highest
recurrence probability over all methods for very short
distances (2–4), and are second best at modest distances

(RD10 = 51% vs. 43%). The catch is that this result is
optimistic, since a person requires greater cognitive
and physical effort to select items from the hyperlink
sublists e.g., to make an accurate selection from a
hyperlink sublist, the user must recall which main list
item contains the desired URL. Also, note that
hyperlink sublists can provide access up to 55 URLs
for a RD10 (the main list of 10 items + 9 items on
sublist one + 8 items on sublist two + 7 items on
sublist three, etc.).

The best method we evaluated—context-sensitive
web subspaces—showed that 53% of all URL
selections can be successfully predicted with a set of
10 items. Given that R = 58% on average, which is
the best a perfect reuse facility could achieve, this
method is ~91% effective. The caveat is similar to
hyperlink sublists, as users of context-sensitive web
subspaces require greater physical effort to select a
sublist item, and greater cognitive effort to recall

which sublist might contain the URL. In addition, users
may have more difficulty understanding how this method
works, as they need to know what a ‘direct access URL’ is
to grasp the way the history list is organized [3].

In conclusion, our analysis of conditioning methods shows
that several methods improve upon the effectiveness of
current stack-based history mechanisms. As seen in Figure
3, recency is a simple yet reasonable predictor, especially
when duplicates are saved only in their latest position. A
further appeal of recency is that it is conceptually easy for a
user to understand. While the two hierarchical methods are
better predictors, we suspect that they may not work as well
in practice due to the extra physical and cognitive
overheads mentioned earlier. Further research is required to
evaluate these methods in actual use.

Actual Use of Web-Based History Mechanisms
We collected usage data on three history mechanisms found
in Mosaic: backtracking through the Back button, stack-
based history lists, and personalized hotlists of URLs.

1. Backtracking was frequently performed, and 30% of all
logged navigation actions involved the use of the Back
action (plotted as a ‘+’ in Figure 1). As mentioned
previously, the spikes at even distances in the URL
distance plot in Figure 2 is largely an artifact of
consecutive invocations of Back.

2. Mosaic’s hotlist and history facilities were used
infrequently by our subjects (3% and <1% respectively).

The success of ‘Back’ is in line with our observation that
extreme recency is a good predictor of what pages will be
revisited. The poor use of other history facilities is likely
due to interface issues. For example, hotlists require
considerable effort to manage: users may not bother to add
an URL to the list, may forget that it is there, or only record
URLs that are convenient starting points. The ‘Window

Figure 3. Cumulative probabilities of recurrences over distances up to 50

History’ in Mosaic 2.6 is not visible and requires several
actions to access. Because it is based on the stack model,
the desired URL may have been popped off the list even
though it was entered a short time ago.

DISCUSSION AND CONCLUSIONS
Based on these results we formulate some empirically-
based generalizations of how users revisit pages using
features found in a typical WWW browser such as Mosaic.

1. Users revisit a considerable number of web pages. Our
analysis of recurrence rate shows that there is a 58%
probability that the next page visited was previously
seen. This qualifies web browsing as a recurrent system.

2. While many pages are revisited, users continually
incorporate new pages into their repertoire at a regular
rate. There are also local variations in the vocabulary
growth rate and use of navigation activities across users,
and across their browsing timeline. These variations
indicate the presence of different browsing activities.

3. Users visit very few web pages frequently. Consequently,
many web pages are only visited once (60%) or twice
(19%). The few frequently accessed pages tend to fall
into certain definable categories.

4. Users exhibit considerable recency of revisits. The major
contributions to the recurrence distribution are provided
by the last few pages visited, which also explains why
‘Back’ is frequently used (30% of all navigation actions).

5. Users revisit pages that have not been accessed recently.
For example, 15% of recurrences are not covered by a
list of the last 10 URLs visited. Still, doubling or tripling
the size of the list does not increase its coverage much.

6. Users do not have strongly repeatable linear patterns
when browsing selected clusters of pages. Both locality
sets and longest repeated sequences are small, rarely
repeated, and also exhibit recency.

7. Methods to present a history list of previously visited
pages are available that are more predictive and usable
than the current stack-based approach. Presenting the last
10 or so recent URLs, with duplicates saved only in the
latest position, surpasses current stack based approaches
and are likely much more usable. Other methods fare
even better, although their usability must be determined.

8. The Back button is very effective and simple to use.
Perhaps it could be improved further by basing it on a
recency rather than a stack model.

We have developed guidelines for graphical web browser
history mechanism design [8,9] based on the principles
above and from general principles on reuse [5]. Our
guidelines address: access to pages the user has visited;
reducing the cognitive and physical effort of using a history
mechanism; providing a reasonable set of candidates for
reuse; improving the conditioning method; supporting
alternative strategies; and allowing end-user customization
of the history data. Full details are provided in [9].

This paper provided empirical data that justifies the need
for suitable history mechanisms in graphical web browsers.
Our analysis of different designs proves that the
predictiveness of the current stack-based model can be
improved upon. Using the methodology and principles
herein, designers can refine current history mechanisms and
investigate new approaches.

There are still many unanswered questions. We have not
evaluated the physical and cognitive effort for reviewing a
particular conditioned set of history list predictions. Also,
we have not assessed the impact of different browser and
HTML artifacts upon reuse such as frames, although we
suspect that the numbers reported here would not change
dramatically.

Acknowledgments. L. Catledge and J. Pitkow graciously
provided us with their data logs for comparative purposes,
and gave us clues on how to instrument Mosaic. This
research was partially funded by NSERC.

REFERENCES
1. Bush, V. (1945). As we may think. Atlantic Monthly,

176(1), 101-108, June.

2. Catledge, L. and Pitkow, J. (1995). Characterizing
browsing strategies in the World-Wide Web. In Proc 3rd

International World Wide Web Conference, Darmstadt,
Germany. http://www.igd.fhg.de/www/www95/papers/

3. Cockburn, A. and Jones, S. (1996). Which way now?
Analysing and easing inadequacies in WWW navigation.
Int. J. Human Computer Studies, 45(1), 105-129.

4. Crow, D. and Smith, B. (1992) DB_Habits: Comparing
minimal knowledge and knowledge-based approaches to
pattern recognition in the domain of user-computer
interactions. In Beale and Finlay (eds.), Neural
Networks and Pattern Recognition in Human-Computer
Interaction, 39-61, Ellis Horwood.

5. Greenberg, S. (1993). The computer user as toolsmith:
The use, reuse, and organization of computer-based
tools. Cambridge University Press.

6. Lee, A. (1992). Investigations into history tools for user
support. Ph.D. Thesis, Department of Computer
Science, University of Toronto, Ontario, Canada.

7. Madison, A. and Batson, A. (1976). Characteristics of
program localities. Comm. ACM, 19(5), 285-294.

8. Tauscher, L. (1996). Evaluating history mechanisms:
An empirical study of reuse patterns in World Wide Web
navigation. MSc Thesis, Department of Computer
Science, University of Calgary, Alberta, Canada. May.
http://www.cpsc.ucalgary.ca/grouplab/papers/

9. Tauscher, L. and Greenberg, S. (1997) How people
revisit web pages: Empirical findings and implications
for the design of history systems. Int. J. Human
Computer Studies, in press.

