
Simplifying Component Development in an
Integrated Groupware Environment

Mark Roseman and Saul Greenberg

Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4

Tel: +1-403-220-3532
E-mail: roseman,saul@cpsc.ucalgary.ca

ABSTRACT
This paper describes our experiences implementing a
component architecture for TeamWave Workplace, an
integrated groupware environment using a rooms metaphor.
The problem we faced was how to design the architecture to
support rapid development of new embedded components.
Our solution, based on Tcl/Tk and GroupKit, uses multiple
interpreters and a shared window hierarchy. This proved
effective in easing development complexity in TeamWave.
We discuss some of the strategies we used, and identify the
types of interactions between system components. The
lessons learned in developing this component model should
be generally applicable to future integrated groupware
systems in different environments.

KEYWORDS: Groupware, CSCW, Tcl/Tk, GroupKit,
component architecture

INTRODUCTION
This paper details the component model built for TeamWave
Workplace (formerly TeamRooms [5]). TeamWave is an
Internet groupware environment that uses a rooms metaphor
to integrate a team’s tools and tasks. The component model
supports the development of new groupware tools that can
be integrated into the main application.

One of the strengths of TeamWave is that individual rooms
can be customized by adding new components, called tools,
with each being a small groupware application in its own
right. To encourage the development of these custom
components, we needed to make their development as easy as
possible.

Historically, developing components with frameworks like
OLE or OpenDoc [2] has been very complex, and therefore
unsuitable for our needs. We decided instead to create our
own model that would be oriented towards the requirements
of building fairly small, highly interactive groupware tools.

The paper describes how component development within
TeamWave is seen by developers, as well as the
implementation framework that supports our component
architecture. We then examine how the techniques we used
simplified the development of new components.

The techniques we developed are based on our earlier work
with GroupKit [4], a groupware toolkit developed in Tcl/Tk.
GroupKit has been shown to be useful in developing stand-
alone groupware applications. Here we extend this work to
components, describing our use of multiple Tcl interpreters
and a shared window hierarchy as the basis of our component
model.

An interesting aspect of our architecture is how different
components of the system — the overall application, the
current room, and the individual tools in the room —
interact with each other. In structuring the system, we used
several different interaction strategies. In the following
sections, we will see how the application used various levels
of knowledge of the individual tools or room to call into
them. We will also see how the application explicitly
provides high-level interfaces to the components so as to
limit the information each component needs to maintain.
Finally, we will show how we took advantage of our
decision to share the entire window hierarchy throughout the
application. All of these had interesting implications for
simplifying the development of new groupware components
in TeamWave.

We expect to see more groupware environments in the future
that integrate a number of tools rather than merely providing
stand-alone applications. We believe many of the techniques

saul
Text Box
Report 1997-600-02, Department of Computer Science, University of Calgary, Calgary, Alberta, Canada.

we employed in TeamWave and the lessons we learned will
be applicable for new component based groupware systems
in a variety of environments.

TEAMWAVE WORKPLACE DESCRIPTION
In this section we describe the TeamWave system,to
illustrate the types of components we are interested in and
the environment in which they run.

TeamWave Workplace is a groupware environment that
supports a wide variety of collaborative activities. It
integrates into a single environment shared whiteboards, chat
facilities, and custom groupware components such as sticky
notes, databases, and calendars. The system offers a
persistent work environment supporting both synchronous
and asynchronous work.

TeamWave is structured around a rooms-based metaphor. As
in real-life rooms, a workgroup or community of users
maintains one or more rooms that serve as a focal point for
their collaborations. If several people occupy a room at the
same time, they can engage in a synchronous collaboration.
If a room is occupied by a single person, they can work
alone, and possibly leave information for others when they
in turn enter the room, thereby supporting asynchronous
work. Users can bring arbitrary tools to the room,
customizing it to suit their needs. When people leave a
room, its contents persist, remaining in place for the next
user who enters the room.

The electronic rooms in TeamWave Workplace support users
who are not physically co-located. A workgroup’s rooms are
hosted on an Internet or Intranet server, and group members
use the TeamWave client to connect over the network to this
server. There they can interact with the rooms and other
users who are present. The rooms contain standard tools such
as shared whiteboards and chat, and allow adding custom
tools for particular group needs; each of these are fully
interactive groupware applications. Both clients and servers
are supported on Macintosh, Windows and several Unix
platforms, and communication is over TCP/IP, whether via
LAN/WAN or modem connection. A persistence repository
holds the state of the rooms, and allows retrieval of older
versions of the room states. This is illustrated in Figure 1.

User Interface
Figure 2 shows the user interface of the system. In this
example, the current user (Mark) is located in a room called
the Foyer. Also present in the room are two other users
(Carl and Saul). As we can see, there are no other users
currently connected to the server (Logged in Users window),
though there are other rooms besides the Foyer available
(Rooms on this Server window). We also can obtain more
information about particular users (business card window).

The large window shows the Foyer room. The backdrop of
the room is a shared whiteboard, permitting freehand
sketching and text annotations, using a set of pens located
immediately below the whiteboard surface. All actions on
the whiteboard and throughout the system are WYSIWIS,
and support telepointers. Below the pen tray is a chat area
allowing text-based communication between users within the
room. Along the left of the window are (top to bottom): a
radar view (to stay aware of activity in other parts of large
rooms), a set of doors (to indicate privacy), a bell (to draw
attention), and a list of others in the room (showing idle
times, telepointer colors, and pictures, either static or
periodic video snaps).

Tools
On the Foyer’s whiteboard surface we also see five tools or
components, each miniature groupware applications in their
own right. In particular, we have:

• an image tool, allowing images to be added to the room,
either by uploading to the TeamWave server (for static
images) or retrieved from a Web server (for images that
are change periodically). Images can be annotated with
the same tools used by the background whiteboard

• a post-it note allowing entry of short textual messages;
as with all TeamWave tools, changes to the note are
immediately visible to all users in the room

• a simple web browser, where all users in the room
always view the same web page

• a shared calendar tool, allowing group members to add or
view appointments

• a URL reference tool to leave a pointer to a web page
that others in the group can easily view

These and a number of other components come standard with
the system, including: a lightweight shared database (e.g. for
address books or todo lists), an idea organizer, a concept map
tools, a textual file viewer (to discuss a document), a file
holder (to upload arbitrary files into the room), games, a

Figure 1. TeamWave System Architecture

TeamWave
Server

Persistence
Repository

LAN/WAN
Modem

doorway to switch between rooms, and so on. There is also a
facility whereby newly developed components can be added
to the system.

Each component is enclosed by a frame that allows it to be
moved around the room or resized. A single component can
be made active at a particular time by clicking on it. This
draws a black frame, as seen around the Image component in
the Figure 2. The menubar changes to add a menu for the
active component, containing both system supplied
commands (e.g. delete) as well as component-specific menu
commands.

BUILDING NEW COMPONENTS
This section describes how new components can be
developed and added to the system. We focus here on our
goals of making both development and use as straightforward
as possible, and then detail how Tcl/Tk and our GroupKit
API are used by developers in constructing these
components. Later sections describe how TeamWave

internally implements this support, and examines more
closely some of the issues involved.

Goals
There were two sets of goals for component development.
First, we wanted to make it easy for developers to construct
new components so as to encourage third party development
(as well as easing development of our own components).
Second, we wanted to provide a fairly intuitive and
straightforward user experience, reflecting our belief that in
groupware systems, users should be able to focus on
communicating with each other, and not with fighting to
understand the tools.

Our first and primary goal was to make it very easy to
develop new components. A big advantage of TeamWave
Workplace over many other groupware systems is the ability
to customize the environment to suit particular needs of a
group. That required developing firstly a suite of fairly
generic components (e.g. notes, editors, databases) applicable

Figure 2. TeamWave Workplace User Interface

to a wide variety of tasks. We also wanted to encourage
development of tools for particular groups, such as a
component that models a specific group process, or provides
links to external information already in use by a group, such
as in an external database.

A secondary goal was to provide a simplified user experience
to end users, emphasizing interactions that could be most
visibly communicated to others in the room. We therefore
tended towards tools with minimal complexity, favouring
direct manipulation interfaces over more intricate but indirect
interfaces. We de-emphasized the use of menus (though each
component did have access to a menu that was available
when it was active). To promote the metaphor of
components being contained in the room, we discouraged the
use of new toplevel windows, though dialog boxes or
property sheets were often used.

User Interface Basics
The basic infrastructure available to the component developer
is the Tcl/Tk scripting language [3], originally from UC
Berkeley and currently being developed by Sun. We had a
number of reasons for selecting Tcl/Tk:

• it is a mature, well-supported development environment
that was available on our target platforms

• because of its simplicity, it has a very short learning
curve for new developers

• given we were trying to support development of fairly
small self-contained tools, we did not anticipate Tcl’s
poor structure would be an issue

• it contains a number of high-level interface widgets,
such as the canvas and text widgets, which providegood
support for the highly interactive tools we envisioned

• we had considerable experience with it in our previous
user interface and groupware development work, as well
as a fairly sizeable code base

From the component developer’s perspective, it appeared as
if they were developing a standard Tcl/Tk application. They
were not explicitly concerned that they were actually running
as a component embedded within a larger application.

For example, a developer would construct their interface
underneath the “.” window (the topmost window of Tk’s
widget hierarchy), as in a standard application. No other parts
of the application or other components are visible to them.
Handling resizing of the topmost window (in actuality the
frame embedded in the room) was handled the same as a
resize by the window system of the toplevel in standard Tk.

At the Tcl scripting level, there was no concern about other
components or other portions of the TeamWave application.
Component developers could access internal variables,
procedures etc. without worrying about namespace collisions
with other parts of the application or other components.

There were some exceptions. We provided a different
interface to the menubar (a single command to add new items
to the component’s menu), both to restrict the developer to
only the single menu, and to work around limitations in
Tk’s cross-platform menubar support at that time. As well,
limited access to functionality from the main application or
the room itself was available via a Tcl command interface.
We will return to this point later.

In summary, a developer created a component as if it were a
standard Tcl/Tk application. They did not have to do any
extra programming or housekeeping. This significantly eased
the burden of creating new components.

Groupware Functionality
The groupware functionality for the components was based
on our GroupKit API [4]. GroupKit is a Tcl/Tk extension
that adds a number of features that support real-time
groupware development. It has been used fairly extensively,
and we were convinced of its ease of use in terms of
supporting rapid development of groupware.

GroupKit provides a number of facilities to TeamWave
component developers:

• Remote procedure calls allow Tcl commands to be sent
between TeamWave user processes. Tcl’s “all the world’s
a string” paradigm seamlessly supports transport, data
conversion and registration of target commands (though
facilities are provided to prevent arbitrary commands
from being executed).

• Conference events provide notification to let developers
respond to such things as new users arriving, users
leaving, and recording the state of the component, either
to be sent to update newcomers or to be saved in the
persistence repository.

• Environments provide a shared data abstraction that
simplifies maintaining state across client processes.
Combined with events for notification, environments
can support a Model-View-Controller paradigm with a
shared model. This has proven more useful than remote
procedure calls in complex groupware applications.

• A number of groupware widgets provide interfaces to
particular groupware functionality, such as displays to
maintain awareness of other users’ actions. Some
standard widgets in GroupKit, such as telepointers, are
implemented in TeamWave globally, so individual
components do not need to add them explicitly.

In summary, developers use GroupKit's proven API and
widget set to make their components group-aware. In
practice, this means that groupware development is only
slightly more difficult than developing equivalent single user
applications.

IMPLEMENTATION
While the previous section dealt with the component
developer’s view of the system, we now turn to how this
view was actually realized in the TeamWave client
infrastructure. We look at the overall system architecture,
which uses multiple Tcl interpreters to separate various
system components. We then look at how the window
system is shared between these interpreters, as well as how
other resources such as communications channels are shared.

System Architecture
Tcl provides a mechanism to instantiate several interpreters
within an application. While mostly independent of each
other, the creating (master) interpreter has knowledge of the
created (child) interpreters. Through an “alias” feature, the
master can cause particular commands invoked in a child to
actually invoke a command in the master interpreter. This is
commonly used to provide access to a restricted set of
functionality; for example it has been used to support safe
use of files and sockets from downloaded and untrusted code.

We partitioned the TeamWave client into several interpreters
as illustrated in Figure 3. Note that each component runs in
its own interpreter, as does the room as a whole (e.g.
controlling the whiteboard and chat tool). Both of these are
children of the application interpreter, which controls things
like navigation between rooms, and is responsible for
creating both room and tool interpreters. This means each
component is coded like a separate Tcl application.

Window Embedding
We then needed to give each interpreter access to specific
parts of the user interface. We chose a strategy whereby a
single instance of Tk was run in the application interpreter.
A rather elaborate set of aliases (adapted from some work
done in a Tcl web browser called SurfIt!) was then used to
partition the window hierarchy. This meant that the topmost
window (“.”) of any particular interpreter might in fact
correspond to a different window name in another interpreter.

Figure 4 illustrates how the topmost frame of a component
might be known as “.” to the component’s interpreter,
“.wb.tool325” to the interpreter for the room, and
“.room312.wb.tool325” to the application interpreter. Note
though that a component’s interpreter would have no way to
access windows in any other part of the application unless
explicitly permitted to do so.

For example, when the interpreter managing the current
room wants to create a new component, it first creates a new
frame widget for the contents. It then inserts that frame into
its own window hierarchy, within the whiteboard. The room
then requests the application interpreter — using an alias
provided to the room by the application interpreter — to
create a component of a given type, rooted at the newly
created frame. The application interpreter creates the new
interpreter for the component, sets up all the appropriate
aliases so its “.” window is mapped to the frame created by
the room, and then loads the program for the requested type
into the new interpreter.

The frame surrounding each component (which allows
movement and resizing) is managed by the room interpreter,
since the position and size of tools is within the domain of
the room. As the room resizes the frame widget holding the
tool, changes in geometry management naturally propagate
to the child, which reacts to them exactly as if it were
running in a toplevel window which was being resized by
the window system.

Switching between active components (and adjusting the
menubar) is handled by the application interpreter. Because it
has access to the entire window hierarchy, it can detect
mouse clicks throughout the application. If the mouse is
clicked inside a component other than the current active one,
it can adjust the menubar accordingly. It can then notify the
room of the change, for example allowing it to change the
color of the component’s frame.

Figure 3. Use of Multiple Interpreters

Application

Room Tool Tool

communications,
room navigation,
users on server

whiteboard, chat,
applet positions,
telepointers

e.g. calendar e.g. concept map

Figure 4. Partitioning the Window Hierarchy

. (root)

.rooms .users. room312
“.” in room interpreter

.room312.wb.room312.users

.room312.wb
. tool325

“.” in tool interpreter

.room312.wb
.tool57

“.” in tool interpreter

.room312.chat

Thus, sharing a widget hierarchy and using aliases to
partition each component's views of the hierarchy is a
simple yet powerful way to manage widget sharing. Widget
name clashes between interpreters could be controlled by
partitioning. Parent interpreters responsible for managing
sub-compnents could accesses and control widgets in their
children's space. Parents could provide explicit interfaces to
children for accessing certain 'external' widgets.

Resource Sharing
Besides the window hierarchy, several other resources were
shared among the interpreters. For example, the modified
version of GroupKit used in TeamWave redirected all
communication requests from child interpreters through the
master application interpreter. In this way, a single socket
connection to the server supported all interpreters running in
the client application. Again, this was accomplished through
the use of aliases set up in the master interpreter. Each child
was not aware that the resource was being shared, which
greatly simplifies the coding of components.

EVALUATING COMPONENT COMPLEXITY
This section describes some of our own experiences in
building components for TeamWave using the framework
described previously. Though we are aware of a few third
party tools constructed to date, we have not yet examined
them in sufficient detail to draw any conclusions from
external developers. We expect to examine this more as
TeamWave is further deployed and more third parties begin
to develop their own components.

The first observation is that we were successful in removing
the need for components to know specifically about
components. They did not know they were running inside a
child interpreter and within other windows. None of the code
in our components deals with this issue at all, and were
coded as if they were running as standalone applications.

For example, we successfully adapted several standalone
GroupKit applications to run as TeamWave components.

Most of the changes were minimal, related to changes in the
security model and the menubar API. None of the
applications we adapted relied on multiple windows (except
for dialog boxes, which were supported), so there were no
issues there. We were also able to simplify some of the
code, as features like telepointers were provided in the main
TeamWave application.

To give a very rough measure of the complexity of the
components, Table 1 shows the lines of code count for each
of the components supplied in the system. These range from
a fairly simple text note to a groupware web browser, to a
complex shared graph editor with user-defined types for nodes
and edges. As with our earlier GroupKit experiences, most of
the code dealt with maintaining the single-user aspects of the
interface. The overall low code size we attribute to Tcl/Tk
and GroupKit. The point is that creating an embedded
component was almost equivalent to creating standalone
GroupKit applications.

INTERACTIONS BETWEEN COMPONENTS
One thing we found very interesting was the different types
of interactions between the different components in the
system — the overall application interpreter, the room
interpreter, and the interpreters for each tool.

Our design choices — use of Tcl/Tk, multiple interpreters,
and a shared window hierarchy — provided us with a number
of different strategies for structuring the application to
simplify the development of individual components. Below
we detail four of these interactions.

Note that reducing the complexity in the tool components
comes with the cost of increased complexity in the
application and to some degree the room component. For our
application, this was the correct tradeoff, because while we
expected many different tool components to be created, there
would only be one application and one room created.

Application Calling into Tool Components
The first common interaction between components was
where the application component would call into individual
tool components. For example, the overall application
would notify the tools when users entered and left the room,
when the room’s contents should be written out to the
persistence repository, and so on. We would expect this sort
of delegation in any component architecture. Because most
of the work here was at the level of the underlying GroupKit
layer shared by all tools, this strategy had minimal impact
on the complexity of development.

Application Calling into the Room
A related interaction was the application calling into the
room interpreter. The difference here was in the level of
knowledge the application had of the components vs. the
room. For the tools, the only assumption the application

Calendar 197
Concept Map 870
Database 574
Image Annotator 172
Doorway 40
File Viewer 101
File Holder 160
Note Organizer 146
Postit 23
Tetrominoes 193
URL Reference 58
Web Browser 1499

 Table 1. Lines of code of standard components.

had was they were standard GroupKit programs. For the
room, we made a conscious decision to assume the
application knew everything about the room’s internals.
Because of that, the application was free to call procedures,
query variables (such as the active tool component), and so
on. This type of component interaction was arguably far
more useful in the early development stages, helping us to
rapidly evolve all the complex interactions between the
application and room. If we later chose to allow third party
rooms to be added (e.g. different functionality for the shared
whiteboard), this design will surely be revisited, trading the
flexibility for a more conventional structured interface.

Components Using Application Services
In this type of interaction, the application would explicitly
make functionality available to the components. The
mechanism here was for the application to provide a new
command via an alias, so that the requested command would
be run in the application even when invoked from the child.
This greatly simplified component development by making a
simple high-level interface available to functionality that
was either complex or required access to state not directly
available to the component developer.

A “workplace” Tcl command provided front ends to many
utilities. For example the image component could invoke
“workplace pencolor” to get the current pen selected in the
pen tray (which the application in turn looked up from the
room interpreter), or the doorway could invoke “workplace
roomchooser” to popup a dialog letting the user select a
room from the available rooms on this server (data which
resides only in the application interpreter).

Sharing the Window Hierarchy
The fact that a single instance of the Tk window hierarchy
was shared throughout the application offered several benefits
that we did not anticipate.

We saw previously how the room interpreter was able to
handle resizing of individual components without
intervention by the component itself. This was a direct
consequence of the component’s frame being accessible both
from the room and the component interpreters. Similarly,
because the application could receive events across the entire
window hierarchy, it was able to detect mouse clicks in tools
and set the active component appropriately.

Two examples particular to groupware are support of
telepointers and idle times. The room interpreter could detect
mouse movement throughout its window, including portions
of the window assigned to individual components. This let
telepointers be implemented in the room, so that each
component did not have to implement its own. There was
also an application-wide idle indicator used to provide
awareness information on other users. Again, this was

implemented by watching for mouse moves or keystrokes
across the entire window hierarchy.

RELATED APPROACHES
In this section we will briefly compare our approach against
other technologies that could be used for supporting the
development of add-on components.

OpenDoc/OLE/ActiveX
These technologies are designed explicitly to provide
component models such as we have implemented (in fact,
many of the interaction techniques in TeamWave were based
directly on those in OpenDoc), but none were reasonable
candidates. None offered the cross-platform support we
required. Further, high-level development tools are still not
available, leaving potential developers to struggle directly
with the complexities of part development.

Tools as Separate Objects
Another approach we had experimented with was designing
the system as a single process (or if using one of the object
frameworks in Tcl, as a single interpreter), where each tool
was a separate object running in the same namespace as all
others, and the application as a whole. This became quite
complex, and we continually ran into the case where we had
to be careful of namespace collisions. Using objects running
in a shared address space would also preclude the use of
downloaded tools, which would require some form of
restricted access.

J a v a
Java [1] had just been released when we first began
development of TeamWave, and only recently have the
language and development environments matured enough to
make serious development effort possible. However, there
are many obvious comparisons that can be drawn between
TeamWave’s components and Java applets, and the
approaches have much in common.

For our particular needs, we can point to several advantages
of our approach over Java. Despite most of the uses to date
in trivial web toys, Java truly shines in larger applications,
where its strong typing, rich data structures, and explicit
structure are great aids to development. In TeamWave, we
envisioned individual components to be fairly lightweight.
Consequently, we argue the overhead of typing, structuring
etc. is less necessary, and an unstructured scripting language
like Tcl may be more appropriate. Our GroupKit experience
has shown that users not trained in formal computer science
or OO techniques can still develop applications in Tcl/Tk.

There are two weaknesses in Java that are currently being
addressed, the widget set and object marshalling. The earliest
versions of AWT are notoriously simplistic, and don’t have
the rich widgets provided in Tk. This makes some
applications more difficult to implement, as well as

complicating groupware features like telepointers. Later
versions of AWT, or third party interface libraries are sure to
address these limitations. Secondly, when developing
groupware in early versions of Java, developers had to
explicitly do the data conversions and message parsing on
sending and receiving remote procedure calls, which results
in much extra overhead. Tcl’s everything-is-a-string “feature”
turns out to be surprisingly useful for avoiding this problem
in groupware. Again, this will be ammeliorated somewhat as
Remote Method Invocation becomes available in Java
implementations.

Java-based groupware today runs as isolated applets. With
the introduction of the technologies mentioned above, as
well as the new JavaBeans component architecture, we would
soon expect to see more tightly integrated groupware along
the lines of TeamWave. It will be useful to compare the
development effort and the strategies used for interacting
between the components in those environments. We see Java
not as a competitor, but as a less mature groupware platform
that could learn from our own development experiences.

LESSONS LEARNED
We began this work by looking at how we could simplify
the development of modestly sized interactive groupware
components for the TeamWave Workplace environment. In
implementing an alternative to generic component
architectures, we were able to take advantage of specific
characteristics in our application.

We found that letting tools run in their own execution
contexts (in this case, Tcl interpreters) separate from other
parts of the application was a very useful and effective
strategy for minimizing the information the tool developers
needed to be concerned with. We were careful to design the
support infrastructure so that developers viewed the world as
if they were running stand-alone as opposed to running as a
component within a larger application.

The different interactions between system components in
TeamWave provided us with many opportunities to reduce
the complexity of developing individual tools, though often
at the expense of increased complexity in the main
application component. Again, for our application (and we
expect many others), this is an appropriate tradeoff to make.
Providing a range of well-defined and ad-hoc interfaces

between components resulted in several benefits. As well,
our use of a single widget hierarchy shared across the
application provided a number of ways to reduce the
responsibilities of the individual tools.

Given the relatively small size of the components we wanted
to support, a scripting language like Tcl/Tk and our
GroupKit API was an appropriate solution. Had we been
looking to support larger components, a more structured
language such as C++ or Java would likely be a better fit.
Similarly, Tk’s widget set provided good support for what
we needed, and Tcl’s string based model was useful for
network communications.

Again, many of the design decisions were particular to our
own application needs. As groupware applications and
development environments grow more sophisticated in the
future, we expect to see more groupware applications that
collect together a number of components, rather than
running stand-alone as is generally the case today. We expect
that many of the strategies and component interactions we
described here will help to inform the design and
implementation of these new groupware systems.

Note: Information on TeamWave can be obtained from:
 http://www.teamwave.com.
GroupKit information is available from:
 http://www.cpsc.ucalgary.ca/projects/grouplab/groupkit.

REFERENCES

1. Arnold, K. and Gosling, J.. The Java Programming
Language. Addison-Wesley. 1996.

2. Orfali, R., Harkey, D. and Edwards, J. The Essential
Distributed Objects Survival Guide. John Wiley and
Sons. 1996.

3. Ousterhout, J. Tcl and the Tk Toolkit. Addison-
Wesley. 1994.

4. Roseman, M. and Greenberg, S. Building Real Time
Groupware with GroupKit, a Groupware Toolkit.
ACM TOCHI. March, 1996.

5. Roseman, M. and Greenberg, S. TeamRooms:
Network Places for Collaboration. Proc. of ACM
CSCW ‘96. October, 1996.

