
Managing Complexity in TeamRooms, a Tcl-Based
Internet Groupware Application

Mark Roseman
Dept. of Computer Science, University of Calgary

Calgary, Alta, Canada T2N 1N4
Tel: +1-403-220-3532

E-mail: roseman@cpsc.ucalgary.ca

Abstract

This paper describes TeamRooms, a Tcl-based real time
groupware application that provides “network places” for
users to collaborate. TeamRooms is significantly more
complex than previous groupware applications, providing
not only generic tools such as shared whiteboards, but also
custom groupware applets running within an OpenDoc-style
embedded window. As well as describing TeamRooms
itself, the paper relates the use of several Tcl programming
techniques — meta-architectures, multiple interpreters, and
embedded windows — that are used to manage the resulting
complexity of the system.

Keywords: groupware, Internet, application embedding,
multiple interpreters, performance tuning

Introduction

This paper describes a novel groupware application called
TeamRooms, written using Tcl/Tk. Groupware systems
provide a means for several users to work together, even
though they may be separated by distance. TeamRooms
approaches this problem by providing “network places” on
the Internet, where users can gather to meet in real-time or
can asynchronously leave information for each other. The
metaphor is based on the physical team rooms used by many
co-located work groups [4].

Previously, we had developed a number of applications in
GroupKit, a Tcl/Tk extension or toolkit we had developed
for building groupware [7]. TeamRooms was somewhat of a
departure from these applications, demanding a different
network architecture, more provisions for security and

robustness, and needed to go cross platform. The user
interface was to move from the relatively straighforward
model of “one tool per window” to a model where several
tools could exist in a single window, as found in compound
document architectures such as OpenDoc or OLE [5].

In developing TeamRooms, we were faced with the
following constraints: there was not enough time or
resources to just completely rewrite everything, and it was
important to keep the ease of building applications found in
the original GroupKit. Even though the entire system was
becoming much more complex, that added complexity had to
be carefully managed and controlled.

This paper consists of two parts. The first part provides
some background on real-time groupware and GroupKit, and
then carries on to describe TeamRooms and its user interface.
The discussion emphasizes the novel aspects of TeamRooms
as a Tcl/Tk program: it is multi-user, multi-process, and an
example of a highly-interactive Internet application. Its
combination of several smaller Tcl programs via a
compound document interface is also new.

The second part of the paper describes how TeamRooms was
constructed, while still keeping our investment in existing
GroupKit code and its straightforward API. The techniques
used include meta-architectures, multiple interpreters, and
embedded windows. Because some of these techniques may
be applicable to managing the complexity in other Tcl/Tk
applications, some of the problems that were faced along the
way are also described.

About Groupware and GroupKit

Before delving into TeamRooms, some background is
necessary. For those unfamiliar with the domain, this
section first introduces real-time groupware applications. It
then describes our GroupKit extension, and in particular the
scope of applications which it has been possible to create
with GroupKit.

saul
Text Box
Roseman, M. (1996). Managing Complexity in TeamRooms, a Tcl-Based Internet Groupware Application. PReport 96-584-04. Dept Computer Science, University of Calgary, Calgary, AB.

Real-Time Groupware

Groupware is software that helps two or more people
collaborate. It is a pretty general category that includes
applications like e-mail or Usenet bulletin boards. Workflow
and document management systems like Lotus Notes are the
most commonly known groupware applications today.

Real-time groupware is groupware that lets people work
together at the same time. A common example is the “talk”
facility in Unix. Another example is a “shared whiteboard”
program, that let people across a network draw together —
any drawings marks made by one user on their computer are
seen by all other users working on the shared drawing. Other
examples are text editors that allow editing the same
document at the same time (usually with some form of
locking so users don’t conflict), brainstorming or voting
tools for distributed meetings, card games, and so on.

GroupKit

Groupware can be both productive and fun to use. It is not,
however, much fun to write. Even ignoring the considerable
technical hurdles of network infrastructures and concurrency,
there are many human factors issues that have to get worked
out for anyone to be willing to use it. We developed
GroupKit to make it easier to build real-time groupware
applications. GroupKit is a toolkit or extension that relies
on lower level support from Tcl, Tk, and Tcl-DP. Some of
the facilities it provides to groupware developers are message
passing, shared data structures, session management, and
high-level multi-user interface widgets.

Figure 1 shows some typical applications constructed with
GroupKit. The session manager is used to start each tool,
which runs as its own process in its own window. When
several users join a groupware session (for example, a shared
whiteboard tool), each user’s process makes a socket
connection to every other user’s process, which is known as
a replicated architecture. Though GroupKit supports many
different tools and even different session managers, the basic
run-time architecture is always the same.

Just as Tcl/Tk have made single-user applications easy to
build, GroupKit has made groupware applications easy to
build. The toolkit’s learning curve is quick to climb, making
it suitable when time is limited, such as for university class
projects. A number of substantial systems have been built
using it, and its design has made it easy to transform many
existing single-user Tcl/Tk programs into groupware. The
toolkit has also served well in supporting our own research
interests of exploring groupware user interface issues. The
combination of high-level programming constructs and ease
of learning have made GroupKit arguably the most popular
groupware development platform available today.

Challenges

Still, there were areas we wanted to explore where we were
hindered, particularly as we started focusing more on
interesting applications. Besides running on Unix, we
wanted to be able to deploy applications across platforms
like Macintosh and Windows. Our fully replicated network
architecture worked well in a world of stable workstations
and networks, but can be problematic with unreliable
machines and modem connections. Finally, we wanted to

Figure 1. Some GroupKit applications, including (a) the open registration session manager, (b) information on
a user, (c) a brainstorming tool, (d) a shared whiteboard, and (e) a multi-user text editor.

(a)

(b)

(c)

(d)

(e)

explore richer, more integrated environments, where several
groupware tools were closely tied together, for example
embedded inside other applications, documents or web pages.

TeamRooms

TeamRooms is our most ambitious groupware application
to date. Unlike most of our tools which support isolated
real-time meetings, the system provides a fully persistent
environment for collaboration, whether in real-time or
asynchronously. TeamRooms is modeled after physical team
rooms, which provide a place for teams to meet, work, leave
things for other team members, add comments and changes
to shared documents, and so on. Our goal is to provide an
electronic equivalent for teams whose members may be
distributed. TeamRooms is a “network place” that hosts a
team’s collaborations.

This metaphor is not new; Multi-User Dungeons (MUDs)
also provide a persistent shared space, where people can meet
in rooms containing various objects [3]. As with MUDs,
TeamRooms uses a central server to hold information on
rooms and their objects, and a separate client provides the
user interface — but rather than a telnet client, TeamRooms
has a full graphical interface (on Unix/X or Macintosh, with
Windows under development). We wanted to move beyond
the limited text-based interfaces of today’s MUDs, and
provide “useful” fully interactive groupware applications as
tools in the room. We stopped short of full audio/video
support to keep network requirements reasonable, though an
external system could be added.

User Interface

Figure 2 illustrates the user interface of the TeamRooms
client, where the user (Carl) is in a room called “Ideas for
Papers” with two other users (Saul and Mark). Along the
bottom of the screen are a text-based chat tool and different
colored pens for drawing on the “walls” of the room (a shared
whiteboard). User snapshots show who else is in the current
room or on the server, and if a video camera is available,
these pictures are periodically updated. Also shown are three
applets: a group outliner, a sticky note, and a URL pointer.

Applets

Each applet is embedded in its own frame, in a similar
fashion as OpenDoc or OLE components. Users select new
applets from the Tools menu, as well as delete, move and
resize them. All changes are immediately visible to all users
in the room. TeamRooms also allows users to retrieve
earlier versions of applets, to compare changes over time.

Applets can be practically any groupware application, such
as meeting tools (e.g. for brainstorming ideas or voting),
shared document editors, drawing tools, or games. Some
specific examples we built include:

PostIt. The ubiquitous yellow sticky note allows users to
leave text messages in the room for other users, as
reminders, or to comment on other room objects.

Outliner. A hierarchical outline tool lets users organize a set
of notes or ideas. Users can add or delete ideas, drag existing
ideas to rearrange them in the outline, and collapse or expand
portions of the outline.

Image Tool. As a way to decorate rooms, we created the

Figure 2. TeamRooms User Interface
Figure 2. TeamRooms User Interface, showing (a) radar view of room; (b) applets; (c) image stills of users in
room; (d) telepointer; (e) whiteboard pens; (f) text-chat area; (g) list of users currently around; (h) list of rooms.

(a)

(b)

(c)

(d)

(e)

(g)

(h)

(f)

image applet, which displays a GIF image fetched from an
HTTP server.

URL References . To help tie in external information, this
applet lets users leave pointers in the form of a URL for
others. Clicking on the applet loads the requested URL into
their web browser. Another applet uses Stephen Uhler’s
infamous HTML parsing library to display a web page
inside TeamRooms for discussion.

Applets differentiate TeamRooms from most groupware
tools that provide only simple facilities such as chat rooms
or shared whiteboards. Applets allow the environment to be
customized to suit the team’s specific needs. Because we
expected many users to want custom applets, we needed to
make it easy to construct new ones, ideally as easy as
constructing normal GroupKit applications.

Summary

TeamRooms provides a shared “network place” on the
Internet where team members can collaborate, either in real-
time or asynchronously. As a Tcl/Tk based Internet
application, it is novel because of its multi-user, highly
interactive nature, and its use of OpenDoc-style custom
applets embedded inside the application.

Strategies for Managing Complexity

TeamRooms represents a rather significant challenge for a
GroupKit application. Its architecture is centralized, not
replicated; it requires user authentication; it demands a very
robust, multi-versioned persistence facility; it needs to be
multi-platform; and several groupware applications need to
be embedded in the same toplevel window.

This section describes three techniques that were used to
build TeamRooms while still leveraging the existing
GroupKit code base and API where possible: meta-
architectures, multiple interpreters, and embedded windows.
After a description of these techniques, some of the
particular issues that were encountered in building
TeamRooms are addressed.

Meta-Architectures

Meta-architectures provide a way to change the underlying
behavior of a software system while still retaining an
existing interface or API. For example, we wanted to
provide a centralized network architecture (new behavior),
though still allowing developers to view the system as
having direct connections to other processes for passing
messages (a key component of the API).

In a meta-architecture, the user level API calls a small
number of well-defined underlying primitives. The meta-

architecture provides hooks to allow replacing those
primitives. In GroupKit, we had primitives for opening,
accepting and closing sockets, and passing messages. The
existing primitives supporting a replicated architecture were
replaced with new ones for a centralized architecture, and the
user level routines continued to do the right thing. When it
came time to add authentication (i.e. logins), we could again
use the hooks to add the new behavior.

Building good meta-architectures comes down to good
software design. It happens that highly dynamic languages
like Tcl make them easy to implement. A more in-depth
discussion on meta-architectures in Tcl is provided in [6].

Multiple Interpreters

The main problem for TeamRooms is dealing with all the
different pieces: locating and navigating rooms, tools such as
the shared whiteboard in the room itself, and then the
numerous applets. Everything needs to be kept fairly
separate and modular, while still being bundled together in
the same application process.

Our first approach was to use an object system. A prototype
of TeamRooms was built using [incr Tcl], where each applet
was a mega-widget with groupware facilities added. While
this worked, for this particular application it was not the
ideal solution for two main reasons.

New Programming Model. Using an object system
introduced a new programming model, where each groupware
tool was an object. This added an extra level of complexity
that we thought would be an obstacle to our target audience,
most of whom are not experienced programmers or familiar
with languages like C++. GroupKit’s existing message
passing paradigm was hard to resolve with objects, and
imposing a particular structure on applications would impede
the ability to adapt single-user applications.

Modularity Concerns . Surprisingly, modularity was also a
concern. The burden was on the object’s developer to ensure
it did not use globals or otherwise interfere with other
objects running in the application (despite interacting with
its equivalent objects in other users’ processes). This also
had implications for security; though we were not
immediately concerned with applets being downloaded over
the network, the need to “trust” each object to interact nicely
with the system seemed to preclude the possibility.

For the final version of TeamRooms, we abandoned objects
and implemented the system with multiple interpreters,
using the “stcl” extension that was added to the core in Tcl
7.5. Multiple interpreters allow us to view each piece as a
completely separate groupware application that looks almost
exactly like standard GroupKit code.

The TeamRooms client application consists of several
GroupKit interpreters, as illustrated in Figure 3. The overall
application interpreter is logically connected (via the central
server) to all other users on the server, and deals with
navigating between rooms, finding who is connected to the
server, and what rooms are available. When the user enters a
room, a room interpreter is created to manage the overall
room. Logically connected to all other users in the room,
this interpreter manages the chat window, shared whiteboard,
creates and resizes applets, etc. Finally, each applet runs in
its own applet interpreter. Some advantages of this
technique are noted below.

Standard Tcl Programs. The main advantage is that each
component looks just like a standard “run-on-its-own” Tcl
application (or in this case, GroupKit application). There are
no extra constructs, and no special considerations to worry
about. This perfectly addressed our concerns with learning
curve, and preserved our investment in existing applications.

Modularity and Security. Unlike with objects, programmers
using multiple interpreters must explicitly go out of their
way to access code out of the program’s scope. This meant
no accidental interference between applications. By providing
a clear dividing line between pieces, it also makes it easy to
replace pieces, such as the program for the room interpreter.
Finally, this left open the possibility to enforce security
restrictions on applets, using Safe Tcl [2].

Shared Resources . Multiple interpreters were used to share

resources across the entire application. For example, a single
socket connection is shared between all interpreters. When an
applet sends a message to its counterpart running in another
user’s client, the message is first routed to the application
interpreter. It is then sent over the network to the server,
which relays it to the application interpreter of the other
user’s client. From there, it is routed to the interpreter
managing the specific applet. The actual mechanism was
implemented by having the application interpreter set up an
alias in the applet interpreter to intercept communications.
Of course, the flexible routing scheme was specified using
GroupKit’s meta-architecture.

Embedded Windows

Though multiple interpreters give TeamRooms the needed
lower level functionality, all those interpreters still had to be
able to share the screen somehow. Luckily, Steve Ball had
already done most of the work for us in his SurfIt! web
browser [1], which features Tcl applets running in their own
subinterpreters and having access to Tk features. The basic
approach is to carve off a piece of the Tk window hierarchy
for the application interpreter, alias that to “.” in the applet
interpreter, and use aliases to redefine all Tk commands in
the applet to run in the application interpreter, with
appropriate changes to window names, etc.

We made several changes to this code. First, we allowed the
window hierarchy of child interpreters to be rooted at an
internal frame widget rather than only at a toplevel, so that
interpreters could share the same toplevel window. We
removed many of the security limitations enforced by
SurfIt!, since at this point we wanted full access to Tk
facilities. Finally, we moved several pieces of the code from
Tcl into C to improve performance in critical areas.

The frame surrounding each applet is constructed as a
standard Tk mega-widget (itself containing 20 small frames
for the different pieces of the border), whose inside frame is
the root of the applet’s window hierarchy. We followed the
practice found in the OpenDoc compound document
framework [5] that the parent determines the layout of the
child, so all resize decisions etc. are managed by the parent.

Issues

The previous section describes some of the techniques that
we used in building TeamRooms. Because these may be
applied to managing complexity in other Tcl/Tk
applications, we now look at some of the obstacles that were
faced in applying these techniques in TeamRooms, as well
as the solutions we found.

Startup Time

The first difficulty had to do with startup time. Because each

Figure 3. Structure of TeamRooms client, showing
use of multiple interpreters.

Application
Interpreter
(communications,
who is around, room
navigation, …)

Room
Interpreter
(whiteboard,
applet sizes, …)

Applet
Interpreter

Applet
Interpreter

socket to server…

interpreter acts like its own application, starting up several
different interpreters is like starting up several applications.
While a two second initial application startup time may be
reasonable, if it takes two seconds for every single applet to
be created, the time it takes to enter a room in TeamRooms
holding five or ten applets can seem like an eternity.

It took a lot of profiling (mostly using Tcl’s “time”
command) and subsequent performance tuning to get the
time it took to create an applet interpreter and its frame
down from about 2.5 seconds to a more reasonable .2
seconds. Some of the changes we made are described below.
Note that most are common sense optimizations that were
just never an issue before, and that the typical “if its slow,
recode it in C” would only address a small number of the
problems in this case.

Do the minimum amount of work . Our subinterpreters took
a lot of time initializing code they didn’t need. For example,
we’d originally initialized Tcl-DP even though the applets
used the application interpreter’s socket facilities (removing
this saved about .15 seconds). We used to read one large Tcl
configuration file, which included much information used
only by other parts of TeamRooms; this was moved into a
different file (saving about .2 seconds). Obviously,
minimizing work is especially important if the work is done
at the slower Tcl level, rather than C.

Avoid autoloading. While autoloading is a very convenient
way to load Tcl source code, it is extremely slow! We
explicitly sourced all scripts rather than relying on unknown
handlers and auto-loading (total saving probably around .5
seconds, depending on the applet).

Identify special cases. One data structure we use is created
and maintained mostly through Tcl code. When creating a
new instance, the programmer may specify a number of
different options, which requires a lot of slow Tcl code to
parse. We identified a frequently-used special case and
handled that separately. These types of optimizations saved
about .2 seconds.

Use smarter Tcl constructs. We found many opportunities
for improvement here. Our best example is a construct like
“lsearch [info commands] foo” rather than “info commands
foo” which runs about forty times faster. While Tcl is a
great way to “glue” primitives together, its definitely worth
checking the manual pages to see if your favorite Tcl
command will do the work for you itself.

Embedded Window Issues

Most of the embedded window issues we faced were
performance issues, not surprising given that the code to do
the embedding was written in Tcl. In this case, profiling
identified some special cases which were rewritten (e.g. there

is no need to search through a command using an expensive
regular expression search to find window pathnames if the
character “.” doesn’t appear anywhere in the command), or
some general routines which were used everywhere where it
was worth it to rewrite just those routines in C.

Using mega-widgets was another issue. Both the mega-
widget framework we used and the mega-widgets themselves
were written in Tcl. Given the overhead of the window
embedding code, both creating and using mega-widgets that
run in the child interpreter was very slow. Moving them into
the parent interpreter (and making them available in the child
interpreter with an alias, as is done with the built-in Tk
widgets) improved that situation considerably (creating the
mega-widget for the applet’s object frame took .5 seconds
when run in the child interpreter, and just under .1 seconds
when run in the parent interpreter).

There were a few other difficulties, such as not being able to
access the “-variable” associated with some widgets in a
subinterpreter. Deciding how images were shared between
interpreters is also an issue (we let child interpreters have
full access to the parent’s images, though this decision may
have to be revisited if we allow untrusted applets). These
will need to be resolved as the “safe Tk” code is redone and
integrated into the Tk core.

Interactions Between Interpreters

Interpreters need to communicate with each other to share
facilities, such as sockets, information on users, and so on.
The multiple interpreter package in Tcl uses a “parent/child”
paradigm for interpreters, which we followed closely. Shared
facilities were always supplied by the parent (the application
interpreter) to the child (the room or applet interpreters),
using interpreter aliases. This resulted in the application
interpreter program needing extra code, while the code used
in the room and applet stayed quite simple, which worked
well for our need of simplifying applets.

Though it is possible to use hierarchical interpreters, after
some brief experimentation we avoided them. With the
applet interpreters being a child of the room interpreter
(rather than the application interpreter), and even with
applets as children of other applets at one point, things got
out of control very quickly. Performance was an issue
(largely with the user interface code), and responsibilities
were spread over many pieces. When possible, a shallow
hierarchy of interpreters seems to be more effective.

Another decision we had to make was about menu sharing,
so that applets could have access to the main menubar. We
chose to add a single menu to the menubar for each applet
(available via an alias), and the application interpreter packed
and unpacked the menu as the focus changes. An alternative
would be to clone the entire menubar for each applet.

Packaging

Because our audience is not only developers but also people
who just want to use the system, we needed to package a
binary that would not require users to compile their own
Tcl, Tk, GroupKit, etc. Existing solutions need some
changes to work for applications using multiple interpreters.
Typically these systems “compile” Tcl code into arrays of C
strings, and load them via Tcl_Eval() at the start of the
program. But multiple interpreters are not always created at
the program’s start, and interpreters may use different files.

The solution we used in TeamRooms was to use an existing
package (Joe Touch’s “tcl2array” package) to generate C
arrays of the Tcl code. We then created a hash table
containing pointers to these arrays, indexed by their original
Tcl filename. We replaced Tcl’s standard “source” command
with a new version that first checks if the requested filename
is in the table. If so, the code is read from the array,
otherwise the file is read from disk.

Cross Platform Issues

While TeamRooms now runs on both Unix and Macintosh,
and will eventually run under Windows, at the time of
writing we have little to report in terms of cross platform
issues that were difficult to resolve. Most difficulties have to
do with missing native functionality (e.g. proper menus),
differences with fonts (which are important if we want
identical views of the room across platforms), and so on.
Other common cross-platform issues such as layout, naming
conventions and so on have not been significant issues with
TeamRooms. This is likely because the system relies on a
very customized, direct-manipulation interface built using
Tk’s canvas widget, rather than using a more conventional
forms based interface.

Conclusions

This paper has described TeamRooms, a Tcl/Tk groupware
application built with our GroupKit toolkit. TeamRooms
provides “network places” on the Internet for collaborators,
who can interact with generic tools like shared whiteboards.
They can also customize their electronic rooms by using
applets, which are full groupware applications that run
embedded in the room’s window, OpenDoc style.
TeamRooms is a good illustration of a highly interactive
Tcl-based Internet environment.

To accomplish this while still keeping the application’s
complexity reasonable, TeamRooms relies heavily on a
number of techniques. Meta-architectures provide the
flexibility to support new run-time architectures. Multiple
interpreters allow us to structure the system so that each
component acts as its own self-contained application,
without requiring extra knowledge about the overall

environment. Finally, embedded windows extend the power
of multiple interpreters to Tk. Our experiences with these
techniques should prove useful as other Tcl/Tk applications
begin to use these newer features.

References

1. Ball, S. SurfIt! A WWW Browser. In submission.

2. Borenstein, N. EMail with a Mind of its Own: The
Safe-Tcl Language for Enabled Mail. In Proc. of
ULPAA. 1994.

3. Curtis, P. and Nichols, D. MUDs Grow Up: Social
Virtual Reality in the Real World. In Proc. of the
Third International Conference on Cyberspace. May
1993.

4. Johansen, R., Sibbet, D., Benson, S., Martin, A.,
Mittman, R. & Saffo, P. Leading Business Teams.
Addison-Wesley. 1991.

5. Orfali, R., Harkey, D. and Edwards, J. The Essential
Distributed Objects Survival Guide. John Wiley and
Sons. 1996.

6. Roseman, M. When is an object not an object? In Proc.
of Tcl/Tk Workshop. 1995.

7. Roseman, M. and Greenberg, S. Building Real Time
Groupware with GroupKit, a Groupware Toolkit.
ACM TOCHI (1996, in press).

