
TeamRooms: Network Places for Collaboration

Mark Roseman and Saul Greenberg

Dept. of Computer Science, University of Calgary
Calgary, Alta, Canada T2N 1N4

Tel: +1-403-220-3532
E-mail: roseman,saul@cpsc.ucalgary.ca

ABSTRACT
Teams whose members are in close physical proximity often
rely on team rooms to serve both as meeting places and
repositories of the documents and artifacts that support their
projects. TeamRooms is a groupware system that fills the
role of a team room for groups whose members can work
both co-located and at a distance. Facilities in TeamRooms
allow team members to collaborate either in real-time or
asynchronously, and to customize their shared electronic
space with tools to suit their needs. Unlike many groupware
systems, all TeamRooms documents and artifacts are fully
persistent.

KEYWORDS: Groupware, shared electronic spaces,
GroupKit

INTRODUCTION
Johansen [6] describes how team rooms have become an
important tool used by business teams to organize their
work. Team rooms provide a permanent shared space used
by the team, which can serve as a meeting room, a work
area, a place to store documents that are needed by the team’s
projects, and more generally, as a venue for communication
within the group.

Traditional team rooms rely on the physical proximity of the
team members and their easy access to the room. This
access breaks down when workers are distributed, as is
increasingly the case today. Trends towards more flexible
organizations and telecommuting can result in teams whose
members are at various times scattered over large geographic
areas. For such teams, shared physical spaces are not an
option.

We describe here a groupware system called TeamRooms
that supports the team room concept for teams whose
members work either co-located or at a distance. It combines
aspects of both real-time and asynchronous groupware to
provide the team with a “network place” serving as a locale
for their collaborations. The system is highly customizable,
allowing the team to bring different tools into their
electronic room on the fly to suit their needs, just as they
do with their physical meeting rooms.

Each room contains both generic communication tools (a
chat tool and a backdrop acting as a shared whiteboard) and
any number of applets needed to support the group’s work.
Typical applets would be diagramming tools, outliners,
brainstorming tools, browsers for information such as web
pages, notes to other team members, as well as more
frivolous items such as card games. When team members
are in a room at the same time, they see not only each other
but also each other’s actions, both through immediate
changes in the room’s artifacts and through mechanisms
such as multiple telepointers. As with real rooms, all
artifacts in the electronic room persist even when no one is
in the room.

After describing the metaphor used in TeamRooms, this
paper continues with an overview of its user interface
features that support collaboration. We then describe some of
the different applets we have constructed. We also examine
briefly the system’s architecture and implementation, and
report on our early usage experiences with it.

MOTIVATION
Unlike many real-time groupware systems that support the
metaphor of a meeting , TeamRooms is based on the
metaphor of a place. Here we characterize the attributes of
places that motivated our system design: they are long-lived,
their contents are persistent, they provide a forum for people
to communicate, and they can contain both general and
special purpose tools.

saul
Text Box
Roseman, M. and Greenberg, S. (1996).
TeamRooms: Network Places for Collaboration. Report 1996-583-03, Dept. of Computer Science, University of Calgary, Calgary, AB, Canada. T2N 1N4. March

Places are generally long-lived, and can play host to any
number of events (such as meetings) held within them.
Unlike meetings, places address the issue of what happens
outside the real-time collaboration itself. Places organize
work; for example, a group can choose a particular place to
work on a given project. The group can use this place to
meet, to work on tasks both individually and collectively, to
store project artifacts, and to leave project information for
others.

Unlike meeting-centered models where shared documents do
not exist beyond the meeting (unless saved as files or
exported to other tools), places are inherently persistent. Any
object in the place continues to exist even when all users
leave the place, and later visits to the place by one or more
users will find the object unchanged.

Places provide a venue for communication. When several
people inhabit a conventional space at the same time,
communication between them is afforded. For example, they
can see and talk to each other.

Places offer common tools for collaboration. For example,
team rooms or meeting rooms provide sets of conversational
props that are always ready-to-hand, including common tools
such as whiteboards, flip charts, or overhead projectors.

Finally, groups can bring in special purpose tools to
customize the place to suit their own particular needs. These
will be as diverse as the group’s project or task, and can
include books, reports, documents, writing tools, ongoing
status or progress reports, calculating or computing devices,
task lists, and so on.

The challenge we have is to mimic these characteristics of
physical team rooms in electronic ones. This is reflected in
the following design requirements for TeamRooms:

• rooms must be long-lived, and usable by both individuals
and groups

• rooms and their contents must be fully persistent

• rooms should provide interpersonal communication
facilities

• generic collaboration tools should be automatically made
available in each room

• special purpose tools can be added to any room

We then added the following considerations particular to
electronic rooms:

• rooms must be accessible from anywhere on a network

• access to rooms must be limited to a designated group

• external computer and network information should be
easily accessible from within the rooms

USER INTERFACE
Figure 1 illustrates the TeamRooms user interface, where the
user (Mark) is in a room called “Mark Roseman’s Room”
with two other users (Carl and Saul). Also shown are six
applets: a concept map tool, a sticky note, an image, a URL
reference, an outliner, and a tetrominoes game.

In the discussion below, we first show how a user starts the
system, and how they can create a new room or enter an
existing room. The standard tools in every room (such as the
shared whiteboard) are then described, including those used
when meeting others in a room. In the next section, we
move on to describe the applets, which can provide more
specific support for a group’s activities.

Starting Up
When users first start up, they connect to a central
TeamRooms server that maintains a set of rooms for the
group. To gain access, they are prompted for a user name and
password. If they are among the work group permitted to use
the server, they are then placed in a user-specified default
room. Before detailing the contents of a room, we first
describe how users can navigate to other rooms on the
server, or can create new ones.

Entering other rooms. Figure 1a displays a list of all rooms
available to the group. Users enter other rooms by selecting
them from this list. Though primarily used for navigation,
the list also displays which users are in each room. This can
highlight existing meetings or sessions between several
users, or it can act as an affordance for casual interaction.

Creating new rooms . Users create new rooms by choosing a
command from the Rooms menu, specifying a name for a
room. Currently the room’s creator has no special
priveleges, allowing others in the work group to enter,
change or even delete the room. We plan to provide more
fine-grained access control in the future.

Locating other users. Figure 1b displays a list of all users
currently connected to the group’s server, as well as the
room each user is currently working in. This helps to
quickly locate other people, and facilitates making contact
with them. Their images are normally still images (e.g. that
the user provides from a scanned-in picture). When a video
camera is available, we replace the still image with a
snapshot taken several times per minute. This provides
useful information about whether other users are actually
present and available for collaboration, while still using very
modest bandwidth. These snapshots serve a function similar
to those in Portholes [2].

User information. More information on users can be found
by selecting them from the user list. This will display a
“business card” window as shown in Figure 1c. Having

server
rooms

server
users

Figure 1. TeamRooms user interface, showing (a) available rooms; (b) connected users; (c) business card; (d)
radar overview of room; (e) URL reference applet; (f) users in room; (g) concept map applet; (h) outliner applet;
(i) whiteboard pens; (j) text chat area; (k) image applet; (l) telepointer; (m) postit applet; (n) tetrominoes applet.

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(l)

(n)

(m)

(i)

(j)

(k)

information such as phone numbers or current location
available can assist in setting up phone calls in parallel with
TeamRooms.

Standard Tools in Every Room
Standard features are available in every room. Though each
room in TeamRooms can be customized to suit the specific
needs of the team and their task, certain generic facilities are
provided that we think are useful for a wide range of groups
and activities.

Chat tool. A simple text-based chat tool (Figure 1j) is
provided that allows users to type messages to each other
when they are in the same room. Though we would hardly
expect a lengthy meeting to be carried out in TeamRooms
without the benefit of an external audio channel (e.g. a
conference call), we realize that text can be a useful medium
for short or sporadic interactions, or where it is impractical
to provide an audio connection for reasons of cost or
logistics. While audio or video conferencing can provide an
excellent complement to TeamRooms, we chose not to
make such facilities necessary to use the system.

Shared whiteboard. A second facility is a shared whiteboard,
which occupies the “walls” of each room. Users select
different colored pens or the eraser from the pen tray
(Figure 1i), and can produce freehand drawings. The colors
have no special significance, though group members could
of course decide to use different colors to identify
themselves. Shared whiteboards are common in groupware,
allowing users for example to design new artifacts and
annotate existing ones [3].

Awareness Features
TeamRooms also provides several facilities for maintaining
awareness of other team members in the room, both a
general awareness of who is around, and a more fine-grained
awareness of others’ actions in the workspace [5].

Room users. TeamRooms displays a list of users in the
current room, as shown along in Figure 1f. As before, the
display is either of image stills, or video snapshots updated
several times per minute. Though we have not implemented
it, we could easily see these images replaced by a video-
conferencing system when appropriate facilities and
bandwidth are in place.

Telepointers. Within the workspace itself, telepointers, one
for each user, communicate gestures to provide a fine-grained
sense of awareness of the actions of other users (Figure 1l).

Room overview radar. Because the room can be larger than
will fit on a single display, a radar view (Figure 1d) provides
a miniature overview of the entire room. The radar shows the
locations of all applets in the room, the position of each
user’s viewport into the room, and miniature telepointers to

show the location of their mouse cursor. As users move
around the room and manipulate applets, the radar tracks
their actions.

APPLETS
While the facilities described previously provide fairly
generic support for collaboration, applets in TeamRooms are
designed for more specific needs of the group. Each applet is
in fact a special-purpose groupware application, which team
members can include in their rooms as needed.

For example, a room used to manage a particular software
project may have applets for task lists, bug reporting forms,
a pointer to an online version of the project’s specification
and so on. In contrast, a “coffee room” might have applets
for a card game, online comics, or electronic postcards left in
the room by travelling colleagues.

As shown in Figure 1, each applet is embedded in its own
frame within the room, in a similar fashion to OpenDoc or
OLE components [8]. Users select new applets from the
Tools menu, choosing from a list of available groupware
applications. Users can move, resize, and delete applets. All
such changes are immediately visible to all users in the
room.

Though applets are full groupware applications, we prefer
those with simple, direct manipulation interfaces. This
reflects our belief that complex interfaces in groupware can
impede group interaction. However, more complex applets
can choose to add commands to the global menubar. When
the applet has the focus, its menu commands are available.

TeamRooms also keeps a complete version history for each
applet. Versions of the applet’s contents are automatically
saved when the last user in a room leaves. Users can browse
and retrieve earlier versions, which creates a new instance of
the applet in the room. This allows users to compare the
two versions, or to review earlier stages in the project.

TeamRooms supports any of the types of applications which
could be constructed in GroupKit [11], including text editors,
drawing tools, card games, meeting tools, and so on. Several
of the applets currently included in TeamRooms are described
next. Most are fully group-aware, allowing shared views,
immediate updates of fine-grained actions, and simultaneous
editing.

Post I t
One useful applet we have provided is the ubiquitous yellow
sticky note (Figure 1m). Once created, text in the notes can
be changed at any time by any user in the room, and changes
are immediately seen on other users’ displays. As with their
paper counterparts, these notes are used to leave messages for
people, to serve as reminders, and to comment on other
artifacts in the rooms.

Outliner
The groupware outline tool (Figure 1h) allows team
members to hierarchically organize a set of notes or ideas.
For example, one use was to keep track of ideas for papers,
grouping possible papers under upcoming conferences or
journals, and adding comments on the viability of each
paper. Each item, which consists of one or more lines of
text, can be placed (using a drag and drop technique) within
the hierarchy of ideas, and portions can be collapsed and
expanded. All actions are immediately visible to all users.

Concept Map
The concept map applet (Figure 1g) provides another way to
organize information, this time as a graph. Nodes in the
graph can represent ideas, while edges allow different ideas to
be related. Users in the room can of course simultaneously
add and edit nodes and edges.

Games
The tetrominoes puzzle (Figure 1n) is one of several “non-
productivity” applets in TeamRooms. The idea is to have
several users simultaneously manipulate the colored pieces
to fit them within the outlines. In a similar vein,
TeamRooms could provide applets such as a card table (no
rules necessary, pick your own game with others in the
room) or a chess board.

Image Tool
Conventional rooms often contain graphical images, either
work related or for decoration. We added an applet which
could display an image in a room (Figure 1k). Rather than
storing the image on the TeamRooms server, we instead
store a reference to that image, in the form of a URL. The
image applet uses the reference to retrieve the image file
from an HTTP server, and then to display it. Clicking on the
image brings up a dialog to change the URL used to fetch
the image. Common uses were for personal pictures, as well
as pointers to popular daily comic strips available on the
Web, such as the “Dilbert of the Day.”

External URL Reference
To import external information into TeamRooms, we
developed an applet that contains a pointer to a WWW page.
Clicking on the icon sends the URL associated with the
applet to the user’s web browser, while clicking on the label
allows changing the URL (Figure 1e). This is not a shared
view application, for while the URL is shared, the action of
invoking the browser is strictly local.

GroupWeb
As a final example of including outside information, we
adapted our GroupWeb browser [4] to TeamRooms (not
shown in Figure). GroupWeb couples a simple Web browser
with groupware features such as telepointers and page
synchronization. While the external URL reference applet is
convenient for leaving pointers for other team members to

look at on their own, GroupWeb is useful to retrieve pages
into a shared view, and discuss information with others in
real-time, such as in a presentation or meeting.

Other Possibilities
Our major effort so far has been on the TeamRooms
infrastructure and its associated generic collaboration
facilities. However, we believe the system’s strength is its
ability to complement those facilities with specific
applications meeting the group’s needs. The applets
presented are only the beginning. Other possibilities include
decision support tools, drawing tools, version control for
external files, front-ends to external databases, calendars, and
other information systems.

IMPLEMENTATION
TeamRooms is implemented using an extended version of
our groupware toolkit GroupKit [11]. This section first
briefly describes TeamRooms’ system architecture. For
readers familiar with GroupKit, we describe how it was
adapted to provide new features needed in TeamRooms.

System Architecture
TeamRooms consists of three separate components: the
server, the user client (already described), and the
administration client. A single server process runs on some
central machine, and any number of clients (user or
administration) can connect over a network to that process.

The server acts as a communication hub, so that for clients
to communicate with each other, they connect to the server.
A database of registered users is maintained, and clients must
supply a valid username and password to connect. The server
also maintains a persistence repository, which stores
information about the rooms on the server and their
contents. When clients enter rooms, information about the
room is retrieved from the repository. Each server can hold
any number of rooms.

The administration client is used by whoever maintains the
server. It can be used to create and delete accounts, change
access permissions. For example, the administrator can
specify that a particular user cannot create new rooms, or can
give administrative priveleges to other users. It also provides
tools to help manage the persistence respository, for
example, specifying how long to keep old versions of rooms
before deleting them.

Servers currently run on Unix machines. Both client
programs currently run either on Unix systems under X11 or
on a Macintosh, while clients for Windows are under
development (clients on different platforms do interoperate of
course). We designed the system to not require very high
bandwidth network connections, so it is even reasonable for
users to use TeamRooms over 14.4 modem connections or
long distance Internet connections.

GroupKit Extensions
GroupKit provides an Application Programming Interface
(API) based on the Tcl language [9], that makes it easy to
construct real-time groupware applications. GroupKit
provides constructs such as message passing, shared data
structures, and high-level groupware widgets to
programmers. We wanted to preserve the API in
TeamRooms, to move existing GroupKit applications into
TeamRooms and rapidly create new ones. This necessitated a
number of fundamental changes in GroupKit’s internals.

While original GroupKit applications ran in a peer-to-peer
network arrangement, for TeamRooms we added support for
a more traditional client-server arrangement, where messages
directed at a peer are routed through a central server. This was
necessary because of the greater amount of persistent data and
a need to support less robust workstations connected over
slower networks. Control remains in the clients however,
with the server acting mainly as a message bus. The server
has an understanding of GroupKit constructs, but no
knowledge about the specific applications that make up
TeamRooms. The central server was also important in
supporting user authentication (i.e. logging in), which was
more important for TeamRooms than in the more open
arrangement we were using with GroupKit.

GroupKit has supported a primitive persistence mechanism,
where the state of a groupware application could be saved and
then recalled at a later time. We extended this mechanism to
provide a more robust and richer persistence repository that
would store an arbitrary number of versions of the
application’s state, allowing users to browse the entire
history of a groupware document.

By far the biggest challenge was supporting multiple
groupware tools within the same application. GroupKit was
originally designed with one groupware tool per process (and
per window). We changed this to allow several Tcl
interpreters within each process, each with its own
groupware tool. Each interpreter behaves exactly as if it were
running in its own standard GroupKit application. In
TeamRooms, we have seperate interpreters for the main
application, the overall room window (e.g. containing the
whiteboard and chat area), and for each applet.
Communication facilities (e.g. socket connections) are
shared, so that messages sent from an applet interpreter are
routed through the application’s main interpreter.

To achieve the OpenDoc/OLE style window embedding, we
used a similar technique. Each subinterpreter believes it
“owns” the entire window hierarchy, while in reality its
“top” window is mapped onto one portion of the window
hierarchy in the main application. This was also used to
support menu sharing, so that applets could add items to the
main menu when they had the focus.

Despite these major changes in GroupKit, most programs
required only minimal changes to move from standalone
GroupKit applications to embedded TeamRooms applets. An
in-depth discussion of some of the implementation details is
provided elsewhere [10].

USAGE EXPERIENCES
Though TeamRooms is still under development, various
early releases of the Unix/X11 version have been in use for
several months by colleagues and “strangers” both at our site
and from several others around the world. This section
describes some very preliminary experiences with the
system.

First, TeamRooms crosses the synchronous/asynchronous
barrier. Most of the the “interactions” we saw with the
system were asynchronous. There were many occurrences of
leaving information for others, whether the general
community or a particular user. For example, one room
devoted to feedback on the system itself was used heavily to
leave notes about bugs or desired features. Responses usually
took the form of other notes or addendums to the original. A
second example is a room used for brainstorming ideas for
new projects; users would browse the existing ideas stored in
an outliner, and occassionally add new ideas of their own or
comment on existing ones. While we think the amount of
asynchronous interaction was increased by different time
zones (the most frequent interactions were between Calgary
and New Zealand), we did expect a relatively large number of
non-real time interactions. As users browsed rooms, it
became clear however that they needed some indication of
which rooms had changed since they last visited, and what
was new in them.

Second, TeamRooms greatly simplifies the setup of real-
time collaborations. When real-time interactions did occur,
they seemed basically the same as interactions we had
observed in other real-time groupware systems. What differed
dramatically was the ease of establishing the collaboration, a
laborious process in most systems. The chat tool and
whiteboard that are part of every room were used frequently
and heavily. Because there was no need to specifically
“import” many objects (i.e. they were already in the room) it
was easy and natural to use them as conversational props in
the interaction.

Third, TeamRooms supports casual interaction. A
phenomenon we observed was the practice of “hanging
around”, where users would connect to the server, bring up
their window showing what other users are connected, and
then carry on with other work. Using the “users” window
they could see when others connected to the server and where
they were working. If they wanted to initiate a real-time
interaction, they could easily enter the same room as the
other user. Because entering and leaving rooms is very

lightweight, this encouraged a number of “quick chats” that
would be cumbersome in groupware systems involving more
complex setup for interactions.

Finally, TeamRooms supports both group and individual
work. We looked at the types of things people did with
rooms. As expected, one group of rooms was created to hold
information on different projects (e.g. TeamRooms bugs) or
for different activities (e.g. a room to hold meetings). We
also found that users created personal rooms for themselves,
analogous to the way people create individual WWW home
pages. Besides being used by their creators to hold pictures
etc., others used these rooms to leave messages for the
room’s creator. Though it was evidenced in other rooms as
well, there was a definite sense of “property rights” in these
personal rooms, where users who created rooms or objects
felt they owned and controlled them and were surprised when
they were changed or deleted by others.

We are very encouraged by these early experiences. Users
have been quick to grasp the system’s workings, and have
been able to share work with each other in what seem very
natural ways.

RELATED WORK
This section describes how TeamRooms relates to existing
groupware systems. We first differentiate between the
metaphor of place used in TeamRooms and other metaphors
found in groupware systems. We then look at how the place
metaphor has been used in different ways, and describe two
place-based systems, CommonPoint and wOrlds, that bear
similarities to TeamRooms.

Metaphors for Groupware
A common metaphor in conventional real-time groupware
systems is “groupware as meeting” or “session”. Systems
based on this metaphor support distributed teams within
single meetings, but provide limited persistence or support
for asynchronous work.

Other systems rely on “groupware as process.” Some real-
time systems such as group decision support systems
structure stages in the group’s overall work processes.
However, most support only a very restricted set of
unstructured group activities. Similarly, workflow systems
also structure asynchronous activity.

In contrast, the “groupware as place” metaphor captures both
synchronous and asynchronous collaboration, is highly
persistent, encapsulates both structured and unstructured
work through its applications, and also takes into account
both individual and group work.

Places for Session Management
Several systems have used “place” or “room” as a metaphor
for session management. Session managers are programs

that run other groupware tools, letting users create and join
groupware sessions. Place-based session managers provide
gathering points for collaborators; when several people are at
the same point, they are connected by other tools. For
example, the CAVECAT media space [7] used the idea of
walking into the same room as another user to initiate a
audio/video connection. The DIVA Virtual Office
Environment [12] and GroupKit’s Rooms session manager
[11], use rooms to gather and organize people and their
documents. Users in these rooms launch external groupware
editing tools, which run in their own windows, separate
from the room itself. This is a different approach from
TeamRooms, which integrates the tools with the meeting
place.

Places for Low-Fidelity Interaction
The simplest place-based systems are chat rooms, where
users connect to a room and can chat to others in the room
with typed messages. Recent chat rooms found on online
services have added rudimentary graphics, but the interaction
is still entirely text-based.

Another popular class of place-based systems are Multi-User
Dungeons (MUDs). Born of text-based adventure games,
traditional MUDs are text-based systems where users connect
to a central server. Once connected, they enter any number
of different rooms, chat with other users in those rooms, and
type commands to create and modify objects in the rooms.
Though primarily used socially, MUDs have been used in
limited ways to support collaborative work. Several recent
systems have augmented MUDs with non-textual tools, such
as the Jupiter project [1] which added MBONE audio and
video conferencing and shared whiteboards.

Places for High-Fidelity Interaction
wOrlds. The wOrlds system [13] is based around a number of
“locales”, which are similar to rooms in TeamRooms. Each
locale collects both users and tools, which can include
embedded tools like in TeamRooms as well as links to
external tools running in their own window. Audio and video
conferencing is also directly supported. TeamRooms is very
similar to wOrlds, but is more lightweight, and does not
directly support audio or video (though it could be extended
to do so). The wOrlds system also relies very heavily on
external single-user tools, which makes the environment feel
much less integrated.

CommonPoint. Probably the most sophisticated place-based
system that we are aware of with strong similarities to
TeamRooms is the CommonPoint desktop from Taligent
(described in [8]). The desktop uses a “People, Places, and
Things” metaphor to provide network places where people
can gather and work with shared documents. Based on
Taligent’s very sophisticated object frameworks technology,
CommonPoint provides a rich, fluid and highly

customizable environment for collaboration. CommonPoint
however requires radical changes, as it completely replaces
conventional operating systems and their desktop metaphors.
Recent strategic changes at Taligent have left it unclear how
CommonPoint might evolve and integrate with traditional
operating systems. In contrast, TeamRooms fits well in
today’s environments and operating systems.

CONCLUSIONS
TeamRooms combines the rich applications and interfaces
found in today’s real-time groupware applications with a
persistent work context equally suitable for asynchronous
collaboration. The resulting system provides the electronic
equivalent of a team room for groups that are either co-
located or distributed. By providing both generic
communication facilities as well as very specific tools,
rooms can be tailored to fit the unique needs of the work
group.

In our early usage experiences, we have found the
“groupware as places” model supported by TeamRooms to
be very suitable for our primarily asynchronous working
styles, as well as providing a seamless transition towards
real-time collaboration by providing a place to make contact
with others. We have found that the system does afford many
of the same behaviors seen when teams share a physical
space.

Though many of its ideas are drawn from other groupware
systems, TeamRooms’ tight integration of features makes it
a sophisticated yet easy to use groupware environment.

ACKNOWLEDGEMENTS
Thanks go to our users, in particular Gordon Paynter and
Simon Gianoutsos of University of Waikato, who braved
early versions of the system, and offered many useful
suggestions and improvements. The code for applet window
embedding is based on portions of Steve Ball’s SurfIt! web
browser. Carl Gutwin provided valuable feedback on both the
system and on drafts of this paper. The financial support
provided by Intel Corporation and NSERC is gratefully
appreciated.

More information about TeamRooms, including software
availability, related projects, and publications, can be
obtained on the World Wide Web at:

 http://www.cpsc.ucalgary.ca/projects/grouplab/teamrooms/

REFERENCES
1. Curtis, P. and Nichols, D. MUDs Grow Up: Social

Virtual Reality in the Real World. In Proc. of the
Third International Conference on Cyberspace. 1993.

2. Dourish, P. and Bly, S. Portholes: Supporting
Awareness in a Distributed Work Group. In Proc. of
ACM CHI. 1992.

3. Greenberg, S., Hayne, S. and Rada, R. Groupware for
Real-Time Drawing. McGraw-Hill. 1995.

4. Greenberg, S. and Roseman, M. GroupWeb: A Web
Browser as Real-Time Groupware. In CHI ‘96
Conference Companion. 1996.

5. Gutwin, C., Greenberg, S. and Roseman, M.
Supporting awareness of others in groupware (short
paper suite). In CHI ‘96 Conference Companion. 1996.

6. Johansen, R., Sibbet, D., Benson, S., Martin, A.,
Mittman, R. & Saffo, P. Leading Business Teams.
Addison-Wesley. 1991.

7. Mantei, M., Baecker, R., Sellen, A., Buxton, W.,
Milligan, T. and Wellman, B. Experiences in the use of
a media space. In Proc. of ACM CHI. 1991.

8. Orfali, R., Harkey, D. and Edwards, J. The Essential
Distributed Objects Survival Guide. John Wiley and
Sons. 1996.

9. Ousterhout, J. Tcl and the Tk Toolkit. Addison-
Wesley. 1994.

10. Roseman, M. Managing Complexity in TeamRooms,
a Tcl-Based Internet Groupware Application. Submitted
to the 1996 Tcl/Tk Workshop.

11. Roseman, M. and Greenberg, S. Building Real Time
Groupware with GroupKit, a Groupware Toolkit.
ACM TOCHI (1996, in press).

12. Sohlenkamp, M. and Chwelos, G. Integrating
Communication, Cooperation and Awareness: The
DIVA Virtual Office Environment. In Proc. of ACM
CSCW. 1994.

13. Tolone, W., Kaplan, S. and Fitzpatrick, G. Specifying
Dynamic Support for Collaborative Work within
wOrlds. In Proc. of ACM COOCS. 1995.

