
Semantic Telepointers for Groupware

Saul Greenberg, Carl Gutwin and Mark Roseman
Department of Computer Science, University of Calgary

Calgary, Alberta, Canada T2N 1N4
phone: +1 403 220 6015

 email: {saul,gutwin,roseman}@cpsc.ucalgary.ca

Abstract

Real time groupware systems often display
telepointers (multiple cursors) of all participants in the
shared visual workspace. Through the simple mechanism
of telepointers, participants can communicate their
location, movement, and probable focus of attention
within the document, and can gesture over the shared
view. Yet telepointers can be improved. First, they can be
applied to groupware where people's view of the work
surface differs—through viewport, object placement, or
representation variation—by mapping telepointers to the
underlying objects rather than to Cartesian coordinates.
Second, telepointers can be overloaded with semantic
information to provide participants a stronger sense of
awareness of what is going on, with little consumption of
screen real estate.

1. An Historical Introduction

Twenty-five years ago, Douglas Engelbart
demonstrated an interface that tied a pointing device (a
mouse) to a "tracking spot" (a very small cursor) that was
always on display [1,2]. Today, virtually all modern
graphical user interfaces incorporate similar pointing
devices and cursors. Their basic functionality remains
unchanged: the cursor position on the window follows the
relative or absolute Cartesian coordinates of the pointing
device, although variable speed algorithms sometimes
adjust coordinates to allow the user to position quickly

and accurately a cursor on large displays.

The only real additions to Engelbart’s tracking spot
are the limited ways cursors are overloaded to reflect
semantic information about the underlying application or
system state. One typical use of such a semantic cursor is
to have its shape reflect a user's interaction mode. For
example, Figure 1a shows Microsoft Paint, and the pencil
cursor indicates that the user is in "sketch mode". A
second use reflects system state, illustrated in Figure 1b
by the hourglass cursor that redundantly reminds the user
that Microsoft Word is busy saving a file. Semantic
cursors can also provide help information, such as brief
descriptions of objects that are being passed over.
Examples are Apple’s balloon help and most Microsoft
toolbars (Figure 1c): while not actually part of the cursor,
pop-up help is activated by the cursor, and the description
is close enough to it that the user considers them a unit.

Engelbart also demonstrated how cursors can work in
groupware when he and his distant partner shared the
display of a terminal [1,2]. Both had a mouse, and
individuals could see on the display one's own tracking
spot as well as the one belonging to the other person.
Obvious in the film of Engelbart's demonstration is that
these multiple cursors or telepointers help mediate
conversation. Their location indicates where the other
person is in the workspace; they focus attention around
what people are doing; and they are used to gesture
around the shared objects on the display [2].

Engelbart was well ahead of his time with telepointers,
and only a few point systems used them over the years,

a)Mode cursor showing
the mode selected
from the paint pallette

b) A system state cursor, showing that the
application is busy and that the user
must wait.

c)Help cursor, showing
information about the
icon under the cursor

Figure 1. Conventional uses of cursors to show semantic information

saul
Text Box
Published as:Research Report 1996-586-06, Department of Computer Science, University of Calgary, Calgary, Alberta, Canada

e.g., multiple telepointers in Mblink [13], and the single
active cursor in shared window systems [3]. It wasn’t until
1987 that telepointers (and indeed groupware in general)
were revisited with any seriousness. CoLab was a
computer supported meeting room with a variety of
electronic meeting tools [14,15]. It included a shared
virtual whiteboard, and participants could select pens for
drawing, erasers for erasing, and a single large telepointer
for pointing at objects in the display. Its developers
discussed design issues behind telepointers, and came up
with some interesting (and sometimes wrong)
recommendations from their experiences.

In 1989, the value of telepointers was placed on an
empirical footing when Tang developed a framework
cataloging activities in a shared drawing space [16]. In his
study of face to face small group design meetings,
participants using a shared drawing space (white-boards
or large sheets of paper on a table) produced three
significant actions: listing of text, drawing of images, and
gesturing through hand motions. He mapped these actions
to their purposes: storing information, expressing ideas,
and mediating interaction. He counted the distribution of
these actions and functions, and found that gestures
comprised ~35% of all actions, and were used by the
group mostly to mediate interactions and to express ideas.
The implication to groupware is that shared distributed
work surfaces must support gestural expression.
Consequently, developers of video systems used video
overlays to show other peoples’ hands over the images
[10], while those interested in computational workspaces
used multiple telepointers as gesturing surrogates [6,9].

We have now come full circle. Although we have a
better understanding of why telepointers are valuable,
their appearance in commercial groupware has evolved
little from Engelbart’s original demonstration. In this
paper, we will show how telepointers can be improved in
two different ways. First, we can apply them to groupware
where people's view of the work surface differs—through
viewport, object placement, or representation variation—
by mapping telepointers to the underlying objects rather
than to Cartesian coordinates. Second, we can overload
telepointers with semantic information to provide
participants with a stronger sense of awareness of what is
going on. These extensions demand that multiple cursors
know something about the underlying work surface and
application semantics, which is why we call them
"semantic telepointers".

2. Telepointers for Relaxed-Wysiwis Views

Conventional real-time groupware provides
participants with strict "what you see is what I see"
(wysiwis) views, where participants see exactly the same
thing across their displays [14]. However, this has proven

limiting, and recent groupware has relaxed strict view-
sharing in three ways: a) people can now have different
viewports into a workspace; b) objects in the workspace
can be formatted differently across displays; and c)
objects can have differing representations [14]. The idea
is that relaxed-wysiwis view-sharing makes groupware
more flexible and better able to match particular needs of
participants and the way they actually work, especially in
large workspaces that contain many artifacts. In this
section, we will show how we can map telepointers to the
differing views in these three styles of relaxed-wysiwis
views by using progressively more knowledge of the
application semantics. Because these techniques introduce
unsolved usability issues, we list them as well.

2.1. Viewport Differences Between Views

Telepointers are easy when views are identical, for
cursors are just mapped to the individual displays at their
respective (x,y) window coordinate positions. For
example, Figures 2a+b show matching views of two
people, Saul and Carl, and the cursors are in the same
relative position on the window. If we relax wysiwis by
allowing people to scroll independently, their viewports
will differ and cursor locations must be positioned relative
to the underlying work surface rather than the window.
For example, when Carl scrolls his view (Figure 2c), the
cursors are positioned correctly on the drawing rather than
the window.

This mapping of telepointers to the viewport is
typically implemented in two ways. First, if cursors are
drawn in the application area, we just position them using
the world coordinate space. Second, if cursors are drawn
on a separate layer independent of the application, we now
have to map the relative window coordinates of the cursor
layer to the world coordinates of the application.

Unsolved issues. Differing viewports introduce several
problems at the interface level.
1. Another person's cursor will not be visible if it is

outside the viewport. For example, in Carl's view
(Figure 2c) a third person's cursor is visible, which is
invisible in Saul's view (2a). Consequently it is hard
for Saul to gauge where that person is working and
how active they are. Awareness between participants
must be promoted by alternate strategies [8].

2. The verbal talk accompanying gestures can be
confusing when deixis reference is uncertain. For
example, the phrase "what about this thing here?" is
unambiguous when it refers to the object being pointed
to. However, the phrase "what about this thing here, at
the top of the window?" is ambiguous, as it now
describes both the gestural act and the (perhaps)
incorrect relative location of the object.

2.2. Format Differences Between Views

The second relaxed-wysiwis style allow views to be
formatted differently, where objects that are otherwise
identical appear in the views in different locations. This is
appropriate when participant's windows are different
sizes, requiring the application to reformat its objects to fit
the space, such as in text displays. Alternatively, the
groupware application could contain components whose
position in the window may be customizable by
individuals. In both cases, telepointers can still be
implemented correctly by mapping their position to the
underlying application objects, rather than a literal
coordinate system.

Our first example illustrates telepointers in

automatically reformatted displays. GroupWeb is a
groupware version of a world wide web browser that
allows a group to share views of HTML pages [5]. In
GroupWeb, participants can resize their windows
independently (Figures 3a+b), and the underlying text is
reformatted accordingly. As a person moves their
telepointer over a word, its remote counterparts appear
correctly on top of the same word on the other displays,
e.g., the word 'Web' in 3a+b, even though the word's
actual positions in the windows differ radically. To
implement this, GroupWeb telepointers are mapped to
character objects. As a person moves their telepointer, the
underlying character and its position are discovered. That
position as well as the telepointer coordinates relative to
the character origin are transmitted, causing remote

 a) Saul's view b) Carl's view before scrolling c) Carl's view after scrolling
Figure 2: Cursor actions when viewports differ

a) Saul's view b) Mark's view

Figure 3: GroupWeb, showing two people's views in windows of different sizes

telepointers to appear over the corresponding characters.
Images are done the same way: telepointers are also drawn
relative to the origin of the image in the other views,
independent of the image's actual position in the window.

Our second example illustrates telepointers in
groupware where an object's location in a particular view
is customized by an individual. Figure 4 shows a
groupware tic-tac-toe game, where participants can
position the board anywhere they wish in the window.
There are several objects here: the movable game board,
the static menu bar on top, the labels at the bottom, and
the background (containing the large 'X' and 'O'). Again,
the cursor position is mapped relative to the location of
the object. As seen in the differing views in Figure 5,
telepointers will appear correctly on game boards that are
at different locations (e.g., the pointer over the 'X' in the
bottom row of the board), and over objects that are in
static positions (e.g., the telepointer in the menu bar). The
third anomalous telepointer will be discussed shortly.

Unsolved issues. Differing view formats between displays
suffer the same usability problems as differing viewports,
as well as several new ones.
1. Empty and interstitial space is problematic. When a

telepointer moves onto a spot unoccupied by an
underlying object, it is not clear how it should be
mapped onto the other displays. Although we could
use the coordinate space of the background, the spatial
relations of objects to it are suspect and even

misleading. Figure 4 illustrates that
what is 'empty' on one display may be
populated by an object on another's
display. In 4a, Saul has moved his
cursor to the mid-left of the window,
an apparently empty spot. When the
telepointer is drawn in the
corresponding position in Carl's
window (4b), it appears over the
game board, leading to possible
misinterpretation of Saul's gesture by
Carl. While we could draw the
telepointer relative to the last object
passed over rather than the
background, similar problems occur.

2. Because telepointers support
gesturing, we must consider how a
gestural stroke—the temporal
movement of a telepointer—appears
across displays with different

formats. For example, consider the differing formats of
the text string in Figure 5. The person in 5a circles the
phrase "some text and". This gesture is drawn
discontinuously on the display in 5b, because the word
"and" is formatted onto a different line. The meaning
of these gesture strokes could be lost in these kinds of
situations.

3. Similarly, discontinuities between objects cause
gesture movement to be jumpy. A smooth movement
from one object to another on one person's display can
appear as abrupt jumps on the other display when the
objects are in quite different positions relative to each
other. For example, if Carl smoothly moves the cursor
in the menu bar to the top-left 'X' in the game board.
(Figure 4b), Saul would see it (in Figure 4a) as moving
downwards onto the empty space, and then suddenly
jumping right to the X on the board.

2.3. Representational Differences Between Views

The final form of relaxed-wysiwis allows different
views of objects to be generated from the same data
model. For example, consider the family tree, shown in
Figure 6a as a pictorial hierarchy, in 6b as an expanded
indented list, and in 6c as a partially collapsed list. As
with differing formats, telepointer positions can be
approximated by attaching them to objects, as shown
across the figures. In this case, however, mapping takes a
further level of indirection: the system must find what
view is underneath the telepointer, which data model the
view is tied to, and what alternate views are being
generated from the model on the other displays. The
telepointer position must then be translated to those other
representations. In many cases, a one to one mapping
function may not be possible.

 a) Saul's view (as X) b) Carl's view (as 0)
Figure 4: Groupware Tic Tac Toe, with different board locations

This is some text and here
is some more

This is some text
and here is more

a) gesture is made here b) but appears badly
Figure 5: Stroke appearance

Unsolved issues. Usability and implementation is
increasingly problematic over the other styles of relaxed-
wysiwis views.
1. There is no consistent notion of a coordinate space

within an object, and it is unclear how we can
represent exact telepointer positions and motions made
over one view to its counterpart on other displays. One
solution is simply to move a cursor to an object's
center, and not show any internal motion at all.
However, this removes the dynamics of a gestural
stroke, and causes jumpy animation. Another solution
is to translate the motion over one object into a
stylized motion over its counterpart. For example, a
horizontal stroke across a picture in Figure 6a would
be translated to a horizontal stroke across the
appropriate name in 6b+c. Perhaps gesture recognition
can further identify stroke styles, so that the meaning
of the stroke can be captured and displayed
appropriately.

2. With differing representations, several objects may be
collapsed into a cluster, or removed from the view
altogether. In Figure 6c, for example, the nodes
"Adam and Jeremy" are collapsed into the single node
"Two". While it may be reasonable to tie cursor
motion over both nodes to its collapsed counterpart,
this could lead to possible confusion between
participants. If the node was completely invisible, no
obvious solution presents itself.

3. People's verbal talk across displays may not match the
views being pointed to. For example, "Look at Judy's
smile" said over view 6a has little meaning in 6b+c.

2.4. Discussion

This section has illustrated how telepointers can be
applied across a spectrum of same view/different view
displays. It shows that as relaxed-wysiwis increases,
cursors and their movement can still be shown. The catch
is that people's interpretation of the telepointer and its
strokes becomes more problematic: a telepointer's location
may be ambiguous; it may be hidden from view;
telepointer tracking can be discontinuous; and people's
gestures enacted as telepointer motions may be more
difficult to interpret.

From an implementation perspective, the
complexity of mapping telepointer positions between
views increases with the degree of view differences,
and more has to be known about the semantics of the
application objects to do the mapping. Window
coordinates give way to world coordinates when
viewports differ; to object coordinates when formats
differ; and to stylized object-specific coordinates
when representation differ. While simple approaches
to telepointers could be supplied by a groupware
toolkit (as done in GroupKit [12]), at some point the

semantic constraints will require the programmer to
supply intermediate routines that map a telepointer's
presence and motion over one object into some reasonable
representation on the other display.

Of course, the approximate measures given by
telepointers in relaxed-wysiwis may suffice for many
situations. If people are mostly concentrating on their
individual work, seeing other's approximate telepointer
activity may suffice to give a sense of awareness of what
is going on. When there is need for a tightly-coupled
discussion, the participants will likely shift their views
into something resembling a strict-wysiwis situation.

In summary, this section advanced traditional
telepointers by demonstrating how they can be applied to
views that differ between participants. The next section
will show another way that telepointers can be improved
by overloading them with information useful to
participants.

3. Overloading Telepointers

Engelbart's early cursor was just a tracking spot, a dot
moving across the display. As mentioned in the
introduction, modern systems now overloaded cursors to
show a variety of information, such as mode and system
state, and even help messages. Groupware systems can
also leverage overloaded cursors to show participants
critical information about their electronic meeting, as first
seen in more current systems such as BoardNoter [15].
This section explores several ways cursors can be
overload, as well as the benefits supplied to groupware.
We will show how telepointers can provide extra
information to the group about participants' interaction
modes, identity, actions, and gestures.

3.1. Mode and State Information

In single user systems, mode information is used to
provide feedback on system state changes, and to remind
people of what interaction state (mode) they are in. In
groupware, the same kind of information can indicate
what state others are in, and what they intend to do. This
information is critical in a groupware setting. In particular,

+
Parents
»Saul
»Judy

Children
»Adam
»Jeremy

Parents
»Saul
»Judy

Children
Two

a) pictorial hierarchy b) indented list c) collapsed
Figure 6: Three representations of a family tree

it is quite easy for participants in a groupware conference
to miss actions of others that trigger state changes. For
example, a person's selection of a tool on a palette by a
quick button press may be overlooked by others, while
keystroke actions that change modes are invisible.

One solution is to overload individual telepointers to
reflect mode information across all displays. Figure 7
gives an example, in this case from our GroupDraw
application, a shared drawing tool [6]. Participants select
tools and modes from the shared palette on the left, and
the telepointer shapes reflect what mode people are in:
Mark is in the selection mode (the pointer) and Saul can
draw (the pencil). Knowing the mode hints at the
intentions of others e.g., Saul will likely draw because he
is in a drawing mode. Modes peculiar to groupware are
also possible; for example, Dave is using a special
"attentional" telepointer to grab the attention of others,
invoked by pressing a modifier button.

Similarly, telepointers can inform people of system
state. A common example in groupware is to show
participants feedback of locked objects that are being used
by one person and thus not available to others e.g., the
Calliope multi-user text editor [11] changes a person's
telepointer image to show a lock when a text fragment is
being edited .

To implement these, application developers must be
able to modify the cursor shape to indicate the relevant
mode and state information. For example, shapes of
individual telepointer can be altered simply by setting
appropriate values in a cursor's bitmap field, as is
currently done in single user systems.

3.2. Identity Information

Maintaining awareness of others in real time
groupware is important [8]. This, of course, includes
knowing who is in the workspace and where they are

working. Telepointers are obviously important here, as
they do indicate someone's presence and where they are
focusing their attention. In our experiences, the speech
that accompanies another person's actions during closely
coupled collaborations will identify who owns the
telepointer [6]. However, uncertainty of identity can arise
during quiet periods, or in meetings with many people.

Telepointers can be overloaded to indicate the identity
of their owners. For example, participants using
applications built in GroupKit [12] declare a personal
colour, and their telepointer is automatically drawn in that
colour. While colour is not necessarily a good indicator of
identity, it does serve to distinguish the multiple cursors.
Better still, we can attach a name to the telepointer (Figure
8b) or even a photo (Figure 8c). The cost is increased
clutter, and the risk of occluding objects behind the
pointer. The Aspects groupware product uses another
approach: people can chose arbitrary cursor shapes to
identify them (e.g., Figure 8d). The problem is that shape
can no longer be used to indicate mode changes, and
participants must learn the (perhaps meaningless)
associations between people and cursor shapes.

3.3. Action Information

In our real world, people tend to control their
environments through large actions that are easily visible
to others. In groupware, seeing other's actions can be
problematic. Small and rapid actions can be overlooked,
as with the button press scenario mentioned earlier.
Alternatively, other's actions may be too large or clumsy
to show reasonably in the limited screen space available
i.e., seeing another person pop up and navigate through a
large, hierarchical menu. Overloaded telepointers can
mitigate this problem, either by making easily missed
actions larger, or by replacing large actions by a more
condensed and stylized version of it.

Our first example, illustrated in Figure 9 considers the
quick button press. In this case, the actions of the person
pressing the button in Figure 9a is made larger to other
participants by changing the telepointer for a modest
length of time to show the mouse button being pressed,

Figure 7: Overloaded telepointers in GroupDraw

JudyJudy

Saul Saul

a) colour b) name c) photo d) arbitrary

Figure 8. Various strategies for denoting identity

(Figure 9b). At the same time, a "click" sound is played to
present additional cues. If the underlying button is also
shown depressed, then the cursor just provides redundant
feedback which acts to accentuate the action.

Our second example, in Figure 10, is slightly more
complex. Here, Figure 10a shows Carl navigating through
a pop-up menu. Showing the complete menu on Saul's
display could be annoying, especially if he was working in
the area immediately underneath it. Instead, Carl's
telepointer image and labels are altered to indicate a menu
selection is being made, and what item is being selected.
In this case, the same semantic information of a menu
action is shown on other displays concisely and with little
or no loss of meaning.

3.4. Gestural Information

Because of performance limitations or problems with
translating telepointer positions in relaxed-wysiwis
settings, we may want to capture and present essential
gestures in a stylized manner. In our previous work,
Hayne, Pendergast and Greenberg [9] describe a few ways
that gestures can be captured and transmitted.

The most basic gestural action is pointing. If
telepointer movement cannot be transmitted easily, a
person can indicate a "point" request, perhaps by pressing
a mouse button (first implemented in Boardnoter [15]).
When the message is received, the telepointer is moved to
its new position over the object. Because these
movements are discrete, we do not run into the problem of
representing gestural strokes.

However, discrete moves can be easily missed. A

"point and quiver" approach attracts the viewer's attention
by modifying the simple move to make the telepointer
jitter in its new position for a limited time.

In many cases, seeing a cursor move from one object
to the next is valuable. Instead of trying to handle all
telepointer movement points, the system can capture the
motion as a discrete move from one object to another, and
transmit only those points. The receiving station would be
responsible for computing points in-between these two,
and for animating the telepointer on that track. Similarly,
we have already mentioned how stroke recognition could
be used to translate a gesture from one person to a
reasonable counterpart on the other display.

In the above situations, the system can send fewer
messages down the wire, as a series of telepointer moves
are collapsed into small messages that describe the
semantics of the move rather than the literal coordinate
stream. However, additional CPU processing is required
to translate to and from the motion of the telepointer
action and its semantic meaning.

Discussion and Summary

We believe telepointers are a necessary part of any
real time groupware application that contains a shared
visual space. They act as gestural surrogates, and are used
by participants to express ideas and to mediate interaction.
Their very presence in the workspace also provides
awareness to others of who is present, where they are
working, and what they are doing.

While telepointers have been around for a while, this
paper reconsidered their role in groupware. First,
groupware is shifting from strict to relaxed-wysiwis views,
and this paper introduced some ways that telepointers can
be managed in these settings; while there are unsolved
issues, the approaches provide the next step. Second,
telepointers are a natural focus of attention for group
participants, and they can be leveraged to show
information vital for smooth collaboration: interaction
modes, system state, identity, actions of others, and so on.
While overloaded cursors are not new, they have appeared
only sporadically in today's groupware systems.

Telepointers are problematic for groupware
implementers, as all window systems support only a single
cursor. Most developers have to implement telepointers
from scratch, which is no easy task. This is the likely
reason why telepointers are not implemented in some
groupware systems, or why they are still fairly crude.

In our own work, we have developed a groupware
toolkit called GroupKit [12] that includes telepointers as a
programmable widget. Application developers using
GroupKit can include telepointers in a few lines of code.
GroupKit currently maps telepointer location to

 a) Carl presses the button b) Saul's view of it
Figure 9: Action information in a button press

a) Carl selects an item b) Saul's view of it
Figure 10: Action information in a menu press

underlying widgets, and they are partially tuned to obey
the widget's semantics. For example, telepointers appear
in the correct position in certain scrollable widgets, such
as graphical canvases and text boxes, allowing people to
have different viewports (as done in Figure 2). They also
appear over the correct character in text widgets, which
means text can be formatted differently. This was seen in
GroupWeb (Figure 3), also built in GroupKit.
Telepointers can also be tied to particular widgets that
appear in different locations in the window, and the tic-
tac-toe example in Figure 4 was done this way.

We are implementing a new version of telepointers to
allow overloading. The current prototype constructs a
telepointer with three glyphs: a bitmap and two labels.
The API to the telepointer allows programmers to set the
properties of these glyphs, which means that the cursors
shown in Figures 7 through 10 can be easily constructed.

Telepointers can be used and enhanced in ways that go
beyond this paper. For example, we have built telepointers
that react to the size of the group [9]. When group size is
small, telepointers are large. As more members enter,
telepointers shrink progressively, eventually reaching the
size of a few pixels. While the movements of these tiny
cursors provide a sense of what is going on, it does so
with minimal clutter. When people perform editing
actions, cursors are enlarged to full size and include
overloaded information such as identity and mode state.

As a second example, we have considered how
telepointers can facilitate turn-taking [9]. Rather than
supply everyone with a telepointer, a restricted pool of
pointers are made available. Choosing one removes it
from the pool, and transforms a person's single-user cursor
into the telepointer. Strict turn-taking is implemented by
making only one pointer available in the pool. Confusion
and clutter that could occur in large meetings (e.g., remote
presentations with 30 to 40 participants) can be minimized
by making only several pointers available, thus limiting
the number of people that can be active in a large meeting.

We recognize that 1-dimensional telepointers are
crude approximations of our hand and body gestures.
Video-based gesturing [10] is certainly richer, although
technically limiting. We are also seeing virtual
environments where people's hand and even body motions
are captured and displayed as 3-d artifacts. In spite of
these exciting possibilities, most of today's computer
technology is still oriented to flat graphical displays and a
mouse. Until this changes, the lowly telepointer can act as
a reasonable and effective surrogate for gestures.

Acknowledgments. Alex Mitchell contributed ideas and
code about telepointers. This research is supported by the
Intel Research Council and NSERC.

Availability. GroupKit is available from:
http://www.cpsc.ucalgary.ca/projects/grouplab/.

References

1. Engelbart D. and English W. (1968). A research center for
augmenting human intellect. In Proceedings of the Fall
Joint Computing Conference Volume 33, pp. 395-410,
Montvale, NY, AFIPS Press. Reprinted in [7].

2. Engelbart, D. and English, W. (1994) A research center for
augmenting human intellect. SIGGRAPH Video Review,
106, Videotape, ACM Press.

3. Greenberg S. (1990). Sharing views and interactions with
single-user applications. In Proceedings of the Conference
on Office Information Systems, pp. 227-237, ACM Press.

4. Greenberg S., Hayne S., and Rada R., eds (1995).
Groupware for real-time drawing: A designer's guide,
McGraw-Hill Europe.

5. Greenberg S. and Roseman M. (1996). GroupWeb: A
WWW browser as real time groupware. In Companion
Proceedings of the ACM SIGCHI'96 Conference on
Human Factors in Computing System, pp. 271-272, ACM
Press.

6. Greenberg S., Roseman M., Webster D., and Bohnet R.
(1992). Human and technical factors of distributed group
drawing tools. Interacting with Computers, 4(1), pp. 364-
392, December. Reprinted in [4].

7. Greif, I. (ed) (1988) Computer-supported cooperative
work: A book of readings, Morgan-Kaufmann.

8. Gutwin C. and Greenberg S. (1996). Workspace awareness
in real-time distributed groupware: Framework, widgets,
and evaluation. People and Computers XI (Proceedings of
the HCI'96), A. Sasse, R.J. Cunningham, and R. Winder,
Editors. Springer-Verlag.

9. Hayne S., Pendergast M., and Greenberg S. (1994).
Implementing gesturing with cursors in group support
systems. J Management Information Systems, 10(3), pp.
43-61, Winter. Earlier version republished in [4].

10. Ishii H., Kobayashi M., and Grudin J. (1993). Integration
of interpersonal space and shared workspace: Clearboard
design and experiments. ACM Transactions on Information
Systems. October. Reprinted in [4].

11. Mitchell, A. and Baecker, R.M. (1996). The Calliope multi-
user shared editor. Department of Computer Science,
University of Toronto, Toronto, Canada.

12. Roseman M. and Greenberg S. (1996). Building real time
groupware with GroupKit, a groupware toolkit. ACM
Transactions on Computer Human Interaction, 3(1), pp.
66-106, March.

13. Sarin S. and Greif I. (1985). Computer-based real-time
conferencing systems. IEEE Computer, 18(10), pp. 33-45.
Reprinted in [7].

14. Stefik M., Bobrow D. G., Foster G., Lanning S., and Tatar
D. (1987). WYSIWIS revised: Early experiences with
multiuser interfaces. ACM Transactions on Office
Information Systems, 5(2), pp. 147-167, April.

15. Stefik M., Foster G., Bobrow D., Kahn K., Lanning S., and
Suchman L. (1987). Beyond the chalkboard: Computer
support for collaboration and problem solving in meetings.
Communications of the ACM, 30(1), pp. 32-47. Reprinted
in [7].

16. Tang J. C. (1991). Findings from observational studies of
collaborative work. International Journal of Man Machine
Studies, 34(2), pp. 143-160, February.

