THE UNIVERSITY OF CALGARY

Flexible Data Sharing in a Groupware Toolkit

by

Theodore O’Grady

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

NOVEMBER, 1996

©Theodore O'Grady 1996

THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies for acceptance, a thesis entitled “Flexible Data Sharing in a Groupware Toolkit”
submitted by Theodore O’Grady in partial fulfilment of the requirements for the degree

of Master of Science.

Supervisor, Dr. Saul Greenberg, Computer Science

Dr. Robin Cockett, Computer Science

Dr. Douglas Norrie, Mechanical Engineering

Date

Abstract

Synchronous groupware applications let users collaborate over distance through their
computers. Since these applications are difficult to build, groupware toolkits have been
constructed to help developers with their tasks. Some of the building blocks supplied by
these toolkits are a set of abstractions for sharing data between sites. Y et different toolkits
use different strategies to share the data: some replicate the data at all sites, while others
storeit at acentral site. The correct choice of data sharing strategy is not obvious, as
different strategies affect data consistency as well as the performance of applications built
using the toolkit. We argue that data sharing should be flexible and that the devel oper
should be able control the data sharing by selecting from default strategies or creating
new ones to meet the requirements of their application. We use a technique called open
implementations to provide this control. We have built a prototype groupware toolkit
called GEN that demonstrates the feasibility of flexible data sharing. Using GEN, six
different forms of data sharing have been constructed, more than any other toolkit

currently available.

Acknowledgements

Very little creative work is done in a vacuum and there have been many people that have

made this thesis possible. First and foremost | must thank Amy, my wife, who has been
supportive and caring through all of it and who is my closest friend. Saul Greenberg’s
supervision has fostered an environment where it was possible to explore and organize

my ideas, and has taught me a lot about writing.

Earle Lowe(e) and Mark Roseman have both been instrumental in this thesis, not only are
they close friends but also co-workers with whom ideas can be discussed and examined.
Sean Brandenberg, man of many bad sayings, is owed a special thanks for helping me
survive Category Theory. Other lab-mates including Carl & Gwen, Linda, Doug &

Ronnie, and now Don have made the lab an interesting place to work in, adding both

enthusiasm and stimulating conversation to graduate life.

Calgary would not have been the same without Carol, lan & Amy, and Kirt. They made
the whole trip worthwhile! A lot of fun has been had with them, and a there’s a lot more
to come. Kim & Rob, and Leslie back in Ontario are close friends and were supportive
throughout. Gus, who is a life-long friend, many years ago explained to me that science

was fun, | got hooked and ended up writing this thesis.

Paul Dourish provided stimulating conversation and challenging ideas. Mark Roseman,
Paul and myself expect to market the GOMSercisor any day now. Object Technology
International not only funded this thesis, but also supported the research with enthusiasm.

Great thanks in particular go out Dave Thomas, Brian Barry and the VM Team.

Finally, I've got to say thanks to my family Paul & Francis (that would be Dad & Mom),
Chris & Stuart O’'Grady, and the newer bits (in-laws) Mary & Alan, Peggy & David,
Norman & Anne, Ben, Katie, & Nick. Thanks people!

Table of Contents

APPIOVEAl PAJE.......eiieie ettt ettt b e e et e nna e neennes i
ADSITACT ...ttt b et bt et re e ae et b e nes ii
ACKNOWIBAGEMENES ...t bt a e s nre s v
TaDIE Of CONLENLSeiiiitieteee ettt sae e nre e %
LISE OF FIQUIES ...ttt bttt sa e e s ae et eenne e viii
LISE Of TADIES....eeceeee e b et st a e et e e Xi
IS 014 oo [T oo USSP 1
1.1 Runtime Architectures of Groupware TOOIKItS.........cccvererererierieiereseeee 2
1.2 Data Sharing Strategies for Runtime Architectures............ccccocvvvecnivnennnne. 3
1.3 PUrpoSse Of thIS TNESIS ..ot 5
1.4 Overview Of thiISTRESIS......ccvceiieceee e 5
2. Choicesfor Sharing Data: Runtime Architecturesin Groupware Toolkits........ 7
2.1 Centralized and Replicated ArchiteCtUres..........ccocoverererereeeeee e 8
2.1.1 Advantages of a Centralized Architecture...........ccceoevevevenencneenne. 12
2.1.2 Advantages of a Replicated Architecture...........ccoccooveviinenenene. 14
2.1.3 Issues in Choosing a Concurrency Control Scheme for
Replicated ArChitECIUIES.........oceeeeeereeereere e 17
2.2 Examples of Data Sharing Strategies in Runtime Architectures................... 20
2.2.1 Modified Replicated ArchiteCtures............cooveverereeeeieereneseee 22
2.2.2 Modified Centralized ArchiteCtures...........cocvvverereeieeieieseseeee 24
2.2.3 A Flexible ArchiteCture............ccooeveeeeiieneee e 26
2.3 Requirements for Data SNariNgc.cceeeeeierienienese e 26
2.4 SUMIMAIY ..ottt sttt a et ab e e s s e s b e e e e e e nneennennnenreenes 28
3. Adding Flexibility to a Runtime ArchiteCture...........ccocviinininineeeeee 29
3.1 A Cadl for Flexibility in Groupware TOOIKItS..........ccccooereririnerieiecceeee 29
3.2 The Black Box Approach to TOOIKItS.........cccceoveierinerienceeeeeeeee e 31
3.2.1 Working Around the Black BOX.........ccccuevereerriieeneenseeseeseesnens 32
3.3 Flexibility through Open Implementation............ccccoevererenenieiereeree 34
3.3.1 The Origins of Open Implementation.............c.ccooeeererieeienerennenn 35
3.3.2 Building aMeta-Interface..........cceoereeienceeneeie e 36

34 SUMIMEBIY ..ttt b bbb e e n e s e e e neeneeneenre s 38

4. GroupEnvironment: The Programmer’s INterface...........cceeevvvvviiiiiiiiiiiiiiis 39
4.1 Overview of Requirements and their Implications for the Design................ 40
4.2 The SIructure Of GEN.........coiiieeeiereesie e 43
4.3 Foundations: Objects, Distributed Objects and Smalltalk............ccccceverennene 45
4.4 Programmer’s INTEIaCEuuuiiiiiiiiiiiiieieie s 48
4.4.1 SesSioN ManagemMENT.......cccuiiiiiiiiiiiiieiieiiii e 49
4.4.2 Support for Shared Data.............oooeiiiiiiiiiiiiiiiieee e 52
4.5 A Simple Example: The BraiNStOrMErueveviiiiiiiieeeeeeeeeesseiieveeeeeeeee 61
4.6 SUMIMAIY ..ottt e ettt e e e e e e e et e et e e eeeees s eb e s e e e e e e e e eeeeeeeenennnennnnns 65
5. GEN'S Meta-INteITACE.coii it 67
5.1 Requirement for GEN’s Meta-Interface...........ccccovvvvvivviiiiiiiie e 67
5.2 Design of the Meta-INterface. ... 69
5.2.1 Control Model for Data DiStribution..............cceiiiiiiiinnns 70
5.2.2 Mechanisms for Concurrency Control...........ccccceeevviiiiiiiiiinnnnee. 72
5.2.3 SUMMATY ..ottt e e e e e e e e e e s 73
5.3 An Implementation Strategy: The Wrapper Model............cccccvviiiiiiiiiinniennnn. 73
5.3.1 The ChoiCe Of WIaPPEIS.......uuiiiiiiiiiiiiiiiiieiie e 73
5.3.2 A Wrapper Model for Message Interception..............cceeeeevvvvnnnne. 75
5.3.3 A Wrapper Model for Representation and Contents Control......... 76
5.4 Putting Wrappers Around ODJECTScoevevuviiiiiiiiiiiee e eeee e 77
5.5 A Wrapper API for Message INterception............cccoceeeiiiniiiiniiiinc e, 78
5.5.1 Intercepting MESSAJESccccuuuuuiiiiiiiiiiiiie et e e 79
5.5.2 Controlling Concurrency Mechanisms............ccccuvviiiiiriiiiiinenneeeenn. 80
5.5.3 Controlling the Routing of MeSSages........cccccoveeeeeiiiiiiiiiicciiiiiee, 82
5.6 The Wrapper API for Controlling Object Representation and Contents....... 84
5.6.1 Using Substitution to Control Distribution: Copies and
PIOXIES ..ttt a e e e e e 86
5.7 SUMMIETY .ottt ettt e e e e e e e e e e et e e e e e a s s bbb a e s e e e e e e eeeeeeeees 88
6. Case Studies: The Default Implementations...........ccceveiiiinineneneneeeee e 90
6.1 Case Study #1: Replicated ODJECES.........ccoeeviiiiiieeeecrrr e 91
6.1.1 MESSAJE ROULING ...eeviiiiiieieeeeeiiei ettt e e e e 92
6.1.2 Changing the Object’'s Representation.ccccoevvveevvvvvvnnninnnennn. 94
6.2 Case Study #2: Replicated-Locking ODJECTS............uuuuiiiiiiieiiiieiiieieeeeeeeeianns 96
6.3 Case Study #3: Centralized ODJECTSuuuuiiiiiiiiiiiiieeee e 98

Vi

6.4 SUMIMAY ...ttt sttt ettt bt e s e b e n e ae e neenennnenreenes 100

7. Case Studies. Extending GEN by Adding New Data Sharing Strategies............. 101
7.1 Case Study #4: Selective Broadcast of MeSSages.........cccvoveveveerveniesensenenns 101

7.2 Case Study #5: MigralioN........cceieereeeeseesieeeeseeseesee e seeseeseeseesesseesseenes 103

7.3 Case Study #6: OptimistiC LOCKING........cceviveieiieiiee e 109

T4 SUMIMAIY ..eeeitieeeie ettt et e te et e sste e sae e s sbeesb e e saseesseesnseesbeesnseessensnseesnnnans 114

8. DISCUSSION aNd CONCIUSIONceeiiiiiiiciiie ettt see et e sree e sreesaeesreesneeenreas 115
8.1 SUMIMAIY ...ttt r e 115

8.2 A Critique Of GEN ..o e 116

.3 FULUIE WOTK ...ttt ettt et e e ae e sae e e reennneens 118

8.4 CONLIDULIONS.......ceiiicctie ettt sre e e e sae e saeeereesaeeereesnneens 120

8.4.1 ContributioNS 10 GrOUPWEIE........cc.eruerieeeeierie et 120

8.4.2 Contributions to Open Implementations...........c.ccoceverieienereneenn 121

8.5 CONCIUSION......oeeiieiiecctee ettt et esare e ae e saeesneesaeeereesnneens 121
BibDlIOGr ADNY ... 122

vii

List of Figures

Figure 1-1. Conceptual structure of centralized, hybrid and replicated processes.............. 4

Figure 2-1. Sequence of eventsin acentralized architecture.cccoccveveveieesciecieeinens 9

Figure 2-2. Sequence of eventsin areplicated architecture...........ccccoccveceeiecceciie e, 10

Figure 2-3. The result of two simultaneous changes in areplicated architecture.............. 12

Figure 2-4. Rendezvous’ centralized architecture.ccooooviiiiiiiiiii e 21
Figure 2-5. MMConf's replicated arChiteCture..............ccoeuuiiieiiiiiiiie e 22

Figure 3-1. The implementation of a traditional toolkit is only available through the AP1.31

Figure 3-2. The addition of a meta-interface allows developers to refine and extend the

APL Of the tOOIKIL. ... e 35
Figure 4-1. How the requirements are met by the design..............ocooviiiiiiiiiicee, 43
Figure 4-2. Application of Open Implementation to the runtime architectures of a

OrOUPWANE TOOIKITS. ..uuuiieieieiee e e e e e et e e e e e et e e e e e eaanaaes 44
Figure 4-3. When X sends a message to the remote object A it is sent through a proxy

object, which forwards the message on to the real object. ..., 47
Figure 4-4. The marshalling of an ObjJecCt.cooiiiiiiiii e 47

Figure 4-5a shows the functional model of distributed programming, where procedure
calls are sent to other procedures. In Figure 4-5b, the object oriented programming
model requires that messages be sent to objects contained within the process......... 49

Figure 4-6. The global name space is an address space that all processes can see and
access objects by @ UNIQUE NAME.ii i e 50

Figure 4-7. The implementation of the global name space is through a dictionary which
EXISES ON CACK SITE. .o 51

Figure 4-8. Example default object distribution schemes, replicated and centralized...... 54

Figure 4-9. The messagadd: causes the event AddObject to be generated which

triggers the call-Dackredraw.cooeuviii e 57
Figure 4-10. Notification is used to keep an interface aware of changes in the models

S 0T T=To o F- L - PP 58
Figure 4-11. A simple environment structure, where AA encloses BB and CC............... 59
Figure 4-12. Example Brainstormer appliCation.uoiiiiiiiiiiiiiieeiiiiiie e e e eeenns 61

viii

Figure 4-13. The global name space contains the ‘Bstorm’ environment which contains an

OrderedColleCtion Of IHEAS........uuuiiiiiiee e 62
Figure 4-14. When an idea is added to an ordered collection, the Addldea event is

generated causing the call-backs associated with it to be executed........................... 62
Figure 4-15. Code to initialize the data structures for the brainstormer................ccceeee.. 63
Figure 4-16. Code to start the brainstormer at a particular Site..............ccooovveiiiiiiiinnncennn, 63
Figure 4-17. Code to set-up a shared brainstormer with replicated data........................... 64
Figure 5-1. Control over the contents/ representation of the object............cccccvvvvviiiinnnnn. 71

Figure 5-2. Control over message routing, examples of centralized and replicated
L5101 11T =TT 72

Figure 5-3 . The need for concurrency control is obvious when two sites send potentially
conflicting messages t0 the SAME SIte.uuiiiiiiiiiiiiieie e 73

Figure 5-4. A wrapper around an original object intercepts messages destined for it. The
wrapper contains the controls for distributing the object and maintaining

(o]0] 41551 1= [0 V2RO PPPPPPPPPPPR 76
Figure 5-5. The wrapper intercepts the deconstruction and reconstruction of the object,
when it is being marshalled to allow customizable behaviours. ... 77
Figure 5-6. Message interception through the #doesNotUnderstand: implementation. In
this case the object simply forwards the message to the contained object................ 79
Figure 5-7. Open implementation of message iNterception..........ccccccvveeeeeerniiiieiicciiinnnnee, 80
Figure 5-8. The pre and post notification StAges.uueeeiiiiiiiiiiieiiee e 81
Figure 5-9. The components of message routing in the Wrapper.cccccccceeeeeeeninninnnnnns 83
Figure 5-10. Deconstruction is used to remove a reference to a global variable while
reconstruction is used to rebuild that INK.ccccciiii 85
Figure 5-11a) Shows how a remote proxy substitution creates a remote reference. Figure
5-11b) Shows how a remote copy substitution creates a NeW COPY............evvveeeerrnnnns 88
Figure 6-1. Synchronization in replicated objects through message forwarding.............. 91
Figure 6-2. Code for the distribution of messages to replicas.cccccovvviiiiciiiiininnnnnne. 93
Figure 6-3. The steps in maintaining the list of replicas.cccuviiiiie 94
Figure 6-4. During deconstruction, the list for the new object is formed.......................... 95
Figure 6-5. The replicas are reconstructed by sending a proxy to all the replicas............. 96
Figure 6-6. The acquisition of a centralized lock before message Y can be sent.............. 97

Figure 6-7. New wrapper deconstruction and reconstruction blocks...............cccccevvrenene. 97

Figure 6-8. Locking in the pre-consistency and post-consistency methods...................... 98
Figure 6-9. How a centralized object is represented on other machines.............ccccevenee. 99
Figure 6-10. Code to implement a centralized ObJECK..........ccooerireiiierieeeeee e 100
Figure 7-1. Modifications for ReplicatedSel ectiveElement wrapper.........ccccevevenereene. 102

Figure 7-2. A shared OrderedCollection that does not broadcast the #at: method.......... 103
Figure 7-3. Structure of amigrating object. When the relative frequency count for a

particular site exceeds athreshold the object ismigrated.ccceceieiiiincnenne. 104
Figure 7-4. The path of amessage in amigrating ObJECt.ccoevireririeieeierereeee 106
Figure 7-5. Message Routing changes for migrating ObJECtS.ccovvvererieeneeneenereees 107
Figure 7-6. Test block to determineif the object should be migrated.............cccccevenenee. 108
Figure 7-7. Moving the contained ODJECL.ccocoiiriiiie e 108
Figure 7-8. Default deconstruction block for migrating object. The contained object is

changed to a RemoteProxy for the contained Object...........cccoveevviereece e 109
Figure 7-9. Check-pointing the object at the pre-consistency Stage...........ccceeeverereene. 112
Figure 7-10. The queuing up of messagesto be distributed.............ccoovveiiiiiciininene. 113

List of Tables

Table 2-1. Differences between replicated and centralized architectures. 11
Table 4-1. Protocols for publishing objects into the global space..........c.cccoevvecieiieenen. 52
Table 4-2. Protocols for specifying the type of distribution and concurrency control for an
(0] 0] 1= of PR UORSOPRRRP 56
Table 4-3. Protocols for adding events to shared ODJECES.........cccocvveieeiie i, 58
Table 4-4. Protocols for using environments in groupware applications..............ccccueeue.. 60
Table 5-5. Protocol for Wrapping ODJECES.ccueiiiiiie it 78
Table 5-6. Initialization ProtOCOIS.veeiieeiieccie e 78
Table 5-7. Protocols for overriding consistency methods.coovecveveiieevie e, 82
Table 5-8. Protocols for handling message distribution............ccccvvcveiie e, 83
Table 5-9. Protocols for specifying instance specific behaviours for deconstructing and
FECONSLIUCLI NG thE WIBPPEIS.....c..veeiee ettt nes 86
Table 5-10. Protocols for remote object distribution.ccccoveiveiieiin e, 87

Xi

1. Introduction

Real time groupware applications give users the ability to collaborate over distance
through their computers. While these systems are now commercially available, they are
notoriously difficult to build. Developers must not only deal with defining the semantics
of the application, but also deal with the technical issues of how to distribute data and
processes around the network. Consequently, toolkits have emerged that allow developers
to construct groupware applications more easily. These toolkits provide common building
blocks such as inter-process communication, distribution of events and data, mechanisms
that allow participants to enter and leave conferences, and specialized user interface
widgets. A runtime architecture supports these building blocks by managing process

creation and destruction, communication connections, and fault tolerance.

Runtime architectures are an integral part of groupware development, and consequently
most toolkits are classified based on how their architecture is configured. The runtime
architecture determines the way the system distributes the processes and data of an
application across machines, and the way messages are routed between them. Runtime
architectures lie between two extremes, from completely centralized to completely
replicated. In acentralized architecture, there is asingle primary process and asingle
copy of the data residing on a single machine, and all communication is routed to this
process. In areplicated architecture, each machine involved in the conference hasits own
local copy of the process and data, and communications between the processes keep
replicas synchronized with one another. Hybrid architectures are also possible,
containing, both replicated and centralized components. There is no clear choice of
architectural style, as the type of architecture chosen results in trade-offs between

performance and ease of implementation (Greenberg & Roseman, 1996).

2
We claim that developers need to control data sharing in groupware toolkits in two ways.
by selecting from existing methods of sharing data on a per object basis; and by
constructing new data sharing mechanisms that specify how datais distributed and what
concurrency control mechanisms are used. Control over data distribution lets the
developer specify where the datais located (e.g. whether it is centralized or replicated).
Management of concurrency control mechanisms lets application devel opers determine

how datais kept consistent (e.g. through locking mechanisms).

It isour goal to provide flexible data sharing to groupware application developers. We
achieve this goal using open implementation (Kiczales et al., 1995), a technique that
allows us to provide devel opers with default data sharing strategies and the ability to
create new ones. We have built atoolkit called GEN which demonstrates the feasibility of
flexible data sharing. With GEN we show three default data sharing implementations and
how three additional sharing strategies can be constructed.

Although we have targeted groupware toolkits for exploring our ideas about how
developers should control the way datais shared, this work can also be seen as having a
broader scope and applying to other areas of distributed computing. For example, the idea
of giving developers control over the sharing strategy may be useful in applications such
as distributed agents. Thiswill discussed further in the final chapter when we consider

future work.

To set the scene for the rest of the thesis, the next section identifies the components
common to many runtime architectures in groupware toolkits. The subsequent section
then narrows the focus by considering the predominant types of runtime architectures
seen in current toolkits. Finally, | restate the purpose of thisthesis and outline of the

remainder of the thesis.

1.1 Runtime Architectures of Groupware Toolkits

Many developers of groupware toolkits have examined in detail the technical features
required to build groupware toolkits. These toolkits include GroupKit (Roseman, 1993),
ObjectWorld (Tou et al., 1994), Touring Machine (Arango et a., 1993), Rendezvous

(Petterson et al., 1990), MEAD (Bentley et a., 1994), MM Conf (Crowley et al., 1990),
and Clock (Graham & Urnes, 1996a,b). These toolkits typically provide specialized
groupware widgets such as multi-user scroll bars, an application programming interface
(API), and an underlying runtime architecture. The groupware widgets fall outside the
scope of thisthesis, and the reader isreferred to Greenberg and Roseman (1997) for
further information in this area. The application programming interface is closely tied to
the runtime architecture, so this discussion in this sense subsumes them. Thisthesis
concentrates on the structure of runtime architectures, which are typically classified into

two separate components. session management and data sharing.

Session management isthe set of building blocks that allow developersto create
conferences and connect all of their participants (and their programs) together. The
session management layer is responsible for starting up and tearing down processes on
different machines, establishing and maintaining inter-process communication (IPC),
handling fault tolerance, and providing a persistence mechanism for saving information

(Greenberg and Roseman, 1997).

Data sharing mechanisms provide abstractions for sharing information between sites.
The data sharing mechanism controls how the datais distributed (e.g. centralized or
replicated), how it is kept consistent (e.g. by locking), how it is organized when there are
large amounts of data, and how other objects (such as user interfaces) are notified of
changes made in the data. In most groupware toolkits the runtime architecture intertwines
the data sharing model and the process (although they need not be). Thiswill be
discussed further in Chapter 2.

1.2 Data Sharing Strategies for Runtime Architectures

As mentioned earlier, the data sharing strategies of groupware toolkits generally fall
between two extremes: centralized or replicated (Greenberg & Roseman, 1997). Ina
centralized architecture, there is single server machine through which all input and output
requests are funnelled (Figure 1-1a). Client processes are only responsible for sending

requests to the central program, and for displaying the results. Because all dataresidesin

the central server, the data sharing model is aso centralized. Only one copy of the data
exists, and all transaction requests must be funnelled to it. A centralized server smplifies

implementation since synchronization isimplicit in asingle process model.

Replicated architectures have a copy of the program at every site (Figure 1-1c). Each
program maintains a copy of the data. While this means that requests for data can be
handled locally, it also implies that each site must coordinate with every other site to
ensure consistency. Concurrency control algorithms must be used to maintain an adequate

level of synchronization between the various copies of data.

A hybrid architecture (Figure 1-1b) has components of both a replicated and a centralized
architecture. Here, a copy of the data can be kept in a central process as well as having
copiesin thereplicas. Toolkits that use hybrid architectures typically place the data at a

single site based upon performance criteria

X X

a) Centralized b) Hybrid c) Replicated

O Users Site
@ cowaizedsite

<« Communication Channel

Figure 1-1. Conceptual structure of centralized, hybrid
and replicated processes.

In most of today’s groupware toolkits, the runtime architecture and its implementation is
generally not modifiable. Toolkits typically supply only a single strategy for data sharing,
either centralized, replicated or hybrid. Only a handful of new toolkits allow developers
to choose from a limited set of data-sharing strategies and these choices are hard-wired
(Graham & Urnes, 1996a).

Each of these architectures (replicated, hybrid and centralized) have benefits and
drawbacks for the application developer (Crowley et al., 1990). These trade-offs include

the ease of implementing consistency, persistence, latecomers, different application

versions, connecting users, and heterogeneous environments. Tradeoffs aso include
runtime issues such as reliability, performance over slow networks, parallelism, and

scalability. Chapter 2 will discuss these further.

In addition to the centralized to replicated architectures used by groupware toolkits to
distribute data, there are also other possibilities, such as migration (Nascimento &
Dollimore, 1992). Migration also hasits own set of trade-offs, in terms of performance

and ease of implementation. However, no toolkit currently allows data migration.

When using today’s toolkits, application developers currently cannot control how their
data is distributed around the network and kept consistent. They must design around the
runtime architecture provided by the groupware toolkit they select. While the toolkit’s
runtime architecture may be appropriate for some components of their application, it may
be a poor fit for others. All these points are indicators of the inflexibility in the current

state of the art.

1.3 Purpose of thisThesis

The purpose of this thesis is to demonstrate that groupware toolkits can provide flexible
data sharing. Unlike today’s implementations, toolkits can give the application developer
fine grained control over how data is shared. This includes the way data is distributed
across the network, and how it is kept consistent for each piece of data. Such a toolkit
should allow application developers to both select from a set of default strategies for

sharing data (provided as options by the toolkit), or to define new ones.

1.4 Overview of thisThesis

The thesis will show how groupware toolkits can be made flexible through the several

steps outlined in the chapters below.

Chapter 2 provides background. It considers data sharing techniques used in the runtime
architectures in currently available toolkits. An examination of the trade-offs between the
various sharing strategies reveals that an application may require multiple sharing

strategies.

Chapter 3 describes the philosophy of our approach to making groupware toolkits

flexible. It introduces a technique now being applied to toolkits (Kiczales, 1995) called

open implementation and discusses how it can be applied to groupware toolkits to give

the devel opers both the ability to choose from default data sharing implementations and

to create new ones. The technigque of open implementation suggests that atoolkit can be

broken into two components: a programmer’s interface which contains useful default
implementations for sharing data; and a meta-interface which the programmer can use to

create new techniques for sharing data.

Chapters 4 and 5 present a prototype called GEN that uses open implementation
techniques to give developers fine grained control over the distribution and location of
objects. A programmer’s interface is presented that provides an API for session
management and data sharing. A second level interface, called the meta-interface, gives
application developers direct control over data distribution and concurrency control
mechanisms. Although GEN is just a prototype, it illustrates the principles and details of

how open implementation can be applied to groupware toolkits.

Chapters 6 and 7 demonstrate how GEN'’s meta-interface can be used to create six
different strategies for sharing data between different sites. These implementations
include replicated, centralized, replicated locking, selective message broadcasting,
migration, and a form of optimistic locking. These case studies are used to demonstrate
GEN'’s capabilities. While no claim is made that GEN can cover all situations, they
illustrate that GEN is far more flexible than any other groupware toolkit currently

available.

Chapter 8 concludes the thesis. It summarizes the arguments presented in the thesis,
critiques the work, and suggests future research in the area of open implementation for
groupware toolkits. Finally, it describes the contributions that this thesis has made to

computer science.

2. Choicesfor Sharing Data: Runtime
Architecturesin Groupware Toolkits

Application developers choose between groupware toolkits for many reasons. Obviously,
their choice is based partially upon the functionality the toolkit provides, such asthe
particular groupware widgets supplied, for these are the primary building blocks that the
designer must use to create their application. A second and perhaps more subtle aspect of
their choice is the underlying strategy the toolkit uses to manage shared data. The way
datais shared can affect the type and performance of applications that are built using a
particular toolkit. In this section, we explore some of the trade-offs between various data
sharing strategies, and how they are influenced by the actual runtime architecture used by
the toolkit. This elaborates some of the ideas already introduced in Chapter 1.

When researchers discuss runtime architectures of groupware, it istypically intermsof its
process structure (Crowley, 1990; Greenberg & Roseman, 1997). For example, a
replicated architectureis said to have a process at every site, with data being shared by
maintaining a copy of it in each process. In contrast, acentralized architectureis said to
have a single process on a single site, with the shared data residing within that single
process. However, these terms are used fairly loosely in practice, and most groupware
toolkits only tend toward one of these two extremes. For example, athough toolkits such
as Clock (Graham & Urnes, 1996), MEAD (Bentley et a., 1994) and Weasel (Graham &
Urnes, 1992) claim to be forms of centralized architectures, they all have multiple
processes running at each of the sites. What the creators of these toolkits usually mean is
that it isthe shared data that is centralized, although it is sometimes so tightly bound up
to a centralized server process model that it is difficult to differentiate between the two.
Consequently, in this chapter, we will emphasise the location of the data, rather than the

processes, to differentiate between various groupware architectures.

The first section begins with a summary of replicated and centralized architectures,
examining some of the arguments that have been made for and against each of them. The
subsequent section continues by describing and contrasting how particular groupware
toolkits implement their process/data-sharing architectures. The chapter concludes by
discussing the requirements for aflexible toolkit that separates the process model from
the data sharing model, and allows devel opers to create or choose between different

strategies for sharing data.

2.1 Centralized and Replicated Architectures

One of the primary design decisions made by developers building a groupware toolkit is
whether its architecture should be centralized or replicated (Crowley et a., 1990). They
are usually concerned with the trade-offs between the two architectures, such as how easy
they are to implement, and what they believe application developers will need. We begin

with alook at how these architectures are generally implemented.

Centralized ar chitectures have amain process with a single copy of the shared data
residing on a central server machine. A centralized architecture is usually composed of
one server process and multiple client processes (usually 1 per participant). The client
process simply receives input from the user and forwards it to the centralized server. The
centralized server is the application program, which acts on the input received from the

clients and then updates each of the client displays.

For example, consider a simple brainstorming tool that presents participants with avisible

list of ideas, and that allows any participant to enter anew ideato thelist. In a centralized
architecture, a single data structure containing the list of ideas is kept in the central

process. Now consider the sequence of eventsin Figure 2-1, where four people are using

this tool. The participant at Site 1 is about to enter a new idea, called ‘C’, to a list that
already contains ideas ‘A’ and ‘B’. The participant types some text and hits ‘return’,

which initiates the sequence. The text, which is generated at the local site, is forwarded to
the central server. The central server receives the event, adds ‘C’ to the shared list, and

then updates each of the displays on the client machines. The work of adding the element

to the shared list and initiating the display updates is done at server. The clients merely

forward events to the server, and redraw the interface as directed by the server.

User types:
Text+return

Client Sek\
Text+return

Site2

Central Server containing
the list ‘A,B’. When it
receives the text, it adds

Update : . .
Display it to the list as idea ‘C’.
Site4

Figure 2-1. Sequence of eventsin a centralized
architecture.

Replicated ar chitectures have a process running at each site aswell as a copy of the
shared data at each site. Rather than forwarding the events, the local process handles the
event locally, and then tells others about it by broadcasting a procedure call or message to
al the other sites. The other sites receive the procedure call or message, and update their

internal copies of the data as well as the display.

For example, reconsider the problem of adding ‘C’ to a shared list in a replicated
architecture. Figure 2-2 illustrates how this architecture distributes the information. Site 1
will receive the text + return, add ‘C’ to the local copy of the list, and then update the

local display. It then broadcasts a procedure call (including the text as an argument) to
sites 2, 3, and 4. These remote sites will then execute the procedure that adds the idea ‘C’

to the local copy of the shared list. The remote sites then update their displays.

Which architectureis better ? Researchers have argued the merits of these two
architectural extremes, and adopt the one they feel is best for their toolkit. Bentley et al.
(1994), Hill (1992), Patterson et al. (1996), Wilson (1995), and Ahuja et al. (1990) all

argue the merits of different forms of centralized architectures for groupware. On the

User Types: _-Each of the replicated
Text +_return -7 sites is responsible for
maintaining the local list
ite 2 and updating its own
display.

Sitel

Y

The site receives the
text+return, makes the
change to the local list and
then broadcasts the
change to the other sites. Site

Figure 2-2. Sequence of eventsin areplicated architecture.
other hand Craighill et al. (1993), Crowley et al. (1990), Bonfiglio et al. (1989) and

Anupam & Bajg (1993) argue the merits of various forms of replicated architectures.

A centralized architecture is easier to implement in that the devel oper does not have to

worry about handling consistency, persistence, latecomers, or different versions of the

applications. A replicated architecture on the other hand gives superior performancein

the cases where there are slow networks, a high need for concurrent activity, alarge
number of users, users requiring different views, or when the network of computersis
heterogeneous. In the following section we will discuss these differences, which are

summarized in Table 2-1.

10

11

Centralized Replicated Best?

Consistency Inherent in the Toolkits must implement C
architecture. concurrency scheme.

Persistence Copy centralized datato Unclear which site should store C
repository to transmit state | the data.
info.

L atecomers Use same consistent data | Toolkit dependent strategy must C
repository. be created.

Application Only one version of the Must ensure every site has the C

Versions application running. same version.

Connecting Every site connectsto a Each site must explicitly connect | C

Users single machine. to al other sites.

Slow Networks | Slow local feedback. Rapid feedback for local actions. R

Distributed All operations on dataare | Multiple sites can operate on R

Execution serialized. data simultaneoudly.

Scalability Single process can Multiple processes can distribute R
become a bottleneck. the work.

Heter ogeneous | Hard to make work in Simpler to implement in R

Environments | heterogeneous heterogeneous environments.
environments.

Multiple Views | Main program must Each site implementsits own R
contain al variations. view.

Reliability Only asreliable asthe Graceful reliability in principle ?
central server the asthe loss of asingle machine
application runs on. will not stop the entire system.

Table 2-1. Differences between replicated and centralized architectures.

! C = Centralized is superior, R = Replicated is superior, ? = Unclear which strategy is

superior.

12
2.1.1 Advantagesof a Centralized Architecture

Consistency isaconcern in any distributed system, because parallel operations on data
can leaveit in different states at different sites. Centralized architectures eliminate this
problem by keeping all the shared data at a single site. With a single copy of the data,
there is no danger of state inconsistency because thereisonly a single process and only a

single copy of the data.

In areplicated architecture, two users can change a piece of shared data at the same time
(Greenberg & Marwood, 1994). If no consistency control mechanisms are used, these two
copies of the data may become inconsistent. Figure 2-3 illustrates how state inconsistency

may occur when different sites shade a circle with different colours at the sametime. In

Step 1, two copies of asingle circle are simultaneously sent a message by their local sites

to change its colour. In Step 2, we can see that the changeisfirst applied locally and then

the colour change is broadcast as a message to the other site. Finally, in Step 3 the circles

have received the broadcast message and have applied it. However, the circles’ colours

are now inconsistent because the local and broadcast message were executed in different

Make grey\ Make black
Step 1) Initial
state

Make black

orders at each site.

Step 2) After
changeis Mak
handled locally

Step 3) After
changeis
broadcast

Figure 2-3. The result of two simultaneous changes
in a replicated architecture.

In a replicated architecture, there are many different consistency schemes (such as
locking, or optimistic locking) that can be applied to overcome this problem. The choice

of these has different implications for the user in terms of speed and recovery behaviour

13
(Greenberg & Marwood, 1994) - the toolkit developer must decide which consistency
mechanisms best meet the needs of the application. Because of their importance, we shall

revisit the trade-offs between these schemesin detail in Section 2.1.3.

Per sistence allows users to save the state of a conference between sessions. It is useful

because users may temporarily suspend a conference that they wish to resume at alater

time. Persistence is easily handled by a centralized implementation because the

centralized server can save the state of the shared data at the server’s site and restore itself
to that state when the conference is resumed (Tou et al., 1994). The user re-enters the

conference by connecting to the server, and the saved conference can be resumed.

In a replicated implementation, each of the sites is an equal peer. Determining where to
save the data is more complicated because it is not guaranteed that any of the peers will
be part of the conference when it is resumed. As such, the toolkit cannot decide where to
save the data, and replicated architectures must come up with alternative strategies. In the
case of some toolkits, that problem is left up to the application developer (Roseman,
1993).

L atecomers are defined as sites where users enter a conference after it has begun
(Crowley et al, 1990). In this case, many of the shared data structures will have changed
from the initial state. For example, an initially empty whiteboard may now contain a
drawing. The latecomer will somehow have to update itself with the current state of that
drawing. In a centralized architecture this is not a problem. The shared data is contained
in the server, and the new site can request the current server to bring it up to date
(Patterson et al., 1996).

In a replicated architecture, the new site must get a copy of the current state of the data
from one of its peers. Some toolkits do provide hooks for the developer to write
application specific code for updating latecomers (for example see Roseman &
Greenberg, 1996; Tou et al., 1994).

Different application versions. Applications are frequently modified and there is a risk

that participants may have different and incompatible versions of the software.

14
Centralized architectures do not have to worry about this because the server isthe only
site running the application. The clients themselves are usually simple display programs
or virtual terminals, such as network window systems (e.g. X Server systems, Patterson et
al., 1996).

In areplicated architecture a copy of the application program must be run on each site.
Problems appear when the local site does not have the application, or when it has a
version that is out of date. In this case the system must be able to check the version of the

application (Crowley et al., 1990), perhaps uploading the newest one if possible.

Connecting users. Each user must have away of connecting up to the conference from
their local site. In the centralized architecture, the user only has to connect up to the single
server site. If they get the site wrong, they will be excluded from the conference.

However, their failure to connect will not interfere with the other participants.

In replicated architectures, the user must know the address of each of the other sites
connecting to the conference. If the user gets the name of a site wrong, or excludes one of

the sites, changes made by one site may not be broadcast to all the other sites.

2.1.2 Advantages of a Replicated Architecture

Slow networ ks are aways possible in an environment where connections are maintained
over long distances, over congested networks, or over networks with restricted
bandwidth. A slow connection can affect the speed at which changes made by one site
can be seen at another site. Remote actions may appear sluggish on the local site as
changes are propagated across the network (Crowley et al., 1990). Sluggishness can be
annoying when actions performed by other sites are delayed. It can become devastating if
your own local actions are delayed, giving poor feedback and inadequate interface

responsiveness (Greenberg & Roseman, 1997).

A replicated architecture can help compensate for a slow network by giving rapid
feedback for local operations. When the user makes a change to a shared piece of data,
that change can be displayed locally extremely quickly. While the change may still appear

15
sluggish at other sites as it takes time to propagate across the network, the system will at

least be responsive to the user’s own interactions (Greenberg et al., 1992).

In a centralized architecture, both local changes and remote changes will be affected by a
slow network. A local action must be propagated across the network, executed at the
central node, and then the changes to the display must be propagated back. A slow
network will create a significant delay between the time the action is sent to the server

and the time the user who initiated the action receives feedback.

Distributed Execution allows several sites to make changes simultaneously by utilizing
the computing power of all the sites. A replicated architecture allows users working in
different areas of the same application to perform work in parallel. If a particular
operation requires a lot of computation power, a single site can do the work locally and

then broadcast the result to all the other sites (Anupam & Bajaj, 1993).

In a centralized architecture, there is a single process that performs all the work. The
single process serializes all the operations from the various sites and can become a

performance bottleneck for applications where there are operations that take a long time.

Scalability concerns how many users can be present in a single conference. An
application can quickly become unusable as communication times and processing times
increase. A replicated architecture can reduce the amount of information transmitted
between sites. For example, when the idea ‘C’ was added to the list in Figure 2-2, only
the add command needed to be transmitted across the network. The cost of adding the
additional site is the extra time it takes to do the broadcast (Greenberg & Roseman,
1997).

In contrast, the centralized version had to handle every primitive key press, as the server
handles both the input and the output. When a message comes in from one of the sites,
the central server must not only process the request, but also update each of the displays.

This can be an expensive operation.

Heter ogeneous environments are common, and it is possible that several members of a

team will be working on different hardware platforms. For example, one user may have

16
an Apple Macintosh, while the other has a Sun workstation. A groupware application

must be able to run on al the various platforms.

A replicated architecture ssmplifies this problem, because machine specific code can be
written for each platform. The devel oper recodes and compiles the application for a
particular platform. It is only the communication protocols and data structures that must

be consistent between sites (Roseman & Greenberg, 1993).

In a centralized architecture this is much more difficult as the centralized process must be
able to invoke commands in the windowing system. While protocols such as X allow

developersto do this, however they are not available on all platforms.

Multiple Views. Sometimes users will require different views of the same data. For
example, a supervisor and aworker who are collaborating on a project may need different
levels of detail. The worker’s view may show detailed information about a particular
component of the project, while the supervisor’s view may show general information

about the project.

In a replicated architecture, new views can be created by programmers without requiring
recompilation of the entire application. As with heterogeneous environments, a new site-
specific client can be written which uses the new view, as long as it adheres to the same

shared data structures and protocols as other sites (Roseman & Greenberg, 1993).

A centralized architecture requires the developer to rebuild the entire centralized
application and to contain all the possible variations of the interface. If there are many

different views to construct the application can become quite large.

Reliability. Sometimes both replicated and centralized architectures have good solutions
for a problem. However the trade-offs are simply different. This is the case with
reliability. Reliability is a problem in groupware applications because individual sites
may become unstable or fail in a distributed environment. If one of the sites goes down,
the toolkit must recover the data and keep the conference running. In a centralized
architecture, this is relatively easy as the centralized site simply closes the connection to

the aberrant site. Similarly, it is unlikely that the centralized site will fail because it is

17
likely to reside on a stable machine (Patterson et al., 1996). However, if the server does
go down, the entire conference will be halted. On the other hand, replicated architectures
handle reliability in adifferent way. If asingle site goes down, the rest of the conference
can keep running, losing only a single participant (Greenberg & Roseman, 1997). The
trade-off is that there may be complicated recovery techniques that are required as various
sites are left in inconsistent states (Patterson et al., 1996). Indeed no replicated

architectures currently handle reliability, even though they can do so in principle.

No one architecture is superior to the other in this case and developers must choose the
type of reliability that their application requires. If there is a stable centralized server
available a centralized architecture would be easier to implement; however, when no

stable server is available, areplicated approach might be more appropriate.

2.1.3 Issuesin Choosing a Concurrency Control Scheme for Replicated
Architectures

Concurrency control was raised as a potential problem in the previous section. Because
thisisacritical aspect of replicated architectures, it has received much attention and

deserves more discussion. Concurrency problems arise in groupware applications that

have data distributed among several processes. In a centralized approach, thereisasingle

copy of the data and all the operations on the data occur in a single process, effectively
serializing the user’s operations on the data and eliminating the need for concurrency
control. In a replicated approach, however, the same piece of data can be accessed
simultaneously at two different sites, as we saw in the example in Figure 2-3 of Section
2.1.1. With multiple applications communicating over a network, commands that change
the data may arrive at different sites in different orders and the data may become
inconsistent. In this case a strategy is needed to ensure that the programs can stop or
control these inconsistencies. Greenberg & Marwood (1994) identify four common

strategies:

. Non-optimistic serialization ensures that all messages execute in the same order

on all sites. It means that the message cannot be executed locally until the

18
application is assured that all messages which executed before it on any other site
have arrived and have executed. One strategy for implementing thisis by using
timestamps as discussed by Lamport (1978). However, the delay caused by
waiting to ensure that all messages have been received may disrupt the work of

the user, asthey may not receive feedback quickly.

Optimistic serialization assumes that messages will arrive in the order in which
they were sent. As such, it executes each message when it isreceived. However,
messages that arrive out of order must be detected and then the damage must be
repaired. In one strategy, the site repairs out of order sequences by undoing the out
of order messages and then redoing the messages in the correct order. This will
have the side-effect of the user seeing things undone and then redone

occasionally, as message execution is repaired.

A second strategy uses transformation. The transformation a gorithm ensures that
the objects end up in a consistent state even if messages arrive in different orders
at different sites. It does this by modifying the data, using a set of rules, when
messages sent to it arrive out of order (Ellis & Gibbs, 1989). By being able to
execute messages as they arrive, the site will minimize the time between when a
message is broadcast and when it is executed at a remote site, making remote
operations appear fast. Additionally, the user will see quick local feedback as their
messages are applied to the dataimmediately. Thisis appropriate when order

conflicts arerare.

Non-Optimistic Locking enforces mutually exclusive access to data. In order to
change data a site must acquire alock. Once the lock has been acquired, the site
can make the required changes, and then it must release the lock to allow other
sites to make changes. This may disrupt work, as the user must now wait for the

lock on networks with long latencies.

Optimistic Locking works by using provisional locks. A provisional lock gives a

temporary approval of the lock whenever the lock is requested. However, the

19
temporary approval may be revoked later if another site had previously requested
and received the lock. When approval is revoked, the application must undo any
changes made during the period where it had the provisional lock. The advantage
to this scheme is that the user will see quick local updates on his display, but may
also see unusual behaviour in the application as their actions are undone if the
lock is refused.

Further, it is not always clear that concurrency needs to be managed. For example,

Greenberg & Marwood (1994) point out the example of a shared white board, where
inconsistencies of afew pixels at different sites do not matter as users may not notice

these inconsistencies. Additionally, concurrency may be handled by the users without the

need for software intervention, through social protocols (Greenberg & Marwood, 1994).

Stefik et al. (1987) noticed that people using groupware do not usually interfere with one
another’s work. For example, it would be rude to destroy an object someone is currently
using. In certain circumstances, social protocols may mitigate the need for concurrency

control.

There are many other concurrency strategies, such as transaction mechanisms, immutable
objects (Moran et al., 1995), and read/write locks. Various different implementations of
these strategies can result in different trade-offs between speed and consistency.
Barghouti and Kaiser (1991), Greenberg & Marwood (1994), and Ellis & Gibbs (1986)

provide comprehensive surveys of the available techniques for concurrency control.

In summary, optimistic strategies are useful when network response times are slow, but
may confuse the user when the data must be ‘rolled back’ because of a missed lock or
serialization event. Non-optimistic strategies will always ensure that the data is always in
a consistent state, at a cost of higher latency. With no concurrency control,
inconsistencies may exist between sites. However, in certain circumstances (such as a
whiteboard), users may not notice small differences and the speed gains may be

substantial.

20

2.2 Examples of Data Sharing Strategiesin Runtime
Architectures

The earliest toolkits devel oped had process architectures close to the models mentioned
previously, centralized or replicated. MM Conf (Crowley et a., 1990), Conference Toolkit
(Bonfiglio et a., 1989) and ShareKit (Jahn, 1995) use replicated designs, while
Rendezvous (Patterson et al., 1990) and Rapport (Ahuja et al., 1990) use centralized
designs. Other implementations, including GroupKit (Roseman & Greenberg, 1992),
ObjectWorld (Tou et a., 1994), Notification Server (Patterson et a., 1996), Clock
(Graham & Urnes, 1996), and MEAD (Bentley et al., 1994), all use variations that
combine some elements of the replicated architecture with elements of a centralized
architecture. Finally, Prospero (Dourish, 1996) examines the aspect of flexibility in
concurrency in groupware architectures. In this section we will examine some examples

of these toolkits.

Rendezvous (Patterson et al., 1990; Hill, 1992; Hill et al., 1993) is primarily a centralized
architecture with the majority of the application residing on a single machine.
Rendezvous is made up of three major components: virtual terminals, for displaying
output and collecting input; the application thread, which executes the application code;
and interaction threads, which determine how the information should be displayed for
each user. The mgority of the work is done by the interaction thread and the application

thread, which reside in asingle centralized process.

By using different interaction threads the application can present multiple different views
to the data. Thisinteraction thread serves as an intermediary between the application and
the display, by interpreting the shared data and updating the display of its associated
virtual terminal. For example, in Figure 2-4 we can see how different users have different
displays. In this case, the interaction threads 2 and 3 display the application data as
histograms through the virtual terminal. On the other hand, interaction thread 1 displays
its data as aline graph. By modifying the interaction thread, developers can create

different ways for viewing the same data.

21
Rendezvous’ creators claim the benefits from the centralized architecture eliminates the
need for concurrency control mechanisms, eliminates concerns about different application
versions, and has good reliability. Rendezvous suffers because a single process handles
both the application and the interaction threads. This means that the processor must
update all the displays as well as execute the code for the application. When there are
multiple sites used in intense graphical applications, the centralized server becomes a

bottleneck and performance suffers.

Virtua Terminal 1

Centralized

Appli wocess
i

\ Interaction

Thread 1

Interaction
Thread 3

Application
Thread

Interaction
i |[Thread 2
Virtual Termina 2 ;

Virtual Terminal 3

Input & Output

Display Updateﬁ

Figure 2-4. Rendezvous’ centralized architecture.

MM Conf (Crowley et al., 1990) uses a purely replicated architecture and supports several
applications executing together in a single conference (such as a whiteboard, text editor,
and brainstormer). Rather than having each application connect individually to all the
other applications, MMConf uses a conference manager at each site to handle the
problems associated with maintaining the communications between sites. Figure 2-5
illustrates how a message to draw a line from the whiteboard at site 1 is sent to the
conference manager, which broadcasts it to all the other sites. When the conference
manager at the other site receives the message, it forwards the message on to the local
copy of the whiteboard application that is running. In essence the conference manager

acts as a router and a multi-casting agent.

MMConf allows each site to process the local changes before they are broadcast, so that

users can receive quick feedback for local operations. However, the replication introduces

22
several problems. First, in order to ensure that al the datais kept consistent, MM Conf
only allows asingle user at atime to make changesin the application at atime using floor

control (Greenberg, 1991), which is overly restrictive. Second, users may have different

I nter-process
communication

Site1 ; Site2
Conference 5 Conference
Manager). ¥ - Manager
drawllne :
; drawllne

Whiteboard Whiteboard

Figure 2-5. MMConf’s replicated architecture.

versions of the application. In order to get around this problem, MM Conf uses afile
transfer protocol that allows each site to request an updated version of the program.
Third, the user interface to connect with other usersis unwieldy. When starting the
conference the user must specify the address of all the other sites, if they are to connect to

them.

2.2.1 Modified Replicated Architectures

Although the replicated and centralized architectures are often referred to in the literature
as strategies used for implementing toolkits, new architectures combine them to best suit
their needs.

Several toolkits combine aspects of centralized systems into a predominantly replicated
architecture. The ideais to mitigate the shortcomings of the replicated architecture, such
as the problems of connecting to multiple different sites, adding persistence, handling

latecomers, and managing consistency.

GroupKit (Roseman, 1993) is a predominantly replicated architecture, where

applications and the session management are completely replicated. However, GroupKit

23
employs a centralized component (called the registrar) to help solve the complex problem
of identifying all the sites to connect to. The user connects to the registrar, which then
manages the connections to the other sites for the client. The registrar accomplishesthis
by keeping alist of all the sites participating in a conference and automatically establishes
connections with them. GroupKit has also used this feature to allow users to browse

existing conferences and join them while they are in progress.

GroupKit does not supply adefault form of concurrency control but rather leavesit up to
the developer. By default, replicated datain GroupKit has no concurrency control, and

messages may arrive at different sites in different orders. As discussed previoudly, thisis
reasonable when a shared application (such as a whiteboard) does not need to be entirely

consistent.

GroupKit does provide the option of serialization for concurrency control, which

developers can selectively apply to data. Internally, GroupKit uses a special multi-casting
procedure to route all messages through a single arbitrary site, ensuring that the messages
arrive at each of the sitesin the same order. In effect, the site through which messages are

routed becomes a centralized server which dispatches messages to all the other sites.

ObjectWorld (Tou et al, 1994) adds persistence to areplicated architecture by adding a
centralized server that acts as arepository for the shared data. The server records the
current state of the conference in afile for later recall. When the conference is resumed
after having been terminated at an earlier point, each site queries the server for the saved
state of the data which then transfersit to them. Additionally, ObjectWorld uses this
technique to update latecomers to the conference: when anew participant joins the

conference they are automatically updated from this central repository.

ObjectWorld uses several strategies to control the consistency of the objects. Dependency
detection controls the misordered arrival of messages by uniquely identifying the state of
the objects they operate on before the message executes. If the object isin the wrong
state, the system automatically copies the most recent version of the object from the

centralized store. Non-optimistic locking allows the developer to prevent simultaneous

24
access to objects by explicitly acquiring and releasing locks. Finally, aspecial broadcast
protocol checks to ensure that all objects are available in the process when amessageis
received. If the object is not present, the system copiesit from the broadcasting site. This
concurrency control strategy is built in and all shared objects automatically use it whether
itisrequired or not. Unlike other methods that require devel opersto explicitly request
locks for data, or explicitly funnel data through a single process such asin GroupKit,
ObjectWorld makes consistency implicit. Whenever an object is shared, its consistency is

automatically guaranteed and maintained by the system.

2.2.2 Modified Centralized Architectures

Centralized architectures are often modified to reduce the amount of work that isdonein
the centralized server, as well as to reduce the amount of communication between the

client sites and the server itself.

To reduce the amount of computation that is done in the centralized server, MEAD
(Bentley et a, 1994) separates the shared application data and operations on that data
from the user interface. The shared data and application are contained in the server, while
the interface and display are performed by each of the client sites. This reduces the
workload of the centralized site by having the client machines interpret the shared data
and update the display on their own. For example, when thereis achangein the
application data, the server informs the client of the change. The client then responds to
that change by querying the current state of the shared data, and updating its display
appropriately. Thistype of implementation reduces the load on the server, by removing
all responsibility for maintaining the display, which then becomes the responsibility of

the clients.

Patterson’Notification Server (Patterson et al., 1996) reduces the computation done in
the server by having clients perform the work for the application. The server only
maintains the state of the data. The Notification Server has two functions: 1) to store a
consistent copy of the data and manage locks for that data and 2) to notify sites using a

piece of data when a change is made to that data.

25
To modify apiece of data, the developer must go through five steps: 1) get the lock for
the data; 2) copy the data from the repository; 3) make the change to the data; 4) copy the
data back to the repository; and 5) release the lock. The other function of the notification
server isto inform sites when a change is made to a piece of data. Each site must register
itself with the Notification Server, indicating what information it isinterested in. When a
change is made to that data, the registered clients are notified. Each client then has to get
the current state of the data from the Notification Server.

The Notification Server reduces the computation bottleneck of other centralized
architectures. However, it also increases the amount of network traffic as the shared data
must be transmitted between the Notification Server and the client site whenever a change

ismade.

Clock (Graham & Urnes, 1996a; Graham & Urnes, 1996b) attempts to reduce both the
amount of computation done on the server, as well as the time it takes for communication
to be transmitted across the network. As with MEAD, the client handles the display
updates. Unlike these toolkits, the client and the server also co-ordinate with each other to
speed up communication by caching datathat is normally stored in the server at the client
site. The cache contains results of requests that have been made by the client to the server
on the assumption that same request will be made frequently. If the result of arequest is
available in the local cache, the cost of aremote request is saved. The cache entries of the
clients are invalidated by the centralized server whenever a change is made to shared data

that affects a cache entry.

Clock uses two additional techniques to speed up the delivery of messages: request
prefetch and request presend. The assumption is that the cache predicts the requests that
the application is going to make, so during idle pointsin the program the client and server
can attempt to keep the cache from going stale. In request prefetch, the client examinesits
cache, finds stale entries, and asks the server for updates for those entries. The request
presend is performed by the server, which has knowledge about the cache at each site
(remember it must invalidate the entries). When the server determines that a cache entry

on a client is “stale” (has been invalidated), it automatically sends an update to the site.

26
The Clock implementation brings the centralized architecture closer to the replicated
architecture by copying frequently used data out to each of the client sites, thus reducing

communication times and allowing fast local updates.

2.2.3 A Flexible Architecture

In work parallel to thisthesis, the Prosper o groupware toolkit (Dourish, 1996) uses open
implementation (presented in Chapter 3) to let application developers manage multiple
concurrency control implementations in their application. Dourish recognizes that
concurrency control strategies depend on the needs of a particular application. To
accomplish this, he explores how consistency is handled in groupware systems. He claims
that most groupware systems use inconsistency avoidance rather than consistency
management. In inconsistency avoidance, the system focuses on raising barriersto
prevent parallel work from being done on a single piece of data. For example, alock only
alows asingle user to access a particular piece of dataat atime. On the other hand,
consistency management re-synchronizes data after multiple users have worked on it in
parallel. Dourish creates a consistency management model that allows data to diverge
(become inconsistent) and then converge (or re-synchronize). Using this, developers can

specify arbitrary consistency schemes that are suitable to their applications.

In order to support this work, Dourish also proposes a simple open implementation for
distributing data, to give the developer a degree of control over how datais distributed.
As we shall discuss in Chapter 8, Dourish’s work complements the work presented here

by emphasizing concurrency control, while we emphasize data distribution.

2.3 Requirementsfor Data Sharing

The current generation of toolkits define the sharing and concurrency strategy for the
entire application and assume that the strategy provided for sharing data will be useful for
all the data across all groupware applications. Researchers have not reached a consensus
on which particular data sharing strategy should be used in groupware applications,

however they make valid arguments for and against each strategy. Currently, the way data

27
is shared in groupware applications built using atoolkit is based on what the toolkit

developer supplies.

We argue that the application developer should be given control over the technique used
to share data, where the particular properties of the data being shared and how it is used
by the application should determine which techniques should be employed. Additionally,
the data sharing strategy should not apply to the entire application, but rather to particular
pieces of data. The developer needs to control the distribution of the data and the

concurrency control mechanism.

Distribution of the data. The application developer needs to control how each piece of
datais distributed. For example, different pieces of data may require different levels of
feedback when the user makes a change. To illustrate, when a user draws alineon a
drawing surface, they need immediate feedback so they can see their pencil stroke, which
replicated datais well suited to. Conversely, when a user makes a query about the
participants in the conference, they may not require immediate feedback and a centralized

implementation could be used.

Additionally, techniques that are unwieldy across the entire application may be useful
when considering individual pieces of data. For example, data migration (Nascimento &
Dollimore, 1992) could be used in the case where one user accesses a particular piece of
data frequently. In this case, rather than have the data remain at a single location (where
the user might have to accessit remotely) the data could be moved to the site using it

most frequently to reduce bandwidth and transmission times.

Consistency. Users need control over consistency because various different consistency
strategies may be appropriate. Consistency can impact the performance of the application,
and the time it takes users to get feedback on their actions. Some data may require strong
consistency, with little regard to performance, such as a bank balance. Other data may

accept inconsistencies at the expensive of responsiveness, such as a whiteboard.

We believe that the application developer needs to be able to control how each piece of
datain the application is shared by determining both the concurrency mechanism and the

28
way the datais distributed. A toolkit should give the devel oper the choice. However, no
toolkit can implement all the possible combinations of concurrency control and data
distribution. Thus the application developer should be able to define new strategies, as
well as select from existing ones, to meet their particular requirements. In the next
chapter we will see how open implementations can afford a degree of control while

minimizing coding complexity.

24 Summary

In this chapter we have shown some of the different ways toolkits hardcode the sharing of
data. However, an application may have need for different sharing strategies for different
pieces of data. We argue that the application developer should be able to choose from
different strategies, as well as define new strategies for sharing individual pieces of data.

29

3. Adding Flexibility to a Runtime Architecture

The previous chapter revealed several different strategies for implementing both
centralized and replicated runtime architectures. The examplesillustrated that every
toolkit chooses different ways of implementing its components, which ultimately
produces trade-offs in performance, ease of implementation, and consistency. Y et we
expect that groupware applications built on these toolkits will become more complex and
diverse. Consequently, the particular implementation choices hard-wired into these
toolkits may prove a poor match to the demands of future applications. Runtime
architecturesin groupware toolkits must become more flexible to let application
developers control aspects of the underlying implementation, including the ability to

select how and where trade-offs are made.

In this chapter, we will examine a technique called open implementation (Kiczales et al.,
1995) for adding flexibility to toolkits. We will apply this technique to groupware toolkits
to give the application developer fine grained control over the runtime architecture to

choose how datais located, and how data is distributed across the network.

In the first section, we argue that runtime architectures in toolkits need to be more

flexible. | then show how the ‘API’ black box strategy now used in toolkits restricts the

set of applications that can be reasonably constructed. We then introduce the concept of
open implementation, where the developer is given the power to control a selected subset
of the internal implementation details of the toolkit. | will conclude the chapter by

applying the principles of open implementation to runtime architectures of groupware

toolkits.

3.1 A Call for Flexibility in Groupware Toolkits

Current groupware toolkits, although aiding the development of applications, restrict the

application developer to the trade-offs inherent within a particular runtime architecture.

30
Many toolkit developers recognize that their designs are somewhat rigid and that new
toolkit should provide greater flexibility in the runtime architecture. Greenberg &

Roseman (1997) point out:

“Perhaps what is required is a dynamic and reactive groupware
architecture, where the decision of what parts of the architecture should be
replicated or centralized can be adjusted [by the developer] at run time to

fit the needs of particular applications and site configurations.”
Similarly, Cortes (1994) after examining toolkits concludes:

“We consider that designers and programmers should be able to define the

internal process structure according to the needs of each application.”
Bentley et al. (1994) when discussing the design of MEAD strike a similar chord:

“Because neither architecture fully meets multi-user interface
requirements, a hybrid solution is needed wherein components of the co-
operative system are either centralized or replicated, depending on the

application requirements.”
Patterson et al. (1996) after espousing the benefits of the Notification Server concedes:

“The difference between GroupKit and Notification Server is a judgement
about how often serialization is required. It is perfectly reasonable,

however, to use both...”

This problem of inflexibility in toolkits is not unique to groupware, and has been
extensively studied by Kiczales (1992). In the next section we explore how this problem
arises from black box layering inherent in conventional application programming
interface (API’'s). We also identify two techniques that application programmers use to

get around this inflexibility.

31
3.2 The Black Box Approach to Toolkits

All toolkits abstract away implementation details. This allows application developersto
concentrate on learning and applying essential building blocks. Thisis much easier than
requiring an understanding and use of acomplex set of primitives, e.g., accessto
complete library source code or an entire class hierarchy. Toolkits decrease complexity by
providing the application developer with an abstract interface to its building blocks
through an application programming interface (API). An APl isaset of predefined
functions, methods and/or objects with well-documented behaviour. Figure 3-1 provides a
layered model of atoolkit with three identifiable components: the toolkit implementation,

the toolkit API, and the application.

Application Application
Developer
API
Toolkit

Toolkit

- Developer
Implementation

Figure 3-1. The implementation of atraditional toolkit is only
available through the API.

The API serves as abarrier, preventing the application developer from having to know
about the implementation details of the toolkit (Kiczales, 1992). Through the API, the
application developer can manipulate and control the implementation. The internal
implementation is seen as a black box, leaving the application devel oper free to think
about their application needs rather than low level details. For example, a window toolkit
hides low level issues including how windows are stored in memory and how the mouse
IS tracked.

32
When toolkit designers hide implementation details, they make decisions about what
implementation strategies will be used to provide functionality. Y et the particular choices
may not be suitable for all applications. For example, classic performance decisionsin
computer science involve the trade-offs between memory requirements and speed. The
degree to which atoolkit is useful depends on designers correctly anticipating the needs
of its users and choosing an appropriate implementation strategy (Rao, 1993). However,
in some problem domains there may not be a single correct strategy. At one extreme,
toolkits which must support awide range of activities may haveto create alarge AP,
resulting in an overly complex and difficult programming system, such asthe X interface
(Ran, 1993). At the other extreme an over-simplified API will make the toolkit much
easier to learn, but will be more restrictive. The application developer may not be able to
use the toolkit since the simplified abstraction provided may be a poor match to the
application requirements.

3.2.1 Working Around the Black Box

Despite the inflexibility of the black box approach, programmers do manage to work
around toolkits that do not fit their particular application requirements. Two common
strategies include hematomas and coding between the lines (Kiczales, 1992). With
hematomas, the programmer reimplements some functionality of the toolkit in the
application. With coding between the lines, the programmer uses knowledge of
undocumented features and characteristics of the toolkit implementation to improve

performance in the application.

Hematomas. We will use the example of scheduling strategies in operating systems to
demonstrate how programmers use hematomas to get around hidden implementation
details that affect their application. Scheduling algorithms must handle the problem of
high priority processes blocked on a mutex held by alow priority process. The algorithm
developer must decide how to reduce the amount of time that the high priority process
blocks. For example, Solaris uses priority boost to overcome this problem, where the

lower priority processis boosted to the priority of the high priority process until it

33
releases the mutex. In Windows NT, the lower priority process is scheduled normally, and
the higher priority process must wait until the lower one has a chance to execute and
release the mutex. If this particular problem isimportant to the application, the developer
must either choose an operating system based on the scheduling strategy, or work around
the implementation in the operating system. One workaround isto add a hematomato the
operating system mutex implementation. The developer may create a wrapper around the
operating system mutex to provide the desired scheduling behaviour. The problem is that
the resulting wrapper may be less efficient than the one supplied by the operating system.
Aswell, this produces more code that must be maintained and debugged by the
application developer. Still, the application developer uses the hematoma to extend the
operating system to get around the hard-wired design decisions made during its

implementation.

Coding between the lines. Coding between the lines uses knowledge of the toolkit’s
particular implementation to get better performance. Virtual memory systems provide a
classic example of this. In a large application, objects are paged out to disk (virtual
memory) when physical memory fills. Paging memory out to disk and back takes a
relatively long time. To improve an application’s speed, programmers can allocate objects
that are referenced together in the same page of memory. The application developer codes
“between the lines”, knowing that the virtual memory system swaps out pages of memory
rather than, say, bytes or words. An application programmer causes fewer page faults by
allocating objects that are referenced together, close together in the memory address
space. The problem is that coding between the lines requires programmers to contort their
code, possibly by allocating memory in unusual places, to match the underlying
implementation of the virtual memory system. Also, code that relies on undocumented
features of the implementation, such as the page size, may break when new versions are

released.

In groupware toolkits, a major component in the “black box” is the runtime architecture.
These black boxes have arbitrarily chosen the way to distribute data (either replicated or

centralized) and the consistency maintenance strategy (locking and serialization

34
techniques). The trade-offs inherent in the choices clearly affect application developers,
and consequently force developersto create their own hematomas and/or code between
the lines. It would be better to add flexibility to toolkits to give application developers
appropriate levels of control over the critical implementation details. A technique called

open implementation does this.

3.3 Flexibility through Open I mplementation

One technique for creating a flexible toolkit is to open up the implementation of the
toolkit, allowing devel opers to modify components of the toolkit to meet their particular
needs (Kiczales, 1992). Rather than working around a toolkit that does not entirely meet
the requirements of the application, an application developer can directly modify selected

components of it.

An open implementation provides two levels at which the programmer can use the
toolkit: the programmer interface and the meta-interface (Kiczales, 1996). The
programmer interface is the normal API, the functions through which the application
programmer makes use of the underlying default implementation. The meta-interface
describes the behaviour of the toolkit, and gives the application developer a constrained

way to extend the toolkit.

The goal is not to foist the responsibility of toolkit construction on the application
developer. In most cases the application developer will find that the standard programmer
interface suffices. However, when the programmer interface is not adequate, the meta-
interface allows them to modify some of the underlying decisions made by the toolkit

developer.

35
The meta-interface is smply an API to the implementation of the toolkit, designed to give
application developers the ability to customize the toolkit to meet their particular needs.
With the meta-interface the application devel oper can modify and add new components to

the API by directly manipulating the toolkit implementation, as shown in Figure 3-2.

Toolkit{

Figure 3-2. The addition of a meta-interface allows
developersto refine and extend the API of the toolkit.

Modified API

Application

z[P User Added
API

Implementation

Meta-interface

3.3.1 TheOriginsof Open Implementation

The work on open implementation has its roots in computational reflection (Smith, 1982)
and metaobject protocols such as CLOS (Paepcke, 1993; Kiczaleset a., 1995). These
approaches to programming languages allow the devel oper to inspect the internal
workings of alanguage, and to extend it without modifying existing applications. The
ability to modify alanguage in the language itself, is calledreflection. The structures that
control the behaviours of alanguage are referred to asmetalevelsin a functional

language, and metaobjectsin an object oriented language.

For example, a metaobject strategy that allows a developer to control how objects are
alocated in memory helped solve a particular problem in knowledge representation
(Kiczaleset al. 1993). Knowledge representation often declares classes with hundreds of
dlots. However, most of these dlots are never used and end up taking large amounts of
memory. The CLOS metaobject protocol (Bobrow et a., 1993; Attardi, 1993) allowed the

developer to define new ways in which the instance variables of a class are allocated. One

36
implementation strategy used a small hash table strategy for storing the slots of an object,

which provided a good representation for the sparse nature of the data.

The effective application of metaobjects and reflection to programming languages
prompted Kiczales to consider the technique’s applicability to toolkits, using the

mechanisms of a meta-interface.

3.3.2 Building a Meta-Interface

Toolkits with an explicit meta-interface expose implementation issues to the developer.
However, not all the implementation should be exposed, as insignificant details and areas
where the developer does not need control would add unnecessary complexity to the
interface (Kiczales et al., 1991). The major problem in building meta-interfaces is
determining what the developer should be able to control (Paepcke, 1993; Kiczales et al.,
1993).

Potential areas to add meta-interfaces in a toolkit can be identified by examining work-
arounds (hematomas and coding between the lines) in existing applications and by
examining complaints that application developers have made about the toolkit. The

toolkit designer can use these problems to determine which features need to be opened up
and made flexible through a meta-interface. For example, in Chapter 2 we identified
differences in the runtime architecture of groupware toolkits that are contentious because
of the inherent trade-offs; in particular, how data is distributed and the concurrency
mechanisms used. These differences indicate the need for a meta-interface in groupware

toolkits that gives application developers control over the implementation choices.

From experiences in developing open implementations and meta-object protocols,
Kiczales (1995) has developed principles that a toolkit designer must consider when
designing a meta-interface. These principles include: conceptual separation, scope
control, and incrementality. We describe each and discuss how it can be applied to

groupware toolkits.

Conceptual separation means that the application developer should be able to customize

particular aspects of the toolkit's implementation, without having to understand the entire

37
meta-interface. For example, if an application devel oper wishes to modify the
concurrency behaviour in agroupware toolkit, they should not have to modify the way
datais distributed.

Although it isimportant to conceptually separate the concerns of distribution and
concurrency, this can be difficult in groupware toolkits. Concurrency policies depend on
the type of data distribution used. A centralized piece of data requires a different form of
concurrency than areplicated piece of data. However, the actual implementations of
concurrency schemes must be separated from the implementation of distribution schemes.
When defining new concurrency schemes, developers will have to understand the
characteristics of the distribution scheme, but they should not have to modify the

implementation of the distribution scheme.

Scope control determines the extent of a change the meta-interface will have in atoolkit.
The scope of that change can affect the entire application or be limited to a few small
components. By restricting the scope of the change, atoolkit developer reduces the
likelihood that a change meant for one component of an application affects another.
Secondly, and more importantly, by limiting the scope of a change multiple different

behaviours can coexist within the same application.

Naming particular scopes allows developers to distinguish between different behaviours
of the toolkit. They can reuse the named components in new contexts, and differentiate
between the behaviours. Application developers can then tailor their components by

naming the particular behaviours they want for a component.

In agroupware toolkit, scope control can be used to allow different data distribution and
concurrency behaviours to coexist within the same application. For example, an
application may contain various types of shared data, e.g., centralized, replicated or
migrating, based on the way the particular piece of datais used. Scope gives application

developers fine grained control over the ways their objects are shared.

I ncrementality means that an application devel oper should be able to modify atoolkit,

without having to rewrite their new components from scratch. Application developers

38
thus need good default implementations that can be built upon incrementally. These
defaults can also be used by the application developer to understand the implementation
of the toolkit.

The default data distribution implementations that should be provided in a groupware
toolkit are relatively obvious. Replicated and centralized data are the most popular
approaches in use today and already address a wide range of applications. What must be
doneisto expose their implementations for distributing this data and the concurrency
control techniques, allowing the application devel oper to understand and modify the

implementation.

3.4 Summary

In this chapter we have seen acall for flexibility in runtime architectures by devel opers of
groupware toolkits. We argued that open implementation is a feasible way to solve the
inflexibility endemic in the current generation of groupware toolkits. We identified
distribution of data and concurrency control as two components which require a meta-
interface. We introduced the principles of open implementation: conceptual separation,
scope control and incrementality and discussed how they could be applied to a meta-

interface to control data distribution and concurrency.

In the next chapter, we introduce a prototype groupware toolkit called GEN which

provides a meta-interface for data distribution and concurrency.

39

4. GroupEnvironment: The Programmer’s
Interface

Chapter 2 showed that current groupware toolkits contain design decisions that ultimately
affect the application developer. Toolkits can be too rigid when they do not allow the

application devel oper to select the method of data distribution and concurrency control.

Chapter 3 revealed that the problems of rigidity in groupware toolkits are not specific to
this domain, but are more general, stemming from implementing toolkits as black boxes.
Recent research in open implementation presents a strategy for building toolkits that
allows the application developers to control particular design decisions made in the
toolkit.

In the next two chapters we will apply the principles of open implementation to a
prototype groupware toolkit called the GroupEnvironment (or GEN). In particular we will
show how atoolkit can provide devel opers with both a programming interface for
standard groupware features and a meta-interface that gives control over the method of

data distribution and concurrency control.

This chapter first describes how the requirements of the toolkit impact on the design of

the application. It then examines how the runtime architecture is separated into the

programmer’s interface, the meta-interface and the black box. It continues by detailing
the programmer’s interface. Finally, we demonstrate how a simple brainstorming
application can be built using the programmer’s interface. The meta-interface will be
described in Chapter 5. Data distribution strategies in the programmer’s interface are built
on top of this meta-interface. For simplicity, we defer the description of the
implementation of those components until Chapter 6, after we have discussed the

workings of the meta-interface.

40
4.1 Overview of Requirementsand their Implicationsfor the
Design
In this section we look at the three magjor requirements for the GEN system and give a

brief overview on how this impacts on the design. The two maor requirements are:
* GEN must be afunctional groupware toolkit; and
* GEN must provide aflexible data sharing mechanism.

The way that the flexibility requirement is met in this thesisintroduces athird
requirement: GEN must provide an open implementation that meets the criteria of scope
control, conceptual separation and incrementality. In the following sections we examine

these requirements and discuss briefly how they impact on the design of GEN.

A functional groupwar e toolkit. We are building a groupware toolkit and as such we
must provide the typical building blocks that developers require to construct applications.
Application developers should be able to use the toolkit without resorting to use the meta-
interface when building an application. To meet this requirement GEN provides a
programmer’s interfacevhich contains the building blocks commonly found in
groupware toolkits including: session management, notification, organization of data and

mechanisms for sharing data. We discuss the programmer’s interface in Section 4.4.

Flexible data sharing mechanisms. This requirement has two implications. First,

developers must be able to choose from among data sharing strategies or create new ones.
Second, the implementation of the sharing strategy must be separated from the
implementation of the object being shared so that application developers can use a
particular sharing strategy with a variety of different types of data. For example, a

replicated sharing strategy should work with an OrderedCollection, Rectangle, or any

other object in the system.

Creating and/or choosing data sharing strategies. There were several ways considered
for letting developers define the particular sharing strategy they would use. First, we

could let application developers choose from a library of pre-existing sharing techniques.

41
Thisistoo simplistic, as there are alarge number of possible combinations of
concurrency control and distribution schemes available. If a developer required a specific
sharing strategy not supported by the toolkit they would have to work around the toolkit,

or discard the toolKkit.

As another option, we could provide the application developer with full accessto the
source code. They could create new strategies by modifying the source. However, thisis
likely too complex because devel opers would have to understand the entire toolkit even if

their change was relatively minor.

In GEN we chose open implementations as a reasonable way to support flexible data
sharing. Open implementations allow both selection of data (through the default
implementations) and access to source in a structured way (through the meta-interface).
The meta-interface presents a secondary interface to the toolkit that presents asimplified
model for how data sharing can be modified in the toolkit. These models are discussed in
Section 5.2.

Separating the implementation of the sharing strategy and the object being shared. If the
implementation were to mix the sharing strategies with the actual implementation of the

objects, the developer would have to modify the implementation of the object’s class to
change how an object was shared. It would be better to separate the code for sharing the

object from the actual implementation of the object. We considered two possible designs.

The first possibility was to put the sharing strategy in a root class, such as a class called
ReplicatedObject or CentralizedObject. A particular class could be replicated or
centralized by inheriting the chosen behaviour from the appropriate root class. The
problem with this strategy is that developers could not have two different instances of the
same class with different sharing strategies. Additionally, currently existing classes, such

as OrderedCollections, would have to be reimplemented as sharable versions.

The second possibility, and the one chosen, was to use wrappers (Gamma et al., 1995).
Wrappers allow the addition of new behaviours transparently and dynamically, while still

preserving the normal interface to the object. In GEN this allows us to add the sharing

42
behaviour to the object at runtime, without changing how the developer interacts with the
object. Secondly, wrappers do not require changing the class implementation, and the
sharing behaviour is specified individually for each instance. For example, developers can
have an OrderedCollection instance with no sharing behaviour, others that are centralized,
and still othersthat are replicated - all within the same application. Furthermore, each of
the different instances would use the same implementation of OrderedCollection. The

properties and use of wrappersis discussed further in Section 5.3.

Open implementation. An open implementation requires two components. a

programmer’s interface and a meta-interface. The programmer’s interface contains the
typical components of a groupware toolkit. The meta-interface allows the developer to
modify the toolkit. A meta-interface needs to adhere to the principles of scope control,
conceptual separation and incrementality. These features are best supported in an object
oriented language that allows both inheritance and polymorphism (Rao, 1993) (as we
shall discuss in Section 4.3). The implementation of wrappers, mentioned previously, also
requires the use of a dynamically typed language. To meet these requirements we use
Smalltalk, an object oriented language that supports polymorphism, inheritance and
dynamic typing. Finally, because groupware is distributed, we use a distributed object

implementation in Smalltalk, as we shall discuss in Section 4.3.

Summary of design motivation. In Figure 4-1 we summarize how the requirements of

the system led us to the final design choices. To begin, the toolkit requires both the basic
functionality of a groupware toolkit, as well as a flexible data sharing mechanism. The
requirements for a functional toolkit are met by the programmer’s interface, which we

discuss later in this chapter.

The flexible data sharing requirement is handled using an open implementation, and
exposes the details of how data is shared in the meta-interface. The meta-interface must
address the issues of scope control, incrementality and conceptual separation, leading to

the use of an object oriented language.

43
We also need to allow flexible sharing strategies to be applied to many different types of
objects, without changing their implementation. This led to the use of wrappers. Finally,
because groupware is based on distributed |anguages, we need a distributed object

implementation to share information between sites.

Functiona
Toolkit

Flexible Data
Sharing

. Main Requirements

Open Reusable Sharing
/ Implementations Strategies |:| Resulting Strategies
Programmers l D Design
Interface Metar
Interface
Scope Incrementality Conceptua
Control Separdtion
Object \
Oriented i gess
Programming
Distributed
Objects

Figure 4-1. How the requirements are met by the design.

4.2 The Structure of GEN

GEN provides al the core features of a groupware runtime architecture, including a
process structure, interprocess communication, distribution of data, concurrency control
and notification. The runtime architecture is divided into three separate categories: the
black box, the programmer interface, and the meta-interface. The relationship between

these categoriesis shown in Figure 4-2.

API: (Programmer’s

Interface) mog_':_'e(;j APL:
Session Management, an?j éi';rigzgcoun”ency
Shared Data, Groupware Application <chemes
Interface Mechanisms\

N\] New API: (Extended

Programmer Interface)

;OOItm: New concurrency and
Hntme Implementation distribution schemes

Architecture

Black Box:

Distributed objects ~ Meta-interface:

Process structure, Control over

Interprocess distribution and

communication concurrency

Toolkit hidden

I:I User implemented I:I Meta-interface implementation

Figure 4-2. Application of Open Implementation to the runtime
architectures of agroupware toolkits.

The black box contains the part of the implementation that is both fixed and completely
hidden from application developers. As seen in Figure 4-2, application developers only
access thislayer indirectly through the API of the programmer interface. In GEN, the
black box implements a distributed objects layer, which in turn handles interprocess
communication and process structure. This layer provides the basic mechanisms that
allow data sharing between sites. It is used internally to make the higher level building

blocks for groupware applications that are supplied by the programmer’s interface.

Theprogrammer’s interfaceontains the high level building blocks described in Chapter
1: session management and mechanisms for sharing data. The applications built by
programmers sit on top of this layer, using the APl GEN provides (Figure 4-2). Even if
toolkits are constructed using the open implementation strategy, the programmer interface
should still be adequate for building most applications. In GEN, the programmer’s

interface supplies session management and default data sharing strategies. Still, there are

45
many ways that data can be shared, and the toolkit can provide only afew of them in the

programmer’s interface.

The meta-interface gives the programmer a second and more complex API that lets them
define new ways of sharing data to fit the particular needs of the application. This is done
by reprogramming the way data is distributed and how concurrency is managed. The
meta-interface uses the distributed object layer to construct these new sharing strategies,
as shown in Figure 4-2. Additionally, the default implementations for the sharing
strategies contained in the programmer’s interface are supplied, so that developer can

modify these to meet their specific needs.

These three components and their interactions will be elaborated in the remainder of the

thesis.

4.3 Foundations: Objects, Distributed Objects and Smalltalk

The GEN implementation was built using the Smalltalk object oriented environment and
relies heavily on a distributed objects scheme. In this section, we explain why this
language and these particular techniques were chosen, and why they are appropriate to the

GEN implementation.

The object oriented paradigm. A meta-interface is a backdoor into the implementation
of a toolkit. Developers use this backdoor to specialize and change the implementation by
modifying the toolkit. Object oriented programming systems are particularly useful for
this purpose because the properties of inheritance and polymorphism support the way the

meta-interface components (objects) are changed and specialized (Rao, 1993).

Inheritance provides a powerful mechanism for incrementally specifying new behaviours.
By inheriting from existing meta-interface classes, application developers can reuse
behaviours they are not changing, and override those behaviours they wish to modify.
Polymorphism in object oriented languages ensures that meta-interfaces with compatible
APIs but different behaviours are interchangeable. In GEN, this allows us to interchange
sharing strategies such as replicated and centralized behaviours without changing the

programmer’s interface.

46
Smalltalk. Smalltalk was chosen as the implementation language because of its dynamic
binding of methods and values (Goldberg & Robson, 1983). Dynamic binding can be
used to allow objects to intercept messages on behalf of other objects. Aswe shall seein
Chapter 5, the meta-interface uses message interception to control the distribution of

objects, the way messages are routed between sites, and concurrency.

Distributed Objects. Groupware systems require some form of distribution. The
distributed objects implementation hides the interprocess communication layer, and
process structure needed to build groupware applications. In the same way that remote
procedure calls (RPC) allow procedures to be executed at remote sites, distributed objects
allow messages to be sent to objects at remote sites. One difference between these
strategies concerns where the message/procedure is sent to. The RPC layer setsup a
communication path between processes, and the procedure is executed in the process that
receives the RPC. Distributed object implementations must go one step further and route
messages between individual objects, because each message is executed by a particular

object within the process.

Besides routing messages to the appropriate object, distributed systems must also
determine how a particular object is distributed. There are two ways an object can be

shared between sites, either through a remote reference or a copy.

A remote object is an object that resides on a single site, but can receive and execute
messages from other sitestransparently. A transparent message send allows an object to
send a message to any other object, without being aware of whether the receiver islocal
or remote. To achieve transparency, each remote object is represented locally by aproxy
object. When an object sends a message to aremote object, it is actually sent to alocal
proxy. This proxy knows the location of itsreal object counterpart on the remote machine
and automatically forwards the message to it. The remote object computes the result and
repliesto the original sender, through the proxy, without knowing that the sender was on
adifferent machine. For example, Figure 4-3 shows object X sending a message to a
remote object A through a proxy contained at the local site. Neither A nor X are aware

that the sender or receiver of the message are on different machines.

a7

Figure 4-3. When X sends a message to the remote object A it
is sent through a proxy object, which forwards the message on
to the real object.

Remote referencing of objectsis not always the most efficient way to distribute an object
and object copying can significantly increase the speed of an application when aremote
object is not required (Dollimore et al., 1991). In this case, a copy of the object is created
on the siteit isdistributed to. For example, aremote string that is to be read a character at
atime can require many remote messages be sent to the object to get each of the
characters. By copying this object once, most of these remote message sends are

eliminated.

Site 2

Site 1

Deconstruction Reconstruction

ByteStream

Figure 4-4. The marshalling of an object.

To copy an object between sites it must first be converted to a bytestream and sent over
the network. The mechanisms used to convert an object to a byte stream and then back to

an object isreferred to as object marshalling. Figure 4-4 shows how an object is

48
marshalled between two sites. An object is deconstructed into a byte stream, transmitted

to the new site and then reconstructed as an exact copy.

At the time of GEN’s implementation no distributed object layer with flexibility required
was readily available, requiring us to build a rudimentary one. In particular we require
fine-grained control over how objects are marshalled between sites which was not present
in the publicly available distributed object toolkit Emerald (Hutchinson et al., 1987). As
such, GEN shows one way that conventional distributed object layers must be extended

when giving developers finer grained control over how objects are distributed.

While substantial, GEN’s distributed objects layer lacks strategies for handling fault
tolerance, distributed garbage collection, and persistence. These are research topics in
their own right, and are beyond the scope of this thesis. The reader is referred to the
Emerald system (Hutchinson et al., 1987), Arjuna (Parrington et al., 1995), and Smalltalk
distributed objects implementations (Bennett, 1990; Dollimore et al., 1991) for additional

information.

Object oriented programming, the Smalltalk environment, and our distributed objects
implementation give us a foundation for building higher level components appropriate for

constructing a groupware programmer’s interface.

4.4 Programmer’s Interface

In Chapter 1 we identified a common set of session management and shared data
components that groupware toolkits include for groupware programmers. In this section
we explore how these are implemented in GEN. We will show that session management
is accomplished through the use of a global namespace, allowing devel opers to connect to
particular pieces of shared data. We will also see that the shared data implementation
allows the developer to specify how the datais distributed and kept consistent. The shared
datalayer also provides notification, so that sites can react to remote changes in the data.
Finaly, we will introduce the concept of environments which allow application

developers to organize their shared data.

49
4.4.1 Session M anagement

Session management in toolkits involves setting up the low level details of managing
connections between machines. This includes the communication infrastructure and the
ability to locate either processesin procedural programming paradigms or objectsin

object oriented programming paradigms.

Communication Paradigm. In procedural programming, developers are given aform of
RPC, which hides the details of communicating between machines. In object oriented
programming this paradigm is changed to one in which objects communicate. In the

previous section we saw how this was accomplished through distributed objects.

L ocation of Processes or Objects. Distributed functional programming focuses on being
able to send remote procedure calls to processes. In toolkits such as GroupKit (Roseman,

1993) the session management layer maintains alist of the processes. In our object

a) b)
/ Process 2
Process 1 Processl —~_| —s— |
g Process 3 \ Process

A remote ﬁwmge send:
A remote procedure call: aRect moveTo: A

e.g. moveRectangle (X,y)

Figure 4-5a shows the functional model of distributed programming,
where procedure calls are sent to other procedures. InFigure 4-5b, the
object oriented programming model requires that messages be sent to
objects contained within the process.

oriented toolkit, the focus is on locating distributed objects. Figure 4-5 shows how these
distributed programming paradigms differ. In Figure 4-5a the remote procedure callsto
move arectangle are sent to the process, while in Figure 4-5b, the message to moveis
sent directly to the rectangle. In the case of an object oriented groupware toolkit, the

application developer needs to locate particular objects.

50
The session management layer in GEN allows developers to locate particular objects by

defining a global namespace. A global namespace allows machines to publish objects to
an areathat all sites can see and give them a unique name. Other processes may obtain
references to those objects by looking them up in the global namespace. For examplein
Figure 4-6, Process 1 obtains a reference to the rectangle object in Process2 by looking it

up in the global namespace under the name ‘RectangleA’.

Global Name (RectangleA |]
Space [Rectengie | |

Process
Process 1
aPoint
Process

Figure 4-6. The global name space is an address
space that all processes can see and access objects
by a unique name.

The Global Name Space | mplementation and API. The global name space is

implemented in GEN as a dictionary that is replicated across all participating sites. When
an object is added to this global dictionary at one site, the object is broadcast as a remote
reference or copy (see Section 4.3) to all the other global dictionaries in the system. In
Figure 4-7 we see that Process 2 has publish&dtangle under the name

‘RectangleA’ as a remote reference, and the other sites can look up the name
‘RectangleA’ in their local copy of the dictionary to get a reference to the centralized

rectangle.

51

Process 2
Rectangle A /
Process 1 Process 3 /

Rectangle A Rectangle A | /

Figure 4-7. The implementation of the global name space is through
adictionary which exists on each site.

The operations for manipulating the ObjectDirectory is indicated by their method
protocols as given in Table 4-1. For readers not familiar with Smalltalk a method is an
operation on the object that ownsiit. The first operation of the API connects the
ObjectDirectory to the object directories at other sites. Specifying asite and a port in the
message #addToMainDirectory:port: connects the object directory to aremote site (by
convention awork group will maintain an object directory on awell known host and
port). The next two operations are used to publish and retrieve objects from the global
namespace. The #addObject: named: protocol specifies that an object be added to this
global namespace, with its name given as an argument (which isastring). The
#objectNamed: protocol lets the devel oper get areference to aglobal object by specifying
the name in the argument. Finally, the #removeObjectNamed: protocol removes an object

from the global namespace.

52
The session management layer of GEN provides the infrastructure for distributing and
locating objects between sites. The following section looks at abstractions in GEN for

sharing data.

4.4.2 Support for Shared Data

Although distributed objects provide the primitives necessary for the development of
groupware applications, developers require higher level building blocks. The following
section shows how the GEN API provides for data distribution abstractions in the form of

replicated or centralized objects, concurrency control through atomic objects, data

Protocol Effect
ObjectDirectory addToMainDirectory: Connects the current machine
anlnternetAddress port: aPortNumber to the object directory on the

remote machine.

ObjectDirectory addObject: anObject named: aString Stores an object in the global
name space

ObjectDirectory objectNamed: aString Answers areference to the
object named a name

ObjectDirectory removeObjectNamed: aString Removes an object in the
global name space

Table 4-1. Protocols for publishing objects into the global space
organization strategies using environments, and notification using call-backs.

An object oriented groupware toolkit differs from procedural toolkits, because of its focus
on data rather than procedures. First, we show how concurrency control and distribution
of objects differ from procedural programming because they can be encapsulated in the
object itself. Later in this section we will see how notification is integrated with the
object, and show how a separate entity known as an environment is used to help organize

objects.

53

4.4.2.1 Data Distribution and Concurrency through Replicated and Centralized
Objects

In procedural programming, the application devel oper typically manages communication
through remote procedure calls. Procedural toolkits abstract thisin architecture dependent
ways: replicated architectures use multi-casting while centralized architectures send the
RPC to aunique site. In contrast, object-oriented toolkits send messages directly to the
object asif it resides on the local machine. The object itself determines how the messages
are broadcast to their distributed counterparts, depending on how the object is distributed

across the network.

GEN provides two basic configurations of distributed objects. First, areplicated object
maintains multiple copies of itself on each of the machines. When a message is received
by a copy of the object, it will automatically broadcast the message to all the other copies.
Second, a centralized object maintains an actual object on one machine and object
proxies at the other sites. When amessage is sent to a proxy, it automatically forwards the
message to the site containing the actual object. In either implementation, the application
developer does not have to consider how the message is handled; the object itself either

broadcasts or forwards the message as needed.

Consistency becomes problematic with distributed objects that have copies on different
machines. They can become inconsistent when messages arrive at different machinesin
different orders. One solution is to make objects atomic (Stroud & Wu, 1995). An atomic
object in GEN is guaranteed to keep all the copies of the object consistent. In the same
way that the developer does not have to consider how a message is distributed around a
network, the developer does not have to worry about how the object will be kept
consistent; the object itself will keep itself consistent. There are many different ways that
atomic objects can be implemented (Kittlitz, 1994; Stroud & Wu, 1995). Later in this
section we will present one implementation that uses alocking element to maintain
consistency by acquiring alock before each message is sent to the various copies of the

object. Thelock isreleased only after the message has finished executing at al the sites.

54
Using GEN’s programmer interface, developers can choose either replicated, centralized,
or replicated-locking data distribution on a per object basis. Objects using these different
data distribution and concurrency strategies can coexist in the same application. In the

following paragraphs, we shall briefly describe how these are implemented in GEN and

a) Replicated Objects b) Centralized Objects
Q Replicated Copies Proxies
aMessage A Site 1 Site 1
aMeSaN . Centralized Object
B
aMessagy Site 3 Site 3
aMessage \@

aMessage

®
. . O
Site 2 Site 2

Figure 4-8. Example default object distribution schemes, replicated and
centralized.

accessed through the API.

Replicated objects automatically create a copy of themselves when they are distributed
to a new site. Object replicas are synchronized by having messages sent to one replica
broadcast to all the replicas on the other sites. Figure 4-8a illustrates this. A message is
sent to object A at Site 1 which is then broadcast to its replicas at Sites 2 and 3. GEN'’s
default implementation of replicated objects does not include any form of concurrency
control, and messages may arrive at different sites in different orders. As mentioned
previously, this is a reasonable default for many environments, such as whiteboards

which do not require a high level of consistency (Greenberg and Marwood, 1994).

Replicated-L ocking objects. The replicated locking object is a modification of the

replicated object. These objects automatically maintain a single centralized lock which

can only be held by a single replica at a time. This lock is automatically acquired when a
message is received by an object. The message is then broadcast to all sites, and executed
at each of those sites. Once execution has completed at all sites, the lock is automatically

released. If a message is received when the lock is held by another replica, it will wait

55
until the message with the lock has compl etely finished executing, before either executing
locally or being broadcast. This guarantees that a message sent to any replica of an object
is executed at all sites before the next message is processed.

Centralized objects. A centralized object has a single copy of the object |ocated at a
single site. All messages sent from remote sites are forwarded to it through a proxy object
(Decouchante, 1986; Steele, 1991). Figure 4-8b shows an example where a message sent
to the proxy for B on site 1 is automatically forwarded to the actual object B on site 2. In
GEN, acentralized object resides at the site which created it. Therefore, although a
number of centralized objects may exist, they may not all be located at the same site.

Object Distribution and Latecomers. The actual distribution of shared objectsis
handled transparently by GEN. When a process references a shared object that does not
exist locally, the GEN runtime system will automatically replicate the object (if
replicated), or make the proxy (if centralized) at the local site. The shared object can be
referenced through the global namespace (discussed previously), or when it is passed asa

parameter in a message to an object located on another machine.

This model automatically updates latecomers to an ongoing conference because the
current state of the objects are automatically distributed when they are referenced by the
latecomer. For example, when alatecomer |ooks up areplicated object in the global
namespace (which is automatically included), that object and its current state will be

copied to the local machine.

The API: Choosing a distribution strategy. An important part of GEN is that any

object can be made sharable (e.g. Smalltalk’s current implementations of a Dictionary,
OrderedCollection or Rectangle). The protocols used to specify the distribution strategy
(#replicated, #replicatedLocking or #centralized shown in Table 4-2) are applied to an

instance of an object after it has been created.

For example, we can create a replicated Rectangle by sending an instance of a rectangle
object the messag#eplicated. A new instance of the Rectangle is answered that will

automatically create a replica of itself on other sites that reference it.

56

Pr otocol Effect

sharedObject := anArbitraryObject replicated Answer areplicating version of the
object. When the replicating object is
referenced remotely, a copy is sent
that is automatically kept up to date.

SharedObject := anArbitraryObject As above except consistency is
replicatedL ocking guaranteed through a mutually
exclusive lock

sharedObject := anArbitraryObject centralized Answer a centralized version of the
object. When the object is referenced
remotely the remote, site receives a
proxy to it.

Table 4-2. Protocols for specifying the type of distribution and
concurrency control for an object.

In this section we have seen how a shared object can be either centralized or replicated, or
areplicated locking object. In the following section we will see how notification is also

tied to the object.
4.4.2.2 Notification

Notification alows the devel oper to react to asynchronous events. For example, when
another site changes a shared data value, the local site can be notified of the change and

perform operations in response, such as updating the interface.

Notification in GEN is done at the message level, where the devel oper can request
notification both before and after particular messages are executed by an object. The
developer specifies that an event should be generated when a particular message is
received by an object. The developer then attaches a call-back to the event, which will
invoke a user specified method which can (say) update the display, or take whatever
action is necessary. When the message is sent to the object, the event is generated and the
call-back isautomatically triggered. Because encapsulation guarantees that an object can
change only when amessage is sent to it, developers can use notification to capture all

changes made to an object.

57
Figure 4-9 provides an example. In this case, arectangle is added to a collection of
objects to be drawn on a canvas. Thisis done by sending an add message to the set. The

set object generates an ObjectAdded event, which in turn invokes the redraw call-back.

=R

D redraw: = redraw:
ObjectAdded P B ObjectAdded

dd: event fired event

Event triggers~

callbacks
Generates

Figure 4-9. The message #add: causes the event AddObject to
be generated which triggers the call-back #redraw.

API: Specifying Events and Call-backs. The developer needs to be able to specify the
message, the type of event that it creates, whether the event should be generated before or
after the message is executed, and what call-backs are attached to the event. The protocol
#addPreGroupwareEvent:onMessage:, shown in Table 4-3, causes the receiving object to
generate the specified event (aSymbol) before the message with the specified name
(aMessageName) is executed. Similarly, #addPostGroupwar eEvent: onMessage: causes

the event to be generated after the message has executed.

Call-backs are attached to events through the #addGroupwareCallback: protocol and
detached with the #removeGroupwareCallback: protocol. The parameters to these
message include the receiver, selector and clientData. The receiver isthe object the call-
back is sent to (such as a canvas). The selector is the message name sent to the receiver,
and the clientData holds any additional information that the developer wishes to include
when the call-back is fired.

58

Pr otocol

Effect

aSharedObject addPreGroupwar eEvent:
aSymbol onMessage: aMessageName

Specifies that an event named aSymbol
istriggered before any message name
aMessageName is executed

aSharedObject addPostGroupwar eEvent:
aSymbol onMessage: aMessageName

Specifies that an event named aSymbol
istriggered after any message name
aMessageName is executed

aSharedObject addGroupwareCallback:

aSymbol receiver: anObject selector: aSelector

clientData: anObject2

Specifies that anObject be sent the
selector aSalector whenever the eventis
triggered.

aSharedObject removeGroupwareCallback:
aSymbol receiver: anObject selector: aSelector

Specifies that the call-back associated
with anObject and selector aSelector be
removed from the event list.

Table 4-3. Protocols for adding events to shared objects.

Note: using notification to separate model and view. Notification is often used to

support a separation of the data model from the view (Roseman & Greenberg, 1997). The

model holds the underlying shared data while the view is the user interface that the user

sees and interacts with on the display. The application developer ties events to the data

model and uses call-backs to update the interface. Figure 4-10 shows an example of a

histogram view of data. Here, one site makes a change to the underlying data model by

sending it a message. This generates an event which triggers a call-back message that is

broadcast to both views.

Figure 4-10. Notification is used to keep an interface aware
of changes in the models shared data.

59
4.4.2.3 Organization of Data Through Environments

Asin any programming language, large amounts of data are often managed through some
form of scoping rule. In GEN, placing all the datainto a global namespace can result in
two applications inadvertently using the same name for the same piece of data (caled a
namespace conflict). In order to alleviate this problem, GEN provides amodel for

organizing data into manageabl e subunits called environments.

An environment (Abelson, Sussman & Sussman, 1986) is an object which associates
particular pieces of datawith particular names, i.e. it is a structure for defining variables.
Scoping rules can be defined to relate environments together by enclosing environments
inside one another. As such, if aparticular variable is not found in the current
environment, the scoping rule can be used to specify how enclosing environments are

searched for the variable.

Consider the examplein Figure 4-11. The environments BB and CC are enclosed by the
environment AA. If the program references a variable in BB’s environment, such as A, its
value (O) is returned. If the program references a variable that only the enclosing
environment (AA) contains, such as Y, then the value in AA (15) is returned. If the
variable is not found in the environment, or any of its enclosing environments, an
undefined value is returned. Only the enclosing environment is searched. For example,

variables in CC are never searched when a request is made in BB.

X (10 _
Y |15
Environment -
AA /‘ -
X [C A Js
A 0 M v
Environment Environment
BB cc

Figure 4-11. A simple environment structure,
where AA encloses BB and CC.

60
Environments are convenient ways to store the shared data model of the program,
simplifying the separation of the model from the view (Roseman & Greenberg, 1996).
The interface can attach call-backs to particular shared variables contained in that
environment. In large applications, the environment serves as a convenient unit for
grouping related data, and to avoid name collisions that are possible in aglobal

namespace.

In GEN, environments are first class objects - they are instantiated in the same way as any
other object in the system. This means they can be replicated or centralized. They can also

use events and call-backs to associate actions with changes in a particular environment.

The API. Table 4-4 shows the protocols for environments which we call
GroupEnvironments. The #new message | ets the developer create an environment. The
enclosing environment is specified through the #super Environment: message. New

elements are added to an environment through the #global At: put: protocol and removed

Protocol Effect
GroupwareEnvironment new Answers a new groupware
environment.
aGroupwareEnvironment superEnvironment: Set the enclosing environment to
anEnvironment anEnvironment

aGroupwareEnvironment global At: aString put: | Add the object anObject into the

anObject environment under the name aString.
aGroupwareEnvironment removeGlobal At: Remove the object with name aString
aString from the environment.

aGroupwareEnvironment global At: aString Answer the object in the environment

named aString. If the environment
does not contain aString, search the
super environment.

Table 4-4. Protocols for using environments in groupware applications.
through #removeGlobal At:. Finally, avariables value is returned through #global At:

61
which searches the environment hierarchy for the variable and returns its associated

value.

4.5 A Simple Example: The Brainstormer

This section presents a simple example of a brainstorming application that demonstrates
how the componentsin GEN are used to construct a groupware application. The
“brainstormer” is presented in three parts: its user interface; the general model used to

construct it; and then a detailed look at key pieces of the code.

Theinterface. Brainstorming tools are a typical groupware application used by multiple
participants to generate ideas about a particular subject. In this example, the brainstormer
works by letting users add individual ideas to a visually shared list (Figure 4-12). There
are three interface components in our brainstormer. An idea list collects ideas entered by
all users and is visible to everyone. A text box lets users type in their own ideas, and an

okay button lets a participant add an idea to the shared list.

= Brainstormer - | -

Idea list Environments need scoping rules

Concpets of environments can be applied to groupware
Environments encapsulate data

Environments provide execution context

How do scoping rules apply to groupware

Idea to be How do scoping rules apply to groupware
OK
added he

Figure 4-12. Example Brainstormer application.

The general programming model is composed of two components. The first component
Is the organization of the data, including determining what data is shared. The second
component is how the model is linked to the view, so that when the shared data is

modified, all of the displays are updated.

62

:An Enw’ronment: OrderedCollection
Bstorm

Ideas
Global
NameSpace

500

Figure 4-13. The global name space contains the ‘Bstorm’
environment which contains an OrderedCollection of Ideas.

Ideas in the brainstormer are strings entered by the user. The ideas are stored in an
OrderedCollection (or linked list), which will be distributed between sites as a replicated

object. The brainstormer uses an environment (called ‘Bstorm’) which is published to the
global namespace. Figure 4-13 shows the relationship between these objects. The global

namespace contains the environment which contains the OrderedCollection of ideas.

Site 1 ' Site 2

dea 1 : idea 1
idea 2 . idea 2

.
/ Y add:
.

Callback

idea:
trigMQ

Event
Addldea

'
'
generates)
QO o
QrderedCollectioQ) Q

Figure 4-14. When an idea is added to an ordered
collection, the Addldea event is generated causing
the call-backs associated with it to be executed.

Callback
idea:

"N_triggers

Event
Addldea

OOOQ

rderedCollecti

Linking the model to the view is relatively easy. Whenever an idea is added to the
OrderedCollection (the model) we will generate an event, which triggers a call-back in
the interface (the view). The call-back will cause the interface to update its list of ideas. In

Figure 4-14, we can see that when#hdd: method is invoked at Site 2 to add an idea to

63
the collection, it generates an event at both sites (called Addidea) which triggers the call-

back named #idea: which updates the local displays.

Starting up a ssmple Brainstor mer. When groupware applications are started there are
often initialization procedures that must run at a single site before users can connect to
the application. Once the application has been started, special code must then be run on
each site to connect the user to the other participantsin the conference. This code would
normally be executed by a special session management interface (Roseman & Greenberg,
1994), that alows clients to create and connect to conferences. However, we include it

here for completeness.

The initialization of the brainstormer requires setting up an environment to hold the
shared data. The GroupEnvironment is created in line 1 of Figure 4-15, with adistribution
strategy of centralized. The environment is published in the ObjectDirectory (our global

namespace) under the name, ‘Bstorm’ as shown in line 2 of Figure 4-15.

1 theEnvironment := GroupEnvironment new centralized.
2 ObjectDirectory addObiject: theEnvironment named: ‘Bstorm’.

Figure 4-15. Code to initialize the data structures for the brainstormer.

When a user wishes to join the brainstorming conference, they must start up the view (the
brainstormer class) and connect it to the environment ‘Bstorm’, which contains the shared
data. The brainstormer gets a reference to the environment by looking up its name in the
ObjectDirectory as shown in line 1 of Figure 4-16. The user then creates a new
Brainstormer window by sending the messagninEnvironment: to the Brainstormer

class, where the parameter specifies the environment.

1 bstormEnv := (ObjectDirectory objectNamed: ‘Bstorm’).
2 Brainstormer openlinEnvironment: bstormEnv.

Figure 4-16. Code to start the brainstormer at a particular site.

Theimplementation. The previous code shows how the brainstormer application is
started up by a user. We now look at the internal workings of the Brainstormer class to

see how the start-up codgpenlinEnvironment:) actually executes. Figure 4-17 only

1 openlnEnvironment: anEnvironment

2 ideas|

3 “STEP 1 Check to see if there are existing conferences”

4 (anEnvironment globalAt: 'ldeas’) isNil “Check for existence”
5 ifTrue: [

6 “STEP 2 Set up the OrderedCollection of Ideas”
7 ideas := (OrderedCollection new replicated).

8 anEnvironment

9 globalAt: 'Ideas’

10 put: ideas.

11 “STEP 3. Create the event”

12 (anEnvironment globalAt: 'ldeas’) “Create the event”
13 createPostGroupwareCallback: #Addldea
14 onMessage: #add:].

15 “STEP 4. Add the callback”

16 ideas := (anEnvironment globalAt: 'Ideas’).

17 ideas “register a call-back”

18 addGroupwareCallback: #Addldea

19 receiver: self

20 selector: #idea:clientData:callData:

21 clientData: ".

22 ... set up window ...

23

24 idea: anldea clientData: ignore callData: callData

25 list additem: (callData at: 1) position: O.

26

27 okayButton: w clientData: ignorel callData: ignore2

28 ideas add: (text getString)

29

30 close: widget clientData: ignore callData: data

31 ideas

32 removeGroupwareCallback: #Addldea

33 receiver: self

34 selector: #idea:clientData:callData:

Figure 4-17. Code to set-up a shared brainstormer with replicated data.

shows those lines of the application that are related to the sharing of data, and for the sake

of brevity we have excluded the code used to set up the window and display it.

In the #openlnEnvironment: method (the first one called) shown in Figure 4-17, there are

four distinct steps to setting up the application: 1) check to seeif thereis an existing

conference; 2) if necessary set up the OrderedCollection of ideas; 3) create the

65
appropriate event for when ideas are added and; 4) register the appropriate call-backs for
keeping the list of ideas up to date. Step 1 checksto seeif thereis an existing conference.
The variable ‘Ideas’ is looked up in the environment (line 4). If ‘Ideas’ is not found then
nil will be returned and the idea collection will have to be created. Step 2 shows how it is
created. An OrderedCollection of ideas is created using by sending the class the message
#new. The returned instance is then made into a replicated object by sending it the
messagéreplicated (line 7). The collection is then added to the environment (lines 8 -
10). In step 3, an event calléddidea is associated with th#éadd: method of the
OrderedCollection (lines 12-14). This event will be fired whenever a new idea is added.
Finally, step 4 links the view (the window, which is self) to the eddtdea (line 17-
21). When the event is triggered the window will receive the call-back

#idea: clientData: call Data:.

The rest of the brainstormer is relatively straight forward. The call-back

#idea:clientData: cal|Data: is called whenever a new idea is added to the collection of
ideas and it updates the idea list pane by adding the new idea to the bottom of the list, as
shown in lines 24-25. The pressing of the OKAY button has been connected to the call-
back#okayButton: clientData: callData: (lines 27-28) which adds the string contained in

the text pane to the underlying list of ideas. Finally the close method (lines 30-34)
removes the call-back that was registered, allowing garbage collection of the replicated

object when it is no longer required.

One of our claims about GEN is that application developers can change the data
distribution strategy. This is simple in GEN, as the only change required is to specify the
type of sharing when the OrderedCollection of ideas is created. That is, line 7 in Figure 4-
17 is changed taleas := (OrderedCollection new centralized) and the data architecture

is automatically changed.

4.6 Summary

We have presented the programmer’s interface to GEN that provides the similar

functionality as runtime architectures of other groupware toolkits. In addition, we show

66
how the developer can specify the way in which the datais distributed. An example
demonstrated how the various components of the architecture are combined and coded in

agroupware application.

67

5. GEN’s Meta-Interface

The previous chapter described the programmer interface for GEN. This chapter presents
GEN'’s meta-interface and how it gives developers control over data distribution and

concurrency control mechanisms.

The goal of a meta-interface is to define a family of strategies that developers can use to
create specialized implementations of the toolkit. The choice of which components to
expose and how to expose them determines the family of behaviours that can be
supported by the meta-interface. Although the meta-interface will support a broader range
of behaviours than a conventional toolkit, it will not support all possible behaviours (Rao,
1993). The current implementation of GEN’s meta-interface only supports modification

of data distribution and concurrency control.

This chapter describes the meta-interface. It examines how the requirements of scope
control, conceptual separation and incrementality are applied to the meta-interface. It then
develops a design for the meta-interface that lets developers manage both data
distribution and concurrency control. It continues by discussing how an implementation
strategy calleevrappers provides the flexibility required for building the meta-interface.
Finally, the chapter delves into how a special class of wrappers are used to specify the

API for the meta-interface.

5.1 Requirement for GEN’s Meta-Interface

In this section we revisit the general principles of scope control, conceptual separation,
and incrementality. We will see that these principles differentiate the meta-interface from
asimple inheritance scheme by clearly separating how the changes the developer makes
in the meta-interface layer will affect the toolkit. We examine how these principles are

applied in the GEN meta-interface.

68
Scope Control limits the effect of a change in the meta-interface to a particular set of
objects. There are three possibilities for the effect of a scope change on objects within an
application: the entire application, a class of objects, or individual instances of objects.
First, the entire application may be affected by the change to the meta-interface. For
example, if the programmer changed the toolkit to use replicated objects, all objectsin the
application would be replicated, and there would be no possibility of having centralized
objects within it. Although this solution may be acceptable for some applications, there
are situations where the programmer needs to control the distribution of data based on the

particular needs of an individual piece of data.

Second, the scope of a change can affect only aclass. For example, the developer could
declare a class of objects as having a particular distribution and concurrency scheme. If
the programmer changed the OrderedCollection class to be replicated, then they can only
create a centralized OrderedCollection by creating a new subclass. Each additional type of
sharing would require the application developer to declare a new sub-class. If many
different types of sharing were desired for a single class, there may be an explosion in the

number of sub-classes.

The final possibility isthat the scope of a change applies to a particular instance of an
object. Here, two instances of OrderedCollection can have two different sharing
mechanisms in the same application, so that one can be centralized and another

replicated. This requires no additional coding and is the approach taken by GEN.

Conceptual Separation requires that the components of data distribution and
concurrency control be separated so that the developer can deal with their implementation
individually. In practice this may be difficult because there are interdependencies between
components. In GEN we would like the methods that change the concurrency model and
the distribution model to be distinct. However, a programmer modifying either the
concurrency control or distribution mechanism must be aware of how they interact, since
they are not entirely independent. For example, in replicated architectures the application

developer must also maintain the concurrency mechanism when the object is distributed

69
to anew site. If the concurrency mechanism is distributed differently than the object, the

developer must also handle the distribution of the lock component separately.

In GEN, the difficulties in separating the concurrency control mechanism and the
distribution mechanism mean that we can only present alimited form of conceptual
separation. In this case when a developer defines a new concurrency mechanism they

must also define how the concurrency mechanism is distributed.

I ncrementality means that developers can build on top of existing implementations.
GEN providesincrementality through the use of a separate class hierarchy, which
specifies the sharing mechanism separately from the implementation of the objects to be
shared. Application developers can then subclass existing sharing mechanisms to
implement new ones, reusing existing strategies to help create new sharing strategies. For
example, to create amigrating strategy, we will show in Chapter 7 how the replicated

sharing strategy is modified to move objects, rather than copy objects around the network.

5.2 Design of the Meta-Interface

The meta-interface has to present a programming model to developers that allows arange
of behavioursto be specified, but that does not inundate the developer with low level
details (Rao, 1993). For example, a poor meta-interface could provide the developer with
a sockets implementation and away to convert objects into streams. While developers
could use thisto build arange of new behaviours, it would be a difficult and tedious task.
Conversely, the meta-interface could provide alimited set of default implementations that
the application developer could select and usein their application. However, if the range
of behaviours supplied did not meet their needs, devel opers would revert to the strategies
of coding hematomas and coding between the lines (as discussed in Chapter 3). The
model presented by GEN needs to be both relatively simple to use and flexible enough to

define a broad range of behaviour.

In this section we look at the model used in GEN’s meta-interface to let developers
modify data distribution mechanisms (Section 5.2.1) and concurrency control

mechanisms (Section 5.2.2).

70
5.2.1 Control Model for Data Distribution

There are different approaches to give developers control over data distribution. In
distributed computation systems, such as Emerald (Hutchinson et al., 1987), the focusis
on using a set of distributed resources efficiently to solve a complex problem that requires
significant computing power. These systems give the developer control over where

computation is done, in an attempt to minimize resource use and computation time.

In groupware systems, the focus is different. These systems must keep the information
shared by participants consistent, while at the same time giving rapid feedback to the
local user (Greenberg and Marwood, 1994). The usual bottleneck in groupware
applicationsis the time it takes to transmit changes between sites. Chapter 2 showed how
particular runtime architectures change how the data is represented at different sites, and
how messages are sent between the sites (e.g. centralized and replicated objects) to
overcome these bottlenecks under specific circumstances. By modifying how the dataiis
represented and how messages are sent between various copies, developers can minimize

transmission time.

Rather than giving developers explicit control over where an object islocated (and hence
where computation is done on it), our implementation gives developers the ability to
control the representation of the object at the local site, and the ability to control how

messages are routed between the different sites.

Object Representation and Content Control. The developer needs to be able to control
the representation of an object. Representing an object as a proxy, for example, allows
them to create proxies on new sites so that the object can be remotely referenced (a
technique used in centralized architectures). Figure 5-1 illustrates an example. We see
that an object copied from Site 1 to Site 2 is mutated to become a proxy, completely
changing the representation of the original object.

Conversely, this control over an object’s representation can be used to create a copy of
the object on the new site, allowing the object to be locally referenced (a technique used

in replicated objects). The way the contents of an object are transferred is equally

71
important. For example, the contents of an object may reference aglobal variablein a
local process. In this case there are several ways this reference can be transferred between
sites. First, it may reference the global variable remotely, which will require several
message sends. Second, it may copy the global variable to the new site, which, if it were
something like the local sites name (i.e. fully qualified domain name), may be incorrect.
Third, the global reference may be made to point to the global variable asit is defined by
the new site. Figure 5-1 shows how the contents of an object are changed when it is
copied between Site 1 and Site 3. In this case the original object on Site 1 contains a
reference to the global variable X. When the object is copied to Site 3, it is changed so

that the reference points to the global variable X on the new site.

Mutated

Cow\

Sitel {.Site2
Sitel Global /

variable X

Replica Site 3

copy '
Site2 Global S
variable X

Figure 5-1. Control over the contents/ representation of the object.

Once an object has multiple representations of itself in the network, the second problem
then becomes how messages sent to one object is forwarded (or routed) to other copies of

the object that exist around the network.

M essage Routing Control. GEN lets devel opers control how messages are forwarded
around the network (or routed). Some messages may be executed locally (for example, if
they smply read the state of an object), others may have to be broadcast (for example, if
they change the state of an object), while still others may simply be forwarded to asingle

site (for example, centralized objects).

In implementing replicated objects, messages have to be broadcast to multiple sites.
Figure 5-2a shows how a message sent to an object at Site 1 is then broadcast to its

replicated counter parts at Sites2 & 3. In a centralized object however, the proxy sends

72
the message only to the original object and the other proxies are not involved in the
process. Figure 5-2b illustrates how the proxy in Site 1 forwards its message to the
original object at Site 2 and not to the other proxy at Site 3.

Site1 Site2 b) |ste1 Site2
)

M essage X O M&&?@ Message X <>

Message X

Site3 \(Site3

Figure 5-2. Control over message routing, examples of
centralized and replicated schemes.

=

5.2.2 Mechanismsfor Concurrency Control

The second kind of control that GEN’s meta-interface provides is the ability to modify the
concurrency mechanism. For example, concurrency control is required in replicated
objects because there is a potential conflict when two messages are sent simultaneously to
the same object. This is illustrated by Figure 5-3a. Here we can see that both Site 1 and
Site 3 are sending potentially conflicting messages to Site 2. These messages may
perform incompatible operations, such as one site may delete an object while the other

site resizes it.

Control over these mechanisms is required because there are many different forms of
concurrency control (e.g. optimistic locking, pessimistic locking). The type used depends

on the requirements of the application (Greenberg & Marwood, 1994). Concurrency

control mechanisms in GEN is implemented at the message level. Before a message is
executed by an object, and then again after a message has completed executing at all sites,
the developer can specify arbitrary actions to control concurrency. For example, consider
the replicated locking object in Figure 5-3b that implements a centralized locking

strategy. Both sites receive a message and try to obtain a lock before forwarding it. Only

Site 3 receives the lock, and its message Y is sent to Site 1 and 2. Once the message has

73
finished executing at all sites, the lock will be released. Site 1 would then receive the lock
allowing Message X to be broadcast (not shown).

a) ste1 site2 b) |ste1 snez.ﬂ
Decsoe

Maﬂge\ Message Y Message Y Message Y,

Ste3 Site3
Message Y Message Y

Figure 5-3 . The need for concurrency control is obvious when two
sites send potentially conflicting messages to the same site.

5.2.3 Summary

The models in the meta-interface are designed to allow the developer to control
concurrency and distribution. The black box handles the details of inter-process
communication, marshalling of objects and forwarding of messages. By abstracting these
components away, GEN simplifies the problems of building new sharing strategies, while

providing flexibility.

5.3 An Implementation Strategy: The Wrapper Model

In this section, we consider how the properties of wrappers, also known as decorators,
allow a programmer to modify the behaviour of an object (Gammaet al, 1995). A
wrapper is an object that alows the developer to attach additional behavioursto another
object dynamically in order to extend its functionality. A wrapper encapsul ates another
object inside itself by selectively passing messages through to the original object, and
implementing new messages that the object will understand. As we shall see, wrappers

are a good mechanism for constructing the meta-interface in Smalltalk and GEN.

5.3.1 TheChoice of Wrappers

We believe wrappers are well suited to implementing meta-interfaces because of two

properties: the ability to add new behaviours to objects transparently and dynamically;

74
and the ability to create these new behaviours without changing the implementation of the
object.

The ability to add new behaviour stransparently and dynamically implies that the

original object’s interface does not change. That is, the set of messages that an object will
understand and respond to does not change once the wrapper is added. Thus, shared
objects will have the same interface as non-shared objects of the same class. This means
that the distribution and concurrency mechanisms implemented by GEN will not affect

the original behaviour of the object.

The dynamic nature of wrappers lets the developer delay decisions about the addition of
new behaviours until runtime. For example, the application developer may make the
decision about distribution behaviour (e.g. replicated or centralized) and the concurrency
control mechanism (e.g. optimistic, pessimistic) based on runtime factors such as network

speed or available memory.

The ability to create new behavioursfor an instance without changing the class
implementation reduces the number of subclasses that developers must manage. Without
wrappers, one could provide the additional functionality on a per class basis. However,
each combination of class, data distribution scheme, and concurrency control scheme
would require the creation of a new class. This is tedious, complex, and difficult to
maintain. With wrappers, the change is made in the wrapper hierarchy. This new form of

wrapper can then be applied to an instance of any class.

Adding new behaviours to an instance of an object allows different instances of the same
class to have different behaviours. For example, a developer can create two rectangles,
and can choose to place a centralized wrapper around one, and a replicated wrapper
around the other. As well, because the GEN wrapper is independent of the object
contained, a single class of wrapper can be applied both to, say, Rectangle objects as well

as Dictionaries, or even entire expert systems.

The implementation of the wrapper classes are completely separated from the

implementation of the object classes that they contain. Each shared object has its own

75
unique wrapper which allows the devel oper to have several objects of the same class with
different wrappers and hence different distribution and concurrency schemes. The
wrapper itself may even be in adifferent inheritance hierarchy than the objects that it
wraps. Thisfeature allows us to apply a particular wrapper implementation (such as
replicated, or replicated locking) to unrelated objects such as Rectangles and
OrderedCollections.

The GEN wrapper classes are composed of two separate components. First, a message
handling component intercepts messages bound for the contained object. GEN uses that
interception to perform notification, concurrency control and message routing. A second
completely separate implementation handles messages sent by the distributed object layer
to distribute the wrapper and the object. By modifying these methods, the devel oper can
control the contents and representation of the object when it is copied to new sites. We

begin by looking at the model for the message interception layer.

5.3.2 A Wrapper Model for Message I nter ception

A wrapper allows developersto dynamically add athin layer of functionality to an object,
by intercepting messages destined for the original object. The wrapper intercepts
messages in three stages.

1. Pre-message management. The wrapper can execute arbitrary code immediately upon

intercepting the message.

2. Message handling. The wrapper can decide how to pass the original message and its

arguments to the contained object.

3. Post-message management. The wrapper can execute arbitrary code immediately after
receiving the answer from the contained object, and can decide how to return the

result.

In GEN, the wrapper uses these three steps to implement the meta-interface for
notification, concurrency control, and message routing. As shown in Figure 5-4, messages

destined for a particular object are intercepted by the wrapper. The first stage generates

76
initial notifications and events (if required), and initializes the specified concurrency
control method. Stage two decides how to distribute and route the message to the object,
and how to manage the reply. Finally, stage three manages any post-operative

concurrency control functions, and generates final notification and events (if required).

Stage 1 Stage 2 Stage 3

Wrapper

Pre- Distributi Distribution
Messages notification

1

Contained Post-

notification

Replies

|
Pre- Post-
Concurrency Concurrency
Control

Control

Figure 5-4. A wrapper around an original object intercepts

messages destined for it. The wrapper contains the controls for

distributing the object and maintaining consistency.
A note about notification. As mentioned in Chapter 4, notification is an important part
of any groupware toolkit. In this discussion we will see the hooks for it when we discuss
message interception in detail. However, because we are only interested in distribution
and concurrency control, we have not exposed the model in the meta-interface.
Notification is an important area to expose to the application developer, however because
of the variety of ways (Hill, 1992) and potential complexity of implementing themitisa

research are beyond the scope of thisthesis.

The message interception layer allows us to control messages destined for the contained
object. The second function of the wrapper is to respond to messages used to distribute

the object which allows control over the representation and contents of that object.

5.3.3 A Wrapper Model for Representation and Contents Control

The wrapper has a second, completely separate, mechanism which is used to control the
representation and contents of the object when it is distributed across the network. When
an object is about to be distributed to a new site, the system sends messages to that object
to convert it to a bytestream (called marshalling). The wrapper responds to these
messages and provides hooks so that the developer can substitute a modified object which

will be copied to the new site, in place of the original object. In Chapter 4, we described

77
how the marshalling of a distributed object directly converted it into a bytestream. For
replicated and centralized objects this was actually handled by the wrapper, which
deconstructs and reconstructs the object. Figure 5-5 shows how an original object A is
transformed into A’ before it is again transformed into a bytestream. The bytestream is
transmitted to the other site and converted back into the object A’. It can then again be

changed during this reconstruction phase into a new object called A”.

'
'
'
'
'
'
'
. ' .
Deconstruction . Reconstruction
'
'

ByteSItream

Figure 5-5. The wrapper intercepts the deconstruction
and reconstruction of the object, when it is being
marshalled to allow customizable behaviours.

In summary, the use of a wrapper provides a way to meet the goals of scope control and
incrementality mentioned in Section 5.1. The fact that a wrapper is applied to a particular
instance of an object allows different concurrency control and data distribution
behaviours to be applied to different instances of the same class, giving GEN the desired
level of scope control. Furthermore, the wrappers form a class hierarchy, which the

developer can specialize and use to incrementally modify the meta-interface.

5.4 Putting Wrappers Around Objects

The first step to specifying how an object is shared, is to place a wrapper around the
object. As we saw in the previous chapter, the methicahbi cated and#centralized were

called when specifying the sharing strategy for an object. These were helper functions for
the wrapper object. The wrapper object is created by sending the m#sgeage

(specified in Table 5-5) to the wrapper class, where the parameter is the object to be

contained in the wrapper. For example, the replicated wrapper class is called

78
ReplicatedElement. To instantiate a replicated wrapper around an original object, the

developer would execute the following piece of code:
wrapperedObject := ReplicatedElement object: original Object.

The object returned by this call, wrapperedObject, is a new wrapper containing the
original Object.

Protocol Effect

wrapperedObject := aWrapperClass object: | Returns a new object that can be shared
anObject according to the awWrapperClass scheme

Table 5-5. Protocol for wrapping objects

Additionally, new wrapper classes are going to have additional instance variables to
manage and initialize. The protocol #initializeGWElement (Table 5-6) provides the
application developer the ability to specify how particular instance variables are
initialized.

Protocol Effect

aWrapperClass initializeGWElement Initializes the instance of the wrapper class

Table 5-6. Initialization protocols.

5.5 A Wrapper API for Message I nterception

The root of the GEN wrapper class hierarchy is the GroupwareElement class. This class
allows single user objectsto be transformed into groupware objects by performing
message interception. It also adds the hooks to handle pre- and post-notification, pre- and
post-concurrency control functions and message routing. The replicated, replicated
locking and centralized schemes, described in Chapter 4, inherit from this abstract class

to provide their specific behaviours (their implementations are detailed in Chapter 6).

A message to a GroupwareElement wrapper goes through the stepsillustrated in Figure 5-
4. As adready mentioned, the wrapper intercepts generic messages bound for the original

object, passes it through a pre-notification and pre-consistency layer. It then goes through

79
arouting layer which distributes or forwards the message to other objects (e.g. replicas
and proxies) which may include sending the message to the original object. Finally, after
the message has been routed, the consistency layer is called again allowing the release of

any resources that it required, and any final notification is performed.

5.5.1 Intercepting M essages

Our discussion about wrapper implementation begins by describing how GEN can apply a
wrapper to any object of any class through Smallt#éiesNotUnder stand: protocol

(Gamma et al., 1995). In Smalltalk, whenever an object receives a message that its class
does not recognize, the object will automatically dispatéfoesNotUnder stand:

aMessage to the object. This normally brings up an error notification or debugging

dialog.

This protocol can be overridden to implement a wrapper layer to objects. First, wrapper
classes are constructed so they do not implement any messages, nor do they have any
super classes. The consequence is that they do not understand any messages. When a
wrapper receives a message it does not understand (which will be all of them), Smalltalk
calls the#doesNotUnder stand: aMessage, where the original message is passed as an
argument. By modifying thidoesNotUnder stand: method in the wrapper object, the
developer can intercept and manipulate the message sent to the contained object. For
example, Figure 5-6 shows a simple example of how the métimedNotUnderstand: is

altered so that it just forwards the message on to the contained object (i.e., so the wrapper

has no effect).

1 doesNotUnderstand: aM essage

2 ~containedObject

3 perform: aMessage selector

4 withArguments: aMessage arguments

Figure 5-6. Message interception through the #doesNotUnderstand:
implementation. In this case the object simply forwards the message to the
contained object.

80
Of course, GEN requires a more complex implementation of the #doesNotUnder stand:
method to perform notification, concurrency control and distribution. Figure 5-7 shows
that there are actually five stages that the message goes through in awrapper. Before the
message is distributed, both pre-notification and pre-consistency phases occur (lines 3 &
4). The #handleMessage: method is then executed (line 5), which is responsible for the
distribution of the message to all the replicas or possibly a centralized copy. After the
message has completed, the post-consistency and post-notification phases occur (lines 6
& 7).

1 doesNotUnderstand: aM essage

[result|
self handlePreNotification: aMessage.
self handlePreConsistency: aMessage.
result := self handleMessage: aM essage.
self handlePostConsistency: aMessage.
self handlePostNotification: aMessage.

Aresult

coOo~NOOTh~WN

Figure 5-7. Open implementation of message interception.

The root GroupwareElement class just provides these stages as hooks: there is actually no
implementation behind them. It is up to other classes that inherit from GroupwareElement
to implement particular approaches to notification, consistency, and routing. Additionally,
by overriding the #doesNotUnder stand: method in new subclasses of the wrapper, the
developer can add new behaviours at message interception time, and even remove the

default components of notification and/or consistency if they are not required.

5.5.2 Controlling Concurrency M echanisms

Wrappers place two hooks for concurrency checksimmediately before the messageis
distributed to the object, and immediately after the distribution has completed as shown in
Figure 5-8. As mentioned before, distribution in GEN is accomplished by broadcasting or
forwarding messages between objects at different sites. By providing awrapper layer to
control the concurrency of these messages, concurrency within the objects can be

managed.

81

#handlePreConsistency: #handlePostConsistency:

1 A\

rWrapper
PP Contained — Post-
Object otificatior
pre- istributi Distribution .
Di is
Messages |notificatior istribtel Replies

Pre- /v Post-

Concurrency Concurrency
Control Control

Figure 5-8. The pre and post notification stages.

Concurrency is controlled implicitly (Stroud & Wu, 1995). This means the wrapper is
responsible for maintaining the consistency of the object, without requiring changes to the
object itself. For example, we can consider awrapper which ensures messages are
executed in mutually exclusive fashion. An OrderedCollection may be wrapped by one of
these. If two objects are added to the OrderedCollection at the same time from different
sites, the first add received must be executed at all sites before the second one begins. The
algorithm for ensuring mutually exclusive execution of the methods in this case will be
implemented in the wrapper, and will not require any changes to the implementation of
the OrderedCollection. Also, because the wrapper handles the mutual exclusion of the
messages, application developers will not have to worry about acquiring a separate lock
before sending the message #add: to the OrderedCollection. The object itself maintains
its own concurrency, and the application developer does not deal with it other than to

select awrapper which gives them the desired level of concurrency control.

Application developers specify the concurrency control in the wrapper using the protocols
of #handlePreConsistency: and #handlePostConsistency:, shown in Table 5-7. By

default, the pre-consistency and post-consistency methods do nothing. Consistency, as
mentioned before, is often not required for some style of groupware applications
(Greenberg & Marwood, 1993). However, by modifying these methods the developer can
create new consistency schemes. For example, in pessimistic locking schemes the
application developer will use the #handlePreConsistency: method to acquire the lock.
The #handlePostConsistency: method will be used to release the lock and is called only
after the message has been delivered to and executed by each remote site. In Chapter 6,

82
we shall show how a modified scheme can be used to implement aform of optimistic

locking.
Protocol Effect

aSharedObject handlePreConsistency: Override this method to define new ways

aMessage for handling concurrency control, before a
message is sent.

aSharedODbject handlePostConsistency: Override this method to define new ways

aMessage for handling concurrency control, after a
message is sent.

Table 5-7. Protocols for overriding consistency methods.
5.5.3 Controlling the Routing of M essages

Once the pre-consistency stage is completed, the interception of messagesis used to
implement controllable routing of messages. This allows devel opers to broadcast
messages to other replicas, forward them to centralized objects, or just send them to the
contained object. Figure 5-9 shows the steps a message will pass through when being
routed by awrapper. After completing the first consistency stage, the message being sent
to the object is intercepted by the#handleMessage: method. This method first calls
#distributeMessage: to forward the message to remote copies and then calls
#performMessage: to send the message to the local copy. The#distributeMessage:
forwards messages to the remote copies of the objects, by calling them with
#handleRemoteMessage:. The wrapper uses proxy objects (from the distributed object
implementation) to communicate with remote replicas, as will be discussed further in
Chapter 6, where the default implementation of replicated objects in Chapter 6 is
presented.

83

Replica 1 Replica 2
#handleRemosMessage: #handleRemoteMessage:|
#distributeMessage: #performMessage:
'\ $
rWrapper - y Post-
#handleMessage: notification
Pre- T
Messages |notification /
bre- > Contained Post-
Concurrenc: Distribution Object Concurrency
Control Control

Replies

Figure 5-9. The components of message routing in the wrapper.

Table 5-8 shows the three methods that can be modified to allow different distribution

techniques. The default implementation’s

first ofustributeMessage:, for example,

will broadcast messages in the case of a replicated object, or will forward the message on

to the actual site (via a proxy) in the case

of a centralized object. Similarly,

Protocol

Effect

aSharedObject distributeMessage:
aMessage

A modifiable method that allows
developers to change the way messages
distributed to local an remote objects.

are

aSharedObject handleRemoteMessage:
aMessage

A modifiable method for changing the w4g
in which messages sent from other sites
handled.

y
are

aSharedObject performMessage: aMess

age A modifiable method for changing tl

changed.

in which messages from the local site ar¢

e way

2]

Table 5-8. Protocols for handling message distribution

#performMessage: controls whether or not the message is sent to the local object. For

example, in the replicated object implementat#p® formMessage: will always send the

message to the local object. For centralized objgptsiormMessage: will only send the

message to the object if it is located on the local machine. The final method,

#handleRemoteMessage:, allows the developer to distinguish between messages

forwarded by another replica from those sent by another object. For example, the
#handleRemoteMessage: is used in replicated objects to ensure that the message

forwarded to them is not then again subjected to concurrency control.

5.6 TheWrapper API for Controlling Object Representation
and Contents

The next component of the meta-interface looks at the representation and contents of the
object. There are situations where objects that are copied between sites should not be
identical. For example, aglobal value such as the name of the local site will have to be
changed when the object is copied between sites. Also, proxy objects are not copies of the
object, just remote references. As such, they use a completely different representation for
the object. The meta-interface provides the capability of changing the representation and

contents of an object whileit is being transported to a new site.

Thisis done by allowing the devel oper to substitute a new object both when the object is
deconstructed on the sending site, and then again when the object is reconstructed on the
receiving site. Thisis accomplished by the methods#deconstructObject and
#reconstructObject, which are sent by the distributed object system to the wrapper just
before and just after the object is sent to the remote site. These two methods return an
object that should be substituted for the current one.

The #deconstructObject method is called before the object is copied to the new site. As

such, it may be used to break links to local references. For example, in Figure 5-10, we

can see that the deconstruction of the object A creates a copy of the object called A’
which has removed the reference to the site name ‘Site 1'. Once the deconstruction phase
has been completed the object is then copied to the new site. An instance of that object is
created on the new site, which is then sen#tbeonstructObject message. In Figure 5-

10 we can see that a new object is substituted for A’ called A”, and the link to the new

site’s name ‘Site 2’ has been created.

85

Byte$tream

Figure 5-10. Deconstruction is used to remove areference to a
global variable while reconstruction is used to rebuild that link.

The deconstruction and reconstruction model modify both the wrapper and the contained
object in the same piece of code. The wrapper may need to be deconstructed in a special
way to handle changes in the locking mechanism or other internal data structure (we shall
see thisin Chapter 6, when we discuss the replicated wrapper). The object, we have seen,
may need specia deconstruction to handle changes to its contents, such as areferenceto a

global object.

The deconstruction and reconstruction phases in GEN are further refined to supply default
implementations that separate the deconstruction of the wrapper from the deconstruction
of the contained object, allowing the developer to specify the modifications of these
components at an instance level. In Table 5-9, we detail the protocols that separate the
deconstruction and reconstruction of the contained object from the deconstruction and
reconstruction of the wrapper. These protocols take aBlock (an executable piece of code)
which is specified at runtime, allowing the devel oper to provide a custom piece of code.
This technigue removes the need to define a new wrapper class each time a devel oper
wishes to modify the way a particular class of object is distributed. Different instances of
awrapper class can deconstruct and reconstruct their objects in different ways. The
protocol s #objectDeconstr uctionBlock: and #objectReconstructionBlock: control the
deconstruction and reconstruction of the contained object. The protocols

#wrapper DeconstructionBlock: and #wrapper ReconstructionBlock: take Blocks which

control the deconstruction and reconstruction of the wrapper.

86

Pr otocol

Effect

aSharedODbject objectDeconstructionBlock:
aBlock

aBlock takes 1 parameter (the contained
object) and answers a mutation or copy of
the contained object that is to be passed on.

aSharedODbject objectReconstructionBlock:
aBlock

aBlock takes 1 parameter (the mutated
contained object) and answers a mutation
of that object that is the new contained
object.

aSharedObj ect
wrapperDeconstructionBlock: aBlock

aBlock takes 1 parameter (the wrapper
object) and answers a mutation or copy of
the contained object that is to be passed on.

aSharedObj ect
wrapperReconstructionBlock: aBlock

aBlock takes 1 parameter (the mutated
wrapper object) and answers a mutation of
that object that is the new wrapper object.

Table 5-9. Protocols for specifying instance specific behaviours for
deconstructing and reconstructing the wrappers.

The meta-interface ssimplifies this process in one more step, by allowing the meta-

interface developer to specify default implementations for each of these modification

steps. The protocol s #defaul tObj ectDeconstr uctionBlock, #defaultObjectReconstruction-

Block, #defaultWrapper DeconstructionBlock and #defaul tWr apper Reconstr uctionBlock

are defined in each class and define the default protocol for deconstructing and

reconstructing the wrapper and the object.

5.6.1 Using Substitution to Control Distribution: Copiesand Proxies

The ability to deconstruct and reconstruct an object can also be used to give the devel oper

control over the way an object and its contained components are shared. For example, if a

replicated wrapper contains alock, it may not be desirable to replicate the lock when it is

transmitted to the new site. Rather, it should be maintained as a remote reference to

provide mutual exclusion between the different sites. By substituting a proxy, the

developer can create aremote reference to the object.

87

In this case, GEN allows the developer to substitute a special object that dictates how the

contained object is shared. These two objects are RemoteProxys and RemoteCopys, as

shown in Table 5-10. The substitution of a RemoteProxy for an object forces aremote

reference for the object when it is distributed, whereas substitution of a RemoteCopy

forces the object to be copied.

Protocol

Effect

aProxyObject := RemoteProxy for:
anObject

Creates a specia object for the object
anObject which will force a proxy
parameter to be created for anObject.

aCopyableObject := RemoteCopy for:
anObject

Creates a specia object for the object
anObject which will force aremote copy to
be created for anObject.

Table 5-10. Protocols for remote object distribution.

For example, Figure 5-11a) shows how object A references object B. When object B is

being copied across, a RemoteProxy is substituted, then when A is reconstructed on the

other site, it contains a proxy to the original object B. Conversely, inFigure 5-11b) a

RemoteCopy is substituted for object B, so that when A is reconstructed on the new site, a

new copy of B is aso created.

88

b) "

Substitute a
RemoteProxy for B

Substitute a
RemoteCopy for B

reconstrdiction

Byte$tream Byte$tream

Figure 5-11a) Shows how a remote proxy substitution creates a remote
reference. Figure 5-11b) Shows how a remote copy substitution creates a
new copy.

To simplify matters GEN provides a method which sets, by default, whether an object is
copied or remotely referenced. The object is sent the message#i sCopiedRemotely which
will answer true if the object isto be copied, falseif it isto be remotely referenced. This
method isimplemented in the class, so the answer will apply to al instances of the class.

Note that the RemoteCopy and RemoteProxy implementations override this default.

Thisisthelast of the meta-interface that deals directly with giving the developer control

over how objects are distributed and their concurrency mechanisms.

5.7 Summary

This chapter has presented four separate sections. The first examined how the principles

of open implementation, namely scope control, conceptual separation and incrementality

were applied to GEN’s meta-interface. It was explained that conceptual separation was
not entirely possible in GEN because of dependencies between distribution and

concurrency control mechanisms.

The second section examined the model we use to let developers modify distribution and
concurrency control mechanisms. To control how objects are distributed between sites,
developers can modify both the contents and representation of the object. Additionally,

developers are given control over how messages are routed between sites. Concurrency

89
control, on the other hand, was implemented at the message level by giving developers
the ability to implement concurrency mechanisms both before and after the object

executes a message sent to it.

The third section introduced the notion of wrappers and how they could be used to
modify the behaviour of objects. The fourth and final section discussed how wrappers
were used to implement the meta-interface APl that lets devel opers modify the

mechanisms used to distribute the objects and control concurrency.

The following chapter will evaluate the meta-interface by illustrating how the replicated,
replicated locking and centralized data sharing strategies are implemented. Chapter 7 will
continue by showing how the meta-interface can be used to build new constructs, such as

migrating objects, selective message broadcasts, and aform of optimistic locking.

0

6. Case Studies. The Default I mplementations

The last component supplied with the GEN toolkit is the default implementation for the
data sharing strategies. The default implementations are important for several reasons.
First, they are necessary because they give developers, who do not want to concern
themselves with the meta-interface, a usable implementation. Second, the default
implementations are built on top of the meta-interface and serve as examples of how the
meta-interface works. Third, and as we will see in the subsequent chapter, they can be
incrementally modified, allowing developers to build on existing strategies to construct
new ones. Finally, the default implementations serve as one way to evaluate the meta-

interface, by showing how sharing strategies can be constructed using the meta-interface.

In the current version of GEN, the default implementation provides the developer with an
API to replicated, replicated locking and centralized data sharing strategies (introduced in
Chapter 4). These particular default implementations were chosen because they are
typical of data distribution and concurrency strategies found in other groupware toolkits
and likely form areasonable set of data sharing strategies for groupware devel opers.
Additionally, as we shall see in Chapter 7, these particular implementations can be built
upon incrementally to provide new strategies, such as migration and aform of optimistic

locking.

This chapter shows how the meta-interface is used to construct the default
implementations. It begins with an implementation for replicated objects. It then shows
how this implementation is modified to create replicated |ocking objects. The chapter

concludes with the final default implementation of centralized objects.

91
6.1 Case Study #1: Replicated Objects

Aswe saw in Chapter 4, areplicated object has a copy of itself located at each site. A
replicated object is useful because alocal copy provides quick feedback for any local

changes made to the object.

Replicated objects need special mechanisms for routing messages and managing replica
creation. First, when there are multiple replicas of the object on different sites, areplica
receiving a message must broadcast it to the other replicasin the system. This keeps all
copies up to date. Second, when the object is distributed to a new site, there must be a

mechanism for creating areplicaat that site.

In this section we examine how the meta-interface modifies the routing of messages to

perform the message broadcast, and how the wrapper’s contents are modified when a new
replica is created. The name of the replicated object wrapper cRepti catedElement,

and its implementation specializes tBeupwareElement class (i.e., the basic object

wrapper).

Replica#1

Wrapper
biect

Message X

Wrapper

Wrapper
Obie Ob

Contained Contained
Object Object

Replica #2 Replica#3

Proxies

Figure 6-1. Synchronization in replicated objects through
message forwarding.

92
6.1.1 Message Routing

In this section, we will discuss how the replicated object routes messages between the
various replicas in the system. Since the replicated element must broadcast each message
it receivesto all the other replicas, it maintains alist of proxies which point to the
wrappers for the other replicas. A replicawill use thislist (called replicas) to forward
messages it receives to the other replicas. One replica sends a message to another remote
replica, by forwarding the message through alocal proxy for the remote replica. The local
proxy will then forward the message. For example, in Figure 6-1 Replica#1 has received
amessage (Message X), which it sends to the proxies for Replica#1 and Replica#2.
These proxies then forward the messages to the actual object on the remote sitesusing a
special protocol (#handleRemoteMessage:) that ensures the message is not rebroadcast to
the new sites (as discussed in 5.5.3).

In this case the ReplicatedElement must modify two components of the
GroupwareElement class. the message routing scheme, for distributing the messages to
the replicas; and the object representation, to keep the list of replicas up to date when a

new replicais created.

Changesto the M essage Routing Scheme. There are two changes to the way messages
are distributed using the Groupwar eElement. The first change modifies the ways
messages are sent, through the #distributeMessage: protocol. The second modifies the

way messages are received by the#handleRemoteMessage: protocol.

ReplicatedElement defines an implementation of #distributeMessage: which sends a
message to each of the replicas by iterating over the list of replicas as shown in Figure 6-
2 (lines2 & 3). Theiteration is performed in a separate thread (using #fork), to allow the

current thread to continue processing while the message is distributed to the other sites.

93

distributeM essage: aM essage
[replicas do: [: aReplica |
aReplica handleRemoteMessage: aMessage]] fork.

self handlePreNotification: aMessage.
containedObject performMessage: aMessage.
self handlePostNotification: aMessage.

~nil

1
2
3
4
5 handleRemoteM essage: aM essage
6
7
8
9

Figure 6-2. Code for the distribution of messages to replicas.

The modifications to #handleRemoteMessage: speed up the reply process and handle

local notification. To ensure that the message is not rebroadcast to al the other sites,
#handleRemoteMessage: sends the message to the local object only, and does not call
#distributeMessage: again (as discussed in Section 5.5.1). To speed up the reply process,

the implementation returns the ‘nil’ object which is quick to transfer between sites (line 9

of Figure 6-2). The implementation does not need to return the original object because all
replicas should answer the same value when sent a message, thus the implementation can
use the result of the loc#berformMessage: and ignore the replies of the other replicas.

The reply is an acknowledgement indicating that the message was received and executed

at the local site successfully.

The second change #bandleRemoteMessage: involves the use of the pre- and post-
notification methods in lines 6 and 8. In a replicated object, we make the local wrapper
perform notification, to reduce the number of messages that must be broadcast. As
mentioned in Chapter 5, we did not provide an open implementation for notification,
which has side-effects when trying to implement the replicated object. The problem is
that the underlying implementation does not automatically broadcast the notification
events to all the sites. By adding the pre- and post-notification methods to
#handleRemoteMessage:, the local site generates the message. However, this violates the
principle of conceptual separation (see Chapter 3), since the developer must now modify

the notification system when changing the message routing strategy.

94
6.1.2 Changing the Object’'s Representation.

A replicated object has a copy of the object at each site. When anew replicais created

(for example, this occurs when a new site references the object), a copy of both the

Sitel Site2

Step 3:

For each replicain the
. Step 2) system, add a proxy for

“Updatereplicas thecurrent replica to
their replicaslist

transfer
—»|
ARNNE

ap%

Substitute object -~ """ U
for transfer

Deconstruction Reconstruction

Figure 6-3. The steps in maintaining the list of replicas.
wrapper and the contained object must be passed to the remote site. To create this copy of
the wrapper and the contained object, the method #i sCopiedRemotely answers true,
forcing the distributed objects layer to copy the object when it is distributed. By defaullt,
this makes an exact copy of the object. However, we need to modify thereplicaslist, as
described below.

Changing the Object’'s Contents.The implementation of the ReplicatedElement uses
the deconstruction and reconstruction phases to maintain thereplicaslist as the object is
transferred around the network. The deconstruction phaseis used to create the list for the
new replica, while the reconstruction phase is used to inform the existing replicas of the
addition of anew replica. Figure 6-3 illustrates the various steps that are covered by the
deconstruction and reconstruction of the object, which are listed below.

Step 1.During deconstruction at site 1, an original replica A is copied to make a

substitute object A’.

Step 2. The list of replicas in A’ is updated to contain a remote proxy which points to the

original replica A.

Step 3. For each of the other replicas, the list of replicas must be updated to include a

proxy which points to the new replica. To accomplish this the replica that was just

created broadcasts a proxy for itself to all the other replicas in the system when it is

being reconstructed on the new site.

95
We will now detail thisimplementation. Thelist of replicas is constructed for the new

object when it is being copied from an existing replica. Step 1 occursin the
deconstruction phase and creates the substitute object by copying the current wrapper and

al itsinstance variables using a deep copy (line 3 of Figure 6-4).

1 defaultWrapper DeconstructionBlock

A[: currentWrapper | | newVersion |
newVersion := currentWrapper deepCopy. “Step 1”
newVersion replicas add: (RemoteProxy for: currentWrapper). “Step2”
newVersion replicas: (RemoteCopy for: newVersion replicas).
newVersion]

OO WN

Figure 6-4. During deconstruction, the list for the new object is formed.

Thelist of replicasin the wrapper that was copied is amost, but not quite, complete.
While thereplicas list of the wrapper being copied had pointers to all the other wrappers,
itismissing a proxy to itself. For example, in Figure 6-1, Replica#1 could be copied to
create anew replica, say Replica#4. If the system were to copy Replica#1 identically,
then Replica#4 would point only to Replica#2 and Replica#3. A proxy must be added to
the list that points to Replica#1. Step 2 (line 4), creates a proxy for the wrapper being
copied and adds it to the list of replicas. Finally to ensure that the list of replicasis passed
as acopy (rather than aremote reference), the clone list itself is made into a remote copy
(line 5).

When thereplicais rebuilt on the other side, its wrapper contains the list of all other
replicas in the system. However, the other replicas do not have a proxy to this new
replica. When the replicais reconstructed, it will broadcast a remote proxy for itself to all
the other replicas (Step 3), bringing them up to date. Figure 6-5 shows how the
reconstruction of an object is used to broadcast a proxy of the replicathat was just created
to al the other replicas. In line 3 thelist of replicasisiterated over, and a RemoteProxy of

the new replicais sent to each of them.

96

1 defaultWrapper ReconstructionBlock

2 A[: remoteObiject |

3 remoteObject replicas do: [: aReplica | “Step 3"
4 aReplica addClone:

5 (RemoteProxy for: remoteObject)].

6 remoteObject]

Figure 6-5. The replicas are reconstructed by sending a proxy to all the
replicas.

In this section, we have shown the default implementation for areplicated element. It
demonstrated how the deconstruction and reconstruction blocks are used to maintain the
list of replicas at other sites, and how the message interception layer is used to broadcast
messages to these replicas. We now show how this scheme can be modified to support

locking.

6.2 Case Study #2: Replicated-L ocking Objects

With replicated objects, two replicas may be sent messages at the same time. These
messages may arrive in different orders at different sites, leading to different execution
orders and possible loss of consistency (see Chapter 2 for a detailed explanation of the
need for consistency). To provide control over consistency, we created replicated locking

objects that add strict concurrency control to replicated objects.

The ReplicatedLockingElement inherits its functionality from the ReplicatedElement

described in Section 6.1. However, it adds guarantees of the contained object’s

consistency by ensuring that any message sent to the object will not execute until it
acquires a system wide lock. Only after the message has executed at each site is that lock
released. ThReplicatedLockingElement uses the pre and post-consistency hooks to
implement this form of locking. Figure 6-6 illustrates how site 3 acquires the lock when it
receives a message ‘Y’. Before broadcasting the message to all the other sites, site 3 must
first obtain a centralized lock. To do this, site 3 sends a request for the lock to the lock
object located on site 2. Once the lock is obtained, site 3 will broadcast message ‘Y’, wait

for it to execute at each site, and then release the lock.

M odification of the Concurrency Mechanisms. To perform the locking, the

Sitel

O

Site2

i

Site3

Figure 6-6. The acquisition of a centralized lock before

message Y can be sent.

97

ReplicatedLockingElement uses a standard Smalltalk Semaphore, which is created when

the object isinitialized in #initializezGWElement (shown in line 2 of Figure 6-8). This
object is declared as centralized so that when the wrapper is distributed, there will be a

single instance of the lock that all sites use. Whenever anew replicais created, it will

have a proxy to the centralized lock.

1
2
3
4
5
6
7

8

9

10
11
12
13
14
15

defaultWrapper DeconstructionBlock
A[: currentWrapper | | newVersion |
lockObject wait.

newVersion := currentWrapper deepCopy.

newVersion replicas add: (RemoteProxy for: self).
newVersion replicas: (RemoteCopy for: newVersion replicas).

newVersion]

defaultWrapper ReconstructionBlock
A[: remoteObject |

remoteObject replicas do: [: aReplica |

aReplica addClone:

(RemoteProxy for: remoteObject)].

lockObject signal.
remoteODbj ect]

The #handlePreConsistency: and #handlePostConsistency: methods respectively wait

Figure 6-7. New wrapper deconstruction and reconstruction blocks.

and signal the semaphore (lines6 & 7). The message is broadcast and then executed at all

sites before the lock is released by having the#distributeMessage: wait until all the

replies are received, Only then does it release the lock (line 13). In the ReplicatedElement,

98
we saw that this method forks a separate thread, which allowed the current thread to

continue running. In the ReplicatedLockingElement implementation, no new thread is
forked — the current thread (which is doing the message sends) waits until all the replies
are received from the replicas, which indicates they have processed the message. Once

these replies have been received #tendlePostConsistency: method will free the lock.

initializeGWElement
lockObject := Semaphore forMutualExclusion centralized.
Asuper initializeGWElement

1
2
3
4
5 handlePreConsistency: aM essage
6 lockObject wait

7

8

handlePostConsistency: aM essage

9 lockObject signal

10

11 distributeM essage: aM essage

12 replicas do: [:aReplica |

13 aReplica handleRemoteMessage: aMessage]

Figure 6-8. Locking in the pre-consistency and post-consistency methods.

The replicated element must handle the possibility that a message will be sent while the
object itself is being replicated. If a message were sent by a replica after the object was
copied, but before the object broadcast its proxy to all the remote copies, then the remote
proxy would not receive the message and subsequently would be in an inconsistent state.
To exclude this possibility, thedgfaultWrapper DeconstructionBlock and

#defaultWrapper ReconstructionBlock are modified to acquire and release the lock before
and after the deconstruction and reconstruction are done, ensuring that the creation of a
new replica is mutually exclusive to the broadcasting of messages (lines 3 and 11 of
Figure 6-7).

6.3 Case Study #3: Centralized Objects

The final case study chosen from the default implementation explores another common
data distribution scheme used by groupware toolkits: centralized objects. Centralized

objects are useful for several reasons. They are easy ways to implement concurrency,

99
because they serialize messages that are sent to them. Additionally, they are useful for
implementing concurrency strategies (such as the lock used in the replicated locking
implementation), because the developer can use the built in features of the OS or
programming language to implement mechanisms such as semaphores or mutexes to

guarantee mutual exclusion.

In GEN, a centralized object resides on the machine which creates it. Remote sites
receive a proxy when the object is distributed to them, which forward all the messages
they receive to the centralized object. The wrapper itself is not distributed between sites,
so centralized elements are straightforward to implement: they can use the functionality

of the distributed objects layer to create the remote references.

The centralized object exploits the distributed object layer by creating a proxy at each
site, rather than a new wrapper. Figure 6-9 shows how one site (Site 3) will contain the
object while the other sites (Sites 1 & 2) only contain proxies which point to the
centralized wrapper. When either Site 1 or Site 2 send a message to the object, the proxy

will automatically forward it on to the wrapper.

Site 1 Site 2

Wrapper

Contained
Object

Figure 6-9. How a centralized object is represented on
other machines.

The remote object specializes two methods. First, #isCopiedRemotely is changed to force
aproxy to be made; this causes the proxy to be made automatically by the distributed
objects layer. As shown in lines 1-2 of Figure 6-10, the method #isCopiedRemotely

100
answers false. Second, #performMessage: now forwards the message to the local object

by passing it on to the contained object (lines 4-5).

1 isCopiedRemotely

2 "alse

3

4 performMessage: aM essage

5 containedObject perform: aMessage

Figure 6-10. Code to implement a centralized object.

6.4 Summary

The centralized and replicated objects shown in these sections have demonstrated three
implementations that allow developers to control data distribution and concurrency
mechanisms. They serve as case studies to demonstrate the power of the meta-interface,

as they demonstrate how the meta-interface can be used to construct these schemes.

These particular implementations are included in GEN, and their AP is provided as part

of the programmer’s interface. What is important to realize is that they are really no
different than anything else constructed using the meta-interface. Indeed, the default
implementations are simply components built using the meta-interface by the toolkit
developer for two reasons: to allow the application developer to use the toolkit without
understanding the meta-interface; and to give the application developer examples of how

the meta-interface can be used to construct sharing strategies.

The meta-interface is designed not only for power, but for flexibility. In the next chapter
we will see how the meta-interface can be used, by application developers, to build new

data sharing strategies, including migration and a form of optimistic locking.

101

7. Case Studies. Extending GEN by Adding New
Data Sharing Strategies

In the previous chapter, we showed how the meta-interface could be used to construct the
default implementations seen in the programmer’s interface. In this chapter, we present
three additional case studies that demonstrate the flexibility of the meta-interface by
showing how it can be used to extend and construct new data sharing schemes. These

schemes were not planned for when the meta-interface was designed.

The first case study provides a way to reduce the number of messages distributed by a
replicated object by allowing the developer to specify which messages are broadcast, and
which are not. The second case study implements a form of object migration that moves a
centralized object around the network, based on which site uses the most frequently. The
third case study demonstrates a new concurrency control mechanism by implementing a
form of optimistic locking. It is not our intention to champion these sharing strategies, but
rather to demonstrate how the meta-interface can be used by application developers to

extend the range of strategies available to application developers.

7.1 Case Study #4. Selective Broadcast of M essages

Replicated objects currently broadcast all the messages they receive to all sites. Yet
replicated objects do not really have to broadcast all messages sent to them. For example,
because messages that read the state of a replicated object can be handled by the local
object alone, they do not need to be broadcast over the network. Replicated objects, as
implemented in the default implementation, are inherently slow. All messages are
broadcast, and broadcasting is an expensive operation. Consequently, we would like to
change the implementation of replicated objects to make their message broadcasts more

selective.

102
In the ReplicatedSel ectiveElement, we give the devel oper the ability to specify those
messages that are broadcast to all sites, and those that are only sent to the local site. In
particular, the developer must specify the name of each method that is not to be
broadcast. When amessage is received by the wrapper, the wrapper checksto seeif the

message is on the list, and routes it accordingly.

The ReplicatedSel ectiveElement inherits from the ReplicatedL ockingElement, with the
addition of a Set of the method names (called message selectors) that should not be
broadcast. The message #addNonBroadcastMethod: adds method names to this
collection, and the #distribute Message: method is changed to filter the messages so it
can selectively broadcast them.

Aswe can see in Figure 7-1, the method #initializeGWelement (lines 1-3) creates the set
called protocols to hold the names of the methods (sel ectors) when the object is
initialized. The next method, #addNonBroadcastMethod: adds the specified message
selector to the set of message selectors to be ignored by adding it to theprotocols set in
line 6. Line 9 of #distributeMessage: contains the test to see if the message is contained
in the protocols set. If it is, the message will not be broadcast. Otherwise
#distributeMessage: broadcasts the message to all the other sites by using its superclasses
(ReplicatedLockingElement) #distributeMessage: method (line 11).

1 initializeGWElement
protocols := Set new.
Asuper initializeGWEIlement

addNonBroadcastM ethod: aM essageSel ector
protocols add: aM essageSel ector

distributeM essage: aM essage
~(protocols includes: aMessage selector)
0 ifFase: [
11 super distributeM essage: aM essage]

PO ~NOOTA,WN

Figure 7-1. Modifications for ReplicatedSel ectiveElement wrapper.

103
To use a ReplicatedSel ectiveElement, the application developer needs to specify the
methods that are not broadcast. For example, let us consider how reads and writes can be
managed efficiently within Smalltalk@rderedCollection object, using a
ReplicatedSelectiveElement (line 1 of Figure 7-2). The application developer specifies
that theOrderedCollection’s #atmethod (which reads the value at a particular index) not

be broadcast, as shown in line 2.

1 aWrapperedObject := ReplicatedSel ectiveElement object: OrderedCollection new.
2 aWrapperedObject addNonBroadcastM ethod: #at:

Figure 7-2. A shared OrderedCollection that does not broadcast the #at:
method.

Thislist of messages that are not to be broadcast will be copied whenever the wrapper is
replicated. However, if one site makes a change to that set, that change will be reflected
only in the local wrapper and not the other replicas. This is because the protocolsinstance
variable is not a shared object and messages sent to it (such as adding a new protocol)
will not be broadcast. Because of this, thisimplementation has the usage restriction that

the contents of protocolsmust be fully specified before the object is distributed.

7.2 Case Study #5: Migration

While centralized objects can respond quickly to messages sent to it from other objects at
the local site, they can be slow (because of network delays) to receive and answer
messages from remote objects. This can be exploited by groupware: in actual usage,
objectstied to the user interface are often used without competition by a single person for
astretch of time, before being passed on (Greenberg & Marwood, 1994). If the user
currently using a centralized object is at aremote site, interaction will suffer. However, if

the object could be moved to the local site it will speed up interactions with the object.

While replicating the object is one solution, another isto migratethe single centralized
object to the site that is most likely to use it. This has the advantage that broadcasts can
be avoided, reducing network traffic. In this section, we will see how the meta-interface
can be used to develop such amigrating centralized object. We will create a migration

wrapper for shared objects, where a single instance of an object is moved around the

104
network based on frequency of use. (While we have chosen frequency as the criteriato
demonstrate how migration can be triggered, other measures such as recency could have

been used).

In the migration scheme, each site maintains awrapper. One of the sites maintains a
wrapper with the current copy of the object and a frequency count of the messages
received from each particular site, asillustrated by the top circle in Figure 7-3. The other
sites each maintain awrapper containing a proxy to thewrapper containing the original
object, as shown by the circles at the bottom of the figure. It isimportant to note that
these proxies point to the wrapper, so that the wrapper can intercept messages sent to the
contained object, allowing it to maintain the frequency counts. If the number of messages
from a particular site exceeds the number of messages received from the local site by a
threshold value, then the contained object is moved to the site with the highest frequency

count.

Wrapper
Obie

Message

Contained

Forwarded Forwarded

Message essage Wrapper
List of frequency Object
of use by site

©

Figure 7-3. Structure of a migrating object. When the relative
frequency count for a particular site exceeds a threshold the object is
migrated.

Wrapper
Object .

The implementation of the MigratingElement requires a modification via the meta-
interface to both the message routing scheme and the object’s contents when the wrapper

is distributed.

105
1. We modify the message routing scheme to add information about the source of each
message send, which allows us to maintain site-specific frequency counts. The routing
scheme must also move the contained object between sites, and keep the replicas

informed about the actual object’s location.

2. When the wrapper is distributed, it may not be copied identically to the new site. For
example, if the wrapper being copied contains the actual object, the new wrapper will

have to be modified to contain a proxy to the wrapper being copied.

The next two sections detail the implementation ofMingratingElement. This object

inherits from theReplicatedLockingElement so that messages sent to it are guaranteed to

be mutually exclusive. It also contains an additional object: a frequency list called the
frequencyCollection that holds a count of the number of messages received from each

site. The first section deals with the changes to the message routing scheme, which adds
the frequency information necessary to determine when and where the object will

migrate, as well as performing the actual migration. The second section shows how the
deconstruction and reconstruction phases are used to create new replicas that maintain the

location of the actual object.

Changes to the message r outing scheme. The first change to the message routing is the
addition of information about where a message was sent from. This information will be
used to maintain the frequency collection. In terms of message routing, the migrating
object overrides the default behaviours disttibuteMessage:, #performMessage: and
#handleRemoteMessage:. The message routing for migrating objects is more complex, so
we have detailed it in several ways: Figure 7-4 presents a graphical representation of the
path that the message takes; Figure 7-5 presents the code that handles the routing of the

message; and below we describe the steps that a message travels through.

Once a message is received by an object it passes through the following steps (which are

shown in Figure 7-4):

106
1. The wrapper’'stdistributeMessage: is passed the message. If the contained object is a

remote object, it forwards the message on tavitepper containing the remote object
using thethandleRemoteMessage: method.

2. The wrappergperformMessage: is passed the message. If the contained object is a
local object, the message is sent to itself througktiliedl eRemoteMessage: method.

3. The#handleRemoteMessage: executes the message locally, determines the frequency
count for each of the sites that have sent the message.

4. If the frequency count for one site exceeds the frequency count for the local site by a

threshold value, the object is moved to that new site.

Step 1: If the object is remote

forward it on to the proxy

addmg siteinformation to

maintain the frequency count Step 3. Execute

othe(W|se do nothing the mésage, on
the actual object
distri buleMexxge Proxy object

handleRemoteM essage:
from:

aMessage

pen‘ormM essage

Step 4: Check to see

if the object should
Step 2: If the object is local be moved, moveit if
send the message to the necessary.

contained object, adding the
site information to maintain
the frequency count otherwise
do nothing

update + test
frequency collection

do nothing

Figure 7-4. The path of a message in a migrating object.

Step 1. The#distributeMessage: method first checks to see if the contained object is a
remote proxy (line 2 in Figure 7-5). If it is not remote, no distribution is necessary and the
message will be handled BgerformMessage: in Step 2. Otherwise, the object is remote,
and#handleRemoteMessage: from: is called with the additional parameter of a

RemoteProxy for wrapper (line 4 & 5) (see also Step 1 in Figure 7-4). The proxy is used

as an index into the frequency collection.

Step 2. The methodfperformMessage: checks to see if the contained object is local (line
8). If it is, the messag#handleRemoteMessage: from: is sent to itself with a remote proxy

for itself added on (see Step 2 in Figure 7-4). This is done because

107
#handleRemoteMessage: from: maintains the frequency collection and the remote proxy

serves as the index into the frequency collection.

Step 3.Thelargest change is to #handleRemoteMessage:, to which an additional
parameter was added to indicate the location of the machine sending the message. Its
name is changed to #handleRemoteMessage: from:, as shown in line 13 of Figure 7-5.

This method performs the message on the local object (line 15, and Step 3 of Figure 7-4).

Step 4. Inlines 16 to 18 #handleRemoteMessage: from: executes amigration test (line 17;
see also Step 4 of Figure 7-4). If the test evaluates to a new site, the wrapper will move

the contained object to that new site (line 19). The migration test is run by executing a

1 distributeM essage: aM essage

2 containedObject isRemoteObject

3 ifTrue: [

4 ~containedObject handleRemoteM essage: aM essage from:
5 (RemoteProxy for: self)]

6

7 performMessage: aM essage

8 containedObject isRemoteObject

9 ifFalse: [

10 "self handleRemoteM essage: aM essage from:

11 (RemoteProxy for: self)]

12

13 handleRemoteM essage: aM essage from: aClone

14 [newOwner result]|

15 result := containedObject performMessage: aM essage.

16 (newOwner :=

17 migrationBlock value: aMessage value: aClone value: self) notNil
18 ifTrue: [

19 self moveTo: newOwner].

20 ~result

Figure 7-5. Message Routing changes for migrating objects.
migration Block (an executable piece of code in Smalltalk). A default migration block
(shown in Figure 7-6) is defined by this class, and takes three parameters. the message;
the replica sending the message (a proxy); and the wrapper (self). When amessage from a
particular siteis received, the frequency collection increments the count for the number of

messages sent to the object for that site (lines 3 & 4). Once the count has been

108
incremented, the number of hits from the local object (line 6) is compared to the number
of hitsfrom the highest ranking site (line 5). If the difference is greater than 10, the new
owner is answered from this method (line 7). When this block returns anew site, the

object will be migrated to it. Otherwise, the object will remain at the current site.

1 defaultMigrationBlock
[:aMessage :aSourceM achine :aWrapper |
(aWrapper frequencyCollection
increment: aSourceM achine machinel D).
aWrapper frequencyCollection highestValue >
((aWrapper frequencyCollection valueOf:
(RemoteProxy for: aWrapper) machinel D) + 10)
ifTrue: [aSourceMachine]
ifFalse: [nil]]

OO WN

0

Figure 7-6. Test block to determine if the object should be migrated

The message routing system also handles the moving of the contained object to the new
site. #HandleRemoteMessage: from: is responsible for moving the object if the migration
block returns a new site location (line 5 of Figure 7-5). There are two methods that move
an object: #moveTo: and #receiveObject:, as shown in Figure 7-7. #MoveTo: first tells all
the other sites where the object is going to be transferred to by setting their contained
object to the new clone (line 2). The object is then sent to the new site using
#receiveObject:. The #receiveObject: message places the clone in the copy of the actual

object in the contained object instance variable (line 7).

1 moveTo: destination

replicas do: [: aReplica | aReplica object: destination)].
destination receiveObject: (RemoteCopy for: containedObject).
self object: aClone.

receiveObject: anObject
containedObject := anObject

~NOoO b WN

Figure 7-7. Moving the contained object.

The message routing has now provided the functionality necessary for directing the
message to the site currently containing the object, and aso for moving the object. The

following section examines how the contents of the object are distributed.

109
Controlling the object’s contents.When the object is distributed to a new site, the
contained object must point to the wrapper containing the original object. However, this
requires determining whether the wrapper being copied contains the actual object or a
proxy. If it contains the actual object, a proxy must be constructed that points to the
wrapper being copied. To determineif the contained object is a remote proxy, the
message #i sRemoteObject is sent to the contained object (line 7 of Figure 7-8). This
message will return true if the contained object is a proxy, and falseif itislocal. If the
contained object is not a proxy, then it must be the actual object. In this case, a proxy to
the current wrapper is distributed. If the contained object is a proxy, then the proxy itself
will be forwarded automatically.

1 defaultWrapper DeconstructionBlock
Al: currentWrapper | | newVersion |
lockObject wait.
newVersion := currentWrapper deepCopy.
newVersion replicas add: (RemoteProxy for: self).
newVersion replicas: (RemoteCopy for: newVersion replicas)
containedObject isRemoteObject
ifFalse: [
newVersion object: (RemoteProxy for: self)].

P OOO~NO O, WN

0 newVersion]

Figure 7-8. Default deconstruction block for migrating object. The
contained object is changed t&amoteProxy for the contained object.

In this case study of migrating objects, we saw how an object’s behaviour can be altered
via the meta-interface to migrate itself to a specific site that uses it frequently, thus

speeding up local response times.

7.3 Case Study #6: Optimistic L ocking

Optimistic locks work by assuming that a lock request will be granted. After a request is
made, it proceeds without waiting for the reply (assuming it will be a positive reply). If

the lock is not granted, the system will somehow have to restore itself to a state similar to
the one before the request was made. While more complex than simple conservative
locks, this scheme is suitable for applications running on networks where interprocess

communication is slow, where getting a lock is relatively expensive, and where the

110
likelihood of being denied that lock isrelatively small. Optimistic locking under these
circumstances can provide a more responsive yet still consistent system than conservative

locks, which isimportant in user interactions.

In this section we create aform of optimistic locking. After alock request is made,
messages will be allowed to execute in the local copy, even though the object iswaiting
for aglobal lock to be granted. However, messages are not broadcast to the other copies
until the lock is acquired. This strategy differs from traditional optimistic locking
mechanisms, where the changes are broadcast to all sites while the lock is being acquired.
Still, it means that local responsivenessis high, which is especially important for

managing a local user’s interactions.

Optimistic locks are implemented in GEN as a wrapper that checkpoints the state of the
object, requests the lock, but then makes the changes to the local object instead of
blocking completely. While waiting for the lock request to be granted, additional changes
may be made to the object, and processing continues at the local site as if the object had
received the lock. This is implemented by storing the messages in a stack rather than
performing a broadcast. If the lock is granted to the object, then the object broadcasts the
stored messages to all the clones and releases the lock. If the lock is refused (e.qg. it is
already held by another clone), the object restores the checkpointed version that contains
its original state before any messages were sent, and generates an event to indicate that

the lock was denied.

Delving into the details a bit further, our optimistic lock objects, which inherits from the
ReplicatedLockingElement, use the pre-consistency phase to checkpoint the object by
copying it. The request for a lock starts an asynchronous task that performs the request in
a background task. While the lock is being acquired, the object remains in a state of
“waiting” for the lock and the program continues executing. Any messages sent to the
object while it is waiting for the lock are queued. Finally, the object is informed of

whether or not it received the lock. From that result, it will return to the checkpointed

state (when denied), or broadcast the messages it received while waiting for the lock

(when granted). ThRReplicatedLockingElement waits when the lock is not acquired. The

111
OptimisticLock changes this to one that fails (rather than waits) when the optimistic lock?
isnot granted. Similarly, concurrency control mechanisms are overridden: we fork off an

asynchronous thread to request the lock and then checkpoint the object.

Changesto the Concurrency Control M echanism. Thefirst part of the consistency
mechanism handles the checkpointing of the object and the acquisition of the lock. The
#handlePreConsistency: method checks to see if an asynchronous request for the lock is
in progress. If it is, then another message was executed locally before this one, and alock
request is already in progress. In this case the system does not need to acquire another
lock. Figure 7-9 shows how the system checks the status of the lock, which isnil if there
isno current lock request (line 2). If the lock must be acquired, the message #requestLock

is sent to the wrapper (line 3).

The #requestLock method (starting at line 5) performs severa actions. First, it changes

the lock status of the lock to ‘waiting’ (line 6), so that future messages sent to the object
do not create further asynchronous lock requests while another request is already in
progress. Second, it creates a checkpoint copy of the contained object by performing a
#deepCopy (line 7). Third, a new stack for the messages is created by instantiating an
OrderedCallection (line 8). Finally, an asynchronous process QbgectLockTask) is

forked to request the lock and wait on the result.

% This is actually implemented as a method extension to the Semaphore class in

Smalltalk.

112

1 handlePreConsistency: aM essage

2 lockStatus isNil if True: [

3 self requestLock].

4

5 requestL ock

6 lockStatus := #waiting.

7 oldObject := containedObject deepCopy.
8 messageStack := OrderedCollection new.
9 Processor activeProcess

10 sendSel ector: #objectL ock:for:

11 withArguments: (Array with: lockObject with: self)
12 to: ObjectLockTask create

13

14 lock Status: aStatus

15 lockStatus == #waiting if True: [

16 (lockStatus := aStatus)

17 ifTrue: [

18 self broadcastM essageQueue]
19 ifFalse: [

20 self restore]].

21

22 br oadcastM essageQueue

23 [[messageStack size > 0] whileTrue: [

24 super distributeM essage: messageStack removeFirst].
25 self releasel ock] fork

26

27 releasel ock

28 lockStatus := nil.

29 lock signal.

30

3lrestore

32 containedObject := oldObject.

33 self generateEvent: #OptimisticL ockFailed callData: #().

Figure 7-9. Check-pointing the object at the pre-consistency stage.

At this point, the message will execute locally, asit would in a ReplicatedElement.
However, the message will be stored on a stack (discussed later). The post-consistency
method #handlePostConsistency: (not shown) performs no action, because the
acquisition or rejection of the lock will happen asynchronously. When the asynchronous
lock request completes, it will send the message #lockStatus: to the wrapper waiting on

the lock (line 14). The parameter aStatus is a boolean, which indicates whether the

113
process was successful at acquiring the lock. If the lock is successfully acquired, then all
the messages that have been queued will be broadcast to all the other sites by executing
the #broadcastMessageQueue (line 18). If the lock was not acquired, it must restore the
state of the object by calling restore (line 20). The restore method rolls back the object by
copying the checkpoint object over the contained object (line 32) and generates an event
called #OptimisticLockFailed (line 33).

To perform the broadcast when the lock is acquired, #broadcastMessageQueue iterates
through the stack of messages that have accumulated and uses the superclass’
#distributeMessage: to send each message to all the other sites (line 24). Finally, the lock

is released once all the messages have been sent and executed at all of the sites (line 25).

Modification of M essage Routing. The message routing system is changed in two ways.
First, messages are not broadcastdistributeMessage:. Rather they are stored in the
message stack until a lock is either acquired or not. When the lock is acquired, the
messages in the queue will be executed. Second, if the current object is waiting for a lock
and a message is received from another object, then the lock will be assumed to have

failed and the wrapper will return the object to the checkpointed state.

1 distributeM essage: aM essage
"messageStack add: (aMessage deepCopy)

handleRemoteM essage: aM essage
lockStatus = #waiting ifTrue: [
self lockStatus: false].
containedObject performMessage: aMessage.

~NOoO bk~ WN

Figure 7-10. The queuing up of messages to be distributed.

The stacking of messages is handled by#tigributeMessage: method, which adds the
message to the message stack to wait for broadcast (line 2 of Figure 7-10). The
#handleRemoteMessage: from: protocol may receive a message that was broadcast from
another site, while the current object is waiting on a lock. In this case, we know that the

lock will not be granted, since another site holds it. WhewtardleRemoteMessage:

114
from: method receives a message from a remote object, the lock status is changed to false

(line 6), forcing the old version of the object to be restored before the message executes.

7.4 Summary

In this chapter, we have shown the power of the meta-interface through a set of case
studies that illustrate the flexibility of the implementation. We have implemented three
new ways in which data distribution and concurrency control can be used within the GEN
toolkit, which in turn demonstrates that the toolkit is expandable. None of these methods
drove the original design of GEN. Combined with the default implementations, we have
constructed atotal of six different data sharing strategies, which vary both the way datais
distributed and the method used to control concurrency. We have also implemented
several other case studies, that have not been described here. These include a read/write
lock element, a combined centralized/replicated element, and a broadcast priority
element. While these are not described further, they are similar in complexity and style to

the examples already seen.

This concludes our demonstration of how a meta-interface architecture within a
groupware toolkit can allow developersto control both the distribution of data and the

way concurrency is managed.

115

8. Discussion and Conclusion

We have now concluded the discussion of the implementation and evaluation through
case studies of the GEN system. In this chapter, we discuss the contributions of this
thesis. The discussion begins with a summary and a critique of the work. Following this,
a section on future work looks at how this research can be devel oped further to increase
our understanding of how open implementations are useful in developing groupware
toolkits. Finally, we conclude by listing particular contributions that this thesis has made

to groupware and open implementations.

8.1 Summary

| have argued that groupware application developers sometimes require control over the
strategies used to shared data. The argument began with areview of groupware toolkitsin
Chapter 2, and showed how different toolkits have chosen different strategies for sharing
data. Typically, the choice of strategy was based on what the toolkit developer believed
would be the runtime requirements for factors such as consistency, speed, and ease of

implementation.

The default strategy supplied by a particular toolkit is often sufficient to prototype and
build groupware applications. However, there will be some cases where the toolkit will
be used in circumstances different from those envisioned by the toolkit developer. In
these cases, the toolkit will not match the needs of the application developer, and they
will have to work around the toolkit with strategies such as hematomas and coding
between the lines.

| then introduced a toolkit design strategy, called ‘open implementations’, that helps
overcome these limitations. Chapter 3 described how open implementations separate
toolkits into two parts: the programmer’s interface and the meta-interface. The

programmer’s interface is normally used to create applications, just as in a standard

116
toolkit. However, the meta-interface allows application devel opers to modify the

strategies in the toolkit when they do not meet an application developer’s needs.

In Chapters 4 and 5, | showed how an open implementation can be created for groupware
toolkits. The chapter describes the implementation and API for GroupEnvironment

(GEN), a groupware toolkit. GEN gives application developers control over how data is
shared by providing an interface for modifying how data is distributed, and for modifying

the concurrency control mechanisms.

| demonstrated the flexibility of this implementation through six case studies: three in the
default implementations described in Chapter 5; and three extended implementations
described in Chapter 6. All use the meta-interface to develop new strategies for sharing
data. These examples illustrate in detail how the meta-interface is used to create new
sharing strategies, such as different data distribution schemes (centralized, replicated and

migrating), as well as different concurrency schemes (locking, optimistic locking).

8.2 A Critique of GEN

The development of a meta-interface is an iterative process (Kiczales et al., 1993). This
was our first iteration of a meta-interface for a groupware toolkit, and is of course
incomplete in several ways. This critique of the GEN prototype will direct the next
iteration of a meta-interface in groupware by identifying weaknesses and open research

areas.

One of the principles of meta-interface design is conceptual separation, as discussed in
Chapter 3. Conceptual separation states that modifying one component in a meta-
interface should not impact on other components of the system. This was not entirely
achieved in GEN. Although the actual implementation of the components of notification,
concurrency and distribution are separated, the developer has to be aware of how they
relate to one another and how to compensate for interactions. For example, when the
locking mechanism is changed (such as in the replicated locking implementation), the
developer must also be concerned about how the objects that support the lock are

distributed around the network. The distribution mechanism for the lock may not coincide

117
with the way the wrapper or the contained object is distributed. It is not clear at thistime
that conceptual separation is possiblein this area. However, because of the complexity it

adds to modifying the meta-interface, it needs to be investigated further.

GEN'’s meta-interface to concurrency management is overly restrictive, as it only allows
the developer to specify pre- and post-actions when a message is intercepted. This
technique, although useful, requires the application developer to create the entire
concurrency control strategy. They have to determine how to implement synchronization
strategies to get the desired level of concurrency control. This may be difficult and time
consuming. Recent parallel work by Dourish (1995a,b; 1996) has presented a meta-
interface which simplifies the creation of concurrency mechanisms for groupware
toolkits. Dourish’s concurrency model uses negotiation, which gives the developer
control over thalegree of consistency of shared objects. For example, some portions of
an object may be consistent while other portions of the same object are inconsistent. This
may be useful in a shared drawing program: drawing areas that no one is using can be
inconsistent, while areas that are being used by multiple people need to be very
consistent. If Dourish’s model were applied to GEN, it could make the construction of

new concurrency mechanisms both richer and simpler.

The current implementation of GEN is sufficient to demonstrate our ideas. However it is
slow and far from robust. Still, we have built simple applications (a shared white board, a
brainstormer, and a meeting scheduler (O’Grady & Greenberg, 1994)) to test the different
strategies of data sharing; again these are slow. This leads to the question: is the
technigue of open implementation with its additional layer of abstraction inherently slow
and unusable? We must consider the reasons for this slowness both in terms of the
particular implementation used in this thesis as well as the cost of using an additional
layer of abstraction. First, in terms of the particular implementation used we must point
out that the distributed object layer and object marshalling system were developed only to
demonstrate our ideas, and are crude and relatively slow. For example, they copy the
same object multiple times as it is being transmitted between sites. An optimization of

these components would significantly increase the speed of the application. Second,

118
although the additional layer of abstraction adds additional overhead to the processing
time, it gives developers the ability to customize how data is distributed at a fine grain.
This power to customize the distribution mechanism islikely to allow speed gains and
other benefits that far outweigh the slowness of an additional layer of abstraction.
Additionally, in groupware toolkits the bottlenecks are not usually processing speed but
rather the time it takes to send messages between sites (Greenberg & Roseman, 1997),
and the additional processing time associated with this additional layer of abstraction will
have little impact. Finally, the ideas in this thesis have already influenced alimited
implementation of meta-interfaces within GroupKit, another groupware toolkit being
developed in our lab. The GroupKit meta-interface allows the devel oper to control how
an environment and its contained data are distributed around the network, and it runs

fairly quickly despite this additional layer of abstraction (Roseman, 1995).

8.3 FutureWork

The work in this thesis has been directed towards demonstrating open implementations
and the viability of giving the developer control over the way datais shared. The work
can be built upon in severa ways: 1) enhance the GEN toolkit itself; 2) iterate the meta-
interface; 3) characterize different sharing strategies; and 4) consider how the ideas can

be applied to other areas of distributed computing.

1. The enhancement of GEN as a usable toolkit. The model we have presented in GEN
has demonstrated how a meta-interface can be constructed. However, there are two
significant areas in which GEN could be enhanced. First, as mentioned previously,
speed isan issuein GEN and needs to be addressed. The distributed object layer in
GEN was implemented to explore the ideas for devel oping groupware applications and
isinefficient. Recently, commercial distributed object implementations have become
available, and replacing GEN’s distributed object layer with an efficient commercial

version could greatly increase its speed.

Second, GEN explored only the runtime architecture side of building groupware

toolkits. However, developers need interface components to build groupware

119
applications (Greenberg & Roseman, 1997). These include items such as tel epointers,
transparent overlays, and multi-user scroll bars. These components should be added to
GEN to give developers a more complete environment for constructing groupware

applications.

. Iteration of GEN'’s meta-interface desigrhe second area of study concerns how
developers use the meta-interface. Our first iteration has given devel opers control over
the routing of messages, the contents of objects, and pre- and post-concurrency
message hooks. We have defined a particular family of sharing strategies that
developers can manipulate. While | argued that this family of choices are useful to
developers, there are probably better ways to implement the strategies, and there are
probably other families of strategies to be considered. For example, pre- and post-
concurrency mechanisms may not be sufficient to implement the consistency
mechanisms that developers really require, and particular approaches may be outside
the family of behaviours that we have provided for. The toolkit must be tested in the

construction of real applications.

. Empirical evaluation of strategieBinally, developers need to be able to identify
which strategies are useful under which circumstances. Graham & Urnes (1996a) have
recently characterized a centralized and a cached data sharing strategy in terms of their
performance using empirical methods. Using GEN, new strategies can be created.
These should be empirically evaluated to determine under what conditions which data
sharing strategies will be most effective. Thus GEN could become atool to measure

different architectural capabilities.

. Application of open implementations and wrappers to distributed computing in
general Although the ideas presented have shown how open implementations and
wrappers can be used to provide flexible data sharing in groupware toolkits, the
techniques used may more widely applicable in distributed computing. In particular the
idea of separating the data sharing mechanisms (e.g. using wrappers) from the
implementation of the object being distributed (e.g. an OrderedCollection) may prove
useful for writing other types of distributed computing, such as distributed agents.

120
8.4 Contributions

GEN has made contributions to both groupware devel opment and open implementations.

8.4.1 Contributionsto Groupware

1. Multiple data sharing strategiesin a single groupware toolkit. Current groupware
toolkits have presented application developers with a single strategy for sharing datain
an application. GEN allows developers to select a data sharing strategy for individual
objects in their application, letting them decide based on the particular needs of the
data. GEN provides three default implementations: replicated; replicated locking; and
centralized. Only one other toolkit provides more than a single strategy, however, it

limits the choice to one of two possible strategies (Graham & Urnes, 1996b).

2. An extensible groupware toolkit. Current groupware toolkits provide developers with a
single inflexible strategy for sharing data. The meta-interface of GEN provides
developers with the ability to manipulate the implementation of the toolkit itself to
create new strategies for sharing data. In thisthesis, we have demonstrated three
additional techniques that can be constructed to share data: selective broadcasts,
migrating objects; and aform of optimistic locking. Thisidea has influenced
GroupKit's design, which has now created an open implementation for its
environments (Roseman, 1995). A mentioned in Chapter 2, Dourish (1995a) has also
explored meta-interfaces for groupware toolkits, and has presented an model for

providing extensible consistency mechanisms.

3. Environments for organizing shared data. GEN borrows the concept of environments
found in traditional programming languages (such as Scheme) for organizing data to
help groupware programmers organize shared data. GroupKit has also adopted this
data structure, and it is used to implement some of their demonstration applications
(Roseman & Greenberg, 1996).

121
8.4.2 Contributionsto Open | mplementations

1. Demonstration of how open implementations can be applied to groupware toolkits.
Open implementations are arelatively new concept that suggests toolkits can become
more powerful and useful to programmers by providing a second interface to control
design decisions that are usually made by the toolkit developer. Both myself and
Dourish (1995b) have demonstrated how open implementations can be applied to the
area of groupware, giving application developers more control over how their datais

shared. This broadens the range of toolkits using open implementations.

2. Demonstration of the use of wrappersto construct open implementations based on
message interception. GEN has used wrappers to implement a meta-interface which
allows the dynamic addition of new behaviours to objects. The detailsin thisthesis
show how wrappers can extend the functionality and change the way messages are sent

between objects.

8.5 Conclusion

The current generation of groupware toolkits operates on the principle that only asingle
and unalterable sharing strategy implemented by the toolkit should be available to
application developers. However, the choice of a particular sharing strategy influences the
speed and consistency of the application. We have presented a prototype groupware
toolkit called GEN which uses an open implementation to let application developers
control the way in which their data is shared.

Groupware is pushing our concept of what computers can do into new areas. We now
view computers as a sophisticated communication medium as well as atool. As these
new paradigms evolve, limitations of the models we use to construct software are
exposed, forcing computer scientists to rethink the strategies they use. Open
implementation is an exciting new strategy that makes devel opers reconsider the notion
of abstracting away implementation details in black boxes. By exposing the internals of
the black box in aclear and careful way, we can give developers the power they need to

construct applications in these new paradigms.

122

Bibliography

Abelson, H., Sussman, G. & Sussman, J. (1986). The Structure and Inter pretation of
Programs. MIT Press, Cambridge M assachusetts.

Ahuja, SR., Ensor, JR. & Lucco, S.E. (1990). A Comparison of Applications Sharing
Mechanisms in Real-time Desktop Conferencing Systems. In Proceedings of the
ACM COI'S Conference on Office Information Systems, 238-248.

Anupam, V. & Bga, C. (1993). Collaborative Multimedia Scientific Designin
SHASTRA. In Proceedings of Multimedia ‘9347-456.

Arango, M., Bahler, L., Bates, L., Cochinwala, M., Cohors, D., Fish, R., Gopal, G.,
Griffeth, N., Herman, G., Hickey, T., Lee, K., Leland, W., Lowrey, C., Mak, V.,
Patterson, I., Ruston, L., Segal, M., Sekar, R., Vecci, A., Weinrib, A. & Wuu, S.
(1993). The Touring Machine System. Communications of the AGN6, 68-77.

Attardi, G. (1993). Metaobject programming in CLOS. In Paepcke (ed.), Object Oriented
Programming: The CLOS Perspecti%l T Press, Cambridge Mass, 119-132.

Barghouti, N. & Kaiser, G. (1991). Concurrency control in advanced database
applications. ACM Computing Survey23(3), 269-317.

Bennet, J (1990). Experience With Distributed Smalltalk. Software Practice and
Experience20(2), 157-180.

Bentley, R., Rodden, T, Sawyer, P. & Somerville, I. (1994). Architectural Support for
Cooperative Mulituser Interfaces. IEEE Computer27(5), 37-45.

Bonfiglio, A., Malatesta, G. & Tisato, F. (1989). Conference Toolkit: A Framework for
Real-time Conferencing. In Proceedings of the EC-CSCW '89 First European
Conference on Computer Supported Cooperative V808<316.

Cortes, M. (1994). CSCW Survey: Concepts, Applications and Programming Tools.
Department of Computer Science, State University of New Y ork, Stony Brook.

123
Craighall, E., Lang, R., Fong, M. & Skinner, K. (1993). CECED: A System for Informal
Collaboration. In Proceedings of Multimedia '9337-445

Crowley, T., Baker, E., Forsdick, H., Milazzo, P. & Tomlinson, R. (1990). MMConf: An
Infrastructure for Building Shared Applications. In Proceedings of the CSCW’90
Conference on Computer-Supported Cooperative V3aek342.

Decouchante, D (1986). Design of a Distributed Object Manager for the Smalltalk-80
System. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems Languages and Applicatibfs452.

Dollimore, J, Miranda, E. & Xu, W. (1991). The design of a System for Distributing
Shared ObjectsThe Computer Journal, 34(6), 514-521.

Dourish, P. (1995a). Developing a Reflective Model of Collaborative Systems. ACM

Transactions on Computer-Human Interacti(i), 40-63.

Dourish, P. (1995b). The Parting of Ways: Divergence, Data Management and
Collaborative Work. In Proceedings of the Fourth European Conference on

Computer-Support Cooperative Wp2k5-230.

Dourish, P. (1996). Open Implementation and Flexibility in CSCW Toolkits. Ph.D.

Dissertation Department of Computer Science, University of London.

Ellis, C.A. and Gibbs, S.J. (1989). Concurrency Control in Groupware Systems. In
Proceedings of the ACM SIGMOD International Conference on the Management
of Datg 399-407.

Gamma, E. Helm, R., Johnson, R. & Vlissides, J. (1994). Design Patterns: Elements of
Reusable Object-Oriented Softwakaldison Wesley, Reading M assachusetts.

Goldberg, A, & Robson, D (1983). Smalltalk-80 the Language and its Implementation.
Addison Wesley, Reading Massachusetts.

Graham, T., Urnes, T., & Ngabi, R. (1996a). Efficient Distributed |mplementation of
Semi-Replicated Synchronous Groupware. In Proceedings of the ACM

124
Symposium on User Interface Software and Technology (UIST’ 96), ACM Press,

(in press).

Graham, T.C.N. & Urnes, T. (1996b). Linguistic Support for the Evolutionary Design of
Software Architectures. In Proceedings of the ICSE’ 18 Eighteenth International
Conference on Software Engineering, |EEE Press, 418-427.

Greenberg, S. & Marwood, D. (1994). Real-time Groupware as a Distributed System:
Concurrency Control and its Effect on the Interface. In Proceedings of the ACM
CSCW 94 Conference on Computer Supported CooperativeWork, 207-217.

Greenberg, S. & Roseman, M. (1997). Groupware Toolkits for Synchronous. In
Beaudouin-Lafon (Ed.), Trendsin CSCW, John Wiley & Sons. Forthcoming.

Greenberg, S. Roseman, M, Webster, D., Bohnet, R. (1992). Human and Technical
Factors of Distributed GroupDrawing Tools. Interacting with Computers, 4(3),
364-392.

Hill, R.D. (1992). The Abstraction-Link-View Paradigm: Using Constraints to Connect
User Interfaces to Applications. In Proceedings of the ACM SGCHI’ 92
Conference on Human Factorsin Computing Systems, 335-342.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. & Wilner, W. (1994). The Rendezvous
Architecture and Language for Constructing Multi-user Applications. ACM

Transactions on Computer-Human Interaction, 1(2), 81-125.

Hutchinson, N., Raj, R., Black, A., Levy, H. & Jul, E. (1987). The Emerald Programming
Language. DIKU Report 87/22, Department of Computer Science, University of

Copenhagen, Denmark.

Jahn, P. (1995) Getting started with Share-Kit. Tutorial manual distributed with Share-
Kit version 2.0. Communications and Operating Systems Research Group,
Department of Computer Science, Technische Universitat, Berlin, Germany.

Available via anonymous ftp from ftp.inf.fu-berlin.de:/pub/misc/share-kit.

125
Kiczales, G. (1992). Towards a New Model of Abstraction in Software Engineering. In
Proceedings of IMSA '92 Worksop on Reflection and Metalevel Architectures
11.

Kiczaes, G. Ashley, J., Rodriguez, L., Vahdat, A. & Bobrow, D. (1993). Metaobject
Protocols: Why We Want Them and What Else They Can Do. In Pagpcke (ed.),
Object Oriented Programming: The CLOS Perspectid Press, Cambridge
Mass, 101-118.

Kiczaes, G., DelLine, R., Lea, A. & Maeda, C. (1995). Open Implementations Analysis
and Design. (Tutorial Notes), Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications OOPSLA '95

Kiczales, G., desRivieres, J. & Bobrow, D. (1991). The Art of the Meta-object Protocol
MIT Press, Cambridge Mass.

Kittlitz, K. (1994). Approaches to Object-Oriented Concurrency Control. Masters Thesis
Department of Computer Science, University of Calgary.

Lamport, L. (1978). Time, Clocks and the Ordering of Eventsin a Distributed System.
Communications of the AGM1(7), 558-565.

Moran, T., McCall, K., van Méelle, B., Pedersen, E. & Halasz, F. (1995). Some Design
Principles For Sharing in Tivoli, aWhiteboard Meeting Support Tool. In S
Greenberg, S. Hayne & Roy Rada (eds.) Groupware For Real-time Drawing: A
Designers GuideMcGraw-Hill, London, 24-36.

Nascimento, C. & Dollimore, J. (1992). Behaviour Maintenance of Migrating Objectsin
a Distributed Object-Oriented Environment. Journal of Object Oriented
Programming 5(5).

O’ Grady, T. and Greenberg, S. (1994). A Groupware Environment For Complete
Meetings. In ACM SIGCHI Conference on Human Factors in Computing Systems

Conference Companion Proceedingg/-308.

126
Paepcke, A. (1993). User-level Language Crafting: Introducing the CLOS M etaobject
Protocol. In Pagpcke (ed.), Object Oriented Programming: The CLOS
Perspective, MIT Press, Cambridge Mass, 65-99.

Parrington, G., Shrivasta, S. Wheater, S. & Little, M. (1995). The Design and
Implementation of Arjuna. Department of Computing Science, The University of

Newcastle upon Tyne, Newcastle upon Tyne.

Patterson, J. F., Hill, R. D., Rohall, S. L., & Meeks, W. S. (1990). Rendezvous: An
Architecture for Synchronous Multi-user Applications. In Proceedings of the
CSCW 90 Conference on Computer Supported Cooperative Work 317-328.

Patterson, J.F., Day, M. & Kucan, J. (1996). Notification Servers for Synchronous
Groupware. Lotus Devel opment Corporation. In submission to the ACM CSCW

Conference on Computer Supported Cooperative Work.

Rao, R. (1993). The SilicaWindow System,: The Metalevel Approach Applied more
Widely. In Paepcke (ed.), Object Oriented Programming: The CLOS Perspective,
MIT Press, Cambridge Mass, 133-154.

Roseman, M. (1993). Design of a Realtime Groupware Toolkit. Masters Thesis,
Department of Computer Science, University of Calgary.

Roseman, M. (1995). When is an object not an object? Proceedings of the 1995 Tcl/Tk
Wor kshop.

Roseman, M. & Greenberg, S. (1992). GroupKit: A groupware toolkit for building real-
time conferencing applications. In Proceedings of the ACM CSCW 92 Conference
on Computer Supported Cooperative Work, p43-50.

Roseman, M. & Greenberg, S. (1993). Building Flexible Groupware Through Open
Protocols. In Proceedings of the ACM COOCS 93 Conference on Organizational
Computing Systems, p279-288.

127
Roseman, M. & Greenberg, S. (1994). Registration for Real-time Groupware. Research
Report 94/533/02, Department of Computer Science, University of Calgary,
Alberta, Canada.

Smith, B.C. (1982). Reflection and Semanticsin a Procedural Language, MIT Laboratory
for Computer Science Report MIT-TR-272, Cambridge, Mass.

Steele, D. (1991). Distributed Object Oriented Programming: Mechanism and
Experience. In Proceeding of Tools USA.

Stefik, M. Bobrow, D. Foster, G. Lanning, S. & Tatar, D. (1987). WY SIWIS Revised:
Early Experiences with Multi-user Interfaces. ACM Transactions on Office
Information Systems, 5(2), 147-167.

Stroud, R. & Wu, Z (1995). Using Meta-object Protocols to Implement Atomic Data
Types. In Proceeding of the European Conference On Object-Oriented

Programming.

Tou, I., Berson, S, Estrin, G., Eterovic, Y. & Wu, E. (1994). Prototyping Synchronous
Group Applications. IEEE Computer, 27(5), p48-56.

Wilson, B. (1995). WSCRAWL 2.0: A Shared Whiteboard Based on X-Windows. In S
Greenberg, S. Hayne & R. Rada (eds.), Groupware for Real Time Drawing, A
Designer’s Guide 130-142.

