
THE UNIVERSITY OF CALGARY

Flexible Data Sharing in a Groupware Toolkit

by

Theodore O’Grady

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

NOVEMBER, 1996

©Theodore O’Grady 1996

ii

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “Flexible Data Sharing in a Groupware Toolkit”

submitted by Theodore O’Grady in partial fulfillment of the requirements for the degree

of Master of Science.

Supervisor, Dr. Saul Greenberg, Computer Science

Dr. Robin Cockett, Computer Science

Dr. Douglas Norrie, Mechanical Engineering

Date

iii

Abstract

Synchronous groupware applications let users collaborate over distance through their

computers. Since these applications are difficult to build, groupware toolkits have been

constructed to help developers with their tasks. Some of the building blocks supplied by

these toolkits are a set of abstractions for sharing data between sites. Yet different toolkits

use different strategies to share the data: some replicate the data at all sites, while others

store it at a central site. The correct choice of data sharing strategy is not obvious, as

different strategies affect data consistency as well as the performance of applications built

using the toolkit. We argue that data sharing should be flexible and that the developer

should be able control the data sharing by selecting from default strategies or creating

new ones to meet the requirements of their application. We use a technique called open

implementations to provide this control. We have built a prototype groupware toolkit

called GEN that demonstrates the feasibility of flexible data sharing. Using GEN, six

different forms of data sharing have been constructed, more than any other toolkit

currently available.

iv

Acknowledgements

Very little creative work is done in a vacuum and there have been many people that have

made this thesis possible. First and foremost I must thank Amy, my wife, who has been

supportive and caring through all of it and who is my closest friend. Saul Greenberg’s

supervision has fostered an environment where it was possible to explore and organize

my ideas, and has taught me a lot about writing.

Earle Lowe(e) and Mark Roseman have both been instrumental in this thesis, not only are

they close friends but also co-workers with whom ideas can be discussed and examined.

Sean Brandenberg, man of many bad sayings, is owed a special thanks for helping me

survive Category Theory. Other lab-mates including Carl & Gwen, Linda, Doug &

Ronnie, and now Don have made the lab an interesting place to work in, adding both

enthusiasm and stimulating conversation to graduate life.

Calgary would not have been the same without Carol, Ian & Amy, and Kirt. They made

the whole trip worthwhile! A lot of fun has been had with them, and a there’s a lot more

to come. Kim & Rob, and Leslie back in Ontario are close friends and were supportive

throughout. Gus, who is a life-long friend, many years ago explained to me that science

was fun, I got hooked and ended up writing this thesis.

Paul Dourish provided stimulating conversation and challenging ideas. Mark Roseman,

Paul and myself expect to market the GOMSercisor any day now. Object Technology

International not only funded this thesis, but also supported the research with enthusiasm.

Great thanks in particular go out Dave Thomas, Brian Barry and the VM Team.

Finally, I’ve got to say thanks to my family Paul & Francis (that would be Dad & Mom),

Chris & Stuart O’Grady, and the newer bits (in-laws) Mary & Alan, Peggy & David,

Norman & Anne, Ben, Katie, & Nick. Thanks people!

v

Table of Contents

Approval Page ... ii

Abstract ... iii

Acknowledgements ... iv

Table of Contents .. v

List of Figures.. viii

List of Tables... xi

1. Introduction ... 1

1.1 Runtime Architectures of Groupware Toolkits ... 2

1.2 Data Sharing Strategies for Runtime Architectures 3

1.3 Purpose of this Thesis ... 5

1.4 Overview of this Thesis... 5

2. Choices for Sharing Data: Runtime Architectures in Groupware Toolkits 7

2.1 Centralized and Replicated Architectures ... 8
2.1.1 Advantages of a Centralized Architecture...................................... 12
2.1.2 Advantages of a Replicated Architecture....................................... 14
2.1.3 Issues in Choosing a Concurrency Control Scheme for

Replicated Architectures... 17

2.2 Examples of Data Sharing Strategies in Runtime Architectures................... 20
2.2.1 Modified Replicated Architectures .. 22
2.2.2 Modified Centralized Architectures ... 24
2.2.3 A Flexible Architecture .. 26

2.3 Requirements for Data Sharing ... 26

2.4 Summary ... 28

3. Adding Flexibility to a Runtime Architecture.. 29

3.1 A Call for Flexibility in Groupware Toolkits.. 29

3.2 The Black Box Approach to Toolkits.. 31
3.2.1 Working Around the Black Box... 32

3.3 Flexibility through Open Implementation... 34
3.3.1 The Origins of Open Implementation... 35
3.3.2 Building a Meta-Interface... 36

vi

3.4 Summary ... 38

4. GroupEnvironment: The Programmer’s Interface.. 39

4.1 Overview of Requirements and their Implications for the Design................ 40

4.2 The Structure of GEN.. 43

4.3 Foundations: Objects, Distributed Objects and Smalltalk............................. 45

4.4 Programmer’s Interface... 48
4.4.1 Session Management.. 49
4.4.2 Support for Shared Data... 52

4.5 A Simple Example: The Brainstormer .. 61

4.6 Summary ... 65

5. GEN’s Meta-Interface... 67

5.1 Requirement for GEN’s Meta-Interface.. 67

5.2 Design of the Meta-Interface... 69
5.2.1 Control Model for Data Distribution.. 70
5.2.2 Mechanisms for Concurrency Control ... 72
5.2.3 Summary .. 73

5.3 An Implementation Strategy: The Wrapper Model....................................... 73
5.3.1 The Choice of Wrappers... 73
5.3.2 A Wrapper Model for Message Interception.................................. 75
5.3.3 A Wrapper Model for Representation and Contents Control......... 76

5.4 Putting Wrappers Around Objects .. 77

5.5 A Wrapper API for Message Interception... 78
5.5.1 Intercepting Messages .. 79
5.5.2 Controlling Concurrency Mechanisms... 80
5.5.3 Controlling the Routing of Messages... 82

5.6 The Wrapper API for Controlling Object Representation and Contents....... 84
5.6.1 Using Substitution to Control Distribution: Copies and

Proxies .. 86

5.7 Summary ... 88

6. Case Studies: The Default Implementations... 90

6.1 Case Study #1: Replicated Objects.. 91
6.1.1 Message Routing .. 92
6.1.2 Changing the Object’s Representation. .. 94

6.2 Case Study #2: Replicated-Locking Objects... 96

6.3 Case Study #3: Centralized Objects .. 98

vii

6.4 Summary ... 100

7. Case Studies: Extending GEN by Adding New Data Sharing Strategies............. 101

7.1 Case Study #4: Selective Broadcast of Messages ... 101

7.2 Case Study #5: Migration.. 103

7.3 Case Study #6: Optimistic Locking... 109

7.4 Summary ... 114

8. Discussion and Conclusion ... 115

8.1 Summary ... 115

8.2 A Critique of GEN .. 116

8.3 Future Work .. 118

8.4 Contributions... 120
8.4.1 Contributions to Groupware... 120
8.4.2 Contributions to Open Implementations .. 121

8.5 Conclusion... 121

Bibliography .. 122

viii

List of Figures

Figure 1-1. Conceptual structure of centralized, hybrid and replicated processes.............. 4

Figure 2-1. Sequence of events in a centralized architecture. ... 9

Figure 2-2. Sequence of events in a replicated architecture.. 10

Figure 2-3. The result of two simultaneous changes in a replicated architecture.............. 12

Figure 2-4. Rendezvous’ centralized architecture... 21

Figure 2-5. MMConf’s replicated architecture.. 22

Figure 3-1. The implementation of a traditional toolkit is only available through the API.31

Figure 3-2. The addition of a meta-interface allows developers to refine and extend the
API of the toolkit. .. 35

Figure 4-1. How the requirements are met by the design.. 43

Figure 4-2. Application of Open Implementation to the runtime architectures of a
groupware toolkits. .. 44

Figure 4-3. When X sends a message to the remote object A it is sent through a proxy
object, which forwards the message on to the real object. .. 47

Figure 4-4. The marshalling of an object. ... 47

Figure 4-5a shows the functional model of distributed programming, where procedure
calls are sent to other procedures. In Figure 4-5b, the object oriented programming
model requires that messages be sent to objects contained within the process......... 49

Figure 4-6. The global name space is an address space that all processes can see and
access objects by a unique name. .. 50

Figure 4-7. The implementation of the global name space is through a dictionary which
exists on each site. ... 51

Figure 4-8. Example default object distribution schemes, replicated and centralized. 54

Figure 4-9. The message #add: causes the event AddObject to be generated which
triggers the call-back #redraw... 57

Figure 4-10. Notification is used to keep an interface aware of changes in the models
shared data... 58

Figure 4-11. A simple environment structure, where AA encloses BB and CC............... 59

Figure 4-12. Example Brainstormer application. .. 61

ix

Figure 4-13. The global name space contains the ‘Bstorm’ environment which contains an
OrderedCollection of Ideas.. 62

Figure 4-14. When an idea is added to an ordered collection, the AddIdea event is
generated causing the call-backs associated with it to be executed........................... 62

Figure 4-15. Code to initialize the data structures for the brainstormer............................ 63

Figure 4-16. Code to start the brainstormer at a particular site... 63

Figure 4-17. Code to set-up a shared brainstormer with replicated data........................... 64

Figure 5-1. Control over the contents/ representation of the object.................................. 71

Figure 5-2. Control over message routing, examples of centralized and replicated
schemes. .. 72

Figure 5-3 . The need for concurrency control is obvious when two sites send potentially
conflicting messages to the same site.. 73

Figure 5-4. A wrapper around an original object intercepts messages destined for it. The
wrapper contains the controls for distributing the object and maintaining
consistency. ... 76

Figure 5-5. The wrapper intercepts the deconstruction and reconstruction of the object,
when it is being marshalled to allow customizable behaviours. 77

Figure 5-6. Message interception through the #doesNotUnderstand: implementation. In
this case the object simply forwards the message to the contained object................ 79

Figure 5-7. Open implementation of message interception... 80

Figure 5-8. The pre and post notification stages. .. 81

Figure 5-9. The components of message routing in the wrapper. 83

Figure 5-10. Deconstruction is used to remove a reference to a global variable while
reconstruction is used to rebuild that link. .. 85

Figure 5-11a) Shows how a remote proxy substitution creates a remote reference. Figure
5-11b) Shows how a remote copy substitution creates a new copy........................... 88

Figure 6-1. Synchronization in replicated objects through message forwarding. 91

Figure 6-2. Code for the distribution of messages to replicas... 93

Figure 6-3. The steps in maintaining the list of replicas. .. 94

Figure 6-4. During deconstruction, the list for the new object is formed.......................... 95

Figure 6-5. The replicas are reconstructed by sending a proxy to all the replicas............. 96

Figure 6-6. The acquisition of a centralized lock before message Y can be sent.............. 97

x

Figure 6-7. New wrapper deconstruction and reconstruction blocks................................ 97

Figure 6-8. Locking in the pre-consistency and post-consistency methods...................... 98

Figure 6-9. How a centralized object is represented on other machines........................... 99

Figure 6-10. Code to implement a centralized object.. 100

Figure 7-1. Modifications for ReplicatedSelectiveElement wrapper............................... 102

Figure 7-2. A shared OrderedCollection that does not broadcast the #at: method.......... 103

Figure 7-3. Structure of a migrating object. When the relative frequency count for a
particular site exceeds a threshold the object is migrated. 104

Figure 7-4. The path of a message in a migrating object. ... 106

Figure 7-5. Message Routing changes for migrating objects.. 107

Figure 7-6. Test block to determine if the object should be migrated............................. 108

Figure 7-7. Moving the contained object. ... 108

Figure 7-8. Default deconstruction block for migrating object. The contained object is
changed to a RemoteProxy for the contained object.. 109

Figure 7-9. Check-pointing the object at the pre-consistency stage................................ 112

Figure 7-10. The queuing up of messages to be distributed.. 113

xi

List of Tables

Table 2-1. Differences between replicated and centralized architectures. 11

Table 4-1. Protocols for publishing objects into the global space..................................... 52

Table 4-2. Protocols for specifying the type of distribution and concurrency control for an
object. .. 56

Table 4-3. Protocols for adding events to shared objects.. 58

Table 4-4. Protocols for using environments in groupware applications.......................... 60

Table 5-5. Protocol for wrapping objects.. 78

Table 5-6. Initialization protocols. .. 78

Table 5-7. Protocols for overriding consistency methods... 82

Table 5-8. Protocols for handling message distribution.. 83

Table 5-9. Protocols for specifying instance specific behaviours for deconstructing and
reconstructing the wrappers... 86

Table 5-10. Protocols for remote object distribution. ... 87

1

1. Introduction

Real time groupware applications give users the ability to collaborate over distance

through their computers. While these systems are now commercially available, they are

notoriously difficult to build. Developers must not only deal with defining the semantics

of the application, but also deal with the technical issues of how to distribute data and

processes around the network. Consequently, toolkits have emerged that allow developers

to construct groupware applications more easily. These toolkits provide common building

blocks such as inter-process communication, distribution of events and data, mechanisms

that allow participants to enter and leave conferences, and specialized user interface

widgets. A runtime architecture supports these building blocks by managing process

creation and destruction, communication connections, and fault tolerance.

Runtime architectures are an integral part of groupware development, and consequently

most toolkits are classified based on how their architecture is configured. The runtime

architecture determines the way the system distributes the processes and data of an

application across machines, and the way messages are routed between them. Runtime

architectures lie between two extremes, from completely centralized to completely

replicated. In a centralized architecture, there is a single primary process and a single

copy of the data residing on a single machine, and all communication is routed to this

process. In a replicated architecture, each machine involved in the conference has its own

local copy of the process and data, and communications between the processes keep

replicas synchronized with one another. Hybrid architectures are also possible,

containing, both replicated and centralized components. There is no clear choice of

architectural style, as the type of architecture chosen results in trade-offs between

performance and ease of implementation (Greenberg & Roseman, 1996).

2

We claim that developers need to control data sharing in groupware toolkits in two ways:

by selecting from existing methods of sharing data on a per object basis; and by

constructing new data sharing mechanisms that specify how data is distributed and what

concurrency control mechanisms are used. Control over data distribution lets the

developer specify where the data is located (e.g. whether it is centralized or replicated).

Management of concurrency control mechanisms lets application developers determine

how data is kept consistent (e.g. through locking mechanisms).

It is our goal to provide flexible data sharing to groupware application developers. We

achieve this goal using open implementation (Kiczales et al., 1995), a technique that

allows us to provide developers with default data sharing strategies and the ability to

create new ones. We have built a toolkit called GEN which demonstrates the feasibility of

flexible data sharing. With GEN we show three default data sharing implementations and

how three additional sharing strategies can be constructed.

Although we have targeted groupware toolkits for exploring our ideas about how

developers should control the way data is shared, this work can also be seen as having a

broader scope and applying to other areas of distributed computing. For example, the idea

of giving developers control over the sharing strategy may be useful in applications such

as distributed agents. This will discussed further in the final chapter when we consider

future work.

To set the scene for the rest of the thesis, the next section identifies the components

common to many runtime architectures in groupware toolkits. The subsequent section

then narrows the focus by considering the predominant types of runtime architectures

seen in current toolkits. Finally, I restate the purpose of this thesis and outline of the

remainder of the thesis.

1.1 Runtime Architectures of Groupware Toolkits

Many developers of groupware toolkits have examined in detail the technical features

required to build groupware toolkits. These toolkits include GroupKit (Roseman, 1993),

ObjectWorld (Tou et al., 1994), Touring Machine (Arango et al., 1993), Rendezvous

3

(Patterson et al., 1990), MEAD (Bentley et al., 1994), MMConf (Crowley et al., 1990),

and Clock (Graham & Urnes, 1996a,b). These toolkits typically provide specialized

groupware widgets such as multi-user scroll bars, an application programming interface

(API), and an underlying runtime architecture. The groupware widgets fall outside the

scope of this thesis, and the reader is referred to Greenberg and Roseman (1997) for

further information in this area. The application programming interface is closely tied to

the runtime architecture, so this discussion in this sense subsumes them. This thesis

concentrates on the structure of runtime architectures, which are typically classified into

two separate components: session management and data sharing.

Session management is the set of building blocks that allow developers to create

conferences and connect all of their participants (and their programs) together. The

session management layer is responsible for starting up and tearing down processes on

different machines, establishing and maintaining inter-process communication (IPC),

handling fault tolerance, and providing a persistence mechanism for saving information

(Greenberg and Roseman, 1997).

Data sharing mechanisms provide abstractions for sharing information between sites.

The data sharing mechanism controls how the data is distributed (e.g. centralized or

replicated), how it is kept consistent (e.g. by locking), how it is organized when there are

large amounts of data, and how other objects (such as user interfaces) are notified of

changes made in the data. In most groupware toolkits the runtime architecture intertwines

the data sharing model and the process (although they need not be). This will be

discussed further in Chapter 2.

1.2 Data Sharing Strategies for Runtime Architectures

As mentioned earlier, the data sharing strategies of groupware toolkits generally fall

between two extremes: centralized or replicated (Greenberg & Roseman, 1997). In a

centralized architecture, there is single server machine through which all input and output

requests are funnelled (Figure 1-1a). Client processes are only responsible for sending

requests to the central program, and for displaying the results. Because all data resides in

4

the central server, the data sharing model is also centralized. Only one copy of the data

exists, and all transaction requests must be funnelled to it. A centralized server simplifies

implementation since synchronization is implicit in a single process model.

Replicated architectures have a copy of the program at every site (Figure 1-1c). Each

program maintains a copy of the data. While this means that requests for data can be

handled locally, it also implies that each site must coordinate with every other site to

ensure consistency. Concurrency control algorithms must be used to maintain an adequate

level of synchronization between the various copies of data.

A hybrid architecture (Figure 1-1b) has components of both a replicated and a centralized

architecture. Here, a copy of the data can be kept in a central process as well as having

copies in the replicas. Toolkits that use hybrid architectures typically place the data at a

single site based upon performance criteria.

In most of today’s groupware toolkits, the runtime architecture and its implementation is

generally not modifiable. Toolkits typically supply only a single strategy for data sharing,

either centralized, replicated or hybrid. Only a handful of new toolkits allow developers

to choose from a limited set of data-sharing strategies and these choices are hard-wired

(Graham & Urnes, 1996a).

Each of these architectures (replicated, hybrid and centralized) have benefits and

drawbacks for the application developer (Crowley et al., 1990). These trade-offs include

the ease of implementing consistency, persistence, latecomers, different application

Users Site

Centralized Site

Communication Channel

a) Centralized c) Replicatedb) Hybrid

Figure 1-1. Conceptual structure of centralized, hybrid
and replicated processes.

5

versions, connecting users, and heterogeneous environments. Tradeoffs also include

runtime issues such as reliability, performance over slow networks, parallelism, and

scalability. Chapter 2 will discuss these further.

In addition to the centralized to replicated architectures used by groupware toolkits to

distribute data, there are also other possibilities, such as migration (Nascimento &

Dollimore, 1992). Migration also has its own set of trade-offs, in terms of performance

and ease of implementation. However, no toolkit currently allows data migration.

When using today’s toolkits, application developers currently cannot control how their

data is distributed around the network and kept consistent. They must design around the

runtime architecture provided by the groupware toolkit they select. While the toolkit’s

runtime architecture may be appropriate for some components of their application, it may

be a poor fit for others. All these points are indicators of the inflexibility in the current

state of the art.

1.3 Purpose of this Thesis

The purpose of this thesis is to demonstrate that groupware toolkits can provide flexible

data sharing. Unlike today’s implementations, toolkits can give the application developer

fine grained control over how data is shared. This includes the way data is distributed

across the network, and how it is kept consistent for each piece of data. Such a toolkit

should allow application developers to both select from a set of default strategies for

sharing data (provided as options by the toolkit), or to define new ones.

1.4 Overview of this Thesis

The thesis will show how groupware toolkits can be made flexible through the several

steps outlined in the chapters below.

Chapter 2 provides background. It considers data sharing techniques used in the runtime

architectures in currently available toolkits. An examination of the trade-offs between the

various sharing strategies reveals that an application may require multiple sharing

strategies.

6

Chapter 3 describes the philosophy of our approach to making groupware toolkits

flexible. It introduces a technique now being applied to toolkits (Kiczales, 1995) called

open implementation and discusses how it can be applied to groupware toolkits to give

the developers both the ability to choose from default data sharing implementations and

to create new ones. The technique of open implementation suggests that a toolkit can be

broken into two components: a programmer’s interface which contains useful default

implementations for sharing data; and a meta-interface which the programmer can use to

create new techniques for sharing data.

Chapters 4 and 5 present a prototype called GEN that uses open implementation

techniques to give developers fine grained control over the distribution and location of

objects. A programmer’s interface is presented that provides an API for session

management and data sharing. A second level interface, called the meta-interface, gives

application developers direct control over data distribution and concurrency control

mechanisms. Although GEN is just a prototype, it illustrates the principles and details of

how open implementation can be applied to groupware toolkits.

Chapters 6 and 7 demonstrate how GEN’s meta-interface can be used to create six

different strategies for sharing data between different sites. These implementations

include replicated, centralized, replicated locking, selective message broadcasting,

migration, and a form of optimistic locking. These case studies are used to demonstrate

GEN’s capabilities. While no claim is made that GEN can cover all situations, they

illustrate that GEN is far more flexible than any other groupware toolkit currently

available.

Chapter 8 concludes the thesis. It summarizes the arguments presented in the thesis,

critiques the work, and suggests future research in the area of open implementation for

groupware toolkits. Finally, it describes the contributions that this thesis has made to

computer science.

7

2. Choices for Sharing Data: Runtime
Architectures in Groupware Toolkits

Application developers choose between groupware toolkits for many reasons. Obviously,

their choice is based partially upon the functionality the toolkit provides, such as the

particular groupware widgets supplied, for these are the primary building blocks that the

designer must use to create their application. A second and perhaps more subtle aspect of

their choice is the underlying strategy the toolkit uses to manage shared data. The way

data is shared can affect the type and performance of applications that are built using a

particular toolkit. In this section, we explore some of the trade-offs between various data

sharing strategies, and how they are influenced by the actual runtime architecture used by

the toolkit. This elaborates some of the ideas already introduced in Chapter 1.

When researchers discuss runtime architectures of groupware, it is typically in terms of its

process structure (Crowley, 1990; Greenberg & Roseman, 1997). For example, a

replicated architecture is said to have a process at every site, with data being shared by

maintaining a copy of it in each process. In contrast, a centralized architecture is said to

have a single process on a single site, with the shared data residing within that single

process. However, these terms are used fairly loosely in practice, and most groupware

toolkits only tend toward one of these two extremes. For example, although toolkits such

as Clock (Graham & Urnes, 1996), MEAD (Bentley et al., 1994) and Weasel (Graham &

Urnes, 1992) claim to be forms of centralized architectures, they all have multiple

processes running at each of the sites. What the creators of these toolkits usually mean is

that it is the shared data that is centralized, although it is sometimes so tightly bound up

to a centralized server process model that it is difficult to differentiate between the two.

Consequently, in this chapter, we will emphasise the location of the data, rather than the

processes, to differentiate between various groupware architectures.

8

The first section begins with a summary of replicated and centralized architectures,

examining some of the arguments that have been made for and against each of them. The

subsequent section continues by describing and contrasting how particular groupware

toolkits implement their process/data-sharing architectures. The chapter concludes by

discussing the requirements for a flexible toolkit that separates the process model from

the data sharing model, and allows developers to create or choose between different

strategies for sharing data.

2.1 Centralized and Replicated Architectures

One of the primary design decisions made by developers building a groupware toolkit is

whether its architecture should be centralized or replicated (Crowley et al., 1990). They

are usually concerned with the trade-offs between the two architectures, such as how easy

they are to implement, and what they believe application developers will need. We begin

with a look at how these architectures are generally implemented.

Centralized architectures have a main process with a single copy of the shared data

residing on a central server machine. A centralized architecture is usually composed of

one server process and multiple client processes (usually 1 per participant). The client

process simply receives input from the user and forwards it to the centralized server. The

centralized server is the application program, which acts on the input received from the

clients and then updates each of the client displays.

For example, consider a simple brainstorming tool that presents participants with a visible

list of ideas, and that allows any participant to enter a new idea to the list. In a centralized

architecture, a single data structure containing the list of ideas is kept in the central

process. Now consider the sequence of events in Figure 2-1, where four people are using

this tool. The participant at Site 1 is about to enter a new idea, called ‘C’, to a list that

already contains ideas ‘A’ and ‘B’. The participant types some text and hits ‘return’,

which initiates the sequence. The text, which is generated at the local site, is forwarded to

the central server. The central server receives the event, adds ‘C’ to the shared list, and

then updates each of the displays on the client machines. The work of adding the element

9

to the shared list and initiating the display updates is done at server. The clients merely

forward events to the server, and redraw the interface as directed by the server.

Replicated architectures have a process running at each site as well as a copy of the

shared data at each site. Rather than forwarding the events, the local process handles the

event locally, and then tells others about it by broadcasting a procedure call or message to

all the other sites. The other sites receive the procedure call or message, and update their

internal copies of the data as well as the display.

For example, reconsider the problem of adding ‘C’ to a shared list in a replicated

architecture. Figure 2-2 illustrates how this architecture distributes the information. Site 1

will receive the text + return, add ‘C’ to the local copy of the list, and then update the

local display. It then broadcasts a procedure call (including the text as an argument) to

sites 2, 3, and 4. These remote sites will then execute the procedure that adds the idea ‘C’

to the local copy of the shared list. The remote sites then update their displays.

Which architecture is better? Researchers have argued the merits of these two

architectural extremes, and adopt the one they feel is best for their toolkit. Bentley et al.

(1994), Hill (1992), Patterson et al. (1996), Wilson (1995), and Ahuja et al. (1990) all

argue the merits of different forms of centralized architectures for groupware. On the

Client Sends:
Text+return

Update
Display

Update
Display

Update
Display

Update
Display

Site 1
Site 2

Site 3 Site 4

Central Server containing
the list ‘A,B’. When it
receives the text, it adds
it to the list as idea ‘C’.

A
B
C

User types:
Text+return

Figure 2-1. Sequence of events in a centralized
architecture.

10

other hand Craighill et al. (1993), Crowley et al. (1990), Bonfiglio et al. (1989) and

Anupam & Bajaj (1993) argue the merits of various forms of replicated architectures.

A centralized architecture is easier to implement in that the developer does not have to

worry about handling consistency, persistence, latecomers, or different versions of the

applications. A replicated architecture on the other hand gives superior performance in

the cases where there are slow networks, a high need for concurrent activity, a large

number of users, users requiring different views, or when the network of computers is

heterogeneous. In the following section we will discuss these differences, which are

summarized in Table 2-1.

Site 1

Site 2

Site 3 Site 4

Add ‘C’

Add ‘C’
Add ‘C’

A
B
C

User Types:
Text + return

The site receives the
text+return, makes the
change to the local list and
then broadcasts the
change to the other sites.

Each of the replicated
sites is responsible for
maintaining the local list
and updating its own
display.A

B
C

A
B
C

A
B
C

Figure 2-2. Sequence of events in a replicated architecture.

11

Centralized Replicated Best1

Consistency Inherent in the
architecture.

Toolkits must implement
concurrency scheme.

C

Persistence Copy centralized data to
repository to transmit state
info.

Unclear which site should store
the data.

C

Latecomers Use same consistent data
repository.

Toolkit dependent strategy must
be created.

C

Application
Versions

Only one version of the
application running.

Must ensure every site has the
same version.

C

Connecting
Users

Every site connects to a
single machine.

Each site must explicitly connect
to all other sites.

C

Slow Networks Slow local feedback. Rapid feedback for local actions. R

Distributed
Execution

All operations on data are
serialized.

Multiple sites can operate on
data simultaneously.

R

Scalability Single process can
become a bottleneck.

Multiple processes can distribute
the work.

R

Heterogeneous
Environments

Hard to make work in
heterogeneous
environments.

Simpler to implement in
heterogeneous environments.

R

Multiple Views Main program must
contain all variations.

Each site implements its own
view.

R

Reliability Only as reliable as the
central server the
application runs on.

Graceful reliability in principle
as the loss of a single machine
will not stop the entire system.

?

Table 2-1. Differences between replicated and centralized architectures.

1 C = Centralized is superior, R = Replicated is superior, ? = Unclear which strategy is

superior.

12

2.1.1 Advantages of a Centralized Architecture

Consistency is a concern in any distributed system, because parallel operations on data

can leave it in different states at different sites. Centralized architectures eliminate this

problem by keeping all the shared data at a single site. With a single copy of the data,

there is no danger of state inconsistency because there is only a single process and only a

single copy of the data.

In a replicated architecture, two users can change a piece of shared data at the same time

(Greenberg & Marwood, 1994). If no consistency control mechanisms are used, these two

copies of the data may become inconsistent. Figure 2-3 illustrates how state inconsistency

may occur when different sites shade a circle with different colours at the same time. In

Step 1, two copies of a single circle are simultaneously sent a message by their local sites

to change its colour. In Step 2, we can see that the change is first applied locally and then

the colour change is broadcast as a message to the other site. Finally, in Step 3 the circles

have received the broadcast message and have applied it. However, the circles’ colours

are now inconsistent because the local and broadcast message were executed in different

orders at each site.

In a replicated architecture, there are many different consistency schemes (such as

locking, or optimistic locking) that can be applied to overcome this problem. The choice

of these has different implications for the user in terms of speed and recovery behaviour

Make grey Make black

Make black

Make grey

Step 1) Initial
state

Step 2) After
change is
handled locally

Step 3) After
change is
broadcast

Figure 2-3. The result of two simultaneous changes
in a replicated architecture.

13

(Greenberg & Marwood, 1994) - the toolkit developer must decide which consistency

mechanisms best meet the needs of the application. Because of their importance, we shall

revisit the trade-offs between these schemes in detail in Section 2.1.3.

Persistence allows users to save the state of a conference between sessions. It is useful

because users may temporarily suspend a conference that they wish to resume at a later

time. Persistence is easily handled by a centralized implementation because the

centralized server can save the state of the shared data at the server’s site and restore itself

to that state when the conference is resumed (Tou et al., 1994). The user re-enters the

conference by connecting to the server, and the saved conference can be resumed.

 In a replicated implementation, each of the sites is an equal peer. Determining where to

save the data is more complicated because it is not guaranteed that any of the peers will

be part of the conference when it is resumed. As such, the toolkit cannot decide where to

save the data, and replicated architectures must come up with alternative strategies. In the

case of some toolkits, that problem is left up to the application developer (Roseman,

1993).

Latecomers are defined as sites where users enter a conference after it has begun

(Crowley et al, 1990). In this case, many of the shared data structures will have changed

from the initial state. For example, an initially empty whiteboard may now contain a

drawing. The latecomer will somehow have to update itself with the current state of that

drawing. In a centralized architecture this is not a problem. The shared data is contained

in the server, and the new site can request the current server to bring it up to date

(Patterson et al., 1996).

In a replicated architecture, the new site must get a copy of the current state of the data

from one of its peers. Some toolkits do provide hooks for the developer to write

application specific code for updating latecomers (for example see Roseman &

Greenberg, 1996; Tou et al., 1994).

Different application versions. Applications are frequently modified and there is a risk

that participants may have different and incompatible versions of the software.

14

Centralized architectures do not have to worry about this because the server is the only

site running the application. The clients themselves are usually simple display programs

or virtual terminals, such as network window systems (e.g. XServer systems, Patterson et

al., 1996).

In a replicated architecture a copy of the application program must be run on each site.

Problems appear when the local site does not have the application, or when it has a

version that is out of date. In this case the system must be able to check the version of the

application (Crowley et al., 1990), perhaps uploading the newest one if possible.

Connecting users. Each user must have a way of connecting up to the conference from

their local site. In the centralized architecture, the user only has to connect up to the single

server site. If they get the site wrong, they will be excluded from the conference.

However, their failure to connect will not interfere with the other participants.

In replicated architectures, the user must know the address of each of the other sites

connecting to the conference. If the user gets the name of a site wrong, or excludes one of

the sites, changes made by one site may not be broadcast to all the other sites.

2.1.2 Advantages of a Replicated Architecture

Slow networks are always possible in an environment where connections are maintained

over long distances, over congested networks, or over networks with restricted

bandwidth. A slow connection can affect the speed at which changes made by one site

can be seen at another site. Remote actions may appear sluggish on the local site as

changes are propagated across the network (Crowley et al., 1990). Sluggishness can be

annoying when actions performed by other sites are delayed. It can become devastating if

your own local actions are delayed, giving poor feedback and inadequate interface

responsiveness (Greenberg & Roseman, 1997).

A replicated architecture can help compensate for a slow network by giving rapid

feedback for local operations. When the user makes a change to a shared piece of data,

that change can be displayed locally extremely quickly. While the change may still appear

15

sluggish at other sites as it takes time to propagate across the network, the system will at

least be responsive to the user’s own interactions (Greenberg et al., 1992).

In a centralized architecture, both local changes and remote changes will be affected by a

slow network. A local action must be propagated across the network, executed at the

central node, and then the changes to the display must be propagated back. A slow

network will create a significant delay between the time the action is sent to the server

and the time the user who initiated the action receives feedback.

Distributed Execution allows several sites to make changes simultaneously by utilizing

the computing power of all the sites. A replicated architecture allows users working in

different areas of the same application to perform work in parallel. If a particular

operation requires a lot of computation power, a single site can do the work locally and

then broadcast the result to all the other sites (Anupam & Bajaj, 1993).

In a centralized architecture, there is a single process that performs all the work. The

single process serializes all the operations from the various sites and can become a

performance bottleneck for applications where there are operations that take a long time.

Scalability concerns how many users can be present in a single conference. An

application can quickly become unusable as communication times and processing times

increase. A replicated architecture can reduce the amount of information transmitted

between sites. For example, when the idea ‘C’ was added to the list in Figure 2-2, only

the add command needed to be transmitted across the network. The cost of adding the

additional site is the extra time it takes to do the broadcast (Greenberg & Roseman,

1997).

In contrast, the centralized version had to handle every primitive key press, as the server

handles both the input and the output. When a message comes in from one of the sites,

the central server must not only process the request, but also update each of the displays.

This can be an expensive operation.

Heterogeneous environments are common, and it is possible that several members of a

team will be working on different hardware platforms. For example, one user may have

16

an Apple Macintosh, while the other has a Sun workstation. A groupware application

must be able to run on all the various platforms.

A replicated architecture simplifies this problem, because machine specific code can be

written for each platform. The developer recodes and compiles the application for a

particular platform. It is only the communication protocols and data structures that must

be consistent between sites (Roseman & Greenberg, 1993).

In a centralized architecture this is much more difficult as the centralized process must be

able to invoke commands in the windowing system. While protocols such as X allow

developers to do this, however they are not available on all platforms.

Multiple Views. Sometimes users will require different views of the same data. For

example, a supervisor and a worker who are collaborating on a project may need different

levels of detail. The worker’s view may show detailed information about a particular

component of the project, while the supervisor’s view may show general information

about the project.

In a replicated architecture, new views can be created by programmers without requiring

recompilation of the entire application. As with heterogeneous environments, a new site-

specific client can be written which uses the new view, as long as it adheres to the same

shared data structures and protocols as other sites (Roseman & Greenberg, 1993).

A centralized architecture requires the developer to rebuild the entire centralized

application and to contain all the possible variations of the interface. If there are many

different views to construct the application can become quite large.

Reliability. Sometimes both replicated and centralized architectures have good solutions

for a problem. However the trade-offs are simply different. This is the case with

reliability. Reliability is a problem in groupware applications because individual sites

may become unstable or fail in a distributed environment. If one of the sites goes down,

the toolkit must recover the data and keep the conference running. In a centralized

architecture, this is relatively easy as the centralized site simply closes the connection to

the aberrant site. Similarly, it is unlikely that the centralized site will fail because it is

17

likely to reside on a stable machine (Patterson et al., 1996). However, if the server does

go down, the entire conference will be halted. On the other hand, replicated architectures

handle reliability in a different way. If a single site goes down, the rest of the conference

can keep running, losing only a single participant (Greenberg & Roseman, 1997). The

trade-off is that there may be complicated recovery techniques that are required as various

sites are left in inconsistent states (Patterson et al., 1996). Indeed no replicated

architectures currently handle reliability, even though they can do so in principle.

No one architecture is superior to the other in this case and developers must choose the

type of reliability that their application requires. If there is a stable centralized server

available a centralized architecture would be easier to implement; however, when no

stable server is available, a replicated approach might be more appropriate.

2.1.3 Issues in Choosing a Concurrency Control Scheme for Replicated
Architectures

Concurrency control was raised as a potential problem in the previous section. Because

this is a critical aspect of replicated architectures, it has received much attention and

deserves more discussion. Concurrency problems arise in groupware applications that

have data distributed among several processes. In a centralized approach, there is a single

copy of the data and all the operations on the data occur in a single process, effectively

serializing the user’s operations on the data and eliminating the need for concurrency

control. In a replicated approach, however, the same piece of data can be accessed

simultaneously at two different sites, as we saw in the example in Figure 2-3 of Section

2.1.1. With multiple applications communicating over a network, commands that change

the data may arrive at different sites in different orders and the data may become

inconsistent. In this case a strategy is needed to ensure that the programs can stop or

control these inconsistencies. Greenberg & Marwood (1994) identify four common

strategies:

• Non-optimistic serialization ensures that all messages execute in the same order

on all sites. It means that the message cannot be executed locally until the

18

application is assured that all messages which executed before it on any other site

have arrived and have executed. One strategy for implementing this is by using

timestamps as discussed by Lamport (1978). However, the delay caused by

waiting to ensure that all messages have been received may disrupt the work of

the user, as they may not receive feedback quickly.

• Optimistic serialization assumes that messages will arrive in the order in which

they were sent. As such, it executes each message when it is received. However,

messages that arrive out of order must be detected and then the damage must be

repaired. In one strategy, the site repairs out of order sequences by undoing the out

of order messages and then redoing the messages in the correct order. This will

have the side-effect of the user seeing things undone and then redone

occasionally, as message execution is repaired.

A second strategy uses transformation. The transformation algorithm ensures that

the objects end up in a consistent state even if messages arrive in different orders

at different sites. It does this by modifying the data, using a set of rules, when

messages sent to it arrive out of order (Ellis & Gibbs, 1989). By being able to

execute messages as they arrive, the site will minimize the time between when a

message is broadcast and when it is executed at a remote site, making remote

operations appear fast. Additionally, the user will see quick local feedback as their

messages are applied to the data immediately. This is appropriate when order

conflicts are rare.

• Non-Optimistic Locking enforces mutually exclusive access to data. In order to

change data a site must acquire a lock. Once the lock has been acquired, the site

can make the required changes, and then it must release the lock to allow other

sites to make changes. This may disrupt work, as the user must now wait for the

lock on networks with long latencies.

• Optimistic Locking works by using provisional locks. A provisional lock gives a

temporary approval of the lock whenever the lock is requested. However, the

19

temporary approval may be revoked later if another site had previously requested

and received the lock. When approval is revoked, the application must undo any

changes made during the period where it had the provisional lock. The advantage

to this scheme is that the user will see quick local updates on his display, but may

also see unusual behaviour in the application as their actions are undone if the

lock is refused.

Further, it is not always clear that concurrency needs to be managed. For example,

Greenberg & Marwood (1994) point out the example of a shared white board, where

inconsistencies of a few pixels at different sites do not matter as users may not notice

these inconsistencies. Additionally, concurrency may be handled by the users without the

need for software intervention, through social protocols (Greenberg & Marwood, 1994).

Stefik et al. (1987) noticed that people using groupware do not usually interfere with one

another’s work. For example, it would be rude to destroy an object someone is currently

using. In certain circumstances, social protocols may mitigate the need for concurrency

control.

There are many other concurrency strategies, such as transaction mechanisms, immutable

objects (Moran et al., 1995), and read/write locks. Various different implementations of

these strategies can result in different trade-offs between speed and consistency.

Barghouti and Kaiser (1991), Greenberg & Marwood (1994), and Ellis & Gibbs (1986)

provide comprehensive surveys of the available techniques for concurrency control.

In summary, optimistic strategies are useful when network response times are slow, but

may confuse the user when the data must be ‘rolled back’ because of a missed lock or

serialization event. Non-optimistic strategies will always ensure that the data is always in

a consistent state, at a cost of higher latency. With no concurrency control,

inconsistencies may exist between sites. However, in certain circumstances (such as a

whiteboard), users may not notice small differences and the speed gains may be

substantial.

20

2.2 Examples of Data Sharing Strategies in Runtime
Architectures

The earliest toolkits developed had process architectures close to the models mentioned

previously, centralized or replicated. MMConf (Crowley et al., 1990), Conference Toolkit

(Bonfiglio et al., 1989) and ShareKit (Jahn, 1995) use replicated designs, while

Rendezvous (Patterson et al., 1990) and Rapport (Ahuja et al., 1990) use centralized

designs. Other implementations, including GroupKit (Roseman & Greenberg, 1992),

ObjectWorld (Tou et al., 1994), Notification Server (Patterson et al., 1996), Clock

(Graham & Urnes, 1996), and MEAD (Bentley et al., 1994), all use variations that

combine some elements of the replicated architecture with elements of a centralized

architecture. Finally, Prospero (Dourish, 1996) examines the aspect of flexibility in

concurrency in groupware architectures. In this section we will examine some examples

of these toolkits.

Rendezvous (Patterson et al., 1990; Hill, 1992; Hill et al., 1993) is primarily a centralized

architecture with the majority of the application residing on a single machine.

Rendezvous is made up of three major components: virtual terminals, for displaying

output and collecting input; the application thread, which executes the application code;

and interaction threads, which determine how the information should be displayed for

each user. The majority of the work is done by the interaction thread and the application

thread, which reside in a single centralized process.

By using different interaction threads the application can present multiple different views

to the data. This interaction thread serves as an intermediary between the application and

the display, by interpreting the shared data and updating the display of its associated

virtual terminal. For example, in Figure 2-4 we can see how different users have different

displays. In this case, the interaction threads 2 and 3 display the application data as

histograms through the virtual terminal. On the other hand, interaction thread 1 displays

its data as a line graph. By modifying the interaction thread, developers can create

different ways for viewing the same data.

21

Rendezvous’ creators claim the benefits from the centralized architecture eliminates the

need for concurrency control mechanisms, eliminates concerns about different application

versions, and has good reliability. Rendezvous suffers because a single process handles

both the application and the interaction threads. This means that the processor must

update all the displays as well as execute the code for the application. When there are

multiple sites used in intense graphical applications, the centralized server becomes a

bottleneck and performance suffers.

MMConf (Crowley et al., 1990) uses a purely replicated architecture and supports several

applications executing together in a single conference (such as a whiteboard, text editor,

and brainstormer). Rather than having each application connect individually to all the

other applications, MMConf uses a conference manager at each site to handle the

problems associated with maintaining the communications between sites. Figure 2-5

illustrates how a message to draw a line from the whiteboard at site 1 is sent to the

conference manager, which broadcasts it to all the other sites. When the conference

manager at the other site receives the message, it forwards the message on to the local

copy of the whiteboard application that is running. In essence the conference manager

acts as a router and a multi-casting agent.

MMConf allows each site to process the local changes before they are broadcast, so that

users can receive quick feedback for local operations. However, the replication introduces

Application
Thread

Interaction
Thread 1

Interaction
Thread 3

Interaction
Thread 2

Virtual Terminal 1

Virtual Terminal 2

Centralized
Application Process

Input & Output
Display Updates

Virtual Terminal 3

Figure 2-4. Rendezvous’ centralized architecture.

22

several problems. First, in order to ensure that all the data is kept consistent, MMConf

only allows a single user at a time to make changes in the application at a time using floor

control (Greenberg, 1991), which is overly restrictive. Second, users may have different

versions of the application. In order to get around this problem, MMConf uses a file

transfer protocol that allows each site to request an updated version of the program.

Third, the user interface to connect with other users is unwieldy. When starting the

conference the user must specify the address of all the other sites, if they are to connect to

them.

2.2.1 Modified Replicated Architectures

Although the replicated and centralized architectures are often referred to in the literature

as strategies used for implementing toolkits, new architectures combine them to best suit

their needs.

Several toolkits combine aspects of centralized systems into a predominantly replicated

architecture. The idea is to mitigate the shortcomings of the replicated architecture, such

as the problems of connecting to multiple different sites, adding persistence, handling

latecomers, and managing consistency.

GroupKit (Roseman, 1993) is a predominantly replicated architecture, where

applications and the session management are completely replicated. However, GroupKit

Conference
Manager

Conference
Manager

Whiteboard Brainstormer BrainstormerWhiteboard

Site 1 Site 2

Inter-process
communication

drawline
drawline

Figure 2-5. MMConf’s replicated architecture.

23

employs a centralized component (called the registrar) to help solve the complex problem

of identifying all the sites to connect to. The user connects to the registrar, which then

manages the connections to the other sites for the client. The registrar accomplishes this

by keeping a list of all the sites participating in a conference and automatically establishes

connections with them. GroupKit has also used this feature to allow users to browse

existing conferences and join them while they are in progress.

GroupKit does not supply a default form of concurrency control but rather leaves it up to

the developer. By default, replicated data in GroupKit has no concurrency control, and

messages may arrive at different sites in different orders. As discussed previously, this is

reasonable when a shared application (such as a whiteboard) does not need to be entirely

consistent.

GroupKit does provide the option of serialization for concurrency control, which

developers can selectively apply to data. Internally, GroupKit uses a special multi-casting

procedure to route all messages through a single arbitrary site, ensuring that the messages

arrive at each of the sites in the same order. In effect, the site through which messages are

routed becomes a centralized server which dispatches messages to all the other sites.

ObjectWorld (Tou et al, 1994) adds persistence to a replicated architecture by adding a

centralized server that acts as a repository for the shared data. The server records the

current state of the conference in a file for later recall. When the conference is resumed

after having been terminated at an earlier point, each site queries the server for the saved

state of the data which then transfers it to them. Additionally, ObjectWorld uses this

technique to update latecomers to the conference: when a new participant joins the

conference they are automatically updated from this central repository.

ObjectWorld uses several strategies to control the consistency of the objects. Dependency

detection controls the misordered arrival of messages by uniquely identifying the state of

the objects they operate on before the message executes. If the object is in the wrong

state, the system automatically copies the most recent version of the object from the

centralized store. Non-optimistic locking allows the developer to prevent simultaneous

24

access to objects by explicitly acquiring and releasing locks. Finally, a special broadcast

protocol checks to ensure that all objects are available in the process when a message is

received. If the object is not present, the system copies it from the broadcasting site. This

concurrency control strategy is built in and all shared objects automatically use it whether

it is required or not. Unlike other methods that require developers to explicitly request

locks for data, or explicitly funnel data through a single process such as in GroupKit,

ObjectWorld makes consistency implicit. Whenever an object is shared, its consistency is

automatically guaranteed and maintained by the system.

2.2.2 Modified Centralized Architectures

Centralized architectures are often modified to reduce the amount of work that is done in

the centralized server, as well as to reduce the amount of communication between the

client sites and the server itself.

To reduce the amount of computation that is done in the centralized server, MEAD

(Bentley et al, 1994) separates the shared application data and operations on that data

from the user interface. The shared data and application are contained in the server, while

the interface and display are performed by each of the client sites. This reduces the

workload of the centralized site by having the client machines interpret the shared data

and update the display on their own. For example, when there is a change in the

application data, the server informs the client of the change. The client then responds to

that change by querying the current state of the shared data, and updating its display

appropriately. This type of implementation reduces the load on the server, by removing

all responsibility for maintaining the display, which then becomes the responsibility of

the clients.

Patterson’s Notification Server (Patterson et al., 1996) reduces the computation done in

the server by having clients perform the work for the application. The server only

maintains the state of the data. The Notification Server has two functions: 1) to store a

consistent copy of the data and manage locks for that data and 2) to notify sites using a

piece of data when a change is made to that data.

25

To modify a piece of data, the developer must go through five steps: 1) get the lock for

the data; 2) copy the data from the repository; 3) make the change to the data; 4) copy the

data back to the repository; and 5) release the lock. The other function of the notification

server is to inform sites when a change is made to a piece of data. Each site must register

itself with the Notification Server, indicating what information it is interested in. When a

change is made to that data, the registered clients are notified. Each client then has to get

the current state of the data from the Notification Server.

The Notification Server reduces the computation bottleneck of other centralized

architectures. However, it also increases the amount of network traffic as the shared data

must be transmitted between the Notification Server and the client site whenever a change

is made.

Clock (Graham & Urnes, 1996a; Graham & Urnes, 1996b) attempts to reduce both the

amount of computation done on the server, as well as the time it takes for communication

to be transmitted across the network. As with MEAD, the client handles the display

updates. Unlike these toolkits, the client and the server also co-ordinate with each other to

speed up communication by caching data that is normally stored in the server at the client

site. The cache contains results of requests that have been made by the client to the server

on the assumption that same request will be made frequently. If the result of a request is

available in the local cache, the cost of a remote request is saved. The cache entries of the

clients are invalidated by the centralized server whenever a change is made to shared data

that affects a cache entry.

Clock uses two additional techniques to speed up the delivery of messages: request

prefetch and request presend. The assumption is that the cache predicts the requests that

the application is going to make, so during idle points in the program the client and server

can attempt to keep the cache from going stale. In request prefetch, the client examines its

cache, finds stale entries, and asks the server for updates for those entries. The request

presend is performed by the server, which has knowledge about the cache at each site

(remember it must invalidate the entries). When the server determines that a cache entry

on a client is “stale” (has been invalidated), it automatically sends an update to the site.

26

The Clock implementation brings the centralized architecture closer to the replicated

architecture by copying frequently used data out to each of the client sites, thus reducing

communication times and allowing fast local updates.

2.2.3 A Flexible Architecture

In work parallel to this thesis, the Prospero groupware toolkit (Dourish, 1996) uses open

implementation (presented in Chapter 3) to let application developers manage multiple

concurrency control implementations in their application. Dourish recognizes that

concurrency control strategies depend on the needs of a particular application. To

accomplish this, he explores how consistency is handled in groupware systems. He claims

that most groupware systems use inconsistency avoidance rather than consistency

management. In inconsistency avoidance, the system focuses on raising barriers to

prevent parallel work from being done on a single piece of data. For example, a lock only

allows a single user to access a particular piece of data at a time. On the other hand,

consistency management re-synchronizes data after multiple users have worked on it in

parallel. Dourish creates a consistency management model that allows data to diverge

(become inconsistent) and then converge (or re-synchronize). Using this, developers can

specify arbitrary consistency schemes that are suitable to their applications.

In order to support this work, Dourish also proposes a simple open implementation for

distributing data, to give the developer a degree of control over how data is distributed.

As we shall discuss in Chapter 8, Dourish’s work complements the work presented here

by emphasizing concurrency control, while we emphasize data distribution.

2.3 Requirements for Data Sharing

The current generation of toolkits define the sharing and concurrency strategy for the

entire application and assume that the strategy provided for sharing data will be useful for

all the data across all groupware applications. Researchers have not reached a consensus

on which particular data sharing strategy should be used in groupware applications,

however they make valid arguments for and against each strategy. Currently, the way data

27

is shared in groupware applications built using a toolkit is based on what the toolkit

developer supplies.

We argue that the application developer should be given control over the technique used

to share data, where the particular properties of the data being shared and how it is used

by the application should determine which techniques should be employed. Additionally,

the data sharing strategy should not apply to the entire application, but rather to particular

pieces of data. The developer needs to control the distribution of the data and the

concurrency control mechanism.

Distribution of the data. The application developer needs to control how each piece of

data is distributed. For example, different pieces of data may require different levels of

feedback when the user makes a change. To illustrate, when a user draws a line on a

drawing surface, they need immediate feedback so they can see their pencil stroke, which

replicated data is well suited to. Conversely, when a user makes a query about the

participants in the conference, they may not require immediate feedback and a centralized

implementation could be used.

Additionally, techniques that are unwieldy across the entire application may be useful

when considering individual pieces of data. For example, data migration (Nascimento &

Dollimore, 1992) could be used in the case where one user accesses a particular piece of

data frequently. In this case, rather than have the data remain at a single location (where

the user might have to access it remotely) the data could be moved to the site using it

most frequently to reduce bandwidth and transmission times.

Consistency. Users need control over consistency because various different consistency

strategies may be appropriate. Consistency can impact the performance of the application,

and the time it takes users to get feedback on their actions. Some data may require strong

consistency, with little regard to performance, such as a bank balance. Other data may

accept inconsistencies at the expensive of responsiveness, such as a whiteboard.

We believe that the application developer needs to be able to control how each piece of

data in the application is shared by determining both the concurrency mechanism and the

28

way the data is distributed. A toolkit should give the developer the choice. However, no

toolkit can implement all the possible combinations of concurrency control and data

distribution. Thus the application developer should be able to define new strategies, as

well as select from existing ones, to meet their particular requirements. In the next

chapter we will see how open implementations can afford a degree of control while

minimizing coding complexity.

2.4 Summary

In this chapter we have shown some of the different ways toolkits hardcode the sharing of

data. However, an application may have need for different sharing strategies for different

pieces of data. We argue that the application developer should be able to choose from

different strategies, as well as define new strategies for sharing individual pieces of data.

29

3. Adding Flexibility to a Runtime Architecture

The previous chapter revealed several different strategies for implementing both

centralized and replicated runtime architectures. The examples illustrated that every

toolkit chooses different ways of implementing its components, which ultimately

produces trade-offs in performance, ease of implementation, and consistency. Yet we

expect that groupware applications built on these toolkits will become more complex and

diverse. Consequently, the particular implementation choices hard-wired into these

toolkits may prove a poor match to the demands of future applications. Runtime

architectures in groupware toolkits must become more flexible to let application

developers control aspects of the underlying implementation, including the ability to

select how and where trade-offs are made.

In this chapter, we will examine a technique called open implementation (Kiczales et al.,

1995) for adding flexibility to toolkits. We will apply this technique to groupware toolkits

to give the application developer fine grained control over the runtime architecture to

choose how data is located, and how data is distributed across the network.

In the first section, we argue that runtime architectures in toolkits need to be more

flexible. I then show how the ‘API’ black box strategy now used in toolkits restricts the

set of applications that can be reasonably constructed. We then introduce the concept of

open implementation, where the developer is given the power to control a selected subset

of the internal implementation details of the toolkit. I will conclude the chapter by

applying the principles of open implementation to runtime architectures of groupware

toolkits.

3.1 A Call for Flexibility in Groupware Toolkits

Current groupware toolkits, although aiding the development of applications, restrict the

application developer to the trade-offs inherent within a particular runtime architecture.

30

Many toolkit developers recognize that their designs are somewhat rigid and that new

toolkit should provide greater flexibility in the runtime architecture. Greenberg &

Roseman (1997) point out:

“Perhaps what is required is a dynamic and reactive groupware

architecture, where the decision of what parts of the architecture should be

replicated or centralized can be adjusted [by the developer] at run time to

fit the needs of particular applications and site configurations.”

Similarly, Cortes (1994) after examining toolkits concludes:

“We consider that designers and programmers should be able to define the

internal process structure according to the needs of each application.”

Bentley et al. (1994) when discussing the design of MEAD strike a similar chord:

“Because neither architecture fully meets multi-user interface

requirements, a hybrid solution is needed wherein components of the co-

operative system are either centralized or replicated, depending on the

application requirements.”

Patterson et al. (1996) after espousing the benefits of the Notification Server concedes:

“The difference between GroupKit and Notification Server is a judgement

about how often serialization is required. It is perfectly reasonable,

however, to use both…”

This problem of inflexibility in toolkits is not unique to groupware, and has been

extensively studied by Kiczales (1992). In the next section we explore how this problem

arises from black box layering inherent in conventional application programming

interface (API’s). We also identify two techniques that application programmers use to

get around this inflexibility.

31

3.2 The Black Box Approach to Toolkits

All toolkits abstract away implementation details. This allows application developers to

concentrate on learning and applying essential building blocks. This is much easier than

requiring an understanding and use of a complex set of primitives, e.g., access to

complete library source code or an entire class hierarchy. Toolkits decrease complexity by

providing the application developer with an abstract interface to its building blocks

through an application programming interface (API). An API is a set of predefined

functions, methods and/or objects with well-documented behaviour. Figure 3-1 provides a

layered model of a toolkit with three identifiable components: the toolkit implementation,

the toolkit API, and the application.

The API serves as a barrier, preventing the application developer from having to know

about the implementation details of the toolkit (Kiczales, 1992). Through the API, the

application developer can manipulate and control the implementation. The internal

implementation is seen as a black box, leaving the application developer free to think

about their application needs rather than low level details. For example, a window toolkit

hides low level issues including how windows are stored in memory and how the mouse

is tracked.

]
]Application

API

Implementation{Toolkit

Application
Developer

Toolkit
Developer

Figure 3-1. The implementation of a traditional toolkit is only
available through the API.

32

When toolkit designers hide implementation details, they make decisions about what

implementation strategies will be used to provide functionality. Yet the particular choices

may not be suitable for all applications. For example, classic performance decisions in

computer science involve the trade-offs between memory requirements and speed. The

degree to which a toolkit is useful depends on designers correctly anticipating the needs

of its users and choosing an appropriate implementation strategy (Rao, 1993). However,

in some problem domains there may not be a single correct strategy. At one extreme,

toolkits which must support a wide range of activities may have to create a large API,

resulting in an overly complex and difficult programming system, such as the X interface

(Rao, 1993). At the other extreme an over-simplified API will make the toolkit much

easier to learn, but will be more restrictive. The application developer may not be able to

use the toolkit since the simplified abstraction provided may be a poor match to the

application requirements.

3.2.1 Working Around the Black Box

Despite the inflexibility of the black box approach, programmers do manage to work

around toolkits that do not fit their particular application requirements. Two common

strategies include hematomas and coding between the lines (Kiczales, 1992). With

hematomas, the programmer reimplements some functionality of the toolkit in the

application. With coding between the lines, the programmer uses knowledge of

undocumented features and characteristics of the toolkit implementation to improve

performance in the application.

Hematomas. We will use the example of scheduling strategies in operating systems to

demonstrate how programmers use hematomas to get around hidden implementation

details that affect their application. Scheduling algorithms must handle the problem of

high priority processes blocked on a mutex held by a low priority process. The algorithm

developer must decide how to reduce the amount of time that the high priority process

blocks. For example, Solaris uses priority boost to overcome this problem, where the

lower priority process is boosted to the priority of the high priority process until it

33

releases the mutex. In Windows NT, the lower priority process is scheduled normally, and

the higher priority process must wait until the lower one has a chance to execute and

release the mutex. If this particular problem is important to the application, the developer

must either choose an operating system based on the scheduling strategy, or work around

the implementation in the operating system. One workaround is to add a hematoma to the

operating system mutex implementation. The developer may create a wrapper around the

operating system mutex to provide the desired scheduling behaviour. The problem is that

the resulting wrapper may be less efficient than the one supplied by the operating system.

As well, this produces more code that must be maintained and debugged by the

application developer. Still, the application developer uses the hematoma to extend the

operating system to get around the hard-wired design decisions made during its

implementation.

Coding between the lines. Coding between the lines uses knowledge of the toolkit’s

particular implementation to get better performance. Virtual memory systems provide a

classic example of this. In a large application, objects are paged out to disk (virtual

memory) when physical memory fills. Paging memory out to disk and back takes a

relatively long time. To improve an application’s speed, programmers can allocate objects

that are referenced together in the same page of memory. The application developer codes

“between the lines”, knowing that the virtual memory system swaps out pages of memory

rather than, say, bytes or words. An application programmer causes fewer page faults by

allocating objects that are referenced together, close together in the memory address

space. The problem is that coding between the lines requires programmers to contort their

code, possibly by allocating memory in unusual places, to match the underlying

implementation of the virtual memory system. Also, code that relies on undocumented

features of the implementation, such as the page size, may break when new versions are

released.

In groupware toolkits, a major component in the “black box” is the runtime architecture.

These black boxes have arbitrarily chosen the way to distribute data (either replicated or

centralized) and the consistency maintenance strategy (locking and serialization

34

techniques). The trade-offs inherent in the choices clearly affect application developers,

and consequently force developers to create their own hematomas and/or code between

the lines. It would be better to add flexibility to toolkits to give application developers

appropriate levels of control over the critical implementation details. A technique called

open implementation does this.

3.3 Flexibility through Open Implementation

One technique for creating a flexible toolkit is to open up the implementation of the

toolkit, allowing developers to modify components of the toolkit to meet their particular

needs (Kiczales, 1992). Rather than working around a toolkit that does not entirely meet

the requirements of the application, an application developer can directly modify selected

components of it.

An open implementation provides two levels at which the programmer can use the

toolkit: the programmer interface and the meta-interface (Kiczales, 1996). The

programmer interface is the normal API, the functions through which the application

programmer makes use of the underlying default implementation. The meta-interface

describes the behaviour of the toolkit, and gives the application developer a constrained

way to extend the toolkit.

The goal is not to foist the responsibility of toolkit construction on the application

developer. In most cases the application developer will find that the standard programmer

interface suffices. However, when the programmer interface is not adequate, the meta-

interface allows them to modify some of the underlying decisions made by the toolkit

developer.

35

The meta-interface is simply an API to the implementation of the toolkit, designed to give

application developers the ability to customize the toolkit to meet their particular needs.

With the meta-interface the application developer can modify and add new components to

the API by directly manipulating the toolkit implementation, as shown in Figure 3-2.

3.3.1 The Origins of Open Implementation

The work on open implementation has its roots in computational reflection (Smith, 1982)

and metaobject protocols such as CLOS (Paepcke, 1993; Kiczales et al., 1995). These

approaches to programming languages allow the developer to inspect the internal

workings of a language, and to extend it without modifying existing applications. The

ability to modify a language in the language itself, is called reflection. The structures that

control the behaviours of a language are referred to as metalevels in a functional

language, and metaobjects in an object oriented language.

For example, a metaobject strategy that allows a developer to control how objects are

allocated in memory helped solve a particular problem in knowledge representation

(Kiczales et al. 1993). Knowledge representation often declares classes with hundreds of

slots. However, most of these slots are never used and end up taking large amounts of

memory. The CLOS metaobject protocol (Bobrow et al., 1993; Attardi, 1993) allowed the

developer to define new ways in which the instance variables of a class are allocated. One

Application

API

Implementation{Toolkit

Meta-interface

User Added
API

Modified API

Figure 3-2. The addition of a meta-interface allows
developers to refine and extend the API of the toolkit.

36

implementation strategy used a small hash table strategy for storing the slots of an object,

which provided a good representation for the sparse nature of the data.

The effective application of metaobjects and reflection to programming languages

prompted Kiczales to consider the technique’s applicability to toolkits, using the

mechanisms of a meta-interface.

3.3.2 Building a Meta-Interface

Toolkits with an explicit meta-interface expose implementation issues to the developer.

However, not all the implementation should be exposed, as insignificant details and areas

where the developer does not need control would add unnecessary complexity to the

interface (Kiczales et al., 1991). The major problem in building meta-interfaces is

determining what the developer should be able to control (Paepcke, 1993; Kiczales et al.,

1993).

Potential areas to add meta-interfaces in a toolkit can be identified by examining work-

arounds (hematomas and coding between the lines) in existing applications and by

examining complaints that application developers have made about the toolkit. The

toolkit designer can use these problems to determine which features need to be opened up

and made flexible through a meta-interface. For example, in Chapter 2 we identified

differences in the runtime architecture of groupware toolkits that are contentious because

of the inherent trade-offs; in particular, how data is distributed and the concurrency

mechanisms used. These differences indicate the need for a meta-interface in groupware

toolkits that gives application developers control over the implementation choices.

From experiences in developing open implementations and meta-object protocols,

Kiczales (1995) has developed principles that a toolkit designer must consider when

designing a meta-interface. These principles include: conceptual separation, scope

control, and incrementality. We describe each and discuss how it can be applied to

groupware toolkits.

Conceptual separation means that the application developer should be able to customize

particular aspects of the toolkit’s implementation, without having to understand the entire

37

meta-interface. For example, if an application developer wishes to modify the

concurrency behaviour in a groupware toolkit, they should not have to modify the way

data is distributed.

Although it is important to conceptually separate the concerns of distribution and

concurrency, this can be difficult in groupware toolkits. Concurrency policies depend on

the type of data distribution used. A centralized piece of data requires a different form of

concurrency than a replicated piece of data. However, the actual implementations of

concurrency schemes must be separated from the implementation of distribution schemes.

When defining new concurrency schemes, developers will have to understand the

characteristics of the distribution scheme, but they should not have to modify the

implementation of the distribution scheme.

Scope control determines the extent of a change the meta-interface will have in a toolkit.

The scope of that change can affect the entire application or be limited to a few small

components. By restricting the scope of the change, a toolkit developer reduces the

likelihood that a change meant for one component of an application affects another.

Secondly, and more importantly, by limiting the scope of a change multiple different

behaviours can coexist within the same application.

Naming particular scopes allows developers to distinguish between different behaviours

of the toolkit. They can reuse the named components in new contexts, and differentiate

between the behaviours. Application developers can then tailor their components by

naming the particular behaviours they want for a component.

In a groupware toolkit, scope control can be used to allow different data distribution and

concurrency behaviours to coexist within the same application. For example, an

application may contain various types of shared data, e.g., centralized, replicated or

migrating, based on the way the particular piece of data is used. Scope gives application

developers fine grained control over the ways their objects are shared.

Incrementality means that an application developer should be able to modify a toolkit,

without having to rewrite their new components from scratch. Application developers

38

thus need good default implementations that can be built upon incrementally. These

defaults can also be used by the application developer to understand the implementation

of the toolkit.

The default data distribution implementations that should be provided in a groupware

toolkit are relatively obvious. Replicated and centralized data are the most popular

approaches in use today and already address a wide range of applications. What must be

done is to expose their implementations for distributing this data and the concurrency

control techniques, allowing the application developer to understand and modify the

implementation.

3.4 Summary

In this chapter we have seen a call for flexibility in runtime architectures by developers of

groupware toolkits. We argued that open implementation is a feasible way to solve the

inflexibility endemic in the current generation of groupware toolkits. We identified

distribution of data and concurrency control as two components which require a meta-

interface. We introduced the principles of open implementation: conceptual separation,

scope control and incrementality and discussed how they could be applied to a meta-

interface to control data distribution and concurrency.

In the next chapter, we introduce a prototype groupware toolkit called GEN which

provides a meta-interface for data distribution and concurrency.

39

4. GroupEnvironment: The Programmer’s
Interface

Chapter 2 showed that current groupware toolkits contain design decisions that ultimately

affect the application developer. Toolkits can be too rigid when they do not allow the

application developer to select the method of data distribution and concurrency control.

Chapter 3 revealed that the problems of rigidity in groupware toolkits are not specific to

this domain, but are more general, stemming from implementing toolkits as black boxes.

Recent research in open implementation presents a strategy for building toolkits that

allows the application developers to control particular design decisions made in the

toolkit.

In the next two chapters we will apply the principles of open implementation to a

prototype groupware toolkit called the GroupEnvironment (or GEN). In particular we will

show how a toolkit can provide developers with both a programming interface for

standard groupware features and a meta-interface that gives control over the method of

data distribution and concurrency control.

This chapter first describes how the requirements of the toolkit impact on the design of

the application. It then examines how the runtime architecture is separated into the

programmer’s interface, the meta-interface and the black box. It continues by detailing

the programmer’s interface. Finally, we demonstrate how a simple brainstorming

application can be built using the programmer’s interface. The meta-interface will be

described in Chapter 5. Data distribution strategies in the programmer’s interface are built

on top of this meta-interface. For simplicity, we defer the description of the

implementation of those components until Chapter 6, after we have discussed the

workings of the meta-interface.

40

4.1 Overview of Requirements and their Implications for the
Design

In this section we look at the three major requirements for the GEN system and give a

brief overview on how this impacts on the design. The two major requirements are:

• GEN must be a functional groupware toolkit; and

• GEN must provide a flexible data sharing mechanism.

The way that the flexibility requirement is met in this thesis introduces a third

requirement: GEN must provide an open implementation that meets the criteria of scope

control, conceptual separation and incrementality. In the following sections we examine

these requirements and discuss briefly how they impact on the design of GEN.

A functional groupware toolkit. We are building a groupware toolkit and as such we

must provide the typical building blocks that developers require to construct applications.

Application developers should be able to use the toolkit without resorting to use the meta-

interface when building an application. To meet this requirement GEN provides a

programmer’s interface which contains the building blocks commonly found in

groupware toolkits including: session management, notification, organization of data and

mechanisms for sharing data. We discuss the programmer’s interface in Section 4.4.

Flexible data sharing mechanisms. This requirement has two implications. First,

developers must be able to choose from among data sharing strategies or create new ones.

Second, the implementation of the sharing strategy must be separated from the

implementation of the object being shared so that application developers can use a

particular sharing strategy with a variety of different types of data. For example, a

replicated sharing strategy should work with an OrderedCollection, Rectangle, or any

other object in the system.

Creating and/or choosing data sharing strategies. There were several ways considered

for letting developers define the particular sharing strategy they would use. First, we

could let application developers choose from a library of pre-existing sharing techniques.

41

This is too simplistic, as there are a large number of possible combinations of

concurrency control and distribution schemes available. If a developer required a specific

sharing strategy not supported by the toolkit they would have to work around the toolkit,

or discard the toolkit.

As another option, we could provide the application developer with full access to the

source code. They could create new strategies by modifying the source. However, this is

likely too complex because developers would have to understand the entire toolkit even if

their change was relatively minor.

In GEN we chose open implementations as a reasonable way to support flexible data

sharing. Open implementations allow both selection of data (through the default

implementations) and access to source in a structured way (through the meta-interface).

The meta-interface presents a secondary interface to the toolkit that presents a simplified

model for how data sharing can be modified in the toolkit. These models are discussed in

Section 5.2.

Separating the implementation of the sharing strategy and the object being shared. If the

implementation were to mix the sharing strategies with the actual implementation of the

objects, the developer would have to modify the implementation of the object’s class to

change how an object was shared. It would be better to separate the code for sharing the

object from the actual implementation of the object. We considered two possible designs.

The first possibility was to put the sharing strategy in a root class, such as a class called

ReplicatedObject or CentralizedObject. A particular class could be replicated or

centralized by inheriting the chosen behaviour from the appropriate root class. The

problem with this strategy is that developers could not have two different instances of the

same class with different sharing strategies. Additionally, currently existing classes, such

as OrderedCollections, would have to be reimplemented as sharable versions.

The second possibility, and the one chosen, was to use wrappers (Gamma et al., 1995).

Wrappers allow the addition of new behaviours transparently and dynamically, while still

preserving the normal interface to the object. In GEN this allows us to add the sharing

42

behaviour to the object at runtime, without changing how the developer interacts with the

object. Secondly, wrappers do not require changing the class implementation, and the

sharing behaviour is specified individually for each instance. For example, developers can

have an OrderedCollection instance with no sharing behaviour, others that are centralized,

and still others that are replicated - all within the same application. Furthermore, each of

the different instances would use the same implementation of OrderedCollection. The

properties and use of wrappers is discussed further in Section 5.3.

Open implementation. An open implementation requires two components: a

programmer’s interface and a meta-interface. The programmer’s interface contains the

typical components of a groupware toolkit. The meta-interface allows the developer to

modify the toolkit. A meta-interface needs to adhere to the principles of scope control,

conceptual separation and incrementality. These features are best supported in an object

oriented language that allows both inheritance and polymorphism (Rao, 1993) (as we

shall discuss in Section 4.3). The implementation of wrappers, mentioned previously, also

requires the use of a dynamically typed language. To meet these requirements we use

Smalltalk, an object oriented language that supports polymorphism, inheritance and

dynamic typing. Finally, because groupware is distributed, we use a distributed object

implementation in Smalltalk, as we shall discuss in Section 4.3.

Summary of design motivation. In Figure 4-1 we summarize how the requirements of

the system led us to the final design choices. To begin, the toolkit requires both the basic

functionality of a groupware toolkit, as well as a flexible data sharing mechanism. The

requirements for a functional toolkit are met by the programmer’s interface, which we

discuss later in this chapter.

The flexible data sharing requirement is handled using an open implementation, and

exposes the details of how data is shared in the meta-interface. The meta-interface must

address the issues of scope control, incrementality and conceptual separation, leading to

the use of an object oriented language.

43

We also need to allow flexible sharing strategies to be applied to many different types of

objects, without changing their implementation. This led to the use of wrappers. Finally,

because groupware is based on distributed languages, we need a distributed object

implementation to share information between sites.

Groupware
Toolkit

Flexible Data
Sharing

Open
Implementations

Functional
Toolkit

Object
Oriented
Programming

Scope
Control

Incrementality Conceptual
Separation

Programmers
Interface

Meta-
Interface

Distributed
Objects

Wrappers

Reusable Sharing
Strategies

Main Requirements

Resulting Strategies

Design

Figure 4-1. How the requirements are met by the design.

4.2 The Structure of GEN

GEN provides all the core features of a groupware runtime architecture, including a

process structure, interprocess communication, distribution of data, concurrency control

and notification. The runtime architecture is divided into three separate categories: the

black box, the programmer interface, and the meta-interface. The relationship between

these categories is shown in Figure 4-2.

44

The black box contains the part of the implementation that is both fixed and completely

hidden from application developers. As seen in Figure 4-2, application developers only

access this layer indirectly through the API of the programmer interface. In GEN, the

black box implements a distributed objects layer, which in turn handles interprocess

communication and process structure. This layer provides the basic mechanisms that

allow data sharing between sites. It is used internally to make the higher level building

blocks for groupware applications that are supplied by the programmer’s interface.

The programmer’s interface contains the high level building blocks described in Chapter

1: session management and mechanisms for sharing data. The applications built by

programmers sit on top of this layer, using the API GEN provides (Figure 4-2). Even if

toolkits are constructed using the open implementation strategy, the programmer interface

should still be adequate for building most applications. In GEN, the programmer’s

interface supplies session management and default data sharing strategies. Still, there are

Groupware Application

API: (Programmer’s
Interface)
Session Management,
Shared Data,
Interface Mechanisms

Implementation{Toolkit:
Runtime
Architecture

Meta-interface:
Control over
distribution and
concurrency

New API: (Extended
Programmer Interface)
New concurrency and
distribution schemes

Modified API:
Modified concurrency
and distribution
schemes

Black Box:
Distributed objects
Process structure,
Interprocess
communication

User implemented Meta-interface
Toolkit hidden
implementation

Figure 4-2. Application of Open Implementation to the runtime
architectures of a groupware toolkits.

45

many ways that data can be shared, and the toolkit can provide only a few of them in the

programmer’s interface.

The meta-interface gives the programmer a second and more complex API that lets them

define new ways of sharing data to fit the particular needs of the application. This is done

by reprogramming the way data is distributed and how concurrency is managed. The

meta-interface uses the distributed object layer to construct these new sharing strategies,

as shown in Figure 4-2. Additionally, the default implementations for the sharing

strategies contained in the programmer’s interface are supplied, so that developer can

modify these to meet their specific needs.

These three components and their interactions will be elaborated in the remainder of the

thesis.

4.3 Foundations: Objects, Distributed Objects and Smalltalk

The GEN implementation was built using the Smalltalk object oriented environment and

relies heavily on a distributed objects scheme. In this section, we explain why this

language and these particular techniques were chosen, and why they are appropriate to the

GEN implementation.

The object oriented paradigm. A meta-interface is a backdoor into the implementation

of a toolkit. Developers use this backdoor to specialize and change the implementation by

modifying the toolkit. Object oriented programming systems are particularly useful for

this purpose because the properties of inheritance and polymorphism support the way the

meta-interface components (objects) are changed and specialized (Rao, 1993).

Inheritance provides a powerful mechanism for incrementally specifying new behaviours.

By inheriting from existing meta-interface classes, application developers can reuse

behaviours they are not changing, and override those behaviours they wish to modify.

Polymorphism in object oriented languages ensures that meta-interfaces with compatible

APIs but different behaviours are interchangeable. In GEN, this allows us to interchange

sharing strategies such as replicated and centralized behaviours without changing the

programmer’s interface.

46

Smalltalk. Smalltalk was chosen as the implementation language because of its dynamic

binding of methods and values (Goldberg & Robson, 1983). Dynamic binding can be

used to allow objects to intercept messages on behalf of other objects. As we shall see in

Chapter 5, the meta-interface uses message interception to control the distribution of

objects, the way messages are routed between sites, and concurrency.

Distributed Objects. Groupware systems require some form of distribution. The

distributed objects implementation hides the interprocess communication layer, and

process structure needed to build groupware applications. In the same way that remote

procedure calls (RPC) allow procedures to be executed at remote sites, distributed objects

allow messages to be sent to objects at remote sites. One difference between these

strategies concerns where the message/procedure is sent to. The RPC layer sets up a

communication path between processes, and the procedure is executed in the process that

receives the RPC. Distributed object implementations must go one step further and route

messages between individual objects, because each message is executed by a particular

object within the process.

Besides routing messages to the appropriate object, distributed systems must also

determine how a particular object is distributed. There are two ways an object can be

shared between sites, either through a remote reference or a copy.

A remote object is an object that resides on a single site, but can receive and execute

messages from other sites transparently. A transparent message send allows an object to

send a message to any other object, without being aware of whether the receiver is local

or remote. To achieve transparency, each remote object is represented locally by a proxy

object. When an object sends a message to a remote object, it is actually sent to a local

proxy. This proxy knows the location of its real object counterpart on the remote machine

and automatically forwards the message to it. The remote object computes the result and

replies to the original sender, through the proxy, without knowing that the sender was on

a different machine. For example, Figure 4-3 shows object X sending a message to a

remote object A through a proxy contained at the local site. Neither A nor X are aware

that the sender or receiver of the message are on different machines.

47

Remote referencing of objects is not always the most efficient way to distribute an object

and object copying can significantly increase the speed of an application when a remote

object is not required (Dollimore et al., 1991). In this case, a copy of the object is created

on the site it is distributed to. For example, a remote string that is to be read a character at

a time can require many remote messages be sent to the object to get each of the

characters. By copying this object once, most of these remote message sends are

eliminated.

To copy an object between sites it must first be converted to a bytestream and sent over

the network. The mechanisms used to convert an object to a byte stream and then back to

an object is referred to as object marshalling. Figure 4-4 shows how an object is

X A

Proxy
for A

Message X
Message X

Reply
Reply

Figure 4-3. When X sends a message to the remote object A it
is sent through a proxy object, which forwards the message on
to the real object.

…

Deconstruction Reconstruction

A A’

Site 1 Site 2

ByteStream

Figure 4-4. The marshalling of an object.

48

marshalled between two sites. An object is deconstructed into a byte stream, transmitted

to the new site and then reconstructed as an exact copy.

At the time of GEN’s implementation no distributed object layer with flexibility required

was readily available, requiring us to build a rudimentary one. In particular we require

fine-grained control over how objects are marshalled between sites which was not present

in the publicly available distributed object toolkit Emerald (Hutchinson et al., 1987). As

such, GEN shows one way that conventional distributed object layers must be extended

when giving developers finer grained control over how objects are distributed.

While substantial, GEN’s distributed objects layer lacks strategies for handling fault

tolerance, distributed garbage collection, and persistence. These are research topics in

their own right, and are beyond the scope of this thesis. The reader is referred to the

Emerald system (Hutchinson et al., 1987), Arjuna (Parrington et al., 1995), and Smalltalk

distributed objects implementations (Bennett, 1990; Dollimore et al., 1991) for additional

information.

Object oriented programming, the Smalltalk environment, and our distributed objects

implementation give us a foundation for building higher level components appropriate for

constructing a groupware programmer’s interface.

4.4 Programmer’s Interface

In Chapter 1 we identified a common set of session management and shared data

components that groupware toolkits include for groupware programmers. In this section

we explore how these are implemented in GEN. We will show that session management

is accomplished through the use of a global namespace, allowing developers to connect to

particular pieces of shared data. We will also see that the shared data implementation

allows the developer to specify how the data is distributed and kept consistent. The shared

data layer also provides notification, so that sites can react to remote changes in the data.

Finally, we will introduce the concept of environments which allow application

developers to organize their shared data.

49

4.4.1 Session Management

Session management in toolkits involves setting up the low level details of managing

connections between machines. This includes the communication infrastructure and the

ability to locate either processes in procedural programming paradigms or objects in

object oriented programming paradigms.

Communication Paradigm. In procedural programming, developers are given a form of

RPC, which hides the details of communicating between machines. In object oriented

programming this paradigm is changed to one in which objects communicate. In the

previous section we saw how this was accomplished through distributed objects.

Location of Processes or Objects. Distributed functional programming focuses on being

able to send remote procedure calls to processes. In toolkits such as GroupKit (Roseman,

1993) the session management layer maintains a list of the processes. In our object

oriented toolkit, the focus is on locating distributed objects. Figure 4-5 shows how these

distributed programming paradigms differ. In Figure 4-5a the remote procedure calls to

move a rectangle are sent to the process, while in Figure 4-5b, the message to move is

sent directly to the rectangle. In the case of an object oriented groupware toolkit, the

application developer needs to locate particular objects.

Process 1

Process 2

Process 3

A remote procedure call:
e.g. moveRectangle (x,y)

Process 1

Process 2

Process 3

A remote message send:
aRect moveTo: A

aPoint

aRect

aRect

a) b)

Figure 4-5a shows the functional model of distributed programming,
where procedure calls are sent to other procedures. In Figure 4-5b, the
object oriented programming model requires that messages be sent to
objects contained within the process.

50

The session management layer in GEN allows developers to locate particular objects by

defining a global namespace. A global namespace allows machines to publish objects to

an area that all sites can see and give them a unique name. Other processes may obtain

references to those objects by looking them up in the global namespace. For example in

Figure 4-6, Process 1 obtains a reference to the rectangle object in Process2 by looking it

up in the global namespace under the name ‘RectangleA’.

The Global Name Space Implementation and API. The global name space is

implemented in GEN as a dictionary that is replicated across all participating sites. When

an object is added to this global dictionary at one site, the object is broadcast as a remote

reference or copy (see Section 4.3) to all the other global dictionaries in the system. In

Figure 4-7 we see that Process 2 has published its Rectangle under the name

‘RectangleA’ as a remote reference, and the other sites can look up the name

‘RectangleA’ in their local copy of the dictionary to get a reference to the centralized

rectangle.

Process 1

Process 2

Process 3
aPoint

aRect

aRect

Rectangle A

Rectangle B

Global Name
Space

Figure 4-6. The global name space is an address
space that all processes can see and access objects
by a unique name.

51

The operations for manipulating the ObjectDirectory is indicated by their method

protocols as given in Table 4-1. For readers not familiar with Smalltalk a method is an

operation on the object that owns it. The first operation of the API connects the

ObjectDirectory to the object directories at other sites. Specifying a site and a port in the

message #addToMainDirectory:port: connects the object directory to a remote site (by

convention a work group will maintain an object directory on a well known host and

port). The next two operations are used to publish and retrieve objects from the global

namespace. The #addObject:named: protocol specifies that an object be added to this

global namespace, with its name given as an argument (which is a string). The

#objectNamed: protocol lets the developer get a reference to a global object by specifying

the name in the argument. Finally, the #removeObjectNamed: protocol removes an object

from the global namespace.

Process 1

Process 2

Process 3
aPoint aRect

aRect

Rectangle A

Rectangle A Rectangle A

Figure 4-7. The implementation of the global name space is through
a dictionary which exists on each site.

52

The session management layer of GEN provides the infrastructure for distributing and

locating objects between sites. The following section looks at abstractions in GEN for

sharing data.

4.4.2 Support for Shared Data

Although distributed objects provide the primitives necessary for the development of

groupware applications, developers require higher level building blocks. The following

section shows how the GEN API provides for data distribution abstractions in the form of

replicated or centralized objects, concurrency control through atomic objects, data

organization strategies using environments, and notification using call-backs.

An object oriented groupware toolkit differs from procedural toolkits, because of its focus

on data rather than procedures. First, we show how concurrency control and distribution

of objects differ from procedural programming because they can be encapsulated in the

object itself. Later in this section we will see how notification is integrated with the

object, and show how a separate entity known as an environment is used to help organize

objects.

Protocol Effect

ObjectDirectory addToMainDirectory:
anInternetAddress port: aPortNumber

Connects the current machine
to the object directory on the
remote machine.

ObjectDirectory addObject: anObject named: aString Stores an object in the global
name space

ObjectDirectory objectNamed: aString Answers a reference to the
object named a name

ObjectDirectory removeObjectNamed: aString Removes an object in the
global name space

Table 4-1. Protocols for publishing objects into the global space

53

4.4.2.1 Data Distribution and Concurrency through Replicated and Centralized
Objects

In procedural programming, the application developer typically manages communication

through remote procedure calls. Procedural toolkits abstract this in architecture dependent

ways: replicated architectures use multi-casting while centralized architectures send the

RPC to a unique site. In contrast, object-oriented toolkits send messages directly to the

object as if it resides on the local machine. The object itself determines how the messages

are broadcast to their distributed counterparts, depending on how the object is distributed

across the network.

GEN provides two basic configurations of distributed objects. First, a replicated object

maintains multiple copies of itself on each of the machines. When a message is received

by a copy of the object, it will automatically broadcast the message to all the other copies.

Second, a centralized object maintains an actual object on one machine and object

proxies at the other sites. When a message is sent to a proxy, it automatically forwards the

message to the site containing the actual object. In either implementation, the application

developer does not have to consider how the message is handled; the object itself either

broadcasts or forwards the message as needed.

Consistency becomes problematic with distributed objects that have copies on different

machines. They can become inconsistent when messages arrive at different machines in

different orders. One solution is to make objects atomic (Stroud & Wu, 1995). An atomic

object in GEN is guaranteed to keep all the copies of the object consistent. In the same

way that the developer does not have to consider how a message is distributed around a

network, the developer does not have to worry about how the object will be kept

consistent; the object itself will keep itself consistent. There are many different ways that

atomic objects can be implemented (Kittlitz, 1994; Stroud & Wu, 1995). Later in this

section we will present one implementation that uses a locking element to maintain

consistency by acquiring a lock before each message is sent to the various copies of the

object. The lock is released only after the message has finished executing at all the sites.

54

Using GEN’s programmer interface, developers can choose either replicated, centralized,

or replicated-locking data distribution on a per object basis. Objects using these different

data distribution and concurrency strategies can coexist in the same application. In the

following paragraphs, we shall briefly describe how these are implemented in GEN and

accessed through the API.

Replicated objects automatically create a copy of themselves when they are distributed

to a new site. Object replicas are synchronized by having messages sent to one replica

broadcast to all the replicas on the other sites. Figure 4-8a illustrates this. A message is

sent to object A at Site 1 which is then broadcast to its replicas at Sites 2 and 3. GEN’s

default implementation of replicated objects does not include any form of concurrency

control, and messages may arrive at different sites in different orders. As mentioned

previously, this is a reasonable default for many environments, such as whiteboards

which do not require a high level of consistency (Greenberg and Marwood, 1994).

Replicated-Locking objects. The replicated locking object is a modification of the

replicated object. These objects automatically maintain a single centralized lock which

can only be held by a single replica at a time. This lock is automatically acquired when a

message is received by an object. The message is then broadcast to all sites, and executed

at each of those sites. Once execution has completed at all sites, the lock is automatically

released. If a message is received when the lock is held by another replica, it will wait

Site 1

Site 2

Site 3

Site 1

Site 2

Site 3

a) Replicated Objects b) Centralized Objects

Replicated Copies Proxies

Centralized Object
A

A

A

B

B

B

aMessage

aMessage

aMessage

aMessage

aMessage

Figure 4-8. Example default object distribution schemes, replicated and
centralized.

55

until the message with the lock has completely finished executing, before either executing

locally or being broadcast. This guarantees that a message sent to any replica of an object

is executed at all sites before the next message is processed.

Centralized objects. A centralized object has a single copy of the object located at a

single site. All messages sent from remote sites are forwarded to it through a proxy object

(Decouchante, 1986; Steele, 1991). Figure 4-8b shows an example where a message sent

to the proxy for B on site 1 is automatically forwarded to the actual object B on site 2. In

GEN, a centralized object resides at the site which created it. Therefore, although a

number of centralized objects may exist, they may not all be located at the same site.

Object Distribution and Latecomers. The actual distribution of shared objects is

handled transparently by GEN. When a process references a shared object that does not

exist locally, the GEN runtime system will automatically replicate the object (if

replicated), or make the proxy (if centralized) at the local site. The shared object can be

referenced through the global namespace (discussed previously), or when it is passed as a

parameter in a message to an object located on another machine.

This model automatically updates latecomers to an ongoing conference because the

current state of the objects are automatically distributed when they are referenced by the

latecomer. For example, when a latecomer looks up a replicated object in the global

namespace (which is automatically included), that object and its current state will be

copied to the local machine.

The API: Choosing a distribution strategy. An important part of GEN is that any

object can be made sharable (e.g. Smalltalk’s current implementations of a Dictionary,

OrderedCollection or Rectangle). The protocols used to specify the distribution strategy

(#replicated, #replicatedLocking or #centralized shown in Table 4-2) are applied to an

instance of an object after it has been created.

For example, we can create a replicated Rectangle by sending an instance of a rectangle

object the message #replicated. A new instance of the Rectangle is answered that will

automatically create a replica of itself on other sites that reference it.

56

In this section we have seen how a shared object can be either centralized or replicated, or

a replicated locking object. In the following section we will see how notification is also

tied to the object.

4.4.2.2 Notification

Notification allows the developer to react to asynchronous events. For example, when

another site changes a shared data value, the local site can be notified of the change and

perform operations in response, such as updating the interface.

Notification in GEN is done at the message level, where the developer can request

notification both before and after particular messages are executed by an object. The

developer specifies that an event should be generated when a particular message is

received by an object. The developer then attaches a call-back to the event, which will

invoke a user specified method which can (say) update the display, or take whatever

action is necessary. When the message is sent to the object, the event is generated and the

call-back is automatically triggered. Because encapsulation guarantees that an object can

change only when a message is sent to it, developers can use notification to capture all

changes made to an object.

Protocol Effect

sharedObject := anArbitraryObject replicated Answer a replicating version of the
object. When the replicating object is
referenced remotely, a copy is sent
that is automatically kept up to date.

SharedObject := anArbitraryObject
replicatedLocking

As above except consistency is
guaranteed through a mutually
exclusive lock

sharedObject := anArbitraryObject centralized Answer a centralized version of the
object. When the object is referenced
remotely the remote, site receives a
proxy to it.

Table 4-2. Protocols for specifying the type of distribution and
concurrency control for an object.

57

Figure 4-9 provides an example. In this case, a rectangle is added to a collection of

objects to be drawn on a canvas. This is done by sending an add message to the set. The

set object generates an ObjectAdded event, which in turn invokes the redraw call-back.

API: Specifying Events and Call-backs. The developer needs to be able to specify the

message, the type of event that it creates, whether the event should be generated before or

after the message is executed, and what call-backs are attached to the event. The protocol

#addPreGroupwareEvent:onMessage:, shown in Table 4-3, causes the receiving object to

generate the specified event (aSymbol) before the message with the specified name

(aMessageName) is executed. Similarly, #addPostGroupwareEvent:onMessage: causes

the event to be generated after the message has executed.

Call-backs are attached to events through the #addGroupwareCallback: protocol and

detached with the #removeGroupwareCallback: protocol. The parameters to these

message include the receiver, selector and clientData. The receiver is the object the call-

back is sent to (such as a canvas). The selector is the message name sent to the receiver,

and the clientData holds any additional information that the developer wishes to include

when the call-back is fired.

add:

redraw: redraw:

ObjectAdded
event fired

Generates
Event

ObjectAdded
event

Event triggers
callbacks

Figure 4-9. The message #add: causes the event AddObject to
be generated which triggers the call-back #redraw.

58

Note: using notification to separate model and view. Notification is often used to

support a separation of the data model from the view (Roseman & Greenberg, 1997). The

model holds the underlying shared data while the view is the user interface that the user

sees and interacts with on the display. The application developer ties events to the data

model and uses call-backs to update the interface. Figure 4-10 shows an example of a

histogram view of data. Here, one site makes a change to the underlying data model by

sending it a message. This generates an event which triggers a call-back message that is

broadcast to both views.

Protocol Effect

aSharedObject addPreGroupwareEvent:
aSymbol onMessage: aMessageName

Specifies that an event named aSymbol
is triggered before any message name
aMessageName is executed

aSharedObject addPostGroupwareEvent:
aSymbol onMessage: aMessageName

Specifies that an event named aSymbol
is triggered after any message name
aMessageName is executed

aSharedObject addGroupwareCallback:
aSymbol receiver: anObject selector: aSelector
clientData: anObject2

Specifies that anObject be sent the
selector aSelector whenever the event is
triggered.

aSharedObject removeGroupwareCallback:
aSymbol receiver: anObject selector: aSelector

Specifies that the call-back associated
with anObject and selector aSelector be
removed from the event list.

Table 4-3. Protocols for adding events to shared objects.

View 1View 2 Change

Callback

Model

Callback

Figure 4-10. Notification is used to keep an interface aware
of changes in the models shared data.

59

4.4.2.3 Organization of Data Through Environments

As in any programming language, large amounts of data are often managed through some

form of scoping rule. In GEN, placing all the data into a global namespace can result in

two applications inadvertently using the same name for the same piece of data (called a

namespace conflict). In order to alleviate this problem, GEN provides a model for

organizing data into manageable subunits called environments.

An environment (Abelson, Sussman & Sussman, 1986) is an object which associates

particular pieces of data with particular names, i.e. it is a structure for defining variables.

Scoping rules can be defined to relate environments together by enclosing environments

inside one another. As such, if a particular variable is not found in the current

environment, the scoping rule can be used to specify how enclosing environments are

searched for the variable.

Consider the example in Figure 4-11. The environments BB and CC are enclosed by the

environment AA. If the program references a variable in BB’s environment, such as A, its

value (O) is returned. If the program references a variable that only the enclosing

environment (AA) contains, such as Y, then the value in AA (15) is returned. If the

variable is not found in the environment, or any of its enclosing environments, an

undefined value is returned. Only the enclosing environment is searched. For example,

variables in CC are never searched when a request is made in BB.

X 10
Y 15

X ‘L’
A 0

A ‘S’
M V

Environment
AA

Environment
BB

Environment
CC

Figure 4-11. A simple environment structure,
where AA encloses BB and CC.

60

Environments are convenient ways to store the shared data model of the program,

simplifying the separation of the model from the view (Roseman & Greenberg, 1996).

The interface can attach call-backs to particular shared variables contained in that

environment. In large applications, the environment serves as a convenient unit for

grouping related data, and to avoid name collisions that are possible in a global

namespace.

In GEN, environments are first class objects - they are instantiated in the same way as any

other object in the system. This means they can be replicated or centralized. They can also

use events and call-backs to associate actions with changes in a particular environment.

The API. Table 4-4 shows the protocols for environments which we call

GroupEnvironments. The #new message lets the developer create an environment. The

enclosing environment is specified through the #superEnvironment: message. New

elements are added to an environment through the #globalAt:put: protocol and removed

through #removeGlobalAt:. Finally, a variables value is returned through #globalAt:

Protocol Effect

GroupwareEnvironment new Answers a new groupware
environment.

aGroupwareEnvironment superEnvironment:
anEnvironment

Set the enclosing environment to
anEnvironment

aGroupwareEnvironment globalAt: aString put:
anObject

Add the object anObject into the
environment under the name aString.

aGroupwareEnvironment removeGlobalAt:
aString

Remove the object with name aString
from the environment.

aGroupwareEnvironment globalAt: aString Answer the object in the environment
named aString. If the environment
does not contain aString, search the
super environment.

Table 4-4. Protocols for using environments in groupware applications.

61

which searches the environment hierarchy for the variable and returns its associated

value.

4.5 A Simple Example: The Brainstormer

This section presents a simple example of a brainstorming application that demonstrates

how the components in GEN are used to construct a groupware application. The

“brainstormer” is presented in three parts: its user interface; the general model used to

construct it; and then a detailed look at key pieces of the code.

The interface. Brainstorming tools are a typical groupware application used by multiple

participants to generate ideas about a particular subject. In this example, the brainstormer

works by letting users add individual ideas to a visually shared list (Figure 4-12). There

are three interface components in our brainstormer. An idea list collects ideas entered by

all users and is visible to everyone. A text box lets users type in their own ideas, and an

okay button lets a participant add an idea to the shared list.

The general programming model is composed of two components. The first component

is the organization of the data, including determining what data is shared. The second

component is how the model is linked to the view, so that when the shared data is

modified, all of the displays are updated.

Idea list

Idea to be
added

Figure 4-12. Example Brainstormer application.

62

Ideas in the brainstormer are strings entered by the user. The ideas are stored in an

OrderedCollection (or linked list), which will be distributed between sites as a replicated

object. The brainstormer uses an environment (called ‘Bstorm’) which is published to the

global namespace. Figure 4-13 shows the relationship between these objects. The global

namespace contains the environment which contains the OrderedCollection of ideas.

Linking the model to the view is relatively easy. Whenever an idea is added to the

OrderedCollection (the model) we will generate an event, which triggers a call-back in

the interface (the view). The call-back will cause the interface to update its list of ideas. In

Figure 4-14, we can see that when the #add: method is invoked at Site 2 to add an idea to

OrderedCollectionAn Environment:
‘Bstorm’

Global
NameSpace

Ideas

Figure 4-13. The global name space contains the ‘Bstorm’
environment which contains an OrderedCollection of Ideas.

idea 1
idea 2

idea 1
idea 2

add:
Callback
idea:

Site 1 Site 2

OrderedCollection OrderedCollection

add:

Callback
idea:

Event
AddIdeagenerates

triggers

generates

Event
AddIdea

triggers

Figure 4-14. When an idea is added to an ordered
collection, the AddIdea event is generated causing
the call-backs associated with it to be executed.

63

the collection, it generates an event at both sites (called AddIdea) which triggers the call-

back named #idea: which updates the local displays.

Starting up a simple Brainstormer. When groupware applications are started there are

often initialization procedures that must run at a single site before users can connect to

the application. Once the application has been started, special code must then be run on

each site to connect the user to the other participants in the conference. This code would

normally be executed by a special session management interface (Roseman & Greenberg,

1994), that allows clients to create and connect to conferences. However, we include it

here for completeness.

The initialization of the brainstormer requires setting up an environment to hold the

shared data. The GroupEnvironment is created in line 1 of Figure 4-15, with a distribution

strategy of centralized. The environment is published in the ObjectDirectory (our global

namespace) under the name, ‘Bstorm’ as shown in line 2 of Figure 4-15.

When a user wishes to join the brainstorming conference, they must start up the view (the

brainstormer class) and connect it to the environment ‘Bstorm’, which contains the shared

data. The brainstormer gets a reference to the environment by looking up its name in the

ObjectDirectory as shown in line 1 of Figure 4-16. The user then creates a new

Brainstormer window by sending the message #openInEnvironment: to the Brainstormer

class, where the parameter specifies the environment.

The implementation. The previous code shows how the brainstormer application is

started up by a user. We now look at the internal workings of the Brainstormer class to

see how the start-up code (#openInEnvironment:) actually executes. Figure 4-17 only

1 theEnvironment := GroupEnvironment new centralized.
2 ObjectDirectory addObject: theEnvironment named: ‘Bstorm’.

Figure 4-15. Code to initialize the data structures for the brainstormer.

1 bstormEnv := (ObjectDirectory objectNamed: ‘Bstorm’).
2 Brainstormer openInEnvironment: bstormEnv.

Figure 4-16. Code to start the brainstormer at a particular site.

64

shows those lines of the application that are related to the sharing of data, and for the sake

of brevity we have excluded the code used to set up the window and display it.

In the #openInEnvironment: method (the first one called) shown in Figure 4-17, there are

four distinct steps to setting up the application: 1) check to see if there is an existing

conference; 2) if necessary set up the OrderedCollection of ideas; 3) create the

1 openInEnvironment: anEnvironment
2 |ideas|
3 “STEP 1 Check to see if there are existing conferences”
4 (anEnvironment globalAt: 'Ideas') isNil “Check for existence”
5 ifTrue: [
6 “STEP 2 Set up the OrderedCollection of Ideas”
7 ideas := (OrderedCollection new replicated).
8 anEnvironment
9 globalAt: 'Ideas'
10 put: ideas.
11 “STEP 3. Create the event”
12 (anEnvironment globalAt: 'Ideas') “Create the event”
13 createPostGroupwareCallback: #AddIdea
14 onMessage: #add:].
15 “STEP 4. Add the callback”
16 ideas := (anEnvironment globalAt: 'Ideas').
17 ideas “register a call-back”
18 addGroupwareCallback: #AddIdea
19 receiver: self
20 selector: #idea:clientData:callData:
21 clientData: ''.
22 … set up window …
23
24 idea: anIdea clientData: ignore callData: callData
25 list addItem: (callData at: 1) position: 0.
26
27 okayButton: w clientData: ignore1 callData: ignore2
28 ideas add: (text getString)
29
30 close: widget clientData: ignore callData: data
31 ideas
32 removeGroupwareCallback: #AddIdea
33 receiver: self
34 selector: #idea:clientData:callData:

Figure 4-17. Code to set-up a shared brainstormer with replicated data.

65

appropriate event for when ideas are added and; 4) register the appropriate call-backs for

keeping the list of ideas up to date. Step 1 checks to see if there is an existing conference.

The variable ‘Ideas’ is looked up in the environment (line 4). If ‘Ideas’ is not found then

nil will be returned and the idea collection will have to be created. Step 2 shows how it is

created. An OrderedCollection of ideas is created using by sending the class the message

#new. The returned instance is then made into a replicated object by sending it the

message #replicated (line 7). The collection is then added to the environment (lines 8 -

10). In step 3, an event called AddIdea is associated with the #add: method of the

OrderedCollection (lines 12-14). This event will be fired whenever a new idea is added.

Finally, step 4 links the view (the window, which is self) to the event AddIdea (line 17-

21). When the event is triggered the window will receive the call-back

#idea:clientData:callData:.

The rest of the brainstormer is relatively straight forward. The call-back

#idea:clientData:callData: is called whenever a new idea is added to the collection of

ideas and it updates the idea list pane by adding the new idea to the bottom of the list, as

shown in lines 24-25. The pressing of the OKAY button has been connected to the call-

back #okayButton:clientData:callData: (lines 27-28) which adds the string contained in

the text pane to the underlying list of ideas. Finally the close method (lines 30-34)

removes the call-back that was registered, allowing garbage collection of the replicated

object when it is no longer required.

One of our claims about GEN is that application developers can change the data

distribution strategy. This is simple in GEN, as the only change required is to specify the

type of sharing when the OrderedCollection of ideas is created. That is, line 7 in Figure 4-

17 is changed to ideas := (OrderedCollection new centralized) and the data architecture

is automatically changed.

4.6 Summary

We have presented the programmer’s interface to GEN that provides the similar

functionality as runtime architectures of other groupware toolkits. In addition, we show

66

how the developer can specify the way in which the data is distributed. An example

demonstrated how the various components of the architecture are combined and coded in

a groupware application.

67

5. GEN’s Meta-Interface

The previous chapter described the programmer interface for GEN. This chapter presents

GEN’s meta-interface and how it gives developers control over data distribution and

concurrency control mechanisms.

The goal of a meta-interface is to define a family of strategies that developers can use to

create specialized implementations of the toolkit. The choice of which components to

expose and how to expose them determines the family of behaviours that can be

supported by the meta-interface. Although the meta-interface will support a broader range

of behaviours than a conventional toolkit, it will not support all possible behaviours (Rao,

1993). The current implementation of GEN’s meta-interface only supports modification

of data distribution and concurrency control.

This chapter describes the meta-interface. It examines how the requirements of scope

control, conceptual separation and incrementality are applied to the meta-interface. It then

develops a design for the meta-interface that lets developers manage both data

distribution and concurrency control. It continues by discussing how an implementation

strategy called wrappers provides the flexibility required for building the meta-interface.

Finally, the chapter delves into how a special class of wrappers are used to specify the

API for the meta-interface.

5.1 Requirement for GEN’s Meta-Interface

In this section we revisit the general principles of scope control, conceptual separation,

and incrementality. We will see that these principles differentiate the meta-interface from

a simple inheritance scheme by clearly separating how the changes the developer makes

in the meta-interface layer will affect the toolkit. We examine how these principles are

applied in the GEN meta-interface.

68

Scope Control limits the effect of a change in the meta-interface to a particular set of

objects. There are three possibilities for the effect of a scope change on objects within an

application: the entire application, a class of objects, or individual instances of objects.

First, the entire application may be affected by the change to the meta-interface. For

example, if the programmer changed the toolkit to use replicated objects, all objects in the

application would be replicated, and there would be no possibility of having centralized

objects within it. Although this solution may be acceptable for some applications, there

are situations where the programmer needs to control the distribution of data based on the

particular needs of an individual piece of data.

Second, the scope of a change can affect only a class. For example, the developer could

declare a class of objects as having a particular distribution and concurrency scheme. If

the programmer changed the OrderedCollection class to be replicated, then they can only

create a centralized OrderedCollection by creating a new subclass. Each additional type of

sharing would require the application developer to declare a new sub-class. If many

different types of sharing were desired for a single class, there may be an explosion in the

number of sub-classes.

The final possibility is that the scope of a change applies to a particular instance of an

object. Here, two instances of OrderedCollection can have two different sharing

mechanisms in the same application, so that one can be centralized and another

replicated. This requires no additional coding and is the approach taken by GEN.

Conceptual Separation requires that the components of data distribution and

concurrency control be separated so that the developer can deal with their implementation

individually. In practice this may be difficult because there are interdependencies between

components. In GEN we would like the methods that change the concurrency model and

the distribution model to be distinct. However, a programmer modifying either the

concurrency control or distribution mechanism must be aware of how they interact, since

they are not entirely independent. For example, in replicated architectures the application

developer must also maintain the concurrency mechanism when the object is distributed

69

to a new site. If the concurrency mechanism is distributed differently than the object, the

developer must also handle the distribution of the lock component separately.

In GEN, the difficulties in separating the concurrency control mechanism and the

distribution mechanism mean that we can only present a limited form of conceptual

separation. In this case when a developer defines a new concurrency mechanism they

must also define how the concurrency mechanism is distributed.

Incrementality means that developers can build on top of existing implementations.

GEN provides incrementality through the use of a separate class hierarchy, which

specifies the sharing mechanism separately from the implementation of the objects to be

shared. Application developers can then subclass existing sharing mechanisms to

implement new ones, reusing existing strategies to help create new sharing strategies. For

example, to create a migrating strategy, we will show in Chapter 7 how the replicated

sharing strategy is modified to move objects, rather than copy objects around the network.

5.2 Design of the Meta-Interface

The meta-interface has to present a programming model to developers that allows a range

of behaviours to be specified, but that does not inundate the developer with low level

details (Rao, 1993). For example, a poor meta-interface could provide the developer with

a sockets implementation and a way to convert objects into streams. While developers

could use this to build a range of new behaviours, it would be a difficult and tedious task.

Conversely, the meta-interface could provide a limited set of default implementations that

the application developer could select and use in their application. However, if the range

of behaviours supplied did not meet their needs, developers would revert to the strategies

of coding hematomas and coding between the lines (as discussed in Chapter 3). The

model presented by GEN needs to be both relatively simple to use and flexible enough to

define a broad range of behaviour.

In this section we look at the model used in GEN’s meta-interface to let developers

modify data distribution mechanisms (Section 5.2.1) and concurrency control

mechanisms (Section 5.2.2).

70

5.2.1 Control Model for Data Distribution

There are different approaches to give developers control over data distribution. In

distributed computation systems, such as Emerald (Hutchinson et al., 1987), the focus is

on using a set of distributed resources efficiently to solve a complex problem that requires

significant computing power. These systems give the developer control over where

computation is done, in an attempt to minimize resource use and computation time.

In groupware systems, the focus is different. These systems must keep the information

shared by participants consistent, while at the same time giving rapid feedback to the

local user (Greenberg and Marwood, 1994). The usual bottleneck in groupware

applications is the time it takes to transmit changes between sites. Chapter 2 showed how

particular runtime architectures change how the data is represented at different sites, and

how messages are sent between the sites (e.g. centralized and replicated objects) to

overcome these bottlenecks under specific circumstances. By modifying how the data is

represented and how messages are sent between various copies, developers can minimize

transmission time.

Rather than giving developers explicit control over where an object is located (and hence

where computation is done on it), our implementation gives developers the ability to

control the representation of the object at the local site, and the ability to control how

messages are routed between the different sites.

Object Representation and Content Control. The developer needs to be able to control

the representation of an object. Representing an object as a proxy, for example, allows

them to create proxies on new sites so that the object can be remotely referenced (a

technique used in centralized architectures). Figure 5-1 illustrates an example. We see

that an object copied from Site 1 to Site 2 is mutated to become a proxy, completely

changing the representation of the original object.

Conversely, this control over an object’s representation can be used to create a copy of

the object on the new site, allowing the object to be locally referenced (a technique used

in replicated objects). The way the contents of an object are transferred is equally

71

important. For example, the contents of an object may reference a global variable in a

local process. In this case there are several ways this reference can be transferred between

sites. First, it may reference the global variable remotely, which will require several

message sends. Second, it may copy the global variable to the new site, which, if it were

something like the local sites name (i.e. fully qualified domain name), may be incorrect.

Third, the global reference may be made to point to the global variable as it is defined by

the new site. Figure 5-1 shows how the contents of an object are changed when it is

copied between Site 1 and Site 3. In this case the original object on Site 1 contains a

reference to the global variable X. When the object is copied to Site 3, it is changed so

that the reference points to the global variable X on the new site.

Once an object has multiple representations of itself in the network, the second problem

then becomes how messages sent to one object is forwarded (or routed) to other copies of

the object that exist around the network.

Message Routing Control. GEN lets developers control how messages are forwarded

around the network (or routed). Some messages may be executed locally (for example, if

they simply read the state of an object), others may have to be broadcast (for example, if

they change the state of an object), while still others may simply be forwarded to a single

site (for example, centralized objects).

In implementing replicated objects, messages have to be broadcast to multiple sites.

Figure 5-2a shows how a message sent to an object at Site 1 is then broadcast to its

replicated counter parts at Sites 2 & 3. In a centralized object however, the proxy sends

Site 3

Site 1 Site 2

Replica
copy

Mutated
Copy

Proxy

Replica

Site1 Global
variable X

Site2 Global
variable X

Figure 5-1. Control over the contents/ representation of the object.

72

the message only to the original object and the other proxies are not involved in the

process. Figure 5-2b illustrates how the proxy in Site 1 forwards its message to the

original object at Site 2 and not to the other proxy at Site 3.

5.2.2 Mechanisms for Concurrency Control

The second kind of control that GEN’s meta-interface provides is the ability to modify the

concurrency mechanism. For example, concurrency control is required in replicated

objects because there is a potential conflict when two messages are sent simultaneously to

the same object. This is illustrated by Figure 5-3a. Here we can see that both Site 1 and

Site 3 are sending potentially conflicting messages to Site 2. These messages may

perform incompatible operations, such as one site may delete an object while the other

site resizes it.

Control over these mechanisms is required because there are many different forms of

concurrency control (e.g. optimistic locking, pessimistic locking). The type used depends

on the requirements of the application (Greenberg & Marwood, 1994). Concurrency

control mechanisms in GEN is implemented at the message level. Before a message is

executed by an object, and then again after a message has completed executing at all sites,

the developer can specify arbitrary actions to control concurrency. For example, consider

the replicated locking object in Figure 5-3b that implements a centralized locking

strategy. Both sites receive a message and try to obtain a lock before forwarding it. Only

Site 3 receives the lock, and its message Y is sent to Site 1 and 2. Once the message has

Site 3

Site 1 Site 2a)

Message X Message X

Message X

Site 3

Site 1 Site 2b)

Message X Message Xproxy

proxy

Figure 5-2. Control over message routing, examples of
centralized and replicated schemes.

73

finished executing at all sites, the lock will be released. Site 1 would then receive the lock

allowing Message X to be broadcast (not shown).

5.2.3 Summary

The models in the meta-interface are designed to allow the developer to control

concurrency and distribution. The black box handles the details of inter-process

communication, marshalling of objects and forwarding of messages. By abstracting these

components away, GEN simplifies the problems of building new sharing strategies, while

providing flexibility.

5.3 An Implementation Strategy: The Wrapper Model

In this section, we consider how the properties of wrappers, also known as decorators,

allow a programmer to modify the behaviour of an object (Gamma et al, 1995). A

wrapper is an object that allows the developer to attach additional behaviours to another

object dynamically in order to extend its functionality. A wrapper encapsulates another

object inside itself by selectively passing messages through to the original object, and

implementing new messages that the object will understand. As we shall see, wrappers

are a good mechanism for constructing the meta-interface in Smalltalk and GEN.

5.3.1 The Choice of Wrappers

We believe wrappers are well suited to implementing meta-interfaces because of two

properties: the ability to add new behaviours to objects transparently and dynamically;

Site 3

Site 1 Site 2a)

Message X Message X

Message Y

Message Y

Message X

Message Y

Site 3

Site 1 Site 2b)

Message X

Message YMessage Y

Message Y Message Y

Figure 5-3 . The need for concurrency control is obvious when two
sites send potentially conflicting messages to the same site.

74

and the ability to create these new behaviours without changing the implementation of the

object.

The ability to add new behaviours transparently and dynamically implies that the

original object’s interface does not change. That is, the set of messages that an object will

understand and respond to does not change once the wrapper is added. Thus, shared

objects will have the same interface as non-shared objects of the same class. This means

that the distribution and concurrency mechanisms implemented by GEN will not affect

the original behaviour of the object.

The dynamic nature of wrappers lets the developer delay decisions about the addition of

new behaviours until runtime. For example, the application developer may make the

decision about distribution behaviour (e.g. replicated or centralized) and the concurrency

control mechanism (e.g. optimistic, pessimistic) based on runtime factors such as network

speed or available memory.

The ability to create new behaviours for an instance without changing the class

implementation reduces the number of subclasses that developers must manage. Without

wrappers, one could provide the additional functionality on a per class basis. However,

each combination of class, data distribution scheme, and concurrency control scheme

would require the creation of a new class. This is tedious, complex, and difficult to

maintain. With wrappers, the change is made in the wrapper hierarchy. This new form of

wrapper can then be applied to an instance of any class.

Adding new behaviours to an instance of an object allows different instances of the same

class to have different behaviours. For example, a developer can create two rectangles,

and can choose to place a centralized wrapper around one, and a replicated wrapper

around the other. As well, because the GEN wrapper is independent of the object

contained, a single class of wrapper can be applied both to, say, Rectangle objects as well

as Dictionaries, or even entire expert systems.

The implementation of the wrapper classes are completely separated from the

implementation of the object classes that they contain. Each shared object has its own

75

unique wrapper which allows the developer to have several objects of the same class with

different wrappers and hence different distribution and concurrency schemes. The

wrapper itself may even be in a different inheritance hierarchy than the objects that it

wraps. This feature allows us to apply a particular wrapper implementation (such as

replicated, or replicated locking) to unrelated objects such as Rectangles and

OrderedCollections.

The GEN wrapper classes are composed of two separate components. First, a message

handling component intercepts messages bound for the contained object. GEN uses that

interception to perform notification, concurrency control and message routing. A second

completely separate implementation handles messages sent by the distributed object layer

to distribute the wrapper and the object. By modifying these methods, the developer can

control the contents and representation of the object when it is copied to new sites. We

begin by looking at the model for the message interception layer.

5.3.2 A Wrapper Model for Message Interception

A wrapper allows developers to dynamically add a thin layer of functionality to an object,

by intercepting messages destined for the original object. The wrapper intercepts

messages in three stages:

1. Pre-message management. The wrapper can execute arbitrary code immediately upon

intercepting the message.

2. Message handling. The wrapper can decide how to pass the original message and its

arguments to the contained object.

3. Post-message management. The wrapper can execute arbitrary code immediately after

receiving the answer from the contained object, and can decide how to return the

result.

In GEN, the wrapper uses these three steps to implement the meta-interface for

notification, concurrency control, and message routing. As shown in Figure 5-4, messages

destined for a particular object are intercepted by the wrapper. The first stage generates

76

initial notifications and events (if required), and initializes the specified concurrency

control method. Stage two decides how to distribute and route the message to the object,

and how to manage the reply. Finally, stage three manages any post-operative

concurrency control functions, and generates final notification and events (if required).

A note about notification. As mentioned in Chapter 4, notification is an important part

of any groupware toolkit. In this discussion we will see the hooks for it when we discuss

message interception in detail. However, because we are only interested in distribution

and concurrency control, we have not exposed the model in the meta-interface.

Notification is an important area to expose to the application developer, however because

of the variety of ways (Hill, 1992) and potential complexity of implementing them it is a

research are beyond the scope of this thesis.

The message interception layer allows us to control messages destined for the contained

object. The second function of the wrapper is to respond to messages used to distribute

the object which allows control over the representation and contents of that object.

5.3.3 A Wrapper Model for Representation and Contents Control

The wrapper has a second, completely separate, mechanism which is used to control the

representation and contents of the object when it is distributed across the network. When

an object is about to be distributed to a new site, the system sends messages to that object

to convert it to a bytestream (called marshalling). The wrapper responds to these

messages and provides hooks so that the developer can substitute a modified object which

will be copied to the new site, in place of the original object. In Chapter 4, we described

Messages Replies

Pre-
Concurrency
Control

Pre-
notification

Contained
Object

Wrapper

Distribution

Post-
Concurrency
Control

Post-
notification

Stage 1 Stage 2 Stage 3

Distribution

Figure 5-4. A wrapper around an original object intercepts
messages destined for it. The wrapper contains the controls for
distributing the object and maintaining consistency.

77

how the marshalling of a distributed object directly converted it into a bytestream. For

replicated and centralized objects this was actually handled by the wrapper, which

deconstructs and reconstructs the object. Figure 5-5 shows how an original object A is

transformed into A’ before it is again transformed into a bytestream. The bytestream is

transmitted to the other site and converted back into the object A’. It can then again be

changed during this reconstruction phase into a new object called A’’.

In summary, the use of a wrapper provides a way to meet the goals of scope control and

incrementality mentioned in Section 5.1. The fact that a wrapper is applied to a particular

instance of an object allows different concurrency control and data distribution

behaviours to be applied to different instances of the same class, giving GEN the desired

level of scope control. Furthermore, the wrappers form a class hierarchy, which the

developer can specialize and use to incrementally modify the meta-interface.

5.4 Putting Wrappers Around Objects

The first step to specifying how an object is shared, is to place a wrapper around the

object. As we saw in the previous chapter, the methods #replicated and #centralized were

called when specifying the sharing strategy for an object. These were helper functions for

the wrapper object. The wrapper object is created by sending the message #object:

(specified in Table 5-5) to the wrapper class, where the parameter is the object to be

contained in the wrapper. For example, the replicated wrapper class is called

…

Deconstruction Reconstruction

A

A’

ByteStream

Site 1 Site 2

A’

A’’

Figure 5-5. The wrapper intercepts the deconstruction
and reconstruction of the object, when it is being
marshalled to allow customizable behaviours.

78

ReplicatedElement. To instantiate a replicated wrapper around an original object, the

developer would execute the following piece of code:

wrapperedObject := ReplicatedElement object: originalObject.

The object returned by this call, wrapperedObject, is a new wrapper containing the

originalObject.

Additionally, new wrapper classes are going to have additional instance variables to

manage and initialize. The protocol #initializeGWElement (Table 5-6) provides the

application developer the ability to specify how particular instance variables are

initialized.

5.5 A Wrapper API for Message Interception

The root of the GEN wrapper class hierarchy is the GroupwareElement class. This class

allows single user objects to be transformed into groupware objects by performing

message interception. It also adds the hooks to handle pre- and post-notification, pre- and

post-concurrency control functions and message routing. The replicated, replicated

locking and centralized schemes, described in Chapter 4, inherit from this abstract class

to provide their specific behaviours (their implementations are detailed in Chapter 6).

A message to a GroupwareElement wrapper goes through the steps illustrated in Figure 5-

4. As already mentioned, the wrapper intercepts generic messages bound for the original

object, passes it through a pre-notification and pre-consistency layer. It then goes through

Protocol Effect

wrapperedObject := aWrapperClass object:
anObject

Returns a new object that can be shared
according to the aWrapperClass scheme

Table 5-5. Protocol for wrapping objects

Protocol Effect

aWrapperClass initializeGWElement Initializes the instance of the wrapper class

Table 5-6. Initialization protocols.

79

a routing layer which distributes or forwards the message to other objects (e.g. replicas

and proxies) which may include sending the message to the original object. Finally, after

the message has been routed, the consistency layer is called again allowing the release of

any resources that it required, and any final notification is performed.

5.5.1 Intercepting Messages

Our discussion about wrapper implementation begins by describing how GEN can apply a

wrapper to any object of any class through Smalltalk’s #doesNotUnderstand: protocol

(Gamma et al., 1995). In Smalltalk, whenever an object receives a message that its class

does not recognize, the object will automatically dispatch a #doesNotUnderstand:

aMessage to the object. This normally brings up an error notification or debugging

dialog.

This protocol can be overridden to implement a wrapper layer to objects. First, wrapper

classes are constructed so they do not implement any messages, nor do they have any

super classes. The consequence is that they do not understand any messages. When a

wrapper receives a message it does not understand (which will be all of them), Smalltalk

calls the #doesNotUnderstand: aMessage, where the original message is passed as an

argument. By modifying the #doesNotUnderstand: method in the wrapper object, the

developer can intercept and manipulate the message sent to the contained object. For

example, Figure 5-6 shows a simple example of how the method #doesNotUnderstand: is

altered so that it just forwards the message on to the contained object (i.e., so the wrapper

has no effect).

1 doesNotUnderstand: aMessage
2 ^containedObject
3 perform: aMessage selector
4 withArguments: aMessage arguments

Figure 5-6. Message interception through the #doesNotUnderstand:
implementation. In this case the object simply forwards the message to the
contained object.

80

Of course, GEN requires a more complex implementation of the #doesNotUnderstand:

method to perform notification, concurrency control and distribution. Figure 5-7 shows

that there are actually five stages that the message goes through in a wrapper. Before the

message is distributed, both pre-notification and pre-consistency phases occur (lines 3 &

4). The #handleMessage: method is then executed (line 5), which is responsible for the

distribution of the message to all the replicas or possibly a centralized copy. After the

message has completed, the post-consistency and post-notification phases occur (lines 6

& 7).

The root GroupwareElement class just provides these stages as hooks: there is actually no

implementation behind them. It is up to other classes that inherit from GroupwareElement

to implement particular approaches to notification, consistency, and routing. Additionally,

by overriding the #doesNotUnderstand: method in new subclasses of the wrapper, the

developer can add new behaviours at message interception time, and even remove the

default components of notification and/or consistency if they are not required.

5.5.2 Controlling Concurrency Mechanisms

Wrappers place two hooks for concurrency checks immediately before the message is

distributed to the object, and immediately after the distribution has completed as shown in

Figure 5-8. As mentioned before, distribution in GEN is accomplished by broadcasting or

forwarding messages between objects at different sites. By providing a wrapper layer to

control the concurrency of these messages, concurrency within the objects can be

managed.

1 doesNotUnderstand: aMessage
2 |result|
3 self handlePreNotification: aMessage.
4 self handlePreConsistency: aMessage.
5 result := self handleMessage: aMessage.
6 self handlePostConsistency: aMessage.
7 self handlePostNotification: aMessage.
8 ^result

Figure 5-7. Open implementation of message interception.

81

Concurrency is controlled implicitly (Stroud & Wu, 1995). This means the wrapper is

responsible for maintaining the consistency of the object, without requiring changes to the

object itself. For example, we can consider a wrapper which ensures messages are

executed in mutually exclusive fashion. An OrderedCollection may be wrapped by one of

these. If two objects are added to the OrderedCollection at the same time from different

sites, the first add received must be executed at all sites before the second one begins. The

algorithm for ensuring mutually exclusive execution of the methods in this case will be

implemented in the wrapper, and will not require any changes to the implementation of

the OrderedCollection. Also, because the wrapper handles the mutual exclusion of the

messages, application developers will not have to worry about acquiring a separate lock

before sending the message #add: to the OrderedCollection. The object itself maintains

its own concurrency, and the application developer does not deal with it other than to

select a wrapper which gives them the desired level of concurrency control.

Application developers specify the concurrency control in the wrapper using the protocols

of #handlePreConsistency: and #handlePostConsistency:, shown in Table 5-7. By

default, the pre-consistency and post-consistency methods do nothing. Consistency, as

mentioned before, is often not required for some style of groupware applications

(Greenberg & Marwood, 1993). However, by modifying these methods the developer can

create new consistency schemes. For example, in pessimistic locking schemes the

application developer will use the #handlePreConsistency: method to acquire the lock.

The #handlePostConsistency: method will be used to release the lock and is called only

after the message has been delivered to and executed by each remote site. In Chapter 6,

Messages Replies

Pre-
Concurrency
Control

Pre-
notification

Wrapper
Contained
Object

Distribution Distribution

Post-
Concurrency
Control

Post-
notification

#handlePreConsistency: #handlePostConsistency:

Figure 5-8. The pre and post notification stages.

82

we shall show how a modified scheme can be used to implement a form of optimistic

locking.

5.5.3 Controlling the Routing of Messages

Once the pre-consistency stage is completed, the interception of messages is used to

implement controllable routing of messages. This allows developers to broadcast

messages to other replicas, forward them to centralized objects, or just send them to the

contained object. Figure 5-9 shows the steps a message will pass through when being

routed by a wrapper. After completing the first consistency stage, the message being sent

to the object is intercepted by the #handleMessage: method. This method first calls

#distributeMessage: to forward the message to remote copies and then calls

#performMessage: to send the message to the local copy. The #distributeMessage:

forwards messages to the remote copies of the objects, by calling them with

#handleRemoteMessage:. The wrapper uses proxy objects (from the distributed object

implementation) to communicate with remote replicas, as will be discussed further in

Chapter 6, where the default implementation of replicated objects in Chapter 6 is

presented.

Protocol Effect

aSharedObject handlePreConsistency:
aMessage

Override this method to define new ways
for handling concurrency control, before a
message is sent.

aSharedObject handlePostConsistency:
aMessage

Override this method to define new ways
for handling concurrency control, after a
message is sent.

Table 5-7. Protocols for overriding consistency methods.

83

Table 5-8 shows the three methods that can be modified to allow different distribution

techniques. The default implementation’s first one, #distributeMessage:, for example,

will broadcast messages in the case of a replicated object, or will forward the message on

to the actual site (via a proxy) in the case of a centralized object. Similarly,

#performMessage: controls whether or not the message is sent to the local object. For

example, in the replicated object implementation, #performMessage: will always send the

message to the local object. For centralized objects, #performMessage: will only send the

message to the object if it is located on the local machine. The final method,

#handleRemoteMessage:, allows the developer to distinguish between messages

Messages Replies

Pre-
Concurrency
Control

Pre-
notification

Wrapper

Contained
ObjectDistribution

Post-
Concurrency
Control

Post-
notification

#distributeMessage: #performMessage:

#handleRemoteMessage:

Replica 2

#handleRemoteMessage:

Replica 1

#handleMessage:

Figure 5-9. The components of message routing in the wrapper.

Protocol Effect

aSharedObject distributeMessage:
aMessage

A modifiable method that allows
developers to change the way messages are
distributed to local an remote objects.

aSharedObject handleRemoteMessage:
aMessage

A modifiable method for changing the way
in which messages sent from other sites are
handled.

aSharedObject performMessage: aMessage A modifiable method for changing the way
in which messages from the local site are
changed.

Table 5-8. Protocols for handling message distribution

84

forwarded by another replica from those sent by another object. For example, the

#handleRemoteMessage: is used in replicated objects to ensure that the message

forwarded to them is not then again subjected to concurrency control.

5.6 The Wrapper API for Controlling Object Representation
and Contents

The next component of the meta-interface looks at the representation and contents of the

object. There are situations where objects that are copied between sites should not be

identical. For example, a global value such as the name of the local site will have to be

changed when the object is copied between sites. Also, proxy objects are not copies of the

object, just remote references. As such, they use a completely different representation for

the object. The meta-interface provides the capability of changing the representation and

contents of an object while it is being transported to a new site.

This is done by allowing the developer to substitute a new object both when the object is

deconstructed on the sending site, and then again when the object is reconstructed on the

receiving site. This is accomplished by the methods #deconstructObject and

#reconstructObject, which are sent by the distributed object system to the wrapper just

before and just after the object is sent to the remote site. These two methods return an

object that should be substituted for the current one.

The #deconstructObject method is called before the object is copied to the new site. As

such, it may be used to break links to local references. For example, in Figure 5-10, we

can see that the deconstruction of the object A creates a copy of the object called A’

which has removed the reference to the site name ‘Site 1’. Once the deconstruction phase

has been completed the object is then copied to the new site. An instance of that object is

created on the new site, which is then sent the #reconstructObject message. In Figure 5-

10 we can see that a new object is substituted for A’ called A’’, and the link to the new

site’s name ‘Site 2’ has been created.

85

The deconstruction and reconstruction model modify both the wrapper and the contained

object in the same piece of code. The wrapper may need to be deconstructed in a special

way to handle changes in the locking mechanism or other internal data structure (we shall

see this in Chapter 6, when we discuss the replicated wrapper). The object, we have seen,

may need special deconstruction to handle changes to its contents, such as a reference to a

global object.

The deconstruction and reconstruction phases in GEN are further refined to supply default

implementations that separate the deconstruction of the wrapper from the deconstruction

of the contained object, allowing the developer to specify the modifications of these

components at an instance level. In Table 5-9, we detail the protocols that separate the

deconstruction and reconstruction of the contained object from the deconstruction and

reconstruction of the wrapper. These protocols take a Block (an executable piece of code)

which is specified at runtime, allowing the developer to provide a custom piece of code.

This technique removes the need to define a new wrapper class each time a developer

wishes to modify the way a particular class of object is distributed. Different instances of

a wrapper class can deconstruct and reconstruct their objects in different ways. The

protocols #objectDeconstructionBlock: and #objectReconstructionBlock: control the

deconstruction and reconstruction of the contained object. The protocols

#wrapperDeconstructionBlock: and #wrapperReconstructionBlock: take Blocks which

control the deconstruction and reconstruction of the wrapper.

…

#deconstructObject #reconstructObject

A

A’

ByteStream

“Site 1” “Site 2”

A’

A’’

Figure 5-10. Deconstruction is used to remove a reference to a
global variable while reconstruction is used to rebuild that link.

86

The meta-interface simplifies this process in one more step, by allowing the meta-

interface developer to specify default implementations for each of these modification

steps. The protocols #defaultObjectDeconstructionBlock, #defaultObjectReconstruction-

Block, #defaultWrapperDeconstructionBlock and #defaultWrapperReconstructionBlock

are defined in each class and define the default protocol for deconstructing and

reconstructing the wrapper and the object.

5.6.1 Using Substitution to Control Distribution: Copies and Proxies

The ability to deconstruct and reconstruct an object can also be used to give the developer

control over the way an object and its contained components are shared. For example, if a

replicated wrapper contains a lock, it may not be desirable to replicate the lock when it is

transmitted to the new site. Rather, it should be maintained as a remote reference to

provide mutual exclusion between the different sites. By substituting a proxy, the

developer can create a remote reference to the object.

Protocol Effect

aSharedObject objectDeconstructionBlock:
aBlock

aBlock takes 1 parameter (the contained
object) and answers a mutation or copy of
the contained object that is to be passed on.

aSharedObject objectReconstructionBlock:
aBlock

aBlock takes 1 parameter (the mutated
contained object) and answers a mutation
of that object that is the new contained
object.

aSharedObject
wrapperDeconstructionBlock: aBlock

aBlock takes 1 parameter (the wrapper
object) and answers a mutation or copy of
the contained object that is to be passed on.

aSharedObject
wrapperReconstructionBlock: aBlock

aBlock takes 1 parameter (the mutated
wrapper object) and answers a mutation of
that object that is the new wrapper object.

Table 5-9. Protocols for specifying instance specific behaviours for
deconstructing and reconstructing the wrappers.

87

In this case, GEN allows the developer to substitute a special object that dictates how the

contained object is shared. These two objects are RemoteProxys and RemoteCopys, as

shown in Table 5-10. The substitution of a RemoteProxy for an object forces a remote

reference for the object when it is distributed, whereas substitution of a RemoteCopy

forces the object to be copied.

For example, Figure 5-11a) shows how object A references object B. When object B is

being copied across, a RemoteProxy is substituted, then when A is reconstructed on the

other site, it contains a proxy to the original object B. Conversely, in Figure 5-11b) a

RemoteCopy is substituted for object B, so that when A is reconstructed on the new site, a

new copy of B is also created.

Protocol Effect

aProxyObject := RemoteProxy for:
anObject

Creates a special object for the object
anObject which will force a proxy
parameter to be created for anObject.

aCopyableObject := RemoteCopy for:
anObject

Creates a special object for the object
anObject which will force a remote copy to
be created for anObject.

 Table 5-10. Protocols for remote object distribution.

88

To simplify matters GEN provides a method which sets, by default, whether an object is

copied or remotely referenced. The object is sent the message #isCopiedRemotely which

will answer true if the object is to be copied, false if it is to be remotely referenced. This

method is implemented in the class, so the answer will apply to all instances of the class.

Note that the RemoteCopy and RemoteProxy implementations override this default.

This is the last of the meta-interface that deals directly with giving the developer control

over how objects are distributed and their concurrency mechanisms.

5.7 Summary

This chapter has presented four separate sections. The first examined how the principles

of open implementation, namely scope control, conceptual separation and incrementality

were applied to GEN’s meta-interface. It was explained that conceptual separation was

not entirely possible in GEN because of dependencies between distribution and

concurrency control mechanisms.

The second section examined the model we use to let developers modify distribution and

concurrency control mechanisms. To control how objects are distributed between sites,

developers can modify both the contents and representation of the object. Additionally,

developers are given control over how messages are routed between sites. Concurrency

…

Substitute a
RemoteProxy for B

A

A’

ByteStream

A’

B

Remote
Proxy for B

a)

Proxy

reconstruction

…

Substitute a
RemoteCopy for B

A

A’

ByteStream

A’

B

Remote
Copy for B

b)

reconstruction

B

Figure 5-11a) Shows how a remote proxy substitution creates a remote
reference. Figure 5-11b) Shows how a remote copy substitution creates a
new copy.

89

control, on the other hand, was implemented at the message level by giving developers

the ability to implement concurrency mechanisms both before and after the object

executes a message sent to it.

The third section introduced the notion of wrappers and how they could be used to

modify the behaviour of objects. The fourth and final section discussed how wrappers

were used to implement the meta-interface API that lets developers modify the

mechanisms used to distribute the objects and control concurrency.

The following chapter will evaluate the meta-interface by illustrating how the replicated,

replicated locking and centralized data sharing strategies are implemented. Chapter 7 will

continue by showing how the meta-interface can be used to build new constructs, such as

migrating objects, selective message broadcasts, and a form of optimistic locking.

90

6. Case Studies: The Default Implementations

The last component supplied with the GEN toolkit is the default implementation for the

data sharing strategies. The default implementations are important for several reasons.

First, they are necessary because they give developers, who do not want to concern

themselves with the meta-interface, a usable implementation. Second, the default

implementations are built on top of the meta-interface and serve as examples of how the

meta-interface works. Third, and as we will see in the subsequent chapter, they can be

incrementally modified, allowing developers to build on existing strategies to construct

new ones. Finally, the default implementations serve as one way to evaluate the meta-

interface, by showing how sharing strategies can be constructed using the meta-interface.

In the current version of GEN, the default implementation provides the developer with an

API to replicated, replicated locking and centralized data sharing strategies (introduced in

Chapter 4). These particular default implementations were chosen because they are

typical of data distribution and concurrency strategies found in other groupware toolkits

and likely form a reasonable set of data sharing strategies for groupware developers.

Additionally, as we shall see in Chapter 7, these particular implementations can be built

upon incrementally to provide new strategies, such as migration and a form of optimistic

locking.

This chapter shows how the meta-interface is used to construct the default

implementations. It begins with an implementation for replicated objects. It then shows

how this implementation is modified to create replicated locking objects. The chapter

concludes with the final default implementation of centralized objects.

91

6.1 Case Study #1: Replicated Objects

As we saw in Chapter 4, a replicated object has a copy of itself located at each site. A

replicated object is useful because a local copy provides quick feedback for any local

changes made to the object.

Replicated objects need special mechanisms for routing messages and managing replica

creation. First, when there are multiple replicas of the object on different sites, a replica

receiving a message must broadcast it to the other replicas in the system. This keeps all

copies up to date. Second, when the object is distributed to a new site, there must be a

mechanism for creating a replica at that site.

In this section we examine how the meta-interface modifies the routing of messages to

perform the message broadcast, and how the wrapper’s contents are modified when a new

replica is created. The name of the replicated object wrapper class is ReplicatedElement,

and its implementation specializes the GroupwareElement class (i.e., the basic object

wrapper).

Contained
Object

Wrapper
Object

Message X Reply

Contained
Object

Wrapper
Object

Contained
Object

Wrapper
ObjectProxies

Replica #1

Replica #2 Replica #3

Message X Message X

Figure 6-1. Synchronization in replicated objects through
message forwarding.

92

6.1.1 Message Routing

In this section, we will discuss how the replicated object routes messages between the

various replicas in the system. Since the replicated element must broadcast each message

it receives to all the other replicas, it maintains a list of proxies which point to the

wrappers for the other replicas. A replica will use this list (called replicas) to forward

messages it receives to the other replicas. One replica sends a message to another remote

replica, by forwarding the message through a local proxy for the remote replica. The local

proxy will then forward the message. For example, in Figure 6-1 Replica #1 has received

a message (Message X), which it sends to the proxies for Replica #1 and Replica #2.

These proxies then forward the messages to the actual object on the remote sites using a

special protocol (#handleRemoteMessage:) that ensures the message is not rebroadcast to

the new sites (as discussed in 5.5.3).

In this case the ReplicatedElement must modify two components of the

GroupwareElement class: the message routing scheme, for distributing the messages to

the replicas; and the object representation, to keep the list of replicas up to date when a

new replica is created.

Changes to the Message Routing Scheme. There are two changes to the way messages

are distributed using the GroupwareElement. The first change modifies the ways

messages are sent, through the #distributeMessage: protocol. The second modifies the

way messages are received by the #handleRemoteMessage: protocol.

ReplicatedElement defines an implementation of #distributeMessage: which sends a

message to each of the replicas by iterating over the list of replicas as shown in Figure 6-

2 (lines 2 & 3). The iteration is performed in a separate thread (using #fork), to allow the

current thread to continue processing while the message is distributed to the other sites.

93

The modifications to #handleRemoteMessage: speed up the reply process and handle

local notification. To ensure that the message is not rebroadcast to all the other sites,

#handleRemoteMessage: sends the message to the local object only, and does not call

#distributeMessage: again (as discussed in Section 5.5.1). To speed up the reply process,

the implementation returns the ‘nil’ object which is quick to transfer between sites (line 9

of Figure 6-2). The implementation does not need to return the original object because all

replicas should answer the same value when sent a message, thus the implementation can

use the result of the local #performMessage: and ignore the replies of the other replicas.

The reply is an acknowledgement indicating that the message was received and executed

at the local site successfully.

The second change to #handleRemoteMessage: involves the use of the pre- and post-

notification methods in lines 6 and 8. In a replicated object, we make the local wrapper

perform notification, to reduce the number of messages that must be broadcast. As

mentioned in Chapter 5, we did not provide an open implementation for notification,

which has side-effects when trying to implement the replicated object. The problem is

that the underlying implementation does not automatically broadcast the notification

events to all the sites. By adding the pre- and post-notification methods to

#handleRemoteMessage:, the local site generates the message. However, this violates the

principle of conceptual separation (see Chapter 3), since the developer must now modify

the notification system when changing the message routing strategy.

1 distributeMessage: aMessage
2 [replicas do: [: aReplica |
3 aReplica handleRemoteMessage: aMessage]] fork.
4
5 handleRemoteMessage: aMessage
6 self handlePreNotification: aMessage.
7 containedObject performMessage: aMessage.
8 self handlePostNotification: aMessage.
9 ^nil

Figure 6-2. Code for the distribution of messages to replicas.

94

6.1.2 Changing the Object’s Representation.

A replicated object has a copy of the object at each site. When a new replica is created

(for example, this occurs when a new site references the object), a copy of both the

wrapper and the contained object must be passed to the remote site. To create this copy of

the wrapper and the contained object, the method #isCopiedRemotely answers true,

forcing the distributed objects layer to copy the object when it is distributed. By default,

this makes an exact copy of the object. However, we need to modify the replicas list, as

described below.

Changing the Object’s Contents. The implementation of the ReplicatedElement uses

the deconstruction and reconstruction phases to maintain the replicas list as the object is

transferred around the network. The deconstruction phase is used to create the list for the

new replica, while the reconstruction phase is used to inform the existing replicas of the

addition of a new replica. Figure 6-3 illustrates the various steps that are covered by the

deconstruction and reconstruction of the object, which are listed below.

Step 1. During deconstruction at site 1, an original replica A is copied to make a

substitute object A’.

Step 2. The list of replicas in A’ is updated to contain a remote proxy which points to the

original replica A.

Step 3. For each of the other replicas, the list of replicas must be updated to include a

proxy which points to the new replica. To accomplish this the replica that was just

created broadcasts a proxy for itself to all the other replicas in the system when it is

being reconstructed on the new site.

Step 1:
Copy

Step 2:
Update replicas

Step 3:
For each replica in the
system, add a proxy for
the current replica to
their replicas list

Deconstruction Reconstruction

Site 1 Site 2

transfer

Substitute object
for transfer

A

A’ A’

Figure 6-3. The steps in maintaining the list of replicas.

95

We will now detail this implementation. The list of replicas is constructed for the new

object when it is being copied from an existing replica. Step 1 occurs in the

deconstruction phase and creates the substitute object by copying the current wrapper and

all its instance variables using a deep copy (line 3 of Figure 6-4).

The list of replicas in the wrapper that was copied is almost, but not quite, complete.

While the replicas list of the wrapper being copied had pointers to all the other wrappers,

it is missing a proxy to itself. For example, in Figure 6-1, Replica #1 could be copied to

create a new replica, say Replica #4. If the system were to copy Replica #1 identically,

then Replica #4 would point only to Replica #2 and Replica #3. A proxy must be added to

the list that points to Replica #1. Step 2 (line 4), creates a proxy for the wrapper being

copied and adds it to the list of replicas. Finally to ensure that the list of replicas is passed

as a copy (rather than a remote reference), the clone list itself is made into a remote copy

(line 5).

When the replica is rebuilt on the other side, its wrapper contains the list of all other

replicas in the system. However, the other replicas do not have a proxy to this new

replica. When the replica is reconstructed, it will broadcast a remote proxy for itself to all

the other replicas (Step 3), bringing them up to date. Figure 6-5 shows how the

reconstruction of an object is used to broadcast a proxy of the replica that was just created

to all the other replicas. In line 3 the list of replicas is iterated over, and a RemoteProxy of

the new replica is sent to each of them.

1 defaultWrapperDeconstructionBlock
2 ^[: currentWrapper | | newVersion |
3 newVersion := currentWrapper deepCopy. “Step 1”
4 newVersion replicas add: (RemoteProxy for: currentWrapper). “Step2”
5 newVersion replicas: (RemoteCopy for: newVersion replicas).
6 newVersion]

Figure 6-4. During deconstruction, the list for the new object is formed.

96

In this section, we have shown the default implementation for a replicated element. It

demonstrated how the deconstruction and reconstruction blocks are used to maintain the

list of replicas at other sites, and how the message interception layer is used to broadcast

messages to these replicas. We now show how this scheme can be modified to support

locking.

6.2 Case Study #2: Replicated-Locking Objects

With replicated objects, two replicas may be sent messages at the same time. These

messages may arrive in different orders at different sites, leading to different execution

orders and possible loss of consistency (see Chapter 2 for a detailed explanation of the

need for consistency). To provide control over consistency, we created replicated locking

objects that add strict concurrency control to replicated objects.

The ReplicatedLockingElement inherits its functionality from the ReplicatedElement

described in Section 6.1. However, it adds guarantees of the contained object’s

consistency by ensuring that any message sent to the object will not execute until it

acquires a system wide lock. Only after the message has executed at each site is that lock

released. The ReplicatedLockingElement uses the pre and post-consistency hooks to

implement this form of locking. Figure 6-6 illustrates how site 3 acquires the lock when it

receives a message ‘Y’. Before broadcasting the message to all the other sites, site 3 must

first obtain a centralized lock. To do this, site 3 sends a request for the lock to the lock

object located on site 2. Once the lock is obtained, site 3 will broadcast message ‘Y’, wait

for it to execute at each site, and then release the lock.

1 defaultWrapperReconstructionBlock
2 ^[: remoteObject |
3 remoteObject replicas do: [: aReplica | “Step 3”
4 aReplica addClone:
5 (RemoteProxy for: remoteObject)].
6 remoteObject]

Figure 6-5. The replicas are reconstructed by sending a proxy to all the
replicas.

97

Modification of the Concurrency Mechanisms. To perform the locking, the

ReplicatedLockingElement uses a standard Smalltalk Semaphore, which is created when

the object is initialized in #initializeGWElement (shown in line 2 of Figure 6-8). This

object is declared as centralized so that when the wrapper is distributed, there will be a

single instance of the lock that all sites use. Whenever a new replica is created, it will

have a proxy to the centralized lock.

The #handlePreConsistency: and #handlePostConsistency: methods respectively wait

and signal the semaphore (lines 6 & 7). The message is broadcast and then executed at all

sites before the lock is released by having the #distributeMessage: wait until all the

replies are received, Only then does it release the lock (line 13). In the ReplicatedElement,

Site 3

Site 1 Site 2

Message YMessage Y

Figure 6-6. The acquisition of a centralized lock before
message Y can be sent.

1 defaultWrapperDeconstructionBlock
2 ^[: currentWrapper | | newVersion |
3 lockObject wait.
4 newVersion := currentWrapper deepCopy.
5 newVersion replicas add: (RemoteProxy for: self).
6 newVersion replicas: (RemoteCopy for: newVersion replicas).
7 newVersion]
8
9 defaultWrapperReconstructionBlock
10 ^[: remoteObject |
11 remoteObject replicas do: [: aReplica |
12 aReplica addClone:
13 (RemoteProxy for: remoteObject)].
14 lockObject signal.
15 remoteObject]

 Figure 6-7. New wrapper deconstruction and reconstruction blocks.

98

we saw that this method forks a separate thread, which allowed the current thread to

continue running. In the ReplicatedLockingElement implementation, no new thread is

forked — the current thread (which is doing the message sends) waits until all the replies

are received from the replicas, which indicates they have processed the message. Once

these replies have been received, the #handlePostConsistency: method will free the lock.

The replicated element must handle the possibility that a message will be sent while the

object itself is being replicated. If a message were sent by a replica after the object was

copied, but before the object broadcast its proxy to all the remote copies, then the remote

proxy would not receive the message and subsequently would be in an inconsistent state.

To exclude this possibility, the #defaultWrapperDeconstructionBlock and

#defaultWrapperReconstructionBlock are modified to acquire and release the lock before

and after the deconstruction and reconstruction are done, ensuring that the creation of a

new replica is mutually exclusive to the broadcasting of messages (lines 3 and 11 of

Figure 6-7).

6.3 Case Study #3: Centralized Objects

The final case study chosen from the default implementation explores another common

data distribution scheme used by groupware toolkits: centralized objects. Centralized

objects are useful for several reasons. They are easy ways to implement concurrency,

1 initializeGWElement
2 lockObject := Semaphore forMutualExclusion centralized.
3 ^super initializeGWElement
4
5 handlePreConsistency: aMessage
6 lockObject wait
7
8 handlePostConsistency: aMessage
9 lockObject signal
10
11 distributeMessage: aMessage
12 replicas do: [:aReplica |
13 aReplica handleRemoteMessage: aMessage]

Figure 6-8. Locking in the pre-consistency and post-consistency methods.

99

because they serialize messages that are sent to them. Additionally, they are useful for

implementing concurrency strategies (such as the lock used in the replicated locking

implementation), because the developer can use the built in features of the OS or

programming language to implement mechanisms such as semaphores or mutexes to

guarantee mutual exclusion.

In GEN, a centralized object resides on the machine which creates it. Remote sites

receive a proxy when the object is distributed to them, which forward all the messages

they receive to the centralized object. The wrapper itself is not distributed between sites,

so centralized elements are straightforward to implement: they can use the functionality

of the distributed objects layer to create the remote references.

The centralized object exploits the distributed object layer by creating a proxy at each

site, rather than a new wrapper. Figure 6-9 shows how one site (Site 3) will contain the

object while the other sites (Sites 1 & 2) only contain proxies which point to the

centralized wrapper. When either Site 1 or Site 2 send a message to the object, the proxy

will automatically forward it on to the wrapper.

The remote object specializes two methods. First, #isCopiedRemotely is changed to force

a proxy to be made; this causes the proxy to be made automatically by the distributed

objects layer. As shown in lines 1-2 of Figure 6-10, the method #isCopiedRemotely

Contained
Object

Centralized
Wrapper

Proxy Proxy

Site 1

Site 3

Site 2

Figure 6-9. How a centralized object is represented on
other machines.

100

answers false. Second, #performMessage: now forwards the message to the local object

by passing it on to the contained object (lines 4-5).

6.4 Summary

The centralized and replicated objects shown in these sections have demonstrated three

implementations that allow developers to control data distribution and concurrency

mechanisms. They serve as case studies to demonstrate the power of the meta-interface,

as they demonstrate how the meta-interface can be used to construct these schemes.

These particular implementations are included in GEN, and their API is provided as part

of the programmer’s interface. What is important to realize is that they are really no

different than anything else constructed using the meta-interface. Indeed, the default

implementations are simply components built using the meta-interface by the toolkit

developer for two reasons: to allow the application developer to use the toolkit without

understanding the meta-interface; and to give the application developer examples of how

the meta-interface can be used to construct sharing strategies.

The meta-interface is designed not only for power, but for flexibility. In the next chapter

we will see how the meta-interface can be used, by application developers, to build new

data sharing strategies, including migration and a form of optimistic locking.

1 isCopiedRemotely
2 ^false
3
4 performMessage: aMessage
5 ^containedObject perform: aMessage

Figure 6-10. Code to implement a centralized object.

101

7. Case Studies: Extending GEN by Adding New
Data Sharing Strategies

In the previous chapter, we showed how the meta-interface could be used to construct the

default implementations seen in the programmer’s interface. In this chapter, we present

three additional case studies that demonstrate the flexibility of the meta-interface by

showing how it can be used to extend and construct new data sharing schemes. These

schemes were not planned for when the meta-interface was designed.

The first case study provides a way to reduce the number of messages distributed by a

replicated object by allowing the developer to specify which messages are broadcast, and

which are not. The second case study implements a form of object migration that moves a

centralized object around the network, based on which site uses the most frequently. The

third case study demonstrates a new concurrency control mechanism by implementing a

form of optimistic locking. It is not our intention to champion these sharing strategies, but

rather to demonstrate how the meta-interface can be used by application developers to

extend the range of strategies available to application developers.

7.1 Case Study #4: Selective Broadcast of Messages

Replicated objects currently broadcast all the messages they receive to all sites. Yet

replicated objects do not really have to broadcast all messages sent to them. For example,

because messages that read the state of a replicated object can be handled by the local

object alone, they do not need to be broadcast over the network. Replicated objects, as

implemented in the default implementation, are inherently slow. All messages are

broadcast, and broadcasting is an expensive operation. Consequently, we would like to

change the implementation of replicated objects to make their message broadcasts more

selective.

102

In the ReplicatedSelectiveElement, we give the developer the ability to specify those

messages that are broadcast to all sites, and those that are only sent to the local site. In

particular, the developer must specify the name of each method that is not to be

broadcast. When a message is received by the wrapper, the wrapper checks to see if the

message is on the list, and routes it accordingly.

The ReplicatedSelectiveElement inherits from the ReplicatedLockingElement, with the

addition of a Set of the method names (called message selectors) that should not be

broadcast. The message #addNonBroadcastMethod: adds method names to this

collection, and the #distribute Message: method is changed to filter the messages so it

can selectively broadcast them.

As we can see in Figure 7-1, the method #initializeGWelement (lines 1-3) creates the set

called protocols to hold the names of the methods (selectors) when the object is

initialized. The next method, #addNonBroadcastMethod: adds the specified message

selector to the set of message selectors to be ignored by adding it to the protocols set in

line 6. Line 9 of #distributeMessage: contains the test to see if the message is contained

in the protocols set. If it is, the message will not be broadcast. Otherwise

#distributeMessage: broadcasts the message to all the other sites by using its superclasses

(ReplicatedLockingElement) #distributeMessage: method (line 11).

1 initializeGWElement
2 protocols := Set new.
3 ^super initializeGWElement
4
5 addNonBroadcastMethod: aMessageSelector
6 protocols add: aMessageSelector
7
8 distributeMessage: aMessage
9 ^(protocols includes: aMessage selector)
10 ifFalse: [
11 super distributeMessage: aMessage]

Figure 7-1. Modifications for ReplicatedSelectiveElement wrapper.

103

To use a ReplicatedSelectiveElement, the application developer needs to specify the

methods that are not broadcast. For example, let us consider how reads and writes can be

managed efficiently within Smalltalk’s OrderedCollection object, using a

ReplicatedSelectiveElement (line 1 of Figure 7-2). The application developer specifies

that the OrderedCollection’s #at: method (which reads the value at a particular index) not

be broadcast, as shown in line 2.

This list of messages that are not to be broadcast will be copied whenever the wrapper is

replicated. However, if one site makes a change to that set, that change will be reflected

only in the local wrapper and not the other replicas. This is because the protocols instance

variable is not a shared object and messages sent to it (such as adding a new protocol)

will not be broadcast. Because of this, this implementation has the usage restriction that

the contents of protocols must be fully specified before the object is distributed.

7.2 Case Study #5: Migration

While centralized objects can respond quickly to messages sent to it from other objects at

the local site, they can be slow (because of network delays) to receive and answer

messages from remote objects. This can be exploited by groupware: in actual usage,

objects tied to the user interface are often used without competition by a single person for

a stretch of time, before being passed on (Greenberg & Marwood, 1994). If the user

currently using a centralized object is at a remote site, interaction will suffer. However, if

the object could be moved to the local site it will speed up interactions with the object.

While replicating the object is one solution, another is to migrate the single centralized

object to the site that is most likely to use it. This has the advantage that broadcasts can

be avoided, reducing network traffic. In this section, we will see how the meta-interface

can be used to develop such a migrating centralized object. We will create a migration

wrapper for shared objects, where a single instance of an object is moved around the

1 aWrapperedObject := ReplicatedSelectiveElement object: OrderedCollection new.
2 aWrapperedObject addNonBroadcastMethod: #at:

Figure 7-2. A shared OrderedCollection that does not broadcast the #at:
method.

104

network based on frequency of use. (While we have chosen frequency as the criteria to

demonstrate how migration can be triggered, other measures such as recency could have

been used).

In the migration scheme, each site maintains a wrapper. One of the sites maintains a

wrapper with the current copy of the object and a frequency count of the messages

received from each particular site, as illustrated by the top circle in Figure 7-3. The other

sites each maintain a wrapper containing a proxy to the wrapper containing the original

object, as shown by the circles at the bottom of the figure. It is important to note that

these proxies point to the wrapper, so that the wrapper can intercept messages sent to the

contained object, allowing it to maintain the frequency counts. If the number of messages

from a particular site exceeds the number of messages received from the local site by a

threshold value, then the contained object is moved to the site with the highest frequency

count.

The implementation of the MigratingElement requires a modification via the meta-

interface to both the message routing scheme and the object’s contents when the wrapper

is distributed.

Contained
Object

Wrapper
Object

Message Reply

Wrapper
Object

Wrapper
Object

Proxy Proxy

Forwarded
Message

Forwarded
Message

List of frequency
of use by site

Figure 7-3. Structure of a migrating object. When the relative
frequency count for a particular site exceeds a threshold the object is
migrated.

105

1. We modify the message routing scheme to add information about the source of each

message send, which allows us to maintain site-specific frequency counts. The routing

scheme must also move the contained object between sites, and keep the replicas

informed about the actual object’s location.

2. When the wrapper is distributed, it may not be copied identically to the new site. For

example, if the wrapper being copied contains the actual object, the new wrapper will

have to be modified to contain a proxy to the wrapper being copied.

The next two sections detail the implementation of the MigratingElement. This object

inherits from the ReplicatedLockingElement so that messages sent to it are guaranteed to

be mutually exclusive. It also contains an additional object: a frequency list called the

frequencyCollection that holds a count of the number of messages received from each

site. The first section deals with the changes to the message routing scheme, which adds

the frequency information necessary to determine when and where the object will

migrate, as well as performing the actual migration. The second section shows how the

deconstruction and reconstruction phases are used to create new replicas that maintain the

location of the actual object.

Changes to the message routing scheme. The first change to the message routing is the

addition of information about where a message was sent from. This information will be

used to maintain the frequency collection. In terms of message routing, the migrating

object overrides the default behaviours of #distributeMessage:, #performMessage: and

#handleRemoteMessage:. The message routing for migrating objects is more complex, so

we have detailed it in several ways: Figure 7-4 presents a graphical representation of the

path that the message takes; Figure 7-5 presents the code that handles the routing of the

message; and below we describe the steps that a message travels through.

Once a message is received by an object it passes through the following steps (which are

shown in Figure 7-4):

106

1. The wrapper’s #distributeMessage: is passed the message. If the contained object is a

remote object, it forwards the message on to the wrapper containing the remote object

using the #handleRemoteMessage: method.

2. The wrappers #performMessage: is passed the message. If the contained object is a

local object, the message is sent to itself through the #handleRemoteMessage: method.

3. The #handleRemoteMessage: executes the message locally, determines the frequency

count for each of the sites that have sent the message.

4. If the frequency count for one site exceeds the frequency count for the local site by a

threshold value, the object is moved to that new site.

Step 1. The #distributeMessage: method first checks to see if the contained object is a

remote proxy (line 2 in Figure 7-5). If it is not remote, no distribution is necessary and the

message will be handled by #performMessage: in Step 2. Otherwise, the object is remote,

and #handleRemoteMessage:from: is called with the additional parameter of a

RemoteProxy for wrapper (line 4 & 5) (see also Step 1 in Figure 7-4). The proxy is used

as an index into the frequency collection.

Step 2. The method #performMessage: checks to see if the contained object is local (line

8). If it is, the message #handleRemoteMessage:from: is sent to itself with a remote proxy

for itself added on (see Step 2 in Figure 7-4). This is done because

distributeMessage

performMessage

Proxy object

handleRemoteMessage:
from: execute

Move it

do nothingupdate + test
frequency collection

Step 1.

Step 2.

Step 3.

Step 4.

Step 1: If the object is remote
forward it on to the proxy
adding site information to
maintain the frequency count
otherwise do nothing

Step 2: If the object is local
send the message to the
contained object, adding the
site information to maintain
the frequency count otherwise
do nothing

Step 3. Execute
the message, on
the actual object

Step 4: Check to see
if the object should
be moved, move it if
necessary.

aMessage

Figure 7-4. The path of a message in a migrating object.

107

#handleRemoteMessage:from: maintains the frequency collection and the remote proxy

serves as the index into the frequency collection.

Step 3.The largest change is to #handleRemoteMessage:, to which an additional

parameter was added to indicate the location of the machine sending the message. Its

name is changed to #handleRemoteMessage:from:, as shown in line 13 of Figure 7-5.

This method performs the message on the local object (line 15, and Step 3 of Figure 7-4).

Step 4. In lines 16 to 18 #handleRemoteMessage:from: executes a migration test (line 17;

see also Step 4 of Figure 7-4). If the test evaluates to a new site, the wrapper will move

the contained object to that new site (line 19). The migration test is run by executing a

migration Block (an executable piece of code in Smalltalk). A default migration block

(shown in Figure 7-6) is defined by this class, and takes three parameters: the message;

the replica sending the message (a proxy); and the wrapper (self). When a message from a

particular site is received, the frequency collection increments the count for the number of

messages sent to the object for that site (lines 3 & 4). Once the count has been

1 distributeMessage: aMessage
2 containedObject isRemoteObject
3 ifTrue: [
4 ^containedObject handleRemoteMessage: aMessage from:
5 (RemoteProxy for: self)]
6
7 performMessage: aMessage
8 containedObject isRemoteObject
9 ifFalse: [
10 ^self handleRemoteMessage: aMessage from:
11 (RemoteProxy for: self)]
12
13 handleRemoteMessage: aMessage from: aClone
14 |newOwner result|
15 result := containedObject performMessage: aMessage.
16 (newOwner :=
17 migrationBlock value: aMessage value: aClone value: self) notNil
18 ifTrue: [
19 self moveTo: newOwner].
20 ^result

Figure 7-5. Message Routing changes for migrating objects.

108

incremented, the number of hits from the local object (line 6) is compared to the number

of hits from the highest ranking site (line 5). If the difference is greater than 10, the new

owner is answered from this method (line 7). When this block returns a new site, the

object will be migrated to it. Otherwise, the object will remain at the current site.

The message routing system also handles the moving of the contained object to the new

site. #HandleRemoteMessage:from: is responsible for moving the object if the migration

block returns a new site location (line 5 of Figure 7-5). There are two methods that move

an object: #moveTo: and #receiveObject:, as shown in Figure 7-7. #MoveTo: first tells all

the other sites where the object is going to be transferred to by setting their contained

object to the new clone (line 2). The object is then sent to the new site using

#receiveObject:. The #receiveObject: message places the clone in the copy of the actual

object in the contained object instance variable (line 7).

The message routing has now provided the functionality necessary for directing the

message to the site currently containing the object, and also for moving the object. The

following section examines how the contents of the object are distributed.

1 defaultMigrationBlock
2 ^[:aMessage :aSourceMachine :aWrapper |
3 (aWrapper frequencyCollection
4 increment: aSourceMachine machineID).
5 aWrapper frequencyCollection highestValue >
6 ((aWrapper frequencyCollection valueOf:

(RemoteProxy for: aWrapper) machineID) + 10)
7 ifTrue: [aSourceMachine]
8 ifFalse: [nil]]

Figure 7-6. Test block to determine if the object should be migrated

1 moveTo: destination
2 replicas do: [: aReplica | aReplica object: destination].
3 destination receiveObject: (RemoteCopy for: containedObject).
4 self object: aClone.
5
6 receiveObject: anObject
7 containedObject := anObject

Figure 7-7. Moving the contained object.

109

Controlling the object’s contents. When the object is distributed to a new site, the

contained object must point to the wrapper containing the original object. However, this

requires determining whether the wrapper being copied contains the actual object or a

proxy. If it contains the actual object, a proxy must be constructed that points to the

wrapper being copied. To determine if the contained object is a remote proxy, the

message #isRemoteObject is sent to the contained object (line 7 of Figure 7-8). This

message will return true if the contained object is a proxy, and false if it is local. If the

contained object is not a proxy, then it must be the actual object. In this case, a proxy to

the current wrapper is distributed. If the contained object is a proxy, then the proxy itself

will be forwarded automatically.

In this case study of migrating objects, we saw how an object’s behaviour can be altered

via the meta-interface to migrate itself to a specific site that uses it frequently, thus

speeding up local response times.

7.3 Case Study #6: Optimistic Locking

Optimistic locks work by assuming that a lock request will be granted. After a request is

made, it proceeds without waiting for the reply (assuming it will be a positive reply). If

the lock is not granted, the system will somehow have to restore itself to a state similar to

the one before the request was made. While more complex than simple conservative

locks, this scheme is suitable for applications running on networks where interprocess

communication is slow, where getting a lock is relatively expensive, and where the

1 defaultWrapperDeconstructionBlock
2 ^[: currentWrapper | | newVersion |
3 lockObject wait.
4 newVersion := currentWrapper deepCopy.
5 newVersion replicas add: (RemoteProxy for: self).
6 newVersion replicas: (RemoteCopy for: newVersion replicas).
7 containedObject isRemoteObject
8 ifFalse: [
9 newVersion object: (RemoteProxy for: self)].
10 newVersion]

Figure 7-8. Default deconstruction block for migrating object. The
contained object is changed to a RemoteProxy for the contained object.

110

likelihood of being denied that lock is relatively small. Optimistic locking under these

circumstances can provide a more responsive yet still consistent system than conservative

locks, which is important in user interactions.

In this section we create a form of optimistic locking. After a lock request is made,

messages will be allowed to execute in the local copy, even though the object is waiting

for a global lock to be granted. However, messages are not broadcast to the other copies

until the lock is acquired. This strategy differs from traditional optimistic locking

mechanisms, where the changes are broadcast to all sites while the lock is being acquired.

Still, it means that local responsiveness is high, which is especially important for

managing a local user’s interactions.

Optimistic locks are implemented in GEN as a wrapper that checkpoints the state of the

object, requests the lock, but then makes the changes to the local object instead of

blocking completely. While waiting for the lock request to be granted, additional changes

may be made to the object, and processing continues at the local site as if the object had

received the lock. This is implemented by storing the messages in a stack rather than

performing a broadcast. If the lock is granted to the object, then the object broadcasts the

stored messages to all the clones and releases the lock. If the lock is refused (e.g. it is

already held by another clone), the object restores the checkpointed version that contains

its original state before any messages were sent, and generates an event to indicate that

the lock was denied.

Delving into the details a bit further, our optimistic lock objects, which inherits from the

ReplicatedLockingElement, use the pre-consistency phase to checkpoint the object by

copying it. The request for a lock starts an asynchronous task that performs the request in

a background task. While the lock is being acquired, the object remains in a state of

“waiting” for the lock and the program continues executing. Any messages sent to the

object while it is waiting for the lock are queued. Finally, the object is informed of

whether or not it received the lock. From that result, it will return to the checkpointed

state (when denied), or broadcast the messages it received while waiting for the lock

(when granted). The ReplicatedLockingElement waits when the lock is not acquired. The

111

OptimisticLock changes this to one that fails (rather than waits) when the optimistic lock2

is not granted. Similarly, concurrency control mechanisms are overridden: we fork off an

asynchronous thread to request the lock and then checkpoint the object.

Changes to the Concurrency Control Mechanism. The first part of the consistency

mechanism handles the checkpointing of the object and the acquisition of the lock. The

#handlePreConsistency: method checks to see if an asynchronous request for the lock is

in progress. If it is, then another message was executed locally before this one, and a lock

request is already in progress. In this case the system does not need to acquire another

lock. Figure 7-9 shows how the system checks the status of the lock, which is nil if there

is no current lock request (line 2). If the lock must be acquired, the message #requestLock

is sent to the wrapper (line 3).

The #requestLock method (starting at line 5) performs several actions. First, it changes

the lock status of the lock to ‘waiting’ (line 6), so that future messages sent to the object

do not create further asynchronous lock requests while another request is already in

progress. Second, it creates a checkpoint copy of the contained object by performing a

#deepCopy (line 7). Third, a new stack for the messages is created by instantiating an

OrderedCollection (line 8). Finally, an asynchronous process (the ObjectLockTask) is

forked to request the lock and wait on the result.

2 This is actually implemented as a method extension to the Semaphore class in

Smalltalk.

112

At this point, the message will execute locally, as it would in a ReplicatedElement.

However, the message will be stored on a stack (discussed later). The post-consistency

method #handlePostConsistency: (not shown) performs no action, because the

acquisition or rejection of the lock will happen asynchronously. When the asynchronous

lock request completes, it will send the message #lockStatus: to the wrapper waiting on

the lock (line 14). The parameter aStatus is a boolean, which indicates whether the

1 handlePreConsistency: aMessage
2 lockStatus isNil ifTrue: [
3 self requestLock].
4
5 requestLock
6 lockStatus := #waiting.
7 oldObject := containedObject deepCopy.
8 messageStack := OrderedCollection new.
9 Processor activeProcess
10 sendSelector: #objectLock:for:
11 withArguments: (Array with: lockObject with: self)
12 to: ObjectLockTask create
13
14 lockStatus: aStatus
15 lockStatus == #waiting ifTrue: [
16 (lockStatus := aStatus)
17 ifTrue: [
18 self broadcastMessageQueue]
19 ifFalse: [
20 self restore]].
21
22 broadcastMessageQueue
23 [[messageStack size > 0] whileTrue: [
24 super distributeMessage: messageStack removeFirst].
25 self releaseLock] fork
26
27 releaseLock
28 lockStatus := nil.
29 lock signal.
30
31 restore
32 containedObject := oldObject.
33 self generateEvent: #OptimisticLockFailed callData: #().

Figure 7-9. Check-pointing the object at the pre-consistency stage.

113

process was successful at acquiring the lock. If the lock is successfully acquired, then all

the messages that have been queued will be broadcast to all the other sites by executing

the #broadcastMessageQueue (line 18). If the lock was not acquired, it must restore the

state of the object by calling restore (line 20). The restore method rolls back the object by

copying the checkpoint object over the contained object (line 32) and generates an event

called #OptimisticLockFailed (line 33).

To perform the broadcast when the lock is acquired, #broadcastMessageQueue iterates

through the stack of messages that have accumulated and uses the superclass’

#distributeMessage: to send each message to all the other sites (line 24). Finally, the lock

is released once all the messages have been sent and executed at all of the sites (line 25).

Modification of Message Routing. The message routing system is changed in two ways.

First, messages are not broadcast by #distributeMessage:. Rather they are stored in the

message stack until a lock is either acquired or not. When the lock is acquired, the

messages in the queue will be executed. Second, if the current object is waiting for a lock

and a message is received from another object, then the lock will be assumed to have

failed and the wrapper will return the object to the checkpointed state.

The stacking of messages is handled by the #distributeMessage: method, which adds the

message to the message stack to wait for broadcast (line 2 of Figure 7-10). The

#handleRemoteMessage:from: protocol may receive a message that was broadcast from

another site, while the current object is waiting on a lock. In this case, we know that the

lock will not be granted, since another site holds it. When the #handleRemoteMessage:

1 distributeMessage: aMessage
2 ^messageStack add: (aMessage deepCopy)
3
4 handleRemoteMessage: aMessage
5 lockStatus = #waiting ifTrue: [
6 self lockStatus: false].
7 containedObject performMessage: aMessage.

Figure 7-10. The queuing up of messages to be distributed.

114

from: method receives a message from a remote object, the lock status is changed to false

(line 6), forcing the old version of the object to be restored before the message executes.

7.4 Summary

In this chapter, we have shown the power of the meta-interface through a set of case

studies that illustrate the flexibility of the implementation. We have implemented three

new ways in which data distribution and concurrency control can be used within the GEN

toolkit, which in turn demonstrates that the toolkit is expandable. None of these methods

drove the original design of GEN. Combined with the default implementations, we have

constructed a total of six different data sharing strategies, which vary both the way data is

distributed and the method used to control concurrency. We have also implemented

several other case studies, that have not been described here. These include a read/write

lock element, a combined centralized/replicated element, and a broadcast priority

element. While these are not described further, they are similar in complexity and style to

the examples already seen.

This concludes our demonstration of how a meta-interface architecture within a

groupware toolkit can allow developers to control both the distribution of data and the

way concurrency is managed.

115

8. Discussion and Conclusion

We have now concluded the discussion of the implementation and evaluation through

case studies of the GEN system. In this chapter, we discuss the contributions of this

thesis. The discussion begins with a summary and a critique of the work. Following this,

a section on future work looks at how this research can be developed further to increase

our understanding of how open implementations are useful in developing groupware

toolkits. Finally, we conclude by listing particular contributions that this thesis has made

to groupware and open implementations.

8.1 Summary

I have argued that groupware application developers sometimes require control over the

strategies used to shared data. The argument began with a review of groupware toolkits in

Chapter 2, and showed how different toolkits have chosen different strategies for sharing

data. Typically, the choice of strategy was based on what the toolkit developer believed

would be the runtime requirements for factors such as consistency, speed, and ease of

implementation.

The default strategy supplied by a particular toolkit is often sufficient to prototype and

build groupware applications. However, there will be some cases where the toolkit will

be used in circumstances different from those envisioned by the toolkit developer. In

these cases, the toolkit will not match the needs of the application developer, and they

will have to work around the toolkit with strategies such as hematomas and coding

between the lines.

I then introduced a toolkit design strategy, called ‘open implementations’, that helps

overcome these limitations. Chapter 3 described how open implementations separate

toolkits into two parts: the programmer’s interface and the meta-interface. The

programmer’s interface is normally used to create applications, just as in a standard

116

toolkit. However, the meta-interface allows application developers to modify the

strategies in the toolkit when they do not meet an application developer’s needs.

In Chapters 4 and 5, I showed how an open implementation can be created for groupware

toolkits. The chapter describes the implementation and API for GroupEnvironment

(GEN), a groupware toolkit. GEN gives application developers control over how data is

shared by providing an interface for modifying how data is distributed, and for modifying

the concurrency control mechanisms.

I demonstrated the flexibility of this implementation through six case studies: three in the

default implementations described in Chapter 5; and three extended implementations

described in Chapter 6. All use the meta-interface to develop new strategies for sharing

data. These examples illustrate in detail how the meta-interface is used to create new

sharing strategies, such as different data distribution schemes (centralized, replicated and

migrating), as well as different concurrency schemes (locking, optimistic locking).

8.2 A Critique of GEN

The development of a meta-interface is an iterative process (Kiczales et al., 1993). This

was our first iteration of a meta-interface for a groupware toolkit, and is of course

incomplete in several ways. This critique of the GEN prototype will direct the next

iteration of a meta-interface in groupware by identifying weaknesses and open research

areas.

One of the principles of meta-interface design is conceptual separation, as discussed in

Chapter 3. Conceptual separation states that modifying one component in a meta-

interface should not impact on other components of the system. This was not entirely

achieved in GEN. Although the actual implementation of the components of notification,

concurrency and distribution are separated, the developer has to be aware of how they

relate to one another and how to compensate for interactions. For example, when the

locking mechanism is changed (such as in the replicated locking implementation), the

developer must also be concerned about how the objects that support the lock are

distributed around the network. The distribution mechanism for the lock may not coincide

117

with the way the wrapper or the contained object is distributed. It is not clear at this time

that conceptual separation is possible in this area. However, because of the complexity it

adds to modifying the meta-interface, it needs to be investigated further.

GEN’s meta-interface to concurrency management is overly restrictive, as it only allows

the developer to specify pre- and post-actions when a message is intercepted. This

technique, although useful, requires the application developer to create the entire

concurrency control strategy. They have to determine how to implement synchronization

strategies to get the desired level of concurrency control. This may be difficult and time

consuming. Recent parallel work by Dourish (1995a,b; 1996) has presented a meta-

interface which simplifies the creation of concurrency mechanisms for groupware

toolkits. Dourish’s concurrency model uses negotiation, which gives the developer

control over the degree of consistency of shared objects. For example, some portions of

an object may be consistent while other portions of the same object are inconsistent. This

may be useful in a shared drawing program: drawing areas that no one is using can be

inconsistent, while areas that are being used by multiple people need to be very

consistent. If Dourish’s model were applied to GEN, it could make the construction of

new concurrency mechanisms both richer and simpler.

The current implementation of GEN is sufficient to demonstrate our ideas. However it is

slow and far from robust. Still, we have built simple applications (a shared white board, a

brainstormer, and a meeting scheduler (O’Grady & Greenberg, 1994)) to test the different

strategies of data sharing; again these are slow. This leads to the question: is the

technique of open implementation with its additional layer of abstraction inherently slow

and unusable? We must consider the reasons for this slowness both in terms of the

particular implementation used in this thesis as well as the cost of using an additional

layer of abstraction. First, in terms of the particular implementation used we must point

out that the distributed object layer and object marshalling system were developed only to

demonstrate our ideas, and are crude and relatively slow. For example, they copy the

same object multiple times as it is being transmitted between sites. An optimization of

these components would significantly increase the speed of the application. Second,

118

although the additional layer of abstraction adds additional overhead to the processing

time, it gives developers the ability to customize how data is distributed at a fine grain.

This power to customize the distribution mechanism is likely to allow speed gains and

other benefits that far outweigh the slowness of an additional layer of abstraction.

Additionally, in groupware toolkits the bottlenecks are not usually processing speed but

rather the time it takes to send messages between sites (Greenberg & Roseman, 1997),

and the additional processing time associated with this additional layer of abstraction will

have little impact. Finally, the ideas in this thesis have already influenced a limited

implementation of meta-interfaces within GroupKit, another groupware toolkit being

developed in our lab. The GroupKit meta-interface allows the developer to control how

an environment and its contained data are distributed around the network, and it runs

fairly quickly despite this additional layer of abstraction (Roseman, 1995).

8.3 Future Work

The work in this thesis has been directed towards demonstrating open implementations

and the viability of giving the developer control over the way data is shared. The work

can be built upon in several ways: 1) enhance the GEN toolkit itself; 2) iterate the meta-

interface; 3) characterize different sharing strategies; and 4) consider how the ideas can

be applied to other areas of distributed computing.

1. The enhancement of GEN as a usable toolkit. The model we have presented in GEN

has demonstrated how a meta-interface can be constructed. However, there are two

significant areas in which GEN could be enhanced. First, as mentioned previously,

speed is an issue in GEN and needs to be addressed. The distributed object layer in

GEN was implemented to explore the ideas for developing groupware applications and

is inefficient. Recently, commercial distributed object implementations have become

available, and replacing GEN’s distributed object layer with an efficient commercial

version could greatly increase its speed.

 Second, GEN explored only the runtime architecture side of building groupware

toolkits. However, developers need interface components to build groupware

119

applications (Greenberg & Roseman, 1997). These include items such as telepointers,

transparent overlays, and multi-user scroll bars. These components should be added to

GEN to give developers a more complete environment for constructing groupware

applications.

2. Iteration of GEN’s meta-interface design. The second area of study concerns how

developers use the meta-interface. Our first iteration has given developers control over

the routing of messages, the contents of objects, and pre- and post-concurrency

message hooks. We have defined a particular family of sharing strategies that

developers can manipulate. While I argued that this family of choices are useful to

developers, there are probably better ways to implement the strategies, and there are

probably other families of strategies to be considered. For example, pre- and post-

concurrency mechanisms may not be sufficient to implement the consistency

mechanisms that developers really require, and particular approaches may be outside

the family of behaviours that we have provided for. The toolkit must be tested in the

construction of real applications.

3. Empirical evaluation of strategies. Finally, developers need to be able to identify

which strategies are useful under which circumstances. Graham & Urnes (1996a) have

recently characterized a centralized and a cached data sharing strategy in terms of their

performance using empirical methods. Using GEN, new strategies can be created.

These should be empirically evaluated to determine under what conditions which data

sharing strategies will be most effective. Thus GEN could become a tool to measure

different architectural capabilities.

4. Application of open implementations and wrappers to distributed computing in

general. Although the ideas presented have shown how open implementations and

wrappers can be used to provide flexible data sharing in groupware toolkits, the

techniques used may more widely applicable in distributed computing. In particular the

idea of separating the data sharing mechanisms (e.g. using wrappers) from the

implementation of the object being distributed (e.g. an OrderedCollection) may prove

useful for writing other types of distributed computing, such as distributed agents.

120

8.4 Contributions

GEN has made contributions to both groupware development and open implementations.

8.4.1 Contributions to Groupware

1. Multiple data sharing strategies in a single groupware toolkit. Current groupware

toolkits have presented application developers with a single strategy for sharing data in

an application. GEN allows developers to select a data sharing strategy for individual

objects in their application, letting them decide based on the particular needs of the

data. GEN provides three default implementations: replicated; replicated locking; and

centralized. Only one other toolkit provides more than a single strategy, however, it

limits the choice to one of two possible strategies (Graham & Urnes, 1996b).

2. An extensible groupware toolkit. Current groupware toolkits provide developers with a

single inflexible strategy for sharing data. The meta-interface of GEN provides

developers with the ability to manipulate the implementation of the toolkit itself to

create new strategies for sharing data. In this thesis, we have demonstrated three

additional techniques that can be constructed to share data: selective broadcasts;

migrating objects; and a form of optimistic locking. This idea has influenced

GroupKit’s design, which has now created an open implementation for its

environments (Roseman, 1995). A mentioned in Chapter 2, Dourish (1995a) has also

explored meta-interfaces for groupware toolkits, and has presented an model for

providing extensible consistency mechanisms.

3. Environments for organizing shared data. GEN borrows the concept of environments

found in traditional programming languages (such as Scheme) for organizing data to

help groupware programmers organize shared data. GroupKit has also adopted this

data structure, and it is used to implement some of their demonstration applications

(Roseman & Greenberg, 1996).

121

8.4.2 Contributions to Open Implementations

1. Demonstration of how open implementations can be applied to groupware toolkits.

Open implementations are a relatively new concept that suggests toolkits can become

more powerful and useful to programmers by providing a second interface to control

design decisions that are usually made by the toolkit developer. Both myself and

Dourish (1995b) have demonstrated how open implementations can be applied to the

area of groupware, giving application developers more control over how their data is

shared. This broadens the range of toolkits using open implementations.

2. Demonstration of the use of wrappers to construct open implementations based on

message interception. GEN has used wrappers to implement a meta-interface which

allows the dynamic addition of new behaviours to objects. The details in this thesis

show how wrappers can extend the functionality and change the way messages are sent

between objects.

8.5 Conclusion

The current generation of groupware toolkits operates on the principle that only a single

and unalterable sharing strategy implemented by the toolkit should be available to

application developers. However, the choice of a particular sharing strategy influences the

speed and consistency of the application. We have presented a prototype groupware

toolkit called GEN which uses an open implementation to let application developers

control the way in which their data is shared.

Groupware is pushing our concept of what computers can do into new areas. We now

view computers as a sophisticated communication medium as well as a tool. As these

new paradigms evolve, limitations of the models we use to construct software are

exposed, forcing computer scientists to rethink the strategies they use. Open

implementation is an exciting new strategy that makes developers reconsider the notion

of abstracting away implementation details in black boxes. By exposing the internals of

the black box in a clear and careful way, we can give developers the power they need to

construct applications in these new paradigms.

122

Bibliography

Abelson, H., Sussman, G. & Sussman, J. (1986). The Structure and Interpretation of

Programs. MIT Press, Cambridge Massachusetts.

Ahuja, S.R., Ensor, J.R. & Lucco, S.E. (1990). A Comparison of Applications Sharing

Mechanisms in Real-time Desktop Conferencing Systems. In Proceedings of the

ACM COIS Conference on Office Information Systems, 238-248.

Anupam, V. & Baja, C. (1993). Collaborative Multimedia Scientific Design in

SHASTRA. In Proceedings of Multimedia ‘93, 447-456.

Arango, M., Bahler, L., Bates, L., Cochinwala, M., Cohors, D., Fish, R., Gopal, G.,

Griffeth, N., Herman, G., Hickey, T., Lee, K., Leland, W., Lowrey, C., Mak, V.,

Patterson, I., Ruston, L., Segal, M., Sekar, R., Vecci, A., Weinrib, A. & Wuu, S.

(1993). The Touring Machine System. Communications of the ACM, 36, 68-77.

Attardi, G. (1993). Metaobject programming in CLOS. In Paepcke (ed.), Object Oriented

Programming: The CLOS Perspective, MIT Press, Cambridge Mass, 119-132.

Barghouti, N. & Kaiser, G. (1991). Concurrency control in advanced database

applications. ACM Computing Surveys, 23(3), 269-317.

Bennet, J (1990). Experience With Distributed Smalltalk. Software Practice and

Experience, 20(2), 157-180.

Bentley, R., Rodden, T, Sawyer, P. & Somerville, I. (1994). Architectural Support for

Cooperative Mulituser Interfaces. IEEE Computer, 27(5), 37-45.

Bonfiglio, A., Malatesta, G. & Tisato, F. (1989). Conference Toolkit: A Framework for

Real-time Conferencing. In Proceedings of the EC-CSCW '89 First European

Conference on Computer Supported Cooperative Work, 303-316.

Cortes, M. (1994). CSCW Survey: Concepts, Applications and Programming Tools.

Department of Computer Science, State University of New York, Stony Brook.

123

Craighall, E., Lang, R., Fong, M. & Skinner, K. (1993). CECED: A System for Informal

Collaboration. In Proceedings of Multimedia ’93, 437-445

Crowley, T., Baker, E., Forsdick, H., Milazzo, P. & Tomlinson, R. (1990). MMConf: An

Infrastructure for Building Shared Applications. In Proceedings of the CSCW’90

Conference on Computer-Supported Cooperative Work, 329-342.

Decouchante, D (1986). Design of a Distributed Object Manager for the Smalltalk-80

System. In Proceedings of the ACM Conference on Object-Oriented

Programming Systems Languages and Applications, 444-452.

Dollimore, J, Miranda, E. & Xu, W. (1991). The design of a System for Distributing

Shared Objects. The Computer Journal, 34(6), 514-521.

Dourish, P. (1995a). Developing a Reflective Model of Collaborative Systems. ACM

Transactions on Computer-Human Interaction, 2(1), 40-63.

Dourish, P. (1995b). The Parting of Ways: Divergence, Data Management and

Collaborative Work. In Proceedings of the Fourth European Conference on

Computer-Support Cooperative Work, 215-230.

Dourish, P. (1996). Open Implementation and Flexibility in CSCW Toolkits. Ph.D.

Dissertation, Department of Computer Science, University of London.

Ellis, C.A. and Gibbs, S.J. (1989). Concurrency Control in Groupware Systems. In

Proceedings of the ACM SIGMOD International Conference on the Management

of Data, 399-407.

Gamma, E. Helm, R., Johnson, R. & Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley, Reading Massachusetts.

Goldberg, A, & Robson, D (1983). Smalltalk-80 the Language and its Implementation.

Addison Wesley, Reading Massachusetts.

Graham, T., Urnes, T., & Nejabi, R. (1996a). Efficient Distributed Implementation of

Semi-Replicated Synchronous Groupware. In Proceedings of the ACM

124

Symposium on User Interface Software and Technology (UIST’96), ACM Press,

(in press).

Graham, T.C.N. & Urnes, T. (1996b). Linguistic Support for the Evolutionary Design of

Software Architectures. In Proceedings of the ICSE’18 Eighteenth International

Conference on Software Engineering, IEEE Press, 418-427.

Greenberg, S. & Marwood, D. (1994). Real-time Groupware as a Distributed System:

Concurrency Control and its Effect on the Interface. In Proceedings of the ACM

CSCW’94 Conference on Computer Supported Cooperative Work, 207-217.

Greenberg, S. & Roseman, M. (1997). Groupware Toolkits for Synchronous. In

Beaudouin-Lafon (Ed.), Trends in CSCW, John Wiley & Sons. Forthcoming.

Greenberg, S. Roseman, M, Webster, D., Bohnet, R. (1992). Human and Technical

Factors of Distributed GroupDrawing Tools. Interacting with Computers, 4(3),

364-392.

Hill, R.D. (1992). The Abstraction-Link-View Paradigm: Using Constraints to Connect

User Interfaces to Applications. In Proceedings of the ACM SIGCHI’92

Conference on Human Factors in Computing Systems, 335-342.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. & Wilner, W. (1994). The Rendezvous

Architecture and Language for Constructing Multi-user Applications. ACM

Transactions on Computer-Human Interaction, 1(2), 81-125.

Hutchinson, N., Raj, R., Black, A., Levy, H. & Jul, E. (1987). The Emerald Programming

Language. DIKU Report 87/22, Department of Computer Science, University of

Copenhagen, Denmark.

Jahn, P. (1995) Getting started with Share-Kit. Tutorial manual distributed with Share-

Kit version 2.0. Communications and Operating Systems Research Group,

Department of Computer Science, Technische Universitat, Berlin, Germany.

Available via anonymous ftp from ftp.inf.fu-berlin.de:/pub/misc/share-kit.

125

Kiczales, G. (1992). Towards a New Model of Abstraction in Software Engineering. In

Proceedings of IMSA ’92 Worksop on Reflection and Metalevel Architectures, 1-

11.

Kiczales, G. Ashley, J., Rodriguez, L., Vahdat, A. & Bobrow, D. (1993). Metaobject

Protocols: Why We Want Them and What Else They Can Do. In Paepcke (ed.),

Object Oriented Programming: The CLOS Perspective, MIT Press, Cambridge

Mass, 101-118.

Kiczales, G., DeLine, R., Lea, A. & Maeda, C. (1995). Open Implementations Analysis

and Design. (Tutorial Notes), Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages and Applications OOPSLA ’95.

Kiczales, G., des Rivieres, J. & Bobrow, D. (1991). The Art of the Meta-object Protocol,

MIT Press, Cambridge Mass.

Kittlitz, K. (1994). Approaches to Object-Oriented Concurrency Control. Masters Thesis.

Department of Computer Science, University of Calgary.

Lamport, L. (1978). Time, Clocks and the Ordering of Events in a Distributed System.

Communications of the ACM, 21(7), 558-565.

Moran, T., McCall, K., van Melle, B., Pedersen, E. & Halasz, F. (1995). Some Design

Principles For Sharing in Tivoli, a Whiteboard Meeting Support Tool. In S

Greenberg, S. Hayne & Roy Rada (eds.) Groupware For Real-time Drawing: A

Designers Guide. McGraw-Hill, London, 24-36.

Nascimento, C. & Dollimore, J. (1992). Behaviour Maintenance of Migrating Objects in

a Distributed Object-Oriented Environment. Journal of Object Oriented

Programming, 5(5).

O’Grady, T. and Greenberg, S. (1994). A Groupware Environment For Complete

Meetings. In ACM SIGCHI Conference on Human Factors in Computing Systems

Conference Companion Proceedings, 307-308.

126

Paepcke, A. (1993). User-level Language Crafting: Introducing the CLOS Metaobject

Protocol. In Paepcke (ed.), Object Oriented Programming: The CLOS

Perspective, MIT Press, Cambridge Mass, 65-99.

Parrington, G., Shrivasta, S. Wheater, S. & Little, M. (1995). The Design and

Implementation of Arjuna. Department of Computing Science, The University of

Newcastle upon Tyne, Newcastle upon Tyne.

Patterson, J. F., Hill, R. D., Rohall, S. L., & Meeks, W. S. (1990). Rendezvous: An

Architecture for Synchronous Multi-user Applications. In Proceedings of the

CSCW’90 Conference on Computer Supported Cooperative Work, 317-328.

Patterson, J.F., Day, M. & Kucan, J. (1996). Notification Servers for Synchronous

Groupware. Lotus Development Corporation. In submission to the ACM CSCW

Conference on Computer Supported Cooperative Work.

Rao, R. (1993). The Silica Window System,: The Metalevel Approach Applied more

Widely. In Paepcke (ed.), Object Oriented Programming: The CLOS Perspective,

MIT Press, Cambridge Mass, 133-154.

Roseman, M. (1993). Design of a Realtime Groupware Toolkit. Masters Thesis,

Department of Computer Science, University of Calgary.

Roseman, M. (1995). When is an object not an object? Proceedings of the 1995 Tcl/Tk

Workshop.

Roseman, M. & Greenberg, S. (1992). GroupKit: A groupware toolkit for building real-

time conferencing applications. In Proceedings of the ACM CSCW’92 Conference

on Computer Supported Cooperative Work, p43-50.

Roseman, M. & Greenberg, S. (1993). Building Flexible Groupware Through Open

Protocols. In Proceedings of the ACM COOCS’93 Conference on Organizational

Computing Systems, p279-288.

127

Roseman, M. & Greenberg, S. (1994). Registration for Real-time Groupware. Research

Report 94/533/02, Department of Computer Science, University of Calgary,

Alberta, Canada.

Smith, B.C. (1982). Reflection and Semantics in a Procedural Language, MIT Laboratory

for Computer Science Report MIT-TR-272, Cambridge, Mass.

Steele, D. (1991). Distributed Object Oriented Programming: Mechanism and

Experience. In Proceeding of Tools USA.

Stefik, M. Bobrow, D. Foster, G. Lanning, S. & Tatar, D. (1987). WYSIWIS Revised:

Early Experiences with Multi-user Interfaces. ACM Transactions on Office

Information Systems, 5(2), 147-167.

Stroud, R. & Wu, Z (1995). Using Meta-object Protocols to Implement Atomic Data

Types. In Proceeding of the European Conference On Object-Oriented

Programming.

Tou, I., Berson, S., Estrin, G., Eterovic, Y. & Wu, E. (1994). Prototyping Synchronous

Group Applications. IEEE Computer, 27(5), p48-56.

Wilson, B. (1995). WSCRAWL 2.0: A Shared Whiteboard Based on X-Windows. In S

Greenberg, S. Hayne & R. Rada (eds.), Groupware for Real Time Drawing, A

Designer’s Guide, 130-142.

