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Predictive interfaces: What will they think of next?

Saul Greenberg, John J. Darragh, David Maulsby, and
Jan H. Witten

Introduction

Typical dialogues with interactive computer systems contain a great deal of
repetition. Frequently used actions (commands, menu items) and objects (file
names, mail addresses, icons) are invariably a very small subset of the plethora
of options that are available to the user. Furthermore, action sequences such as
drawing a picture or using a calculator are inherently repetitive. Even free text is
redundant, because of the statistical nature of language. While repeating what
was just done is a minor nuisance to the average computer user, it may be
challenging for the physically disabled person, who finds every keystroke or
mouse selection demanding.

System designers have taken several measures to reduce repetition, including
use of terse commands, abbreviation processors, command completion facilities,
and macro recorders, but these often meet with resistance from their intended
audience. Brief commands are cryptic, hard to remember, and easily mixed up;
abbreviation mechanisms are complex to use and take time to learn and set up;
command completion is useful only when the possibilities are known in advance;
and macros take time to construct and do not easily permit variables or
conditionals within a specified sequence. In most cases, users must anticipate
their future system usage and divert themselves from the task at hand to create
the model explicitly.

Suppose the system could automatically form a model that adapts to what the
person is currently doing. An underlying assumption is that what has been done
before will most likely be done again. Such a model could be constructed in
several ways. :

* The system automatically builds it by capturing previous actions. It then
predicts the entries the person is about to make, based upon the previous
interactions.

* The user teaches the system with explicit instructions. Once the system is
taught how to do a task, it will try to do it in the user’s stead.
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Figure 6.1. The potential savings of a predictive system, showing
cognitive-physical trade-offs.

« The user provides the system with examples of the task. As specific problems
and their solutions are demonstrated, the system automatically structures
them into a model that applies to the more general task.

Obviously, these schemes are unlikely to predict correctly all the time, for
then you could walk away and leave the computer to do your work! Given an
imperfect predictor, it is essential to ensure that erroneous predictions are easy
for the user to ignore while correct ones are easy to accept. This implies a
cognitive/physical trade-off. The decrease in the number of keystrokes and
mouse selections that results from a successful prediction must be weighed
against the time a person takes to search visually for the prediction, decide if it is
appropriate, and physically select it (Figure 6.1). If the cognitive load of
choosing a prediction is high and the mechanical benefits modest, an able-bodied
person will find the predictive system of little benefit. The payoff may be much
greater for someone with a physical disability. This is essentially a function of
the “bandwidth limitation” problem mentioned by Newell in Chapter 1 and
Edwards in Chapter 11. :

Suppose that in a particular situation the system has generated several (perhaps
erroneous) predictions. These can be presented to the user in many different
ways; the best method depends on the type of task and the actual predictions
made. A conservative approach is to provide users with a list of predictions from
which to choose. This reduces the user’s job to a recognition and selection
process and takes advantage of the fact that the user is the best judge of a
prediction’s suitability. The disadvantage is that a decision must be made on
every prediction. A second approach is for the system to go ahead and perform
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the predicted actions while the user monitors correctness, interrupting and
guiding the system only when erroneous predictions are performed. A third
approach is for the interface to rearrange the presentation to make more likely
actions easier to take. Here predictions are presented within the language of the
standard interface; no additional interface artifacts are required.

Over the last decade we have investigated a variety of predictive systems for
use by a broad spectrum of computer users, ranging from physically disabled to
able-bodied to graphically gifted individuals. We have been particularly
concerned with several issues.

o What is an appropriate model of user activity?
+ How much domain knowledge of the user’s task is needed?
« What are practical predictive algorithms, and how good are their predictions?

« How can we minimize both cognitive and physical load when using
predictive systems?

¢ What characteristics do predictive interfaces need in order to integrate
smoothly with technical and interface aspects of the system?

* How can the system best be implemented on today’s (and tomorrow’s!)
computers?

We have implemented several interesting predictive systems, ranging from
one in actual use around the world to more experimental “proof of concept”
systems. The systems differ substantially from each other in their task domain,
intended users, algorithm for generating predictions, and user interface. While
some systems were designed explicitly for users with special needs, others were
not. However, we believe that all computer users are “handicapped” in one way
or another (see Chapter 14), and that predictive systems should be viewed as a
prosthesis that could fit both general and special needs. )

This chapter introduces five quite different predictive systems (Table 6.1) and
discusses the general attributes and usefulness of each. The Reactive Keyboard is
a device that predicts free text and operating system commands based upon the

- text or commands entered so far. Adaptive Menus automatically reconfigures
menu hierarchies by moving frequently selected items closer to the top.
Workbench is a command line processor that allows people to organize and reuse
their on-line activities easily. The Autoprogramming Calculator looks over your
shoulder while you perform a repetitive calculation on a simulated calculator and
tries to predict future key presses. Finally Metamouse is an example of a system
likely to be of utility to able-bodied people as well as those with motor
impairments. Metamouse is a drawing program which learns from your inputs
and predicts your future actions. Reducing the number of inputs makes drawing
tasks less tedious for dexterous users and more efficient for those with limited
manual dexterity.
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Table 6.1. Summary of five predictive interfaces.

1
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supported model
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in MS-DOS, Unix, free textin  models (also by many
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in Macintosh point-and-click partial bodied ones);
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users
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cditing tasks ing by analyzing system'’s
by teaching actions to infer  behavior
an agent constraints understand able;
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The Reactive Keyboard

BaL‘kground

The Reactive Keyboard is a program that accelerates typewritten communication
with a computer system by predicting what the user is going to type next
(Darragh & Witten, 1991; Darragh & Witten, 1992; Darragh, Witten, & James,
1990). Obviously, predictions are not always correct, but they are correct often
enough to support a useful communication aid. Predictions are created
adaptively, based on what the user has already typed in this session or in
revious ones. Thus the interface conforms to whatever kind of text is being
entered: English, French, Pascal, operating system commands, and so on.

The Reactive Keyboard is quite general and can be used for a variety of
purposes. In some ways, it is similar to the Pal (Predictive Adaptive Lexicon)
system described in Chapter 5. It is unlikely to help a skilled typist — except
perhaps when entering documents such as legal contracts that contain a
preponderance of standard boilerplate paragraphs. However, moderate typists
will find that it assists with the highly structured text commonly found in
interactive dialogues and formatted data entry, and novice and reluctant typists
(including children) will appreciate the help it gives in free-text entry situations.
Within its uniform adaptive mechanism it subsumes numerous features provided
by interactive interfaces, such as short versions of command names, command
and filename completion, user-definable abbreviations for words and phrases,
menus of common operations, and brief command files. Being menu based, it
can also be used to replace a physical keyboard in click-and-drag interfaces that
also require some text entry. Finally, and most important, it has already found
application as a user interface for physically disabled people who find a regular
keyboard difficult to use.

Predictions are generated from a model of previously entered text. The
modeling technique was developed for the purpose of text compression and in
fact forms the core of one of the most effective known compression methods
" (first described by Cleary & Witten, 1984; see Bell, Cleary, & Witten, 1990, for
a recent survey of the field). It builds large tree-structured models of characters
in context, and for prediction these models are consulted for matches to the
current context. To render it suitable for use ifta communication aid, two issues
had to be addressed. First, whereas in text compression the adaptive prediction
mechanism feeds an encoder that generates a bit-stream representing the
message, for interactive use it had to be equipped with a human interface that
allows predictions to be displayed and selected. Second, a number of problems
concerned with resource consumption — both adaptation/retrieval time and
storage space — had to be solved to make the mechanism practical for use in an
interactive personal computer environment.
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Description

Several versions of the Reactive Keyboard exist. In the standard terminal/
keyboard based versions, collectively called RK-button, predictions appear in
reverse video after the cursor location, and users can accept predictions with a
single keystroke or reject them by typing over them. In the window based
versions, called RK-pointer, an ordered list of predictions appears in a separate
window. Users select all or part of a prediction by pointing to the desired text.
Thus the ideas in the Reactive Keyboard can be tailored to handle two different
types of hardware and interface methods: typing and mouse pointing. Other
hardware devices, if required, could probably be incorporated with modest effort
(see Chapter 17).

An interaction with Unix using RK-button is shown in Figure 6.2a. The
predicted characters are written in reverse video on the screen and represented in
the figure with enclosing rectangles. Control characters are preceded by *~, and
~J is the end-of-line character. The column on the right shows the keys actually
struck by the user. Figure 6.2b gives the meaning of a few of the control keys; in
fact, many more line-editing features are provided.! Although not illustrated in
the figure, the system is set up so that typing non-control characters simply
overwrites the predictions; thus one may use the keyboard in the ordinary way
without even looking at the screen.

Figure 6.2a shows the entry of five command lines. Within each of the five
groups preceded by the $ (the system prompt), each line overwrote its
predecessor on the screen. Consider the first group. After the first prediction,
“mail~J,” the user struck "N to show the next one. This prediction,
“cd news”J,” replaced the previous prediction on the screen. The user
accepted the first word of it, “cd, ” using the “W command, moved to the next
prediction, and accepted it in its entirety. The only thing remaining on the screen
at this point was “cd rk/papers/ieee.computer.” Following this, the
next three commands were predicted in their entirety, while the last one required
four keystrokes. The screen contents at the end of the dialogue are shown in
Figure 6.2c.

In summary, five command lines comprising a total of 138 characters were
entered using 11 strokes on just three function keys — an average of 2.2
keystrokes to enter each command line, or 12.5 predicted characters per
keystroke. This is fairly typical for command-line dialogues with Unix. A scaled-
down version of RK-button designed for MS-DOS computers achieves similar
savings.

1 The choice of control characters used originates from a PCD Maltron one-handed
keyboard; while it may seem unsystematic, these functions are invariably bound to
function keys on the terminal for convenience.
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$[mail~Jg :
cd news"J
cd [Mews ]
cd [rk/papers/ieee.computer J]
cd rk/papers/ieee.computer™J

$ |lemacs paper. tex"JI

emacs paper.tex

$ [rm _paper.tex.CKP paper.tex.BAK J]
rm paper.tex.CKP paper.tex.BAK

$ [wC_-w paper.tex’J]
WC -w paper.tex

$ [readnews -n comp. sources.unix’Jj]
mail

mail arragh%uncamult .bitnet@ucnet.ucalgary.ca J

mail bdarragh%uncamult.bitnet@ucnet. ucalgary.ca

N
W
“N

At
i

“L

“L

“N
W
“N
“L

Key Description

AC (= control-C) Accept the next predicted character

W Accept the next predicted word

AL Accept the whole predicied line

AN Show the next alternative prediction

AP Show the previous alternative prediction

cd rk/papers/ieee.computer

emacs paper.tex

rm paper.tex.CKP paper.tex.BAK

WC -W paper.tex -

mail bdarragh%uncamult .bitnet@ucnet. ucalgary.ca

v nn

Figure 6.2. Using RK-button, the Unix version of the Reactive
Keyboard.

(a) Dialogue with Unix.

(b) Some commands.

(c) Screen contents at the end of the dialogue.

Whereas RK-button has proven most useful in enhancing the command
interface to the Unix and MS-DOS operating systems, RK-pointer is designed for
entering free text and runs on the Apple Macintosh computer. Full use is made of
the mouse/window environment to give users convenient control over both
display and acceptance of predictions — no physical keyboard is required. It is
embedded within a simple text editor. Figure 6.3a shows a typical view of the
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screen. The standard editor window appears at the top and contains the text being
created. A cursor marks the place where new text will appear. The window below
gives predictions from which the user can select the next characters of text. On
the left is the visual context, the characters that precede the cursor in the text
window. On the right is a menu of predictions which are offered as suggestions
of how the context might continue. The user enters text by choosing one of these
and clicking at a particular point within it. Characters up to that point are inserted
into the upper window, and both context and predictions in the lower one are
updated accordingly - the context moves on, and the predictions change
completely. At any time the user may enter characters from the keyboard, and
both context and predictions are updated as if they were selected with the mouse;
thus one can use the keyboard in the normal way until useful predictions appear.

Figure 6.3b shows RK-pointer in use. The entry of several words of text is
illustrated as a sequence of five screen images. (For presentation purposes, the
windows are rather small and are placed side by side. In practice, all the action
takes place in a single pair of windows that are considerably larger than those in
Figure 6.3b.) First, the words “Reactive Keyboard ” are entered. The initial two
letters are taken from “Research,” and to the right of the second snapshot can be
seen the updated context and new predictions. At this point “active Keyboard " is
entered with a single mouse click, and fresh predictions appear. Again two words
— “primed with ” — are entered together. The fourth image shows the effect of
moving the cursor back into the context part of the prediction window: Now the
last few characters of context (“with ™) are highlighted and, when the mouse is
clicked, deleted from the text buffer (and, of course, from the context too). The
remaining illustration shows the word “from ” being entered. The final result is
that four words are entered in just five selections from a four-item menu,
including one selection that was needed to delete an erroneously chosen word.

While it is perhaps easiest to envisage the situation where text is being entered
at the end of the text window, as in Figure 6.3a, the system works equally well
when the cursor is in the middle of the text buffer. Predictions are conditioned on
the context preceding the cursor, and accepting a prediction inserts new
characters at the cursor position.

The line termination character is shown by the carriage return icon, and in the
examples predictions end when this character is encountered - the system makes
no guesses about how the next line will begin. For some kinds of text, it is
appropriate to predict past the end of the line. Such things are controlled by the
“Options” item in the menu bar at the top of the screen, which, when clicked,
reveals a preferences dialogue.



& File Edit Options

Untitled

The standard editor window appears at the top and contain
will appear. The window below gives predictions from wh

the visual context, the characters that precede (I

the text being created. A cursor marks the place where new text

the user can select the next characters of text. On the left s

s

ich

SR Predictions Window HNNENEEEN1

S
of.operation.would-be.moduiarizede <
sufficent ly-powerful-inter-processs
lsiand, -1967. «

} .precede. entropy-of-printed-Engiish, ' 'cewlEEE-Trans.Comaunicat}:
command.iines. «
model.gt.any.time,.either.replacensnt-the.interface-to.f1S-
interface-t0-N15-00S. « L

>

R

a

& File Edit Options
Untitled B Predictions Window ﬁ
This text has been generated with the Shqnnon--;hqnnon
Leithathee earch.and.updq ™|

J.G..Cleary.and-| i
Likely=cont inuat i

Thig text has been generated with the
R rth-thuﬁe

[ L

turn' ' wcan<be-cony
habilitations.ar

This text has been generated with the
Reactive Keyboard m L Keyboard.

This.text-has-be
he-
communication.aid

to.generated-wit A
This text has been generated with the thee o’
Reactive Keyboard primed with -ed.p a-~standard-comsu u
both-the-predict i @
gour-progrcl,-th,
This text has been gengrated with the rdeprined-| wvery.larg
Reactive Keyboard primed . |withathee
correct.and.desti

to.the.sodel.is-

Figure 6.3. Using RK-pointer, the Macintosh version of the Reactive

Keyboard.




112 " Extra-Ordinary Human—Computer Interaction

Mechanism

The ability to guess or predict future text relies on the statistical redundancy of
language. Shannon (1951) estimated that English is about 75% redundant and
noted that, in general, good prediction does not require knowledge of more than a
fairly small number of preceding letters of text. While for a native speaker
success in predicting English gradually improves with increasing knowledge of
the past, it does not improve substantially beyond knowledge of eight to ten
preceding letters (see also Cover & King, 1978; Suen, 1979). The predictions in
Figures 6.2 and 6.3 were generated using at most seven letters to predict the next.

The Reactive Keyboard works by suggesting on the basis of preceding inputs
what the user might want to select next, exploiting stored information about past
selections to predict future ones. Likely continuations are identified by locating a
prediction context of recent selections in a large memory of previously
encountered element sequences. In other words, predictions are made on the
basis of the present situation, represented by short-term memory, and past
experience, represented by long-term memory (Figure 6.4). The model is
continually updated and adjusts itself automatically to the individual user’s
linguistic idiosyncrasies. The prompting display changes after each selection to
present a new menu of predicted elements. A four-phase cycle of user selection,
memory update, look up, and display update continues for the duration of a
message composition session.

An adaptive model could be based on any of the levels of redundancy present
in natural language, ranging from orthographic through syntactic, semantic, and
even pragmatic (Pickering & Stevens, 1984). However, models become
increasingly hard to generate and utilize at the higher levels, so the Reactive
Keyboard uses a simple lexical model that is based on n-grams -~ consecutive
sequences of n characters of text — where n is termed the “order” of the model.
These, together with associated occurrence frequencies, are gleaned from
representative text samples and from the user’s input. The basic idea of
prediction is to use the first n — 1 letters — the prediction context - to predict the
nth). The model’s predictive power depends on how accurately its experience
matches the user’s current communication needs, and on the number and length
of stored sequences. )

An important innovation in the Reactive Keyboard is that likely continuations
for the current context are sought on a longest-match basis. If no elements in
memory match the full prediction context, the context is truncated until a match
can be found. This proves extremely effective, because it is capable of predicting
from more complete lower-order models if less complete higher-order models
lack instances of the current context. All lower-order models are implicit in the
highest-order model, so no extra storage is required. Such models have been
found to be extremely effective for text compression (Bell, Cleary, & Witten,
1990; Cleary & Witten, 1984).
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Figure 6.4. Overview of the Reactive Keyboard system.

By far the most important factor affecting the quality of predictions is the text
used to prime the model. Finding truly representative text is difficult, and the
statistical characteristics of seemingly similar samples can vary greatly (Gibler,
1981; Kucera & Francis, 1967). This implies that the text used for priming must
be carefully selected to be as representative as possible of what the user wants to
generate. The Reactive Keyboard derives its model in three ways, using a
combination of automatic and explicit modeling techniques. As shown in Figure
6.4, priming occurs (a) automatically from a default (or user specified) startup
file, (b) automaticaily from current user inputs, and (c) explicitly from any text
file the user chooses to add into the model.

Experience

The predictive terminal emulator of Figure 6.2 has been in use for some time by
two physically disabled students at the University of Calgary as their standard
command interface to Unix. Their combined daily experience amounts to
approximately eight years. One types with a single partially paralyzed hand and
uses the system for entering commands and electronic mail. He estimates that
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over a two-year period it has provided assistance on over 30,000 host system
commands, averaging 10 predicted characters per command, and writes:

The Reactive Keyboard has dramatically changed the way I use
computers. I now use much longer, more descriptive, file names than [
otherwise would have without its reliable recall and typing assistance.
I also rely completely on RK-button to remember such things as
electronic mail addresses and long complex command-line sequences.
Life on-line would just not be the same without it.

The other user has a progressive neuromuscular disorder and is extremely
slow and otherwise unable to write. He uses RK-button as a general command
interface and writing aid.

I find the Reactive Keyboard to be an extremely beneficial tool for
typing. Since I have severe neurological damage in my hands, it seems
to cut the time I spend coding manyfold. To illustrate this, I need only
inform you how I mailed John this letter. All that was required was
my typing “ma, ” after which time it predicted “i1 darragh~J.”
So, I was able to type and enter a command normally requiring
thirteen keystrokes in but three! This saves much time since it is rather
difficult for me to access some keys on the board. It must be
remembered that both my hands and fingers move slowly and
inaccurately.

The system has recently been released on the Usenet network, and the
following unsolicited comment is typical of those received: )

I have cerebral palsy, so my typing is a little bit impaired. I am very
impressed with your program. It seems to be ideal for significantly
speeding up my typing in the shell while I am programming. I like it a
lot, and it saves me a lot of time. I am very glad to have it available to
me. The other people that I have showed it to are also very impressed.

The Unix version of RK-button has been tried, tested, and improved with the
experiences of people who use it every day. As with any tool that saves people
effort, using RK-button has become a matter of course for many users. The
occasional experience of using systems that are not equipped with it drives home
forcefully how helpful it is.

The IBM PC version of RK-button presents a similar interface to MS-DOS.
However, it was completed more recently and is not yet as widely used as the
Unix version. RK-pointer on the Macintosh is also relatively new and was
designed more as a demonstration program than as a fully integrated application;
consequently there is little user experience to report. This version would
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probably be more useful if it were reimplemented as a desk accessory and could
be used with arbitrary Macintosh applications. .

All three versions of the Reactive Keyboard are available free of charge.
These systems are provided in source form so that they can be modified to suit
different people’s requirements. Users are encouraged to make and distribute as
many copies as they wish. Recipients are encouraged to report any modifications
they make so that others will be able to benefit.!

Adaptive menus

Background

Hierarchical menus, where users reach an item of choice by navigating through a
large tree, are the standard interface for many interactive systems. Although “hot
keys” and other methods can speed access to particular items in the tree, their
usefulness is limited to menu hierarchies where a few items are consistently
chosen over and over again. When a user’s choice of items in a hierarchy varies
over time and over situations, alternative strategies must be used for accelerating
item selection.

It is possible to devise interactive menu-based interfaces that dynamically
reconfigure a menu hierarchy so that high-frequency items are treated
preferentially, at the expense of low-frequency ones. Adaptive Menus provide an
attractive way of reducing the average number of choices a user must make to
select an item without adding further paraphernalia to the user interface
(Greenberg, 1984; Greenberg & Witten, 1985; Witten, Cleary, & Greenberg,
1984; Witten, Greenberg, & Cleary, 1983).

Description

Consider a computerized telephone directory of names presented through a menu
hierarchy. Normally the hierarchy would be constructed by splitting the name
space into equal units to provide a tree with a balanced number of leaves at every
point. Such menus are “frozen.” and the user must always navigate the same path
to reach a friend’s phone number, regardless of the number of times that same
call has been made.

1 Up-to-date versions are available electronically via “anonymous ftp” from
“cpsc.ucalgary.ca” (Internet 136.159.2.1) or by writing to the authors at the
University of Calgary (E-mail darragh @cpsc.ucalgary.ca).
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names selected. Instead of selecting regions at each stage to contaa

approximately equal numbers of names, it is possible

to divide the probabulry
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distribution into approximately equal portions. As the program is used, the act of
selection will alter the distribution and thereby increase the probability of the
names selected. Thus the user will be directed more quickly to entries which
nave been selected aiready — especially if they have been selected often and
recently — than to those which have not. The key point is that the assigning of
probabilities is dynamic; the hierarchy presented adapts to the user’s evolving
(and ever changing) usage over time.

Figures 6.5a and 6.5b depict two menu hierarchies for a very small dictionary
with 20 name entries (left side of box) and their corresponding top-level menu
(right side of box). Figure 6.5¢ calculates the average number of menus traversed
per selection. In Figure 6.5a, the hierarchy was obtained by subdividing the name
space as equally as possible at each stage, with a menu size of four. The number
following each name shows how many menu pages have to be scanned before
that name can be found. Figure 6.5b shows a similar hierarchy that now reflects a
particular frequency distribution (the second number following the name shows
the item’s probability of selection). Popular names appear immediately on the
first-level menu. Less popular ones are accessed on the second-level menu, and
the remainder are relegated to the third level. In this particular case, the average
number of menus traversed is less with probability subdivision (Figure 6.5c,
point ii) than with uniform subdivision (point i), although this improvement is
not as much as is theoretically possible (point iii).

Mechanism

Two factors are critical to the performance of Adaptive Menus: how probabilities
are updated over the name space as items are retrieved, and how the probability
space is split into a hierarchy that minimizes the average number of transitions to
names.

The algorithm for updating probabilities as items are selected is shown in
Table 6.2. It is based on several heuristics derived from a study of telephone
usage statistics (Greenberg, 1984). First, we ensure that first-time access to
entries is not noticeably longer than in a nonpersonalized system. We do this by
deciding in advance the maximum number of selections that can be tolerated for
worst case access to new items as compared to the uniform distribution. This is
implemented as a weight u > 1 that indicates the maximum multiplicative
increase in menus traversed. Second, when a new “friend” is accessed, we
immediately increase the probability associated with the friend on the assumption
that she or he is now much more likely to be selected again. Third, the
probability associated with friends who are not accessed decays slowly (the
constant ¢), thus making room for new or more popular friends. It is the decay
factor that builds in a way of balancing frequency and recency. Whereas low
decay will see frequently chosen items migrate up the tree, a high decay rate
gives more room to recently chosen items. Finally, when a friend is accessed, we
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Table 6.2. Retrieval and update algorithms for assigning probabilities

Let N be the total number of people on the list and F be the total number of friends. Keep
a list of pointers to friends, f, who have already been accessed, together with a weight
axf) for each in the range {0,1]. The update algorithm will ensure that the weights sum to
1 over all friends. The parameter o is a measure of how quickly friendships fade away
and should be slightly less than 1; the closer ¢t is to 1, the slower friendships will fade.
The constant g, with > 1, determines the maximum number of menus traversed that
can be tolerated for names that are not treated preferentially (the new or infrequently
chosen items). The closer 1 is to 1, the closer the number of menus traversed to these
names will be to that provided by the uniform distribution.

Retrieval

If F = 0, probability for each name is -lw

otherwise,
if friend, probability is f”—ﬁ o (1 . TvNTt)
else probability is 1—\11-‘-‘
Update
If a new friend has been made, put on the friend list and update F.
Then

initialize the friend’s weight to %

decrease all other weights by ____F( ;- 1

If an old friend f has been accessed again,
‘ of) —ao(H+1-0
w(g) « aw(g) for all other friends g# f
In either case, check if any oS if so
delete f from the friend, decrementing F
increase weights of other friends g by 7 o)

increase the probability associated with him or her to reinforce his or her
popularity. The full algorithm is explained in Greenberg (1984) and in Witten,
Greenberg, and Cleary (1983).

Given a probability distribution, it is surprisingly difficult to construct a menu
hierarchy that minimizes the average number of selections required to find a
name. Despite the apparent simplicity of this problem, optimal menu
construction is possible only through exhaustive search over all menu trees, an
approach that is infeasible for all but the smallest problems (Witten, Cleary, &
Greenberg, 1984). Fortunately, the simple processes of iteratively splitting the
probability distribution at each stage into regions whose probabilities are as

similar as possible achieves good (but not optimal) performance in practice. For



Predictive interfaces 119

a——

example, if seven menu items are allowed per page, we would divide the entire
probability distribution into seven equal parts. We would then recursively
subdivide each portion of the distribution until only leaves are left.

The implementation of the iterative splitting algorithm introduces the
interesting side effect that popular names appear at the splitting boundaries. The
advantage is that during presentation of the menus, popular names frequently
occur as a range delimiter in menus high in the hierarchy, making the user’s
search process easier. An example is shown in Figure 6.5b, where a user may be
searching for Farel. As Farel appears as a range delimiter on the first-level menu,
the user’s task of deciding which range (and corresponding subtree) must be
navigated is made far simpler. ‘

Experience

With Adaptive Menus, previous actions are almost always resubmitted in fewer
keystrokes, as the path through the hierarchy is shorter. Also, since no extra
detail is added to the interface presentation, there is no need to learn a new
subsystem, and screen use is minimized. The trade-off is that since paths change
dynamically, memory cannot be used to bypass the search process. Users must
now search the menus for their entries all the time, even for those accessed
frequently. However, this is not a problem in practice.

Human factors experiments using able-bodied subjects were performed to
compare Adaptive Menus with their nonadaptive counterparts (Greenberg &
Witten 1985). Subjects simulated one month of telephone usage in a one-hour
session, where names were retrieved from the menu for each simulated call. The
average time taken to “dial” a number was reduced by an average of 35% when
Adaptive Menus were used. In addition, as subjects did not have to descend deep
into the tree (the place where most errors occur), the average number of errors
decreased by 60%. When one considers the high penalty of errors in real-life
applications — users going down incorrect branches not only lose time but also
suffer the risk of getting lost in the hierarchy — then the significance of reducing
errors becomes apparent. Also encouraging is that subjects preferred Adaptive
Menus to the nonadaptive ones, mostly because of the generally shorter search
paths and the frequent appearances of popular names as range delimiters.

Workbench

Background

Top-level interfaces to general purpose computing environments are designed to
help people pursue a wide and varying range of tasks by providing them with a
rich set of tools and materials. In a command based system, for example, one
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invokes an action by typing simple commands and arguments, although some
modern systems augment or replace this primitive dialogue style with menus,
forms, natural language, graphics, and so on (see Witten & Greenberg, 1985, for
a discussion of interface styles).

Users repeat activities that they have previously submitted to their computers
surprisingly frequently (Greenberg & Witten, 1988b). Yet reformulating the
original activity can be both difficult and tedious, especially for someone with a
physical impairment. Mental contexts must be re-created for complex activities,
command syntax or search paths must be remembered, input lines retyped, icons
found, directories and files opened, and so on. There are two ways to make it
easier to reformulate old activities. One is through reuse: predicting those
activities that are likely to be repeated and placing them ready to hand. The other
is through organization: allowing people to arrange their command sets in a
manner that fits their task. Both facilities have been designed into a system called
Workbench (Greenberg, 1988).

Description

Workbench is a graphical window-based front end to the Unix command line
interpreter. Using the metaphor of a handyman’s workbench, it provides both a
list that predicts future submissions from old ones and a way for users to
structure and store submissions for later use. Its major visual components are
detailed below and illustrated in Figure 6.6, which shows one paned window and
two pop-up windows.

The work surface is a terminal emulator running the standard Unix command
line interpreter (.:1e bottom pane in Figure 6.6). This is the main working area of
Workbench, and users can submit command lines by typing them directly.

The reuse facility is the list from which the user can select, edit, and insert into
the work surface an old command line entry (middle pane in Figure 6.6). It
implements a policy of temporal recency, where the last few user submissions
are considered good candidates for reuse. This is commonly known as a history
list. Items are also presented in a “fish eye” view, where the font size of the text
is matched to its probability of selection. Furthermore, every history item has a
pop-up menu attached to it which is itself a history list of all the arguments
previously used with the command. The figure shows the pop-up menu for the
“cd” command.

Through the tool cache (mid-right pane), a user can type in or copy items from
the reuse area to any one of the six editable fields. These entries remain available
for reuse until they are changed by the user. Beyond this, the tool cache is the
same as the reuse facility. Selecting an item inserts it into the work surface for
execution. Pop-up menus of previous arguments are associated with each item.
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Figure 6.6. Workbench in use, showing the main Workbench window
and two pop-up windows.

Finally, the tool cabinet allows users to organize their environment by placing
their “tools” (Unix command lines) into “drawers” (collections of tools). Tools
and drawers are presented as buttons labeled with distinctive text fonts (top pane
in Figure 6.6). A tool has three components:

+ a Unix command that will be executed when the button is pressed,
* an optional text label for the button, and
* an optional help string that appears when the pop-up menu is raised.

Choosing a drawer opens it and makes its tools available in the tool cabinet
pane. Selecting the cabinet icon on the top right of this pane allows the user to
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access a history list of drawers visited. What distinguishes the tool cabinet from a
conventional menu or panel is that a drawer and its contents are user defined.
When the edit button is selected, an editable representation of the current drawer
appears (lowest pop-up window in Figure 6.6). Users are then free to type in the
definition of a tool or to copy an already well-formed expression from the reuse
area or tool cache into a drawer. Items in the reuse area are not only excellent
candidates for becoming more permanent tools, but are easy for a person to
gather into a task specific drawer. Users are also invited to document their new
tools by adding a descriptive label and help message.

Mechanism

An empirical study motivated the design of Workbench and in particular its reuse
facility (Greenberg, 1988; Greenberg & Witten, 1988a, 1988b). An analysis of
the interaction records of 168 Unix users revealed that 75% of a user’s online
activities are repeated submissions. However, finding and selecting items for
reuse can sometimes be more work than entering them afresh, particularly if it is
necessary to search a complete list of previous entries. To be practical, a reuse
facility must choose a small set of previous submissions as predictions and offer
only these to the user. The difficulty, of course, lies in choosing good -
predictions.

A further study contrasted the effectiveness of various predictive strategies:
recency, frequency, partial pattern matching, treatment of duplicate items, and
using commands as hierarchical entry points to past arguments. The results
indicated that the temporal recency of previous submissions is a reasonable
predictor of the next one — the user’s recently submitted activities are the likeliest
to be repeated, particularly if duplicate items are shown only in their most recent
positions on the list.! The recency policy is cognitively attractive, because users
generally remember what they have just entered and can predict what the system
will offer them. Predictive power is further increased when items are used as
hierarchical entry points to past arguments (implemented as the pop-up menu in
Figure 6.6).

Using the strategies above, a list of ten entries successfully predicts 55% of all
user activity, with a potential keystroke saving of around 6 characters per
selected prediction, or 3.3 characters over all submissions (including new ones).
An optimal reuse facility could predict at most 75% of all activities (the
percentage of repeated submissions), which results in savings of 4.4 characters
over every reused and new submission. Thus the predictions offered by our

1 1 contrast, frequency ordering and presenting duplicates in their order of firu
appearance are quite poor predictive strategies.
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method (55%, 3.3 characters) make up roughly 75% of the theoretical maximum
saving (75%, 4.4 characters).

The design of the tool cache and tool cabinet is supported by the idea that
plans are derived from siruated action — the necessarily ad hoc responses to the
contingencies of particular situations (Suchman, 1987). In Workbench, the
elements of a plan are the tools contained in a drawer. By drawing on the reuse
facility as a primary source of tried and tested candidates for new tools
(something we call situated history), a person can rapidly create, annotate, and
modify his or her personal workspace so that it accurately reflects the task at
hand. Placing a tool in a drawer is just a matter of dragging it in from the reuse
facility — there is little disruption to the user’s task.

Workbench is implemented as a stand-alone process that can interoperate with
any application. It maintains a communication port, and applications are invited
to send any tokens that should be displayed on the reuse facility. While this
requires each application to have limited knowledge about Workbench (how to
establish communications and the protocol of sending tokens), the applications
do not control or need to know anything about its internal behavior. At the same
time, Workbench allows any application to connect to it and does not need any
syntactic or semantic information about the tokens it receives.

Experience

Workbench was constructed in Suntools, a window system that has now been
eclipsed by the newer X Window standard. As a result, we have limited user
experience with it. However, several colleagues who used Suntools enjoyed
having Workbench available, although their enthusiasm was tempered by the
usability issues outlined below.

First, difficulties arose because Workbench is a bolt-on front end to a single
application. Ideally, all applications in a user’s environment would cooperate
with Workbench, each being responsible for collecting, massaging, and passing
on relevant user input for display. However, this is difficult to achieve in a Unix
environment, because the source code of every application would have to be
altered. Even if source code were available, the task of modifying just a few key
applications would be daunting. The result was that Workbench worked only
with the Unix command line interpreter. It was particularly frustrating to have
the reuse facility turn off just because one had entered a different application (a
text editor, for example). An integrated system incorporating reuse primitives in
every application would have to be designed at the operating system level.

Second, some cognitive and physical trade-offs come into play. On the
cognitive side, the user must still decide what items to select from the display
and undergo the process of constructing and maintaining the Workbench
organization. In practice, users gain considerable benefit from having situated
and well-formed actions available in the reuse facility. History items are selected
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for reuse and collected in drawers. Still, some modification is usually required to
verify and generalize the action, and the entire process could be simplified (see
Greenberg, 1988, for further discussion of the design issues). We also found that
it takes a conscious effort to switch from performing a task to using predictions,
and users must do the extra work of moving from the keyboard to the mouse,
selecting items, and, if necessary, navigating drawers. But once the switch was
done, users expressed pleasure in being able to perform their actions simply and
economically by making Workbench selections.

The Autoprogramming Calculator

Background

When tasks are a sequence of activities, they constitute a procedure that can be
specified by the user giving one or more examples of the sequence. The goal of
programming by example (Myers, 1986) is to allow sequences and more
complex constructs to be communicated concretely, without the user’s resorting
to abstract specifications of control and data structure (in a programming
language, for example).

The simplest kind of programming by example is verbatim playback of a
sequence. The user performs an example of the required procedure, and the
system remembers it for later repetition. For example, the use of “start
- remembering,” “‘stop remembering,” and “do it” commands enable a text editor
to store and play back macros of editing sequences (Stallman, 1987; Unipress,
1986). Except for these special commands, the macro sequence is completely
specified by normal editing operations. With a little more effort, such sequences
can be named, filed for later use, and even edited (if presented in a human-
readable form). A practical difficulty with having a special mode — remembening
mode — for recording a sequence is that frequently one has already started the
sequence before deciding to record it and so must retrace one’s steps and begin
again.

The ability to generalize these simple macros could extend their power
enormously. Ideally, programming-by-example strategies should allow inclusion
of standard programming concepts — variables, conditionals, iteration, and so on
- either by inference from a number of sample sequences or through explicst
elaboration of an example by the user. While completely automating the general
programming process is impossible, it can be done in simple enough situations.
Using a calculator (rather than a programming language) sidesteps some of the
more difficult problems of automatic programming, for the calculator is suited to
simple jobs.

Many programming actions, such as those performed on a simple calculator.
are quite repetitive. A long function must be continually reentered even though
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only a few arguments (the variables) will differ. Whereas advanced calculators
(and computers) could be programmed to do a mathematically repetitive task,
this may be beyond the skill of particular calculator users.

Instead, the Autoprogramming Calculator looks over your shoulder while you
perform a repetitive calculation where the calculator would try to predict the next
key pressed (Bell, Cleary, & Witten, 1990; Darragh & Witten, 1992; Witten,
1981). The idea is that if a computer is shown the steps to perform a task a
number of times, it can automate the process by building a model - a program —
of the sequence of steps. Entries and operations that are the same each time are
considered constants and will be predicted. Any that cannot be predicted
correspond to “input” that the system must get from the user. The different input
data provided each time will often cause the task to be executed in different
ways, adding new paths to the model. Once the model is good enough, it can
predict the next step at all times and be left to run its “program” all by itself.
Thus the calculator will behave exactly as though it had been explicitly
programmed for the task at hand, waiting for the user to enter a number and
simulating the appropriate sequence of keypresses to come up with the answer.

Description

The Autoprogramming Calculator, modeled after a simple Casio calculator, was
built in the early 1980s to demonstrate the power of predictive interfaces. It
constructs an adaptive model of the sequence of keys the user presses. If the task
is repetitive (like computing a simple function for various argument values), the
modeler will soon catch on to the sequence and begin to activate the keys itself.
Inevitably the prediction will sometimes be wrong, and an “undo” key allows the
user to correct errors.

Figure 6.7 gives some examples of this “self-programming” calculator. The
first sequence in Figure 6.7a shows the evaluation of xel—* for a range of values
of x = 0.1, 0.2, 0.3, and 0.4. The keys pressed by the operator are in normal type;
those predicted by the system are shaded. From halfway through the second
iteration onwards, the device behaves as though it had been explicitly
programmed for the job. It waits for the user to enter a number and displays the
answer. It takes slightly longer for the constant 1 to be predicted than the
preceding operators because numbers in a sequence are more likely to change
than operators. Therefore the system requires an additional confirmation before
venturing to predict a number.
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Figure 6.7. Example of operating the Autoprogramming Calculator
for various values of x.

Figure 6.7b shows the evaluation of

log x
1+8Tog2

for various values of x. The first line stores the constant “log 2” in memory.
More complicated is the evaluation of
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20+ 10 log [1+a2—2ac057%8%]
-10log [1+a2-2acos45]

for a = 0.9 (Figure 6.7¢c). Since the calculator possesses only one memory
location, it is expedient to compute the last subexpression first and jot down the
result. The result of this calculation (2.69858) has to be keyed only twice before
the system picks it up as predictable. Some interference occurs between this
initial task and the main repeated calculation, for three suggestions had to be
“undone” by the user. The negative effect of one of these undo’s continues right
up till near the end of the interaction. This means that the penultimate plus sign
on each line has to be keyed by the user several times to counter the system’s
reluctance to predict it.

Mechanism

The Autoprogramming Calculator uses a fixed length (length-k) predictive
model, which is a limited-context state machine created from the set of k-tuples
that occur in the input string (the input sequence) being modeled. Context models
effectively split an input sequence into overlapping substrings of length &, where
k - 1 is the context length. The first k — | characters of each substring predict its
last character. The sequence of k-tuples that occurs in a particular string fully
characterizes the string. !

When a new input symbol appears, a k-tuple is created with the new symbol at
its end. Given an existing state model formed from previous input symbols, the
tuple must now be incorporated into it. If that k-tuple has never occurred before,
a new state is added to the model and labeled with the new symbol, with an
appropriate transition leading to it. (A transition out of the state will be generated
when the next symbol is processed.) If the k-tuple has occurred before, it
uniquely determines a state of the model. However, it may call for a new
transition to be created into that state. If so, it will be necessary to reevaluate the
model by expanding it around the state and by adding the new transition. The
model must then be reduced to ensure that extraneous sequences are excluded. A
complete description of this process is found in Bell, Cleary, and Witten (1990,
chap. 7).

1 Length-k modeling is a more general but fixed length form of the variable-length
modelling technique used in the Reactive Keyboard. Another difference is that the
calculator uses a confidence parameter to forestall prediction of numbers, where

. numbers require more evidence than operators (Darragh, in press).
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Experience

The Autoprogramming Calculator was built as a research tool and has not been
released for general use. Still, the experience of designing and building the
calculator laid the foundations for the Reactive Keyboard, and several lessons
have been learned that can be applied to programming by example in general.

First, there is a fine line between “teaching” the system and “providing
examples” to it. As Figure 6.7¢ illustrates, a user must be conscious of how a
problem should be broken down in order for the system to learn it, and must
minimize variation between examples by presenting sequences consistently. The
user must also show all steps to the system; performing some calculations in
one’s head may represent a mental leap that the system cannot bridge (Witten,
MacDonald, Maulisby, & Heise, 1992).

Second, the interface presented to the user is critical for a system’s success. It
is important for the user to understand what predictions the system has made and
for the system to present the predictions in the language of the interface. For
example, the calculator would ideally show the formula learnt so far and indicate
where the input token accepted from the user would be applied. Also important is
the need to minimize the work required of the user. The Autoprogramming
Calculator, for example, aggressively predicts an input sequence. When
predictions are correct, the user just enters whatever arguments are required.
When incorrect, the user undoes the prediction and corrects it.

If programming by example proves successful, all users will benefit. The
dreary reentry of repetitive program sequences will be reduced to having the user
supply only the critical arguments. Also, the cognitive effort of a user’s mentally
forming and reforming each example task will decrease as the system learns and
takes over the task.

Metamouse

Background

Metamouse is an “instructible” interface that predicts repeated actions in
graphical editing tasks (Maulsby, Witten, & Kittlitz, 1989). Creating and
reformatting structured drawings involves not only repetition but input precision
at the pixel level. Such tasks are tiresome and error prone because they require
many repeated and highly accurate movements. For users who have some
neuromuscular or visual difficulty, editing a drawing by direct manipulation is
exhausting toil, if it can be done at all. Metamouse helps the user by learning
iterative procedures from single demonstrations and by inferring precise
constraints from approximate actions. The cost of automation is a little extra
intellectual effort, since the user must focus Metamouse on relevant spatial
relations while editing. Although teaching the computer requires more thought,
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the user — particularly the physically disabled person — is rewarded by being
relieved of tedious work: A tiresome task becomes easy, and the next-to-
impossible becomes feasible.

Most commercial drawing programs support very limited kinds of graphical
constraint, such as a grid for placing points and commands for aligning objects.
Systems like Gargoyle (Bier & Stone, 1986) have general capabilities but
complex interfaces. Metamouse was designed to do three things with a very
simple interface: infer primitive (system defined) constraints from single actions;
enable the user to invent more complex constraints as construction procedures;
and match action sequences in order to predict loops and branches. Owing to its
use of domain-specific knowledge in generalizing a situation, the predictive
interfaces Metamouse most resembles are Witten’s Autoprogramming
Calculator, Tels (Witten & Mo, 1993), and Eager (Cypher, 1991).

Description

Metamouse was designed for programming by demonstration (Myers, 1988). The
user teaches an agent a task by performing it, now and then issuing simple
instructions to focus attention and correct mistaken inferences. The agent’s
persona is Basil, a nearsighted turtle who follows the user step by step and
highlights graphical constraints it judges important. “Constraint” in this system
means a point of contact between two objects. Thus, to show Basil some spatial
relation, the user might have to construct a sequence of touch constraints by
drawing one or more objects connecting the related ones.

Figure 6.8 illustrates a session with Basil in which the user’s task is to align a
set of boxes to an input guideline, while keeping each box at the same vertical
coordinate; the final result is shown in Figure 6.8i. The user creates a guideline
(step a), then selects and drags the first box to it (b, c); the black tack indicates a
touch constraint Basil has inferred. When the user picks the second box (d), Basil
matches this with step b and predicts a repetition. She drags the second and third
boxes to achieve the same touch constraint (f, g). The user’s only input for these
actions is to click “OK” to approve them. When Basil fails to find anothér box,
he terminates the loop and asks the user to take over (h). The user removes the
guideline and tells Basil to save the procedure under the name “align to guide.”

Basil uses three learning strategies. The first employs domain knowledge to
“explain” individual actions. Since Basil knows about touch constraints but not
other spatial relations, the user has to draw a line to express alignment in terms of
touch (step a). An action not resulting in touch constraints, such as drawing the
guideline itself, is assumed to be governed by a potential input or constant. The
second strategy uses multiple examples to select hypotheses consistent with
them. Far instance, when predicting an action whose location may be constant or
input, Basil performs it using the same location user demonstrated (proposing a
constant) but invites the user to alter it (checking for input). The third strategy is
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Figure 6.8. Using Basil to align a set of boxes.

to get direct instructions from the user. The system highlights inferred constraints
and predicts actions step by step: the user can reject these inferences, causing
Basil to try an alternative. The current implementation does not afford all three
strategies for all aspects of a task.

Mechanism

Focusing inference on graphical constructions rather than general spatial
relations was believed to be a viable approach because people find it natural to
express constraints procedurally — they envisage spatial relations with imaginary
lines and motions and convey them by gestures. Van Sommers (1984) found in
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studies of drawing on paper that people typically orient new components of a
drawing to old ones according to touch.

The problem tackled by Metamouse is to predict, from exampies, the
constraints on selecting and positioning primitive two-dimensional geometrical
objects. In both cases, the only example features considered are:

+ the object type (line, box) and pre-defined parts (edges, vertices, centers);
o whether the target object is a specific individual or a member of a set;

+ the general direction of search over a set of objects (up, down, left, right);
« touch relationships between parts of objects.

For each new action, the system substitutes variables for objects and identifies
constraints on position. Constraints are chosen by explanation-based
generalization (deJong and Mooney, 1986), using a weak theory of 15 rules. If
the action’s constraints match those of some previous step, Basil predicts that
step’s successor. A task is represented as a set of production rules.

The following subsections describe the kinds of inference the system makes
and the instructions by which a user can modify them. The examples are taken
from Figure 6.8.

Object selectors

When the user selects the first box (step b), Basil infers a variable to stand for it
and a selector function to set the variable:

BoxVarl := find-novel-object(prevBindings = nil, typeBox,
pathDownward).

When predicting, this selector will choose the next box farther down that has not
been assigned to BoxVarl already. The find-novel-object selector permits
iterating once over a set of objects, processing them in the order of their
occurrence along an axis. The other selector, use-value-ofiX), picks the object
currently assigned to some variable X. The current implementation does not let
the user modify Basil’s choice of selector.

Directions

One parameter of find-novel-object is the direction of search, pathDownward,
inferred from the dominant axis in Basil’s path of motion. The system provides
multiple-example and choice strategies for modifying this inference. In the
alignment task, the second example given by the user (step e) does not match the
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predicted path, hence it is generalized to “any direction.” If the user had instead
disagreed with the inference that Basil should move downward, he or she could
have clicked on his shell to rotate him (for instance, to upward).

Constraints

Basil applies a set of rules to rate the significance of touches observed after each
action; the top ranked are selected as constraints. The significance of a touch
depends on two factors: the extent to which it was — or could have been -
affected by the action and the degrees of freedom that remain when positioning
Basil after achieving the touch with the given graphical operator. The most
significant touches are those caused by the action and leaving the fewest degrees
of freedom. For instance, when the user drags the box to the guideline (step c),
Basil notes that the box’s lower right corner touches the line. This touch is
caused by the move and is therefore highly significant in that respect. It involves
two objects already known to Basil, so there is no freedom in the choice of
object. It involves a vertex and a line segment, so there is one degree of freedom
in the actual position. Since no other touches are observed, Basil selects this one
as a constraint and marks it with a black “tack” (white tacks are used to indicate
irrelevant touches that would not be enforced when predicting). If the user
disagrees with Basil’s inference, he or she can click on the tack to toggle it.

When the user dragged the box, he or she kept it at nearly the same vertical
coordinate; Basil infers that this value should be held constant when selecting the
destination point on the guideline. Two alternative inferences are that the
destination should be the nearest point or a point selected by the user. The
current implementation does not let the user give explicit instructions about
selecting a particular solution, but the user could construct a horizontal or nearest
point (perpendicular) constraint.

Flow control

Predictions are made by consulting a set of production rules of the form
if context = [action]* — prediction = action. .

The difference between Metamouse’s context model and those used in the
Reactive Keyboard and the Autoprogramming Calculator is that its rules have
variable context lengths and are tested in length order. Thus, each context is as
general (i.e. short) as possible, yet the model as a whole is deterministic (i.e. no
two rules fire in the same context). This approach is intended to maximize the
number of predictions made yet distinguish states as determined by events
arbitrarily far back in history.
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Rules are checked in the order specific to general, that is, from longest to
shortest context. A rule fires if it meets two conditions: (a) its context of &
previous consecutive actions matches the ¥ most recent actions in history; (b) its
prediction is performable, in the sense that its constraints can be satisfied. After a
rule has fired, the predicted action is appended to history, and the rule set is
consulted again. If no rule fires, the user performs the next action, N, which Basil
analyzes and matches with generalized steps already stored. If no match is found,
Basil stores N as a new type of action. Whether matched or not, a new rule that
predicts N is created. If N was performed because some rule R predicted a
nonperformable action, then the new rule is [R-fails] — N. This happened, for
instance, at (h) in Figure 6.8. Otherwise, the new rule is initialized as [M] — N,
where M is the immediately preceding action in history. If N was performed
because the user had rejected the prediction made by rule R, the system tries to
specialize R by extending its context backwards through history, such that it
would not have fired on this occasion. If no specialization covers all previous
successful firings of R, then the new rule for N is specialized instead, such that it
covers no previous instance of R.

Experience

We did a small, quasi-controlled user study to learn whether people could put
Basil to effective use in practice and to identify shortcomings in its design and
implementation (Maulsby, Witten, Kittlitz, & Franceschin, 1992). We tested the
system on three computer science students and four nonprogrammers. All
subjects were given the same single page instruction sheet and performed the
same six tasks several times, with and without Basil’s assistance. Four of the
tasks required graphical constructions to express alignment or distance, and one
(sorting boxes by height) required either an explicit setting of Basil’s direction or
the use of a movable construction (such as a sweeping line) to select boxes in
order.

All subjects, programmers and nonprogrammers alike, benefited from Basil’s
predictive ability in the two tasks where no constructions were required. The
three programmers and three of the nonprogrammers successfully used simple
constructions to teach Basil two different ways of aligning boxes. The one user
who did not benefit from prediction in these cases did not use constructions
during any of the tasks. The study showed that when users employ appropriate
constructions, Basil is able to help them by making appropriate predictions. The
users, especially the nonprogrammers, were able to explain most of Basil’s
behavior to themselves (including bad predictions or failures to predict) after just
a few minutes’ experience.

Of greater research interest, however, are the problems users encountered. The
following paragraphs outline the major difficulties and their causes.
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a. Wedge through all boxes b. Wedge, full height range
L
c. Wedge and bounding box d. Result after sorting

Figure 6.9. Tools attempted in sorting by height.

Constructions

We found that users readily invented “static,” declarative constructions for
spatial relations but had no insight into using “dynamic,” procedural ones like a
sweeping line. Figure 6.9 illustrates one nonprogrammer’s experiments with a
static tool for ranking boxes by height. His tool is based on a “wedge,” an
oblique line that maps height order onto horizontal order. The first attempt
(Figure 6.9a) is a mistake, because the line does not map the entire range of
heights. The second version (Figure 6.9b) would work but for the inadequacy of
Basil’s selector functions (see below). Blaming himself for the failure, the user
adds a bounding box (Figure 6.9c), which he believes will show Basil that all the
rectangles are to be processed, regardless of whether they touch the wedge
initially, and also ensures that boxes are moved strictly horizontally, since they
must touch the bottom of the bounding box. Figure 6.9d shows the result he
obtained (without predictions from Basil).

Touch metaphor

Users immediately understood Basil’s bias towards touch and focused their
attention on that characteristic. They rightly did not expect Basil to infer intrinsic
properties like object height. All were puzzled when asked to teach him how to
sort by height, because they believed they were supposed to find some way of
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expressing height in terms of touch. Several said they would prefer a more direct
way of instructing Basil with commands.

Selectors

Users who did not initially decompose tasks in a way compatible with Basil’s
object selector functions did not learn to do so. In particular, if a task could be
done either as a single loop or multiple loops with simpler bodies, most users
chose the latter; but Basil cannot predict multiple loops over the same objects.
Only one user, a nonprogrammer, tried using a single loop after observing that
Basil predicted only the first of multiple loops.

The limited choice of selector functions also prevented some constructions
from working as users expected. For instance, the wedge tool in Figure 6.9
initially touches several of the boxes, generating a distinct variable for each one;

‘Basil cannot form a loop when observing the user select these, because the
variables cannot be coalesced.

Further work

Based on this user study, we conclude that Metamouse needs two additional
selector functions and the ability to alter the choice of selector based on multiple
examples. One selector iterates over a set of objects that touch a given object; the
other iterates over the binding history of a variable. The multiple examples
strategy involves comparing rejected or nonperformable predictions with the
user’s action: If substituting other selector functions for those in the prediction
results in a match with the user’s action, that substitution is made (if it covers
previous instances of the predicted step), or a new rule with that substitution is
stored (if not).

The rules for inferring constraints and directions worked well enough (with
respect to the drawing tasks studied here) so that we have no data regarding the
use of direct instruction (such as clicking on tacks or rotating Basil). The
production rule learning algorithm proved successful in distinguishing special
contexts such as the first and last iterations of a loop and in suppressing
erroneous steps (by lengthening their context such that they are never predicted
again). Further testing of these aspects of the system will be warranted once the
improvements mentioned above have been made.

In conclusion, Metamouse is a predictive interface that uses background
knowledge to abstract features for pattern matching; we have found that this
improves the quality of Basil’s predictions. The system’s metaphor, based on
teaching a touch-sensitive turtle and using graphical objects to express spatial
relations, is (on the whole) easily grasped by users. Its notion of sets of objects is
computationally inadequate to model the way people really do repetitive editing.
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The combined use of generalization from examples and direct user instruction
has yet to be tested in user studies.

What will they think of next?

The five interfaces described in this chapter and summarized in Table 6.1
illustrate how predictive interfaces can help to reduce the input required not only
from physically disabled people, for whom data entry may be mechanically
taxing, but from able-bodied users as well. Although the systems have a common
theme, they are quite different from each other in three important respects:

« their reliance on application-related background knowledge and syntactic
analysis;
« their ability to generalize past input for reuse in predictions; and

« their implementation of mixed-initiative interfaces where the system and user
share control over the formation and use of the underlying predictive model.

The Autoprogramming Calculator distinguishes numbers (which can be
variables) from operators (which cannot). Workbench distinguishes the first
token of a command line from the remainder. The Reactive Keyboard and
Adaptive Menus are completely general, have no a priori knowledge, and
perform no syntactic analysis.

The ability to generalize history depends on syntax analysis and is enhanced
by background knowledge. The Autoprogramming Calculator selectively
predicts subsequences of a calculation interleaved with user inputs. Workbench,
the Reactive Keyboard, and Adaptive Menus do no generalization.

Most of our predictive systems have separate interfaces which provide the user
with a means of controlling, accepting, and rejecting predictions. Adaptive
Menus is the exception. The Reactive Keyboard lets the user browse among
potential predictions and has a statistically optimized presentation scheme. The
user can easily augment or modify the model and its predictions by choosing
different text files to prime it. Similarly, Workbench users can save (and edit)
their interaction records in separate files and use any one to prime predictions.
Workbench provides an array of mechanisms for organizing history, including
storage metaphors under which the user can build his or her own task model. The
Autoprogramming Calculator’s only extra interface option is the “undo”
command. The Reactive Keyboard requires that the user explicitly accept a
prediction or implicitly reject it by performing an alternative action.

We have learnt several lessons from the design and implementation of these
systems and from studying how people use them. First, powerful predictors can
be built that can be applied to a variety of task domains. The best example is the
Reactive Keyboard. Because its predictive power is based on principles of
adaptive text compression, it can be applied to any text domain. We have used it
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for composing free text, for writing programs, for supplementing the Unix and
MS-DOS command based interfaces, and — through the Autoprogramming
Calculator — for formulating mathematical expressions. Furthermore, any
advances in text compression algorithms can be applied directly to increase the
accuracy of the Reactive Keyboard’s predictions. The algorithm behind Adaptive
Menus can configure any ordered name space. Workbench is capable of
becoming a front end to any command based interface, regardless of whether
commands are typed or selected through menus.

Second, predictive systems work well in practice and, if well designed, are
easy to use. The Reactive Keyboard has proven its usefulness to disabled people
— its users find it indispensable. Users of Workbench appreciate the support it
provides. The controlled experiment on Adaptive Menus indicates that user
performance is enhanced by the assistance that it gives. We believe that these
systems have illustrated the viability of predictive interfaces.

Third, predictive systems can be implemented today using existing
technology. All the systems described here have been built on conventional
computers, and all perform well in real time.

Finally, whether or not users accept a predictive system will depend on their
individual needs. Because of the cognitive/physical trade-off, using the
predictions may be more work for some people than just continuing without
them. Of course, the greater the need, the greater the motivation to learn and use
these systems. A predictive interface that is a curiosity to the able-bodied may be
a beneficial — indeed, indispensable — tool for a person who is physically
disabled.

The adaptive predictive techniques we have described could easily be made
widely available to disabled people. The mechanisms of Adaptive Menus and the
Autoprogramming Calculator are suitable for integration into existing
applications. Moreover, it is feasible to use predictive techniques such as the
Reactive Keyboard and Workbench in conjunction with current systems without
the necessity to integrate them into particular applications.

What will they think of next? We would like to see a series of modules that
allow users to access these techniques, both integrated within individual
application programs and in the form of add-on “system extensions” (as in
Macintosh System 7). For example, the Reactive Keyboard could be integrated
into the command shell in systems like Unix or MS-DOS as a switchable option
for all users. A Macintosh desk accessory could combine the adaptive predictive
technique of the Reactive Keyboard with a conventional augmentative
communication aid for entering single letters — this would be usable with any
Macintosh application. We see no reason why pocket calculators and spreadsheet
programs should not routinely embody predictive techniques. A personalized
phonebook system, with autodial capability and local telephone directories
available on CD-rom, could use Adaptive Menus as its basic interface. Perhaps
more futuristically, a full implementation of Workbench could provide users with
easy opportunities to create individually crafted tool sets for any application.
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