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ABSTRACT: Gesturing from one human to another appears to span all cultural bound-
aries; one could possibly call it a universal means of communication. Group work
studies have shown that gesturing makes up over 35 percent of all interactions.
Participants use hand gestures to enact ideas, to focus the attention of the group, to
signal turn-taking, and to reference objects on the work surface, Specifically, this paper
explores gesturing as applied to users of group support systems. We address practical
issues such as: at what level of interaction might gesturing be supported, how large
and what shape should gesture pointers be, how they should move, network and
processor throughput requirements, and group size effects. Our results show that while
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full motion computer gesturing can be supported on PC-LAN systems for small
groups, gesturing for medium and large groups requires the use of special techniques
such as regulating transmission rates, motion smoothing, and point and quiver cursors.
These techniques could also be applied to wide area network implementations to
reduce network traffic and latency problems.

KEY WORDS AND PHRASES: computer-supported cooperative work, gesturing,
groupware, local area networks, telepointers.

1. Introduction

GROUP SUPPORT SYSTEMS IS AN EMERGING AREA of research that spans group decision
support systems (GDSS) and computer-supported cooperative work (CSCW). GDSS
is “an interactive computer-based system that facilitates the solution of unstructured
problems by a set of decision-makers working together as a group”[4]. The design
goal is to increase the efficiency and effectiveness of meetings. The usual method is
- to "manage” the interactions between group members by enforcing rules of meeting
protocol and structure [18]. Existing GDSS tools facilitate both small (3~6 members) and
large (7-30) groups through the various stages of the decision-making process [3, 33].

On the other hand, CSCW is defined as “the study and theory of how people work
together, and how the computer and related technologies affect group behavior” [24].
CSCW implementors build “"computer-based systems that support two or more users
engaged ina common task (or goal) and that provide an interface to a shared environment”
(7). These systems usually facilitate communication between members of a small group
and provide task-specific tools. The software rarely regulates the actual meeting process;
the designers expect that normal social protocols between participants will suffice.

It is our experiencc that meetings in most corporate situations lie somewhere
between the domains of CSCW and GDSS; not all meetings result in decisions nor do
all group processes center around a task. Sometimes structured processes are crucial
atmeetings; at others they are debilitating. Rather than split semantic hairs about where
our research resides, we will use the label group support systems (GSS). This research
entails understanding how groups interact; applying that understanding to designing _
systems that help people work together; and observing people using our systems. The
last point often constrains our implementations to standard delivery platforms (such
asIBMPCs), and much of our effort is devoted to overcoming the platform limitations.
The focus of this article is on gesturing: why it is required, how it can be implemented
on a computer, and what pragmatic decisions must be made during implementation.

2. Gesturing Defined

gesture: 1) the use of motions of the body as a means of expression, 2) a movement of
the body that expresses or emphasizes an idea, a sentiment or attitude [23].

SOME MANNER OF GESTURING TAKES PLACE THROUGHOUT ANY INTERACTION be-
tween human beings. Gesturing appears to span all cultural boundaries; one could
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possibly call it a universal means of communication. Gesturing not only occurs
between people, but also between people and their artifacts. In an ethnographic study
of eight short-term, small-group design sessions, Tang built a descriptive framework
that categorized activities over a shared work surface (large sheets of paper tacked on
a table or white board)[28, 29]. These primitive actions were observed, and were
combined to mediate several essential functions:

Action:
* listing: produces nonspatially located text or alphanumeric notes;
 drawing: produces graphical objects, typically a two-dimensional sketch with
spatially located textual annotations;
» gesturing: purposeful body movements that communicate specific informa-

-._tion such as pointing to an existing drawing.

Function:
« storing information: refers to preserving group information in some form for
later recall;
* expressing ideas: involves interactively creating representations of ideas in
some tangible form;
» mediating interaction: facilitating the collaboration of the group including
turntaking and focusing attention.

Hand gestures played a prominent role in all work surface activities (about 35
percent of all actions). Participants gestured to enact ideas, to signal turn-taking, to
focus the attention of the group, and to reference objects on the work surface [28, 29].

Clearly, gesturing is of paramount importance in group interaction. Tang demon-
strated this for small design groups, and it is our belief that gesturing is essential for
almost all group activities involving a shared work surface.

We are exploring hand gesturing over displays in group support systems. Obviously,
as soon as group work is moved from a “manual” face-to-face environment to a
dispersed "computer-supported” environment, many questions arise about gesturing.
How can hand gestures be tracked as input? How do we display a gesture on a screen?
If there is to be a gesture icon or cursor, how large must it be? How should it move?
What happens as group size increases (scalability)? What network bandwidth is
needed? We will address these questions in section 4, after first reviewing existing
implementations of gesturing in section 3. Our experiences implementing different
gesturing strategies via multiple pointers on an LAN-supported IBM PC platform are
described in section 5, which is heavily illustrated with performance benchmarks.

3. Prior Research on Gesturing

WE ARE CONCERNED WITH ENHANCING A GROUP'S real-time interaction when using
groupware tools in a computerized shared visual work surface, where one’s actions
are immediately visible to all [7]. The displays are software equivalents to whiteboards
and flip charts; the tools could be text editors, hypertext, structured drawing tools, and
SO on.
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Many collaborative systems do not support gesturing. For example, we now see
teleconferencing setups that combine voice conferencing with facsimile transmis-
sion, electronic white boards, and even slow scan video. While all participants can
see the same resulting information, gestures referring to an artifact are only visible
through indirection or not at all. For example, if one points to a drawing on a
document at one site, a person at the other site must find his or her equivalent
document and determine where the reference is. Similarly, one rarely sees the
fine-grained process of others creating and manipulating artifacts. While people
can get their job done without gesturing, we argue that much of the conversation
is used as a substitute to gesturing, for example, “I’'m pointing to the second line
in the third paragraph,” and that breakdowns are frequent, for example, "Which
¢ 1e do you mean?”

One of the first systems tc support gesturing explicitly was BoardNoter, a compu-
terized whiteboard used to support face to face meetings [27]. Gesturing was through
a single large “telepointer.” One person at a time could grab and control this special
cursor, which was then seen on every display. All other individual cursors remained
invisible to the group. In addition to tracking the cursor, clicking the mouse button
would cause a static image of the pointer to be deposited (and remain) on the board
[26]. Several commercial view-sharing systems, which allow people to share standard
single-user application through serial interaction [9], can also support single cursors.
Unlike BoardNoter, there is no difference between the local cursor and telepointer,
for example, in Farallon’s Timbuktu [8]. The common cursor responds to each user’s
mouse movement. When several people move their mice, the result is “cursor wars.”

The first serious works in gesturing, all motivated by Tang’s work (described above),
were implemented using two different technologies: video fusion and computational
space. VideoDraw was the original video-based system [30]. Each person has a
monitor that displays the image of a camera pointing to the other person’s monitor.
Participants draw directly onto the monitor, and the camera captures both the other
person’s hand and the drawing underneath. Feedback is eliminated through polarizing
filters. The result is that the shared workspace contains (from one person’s point of
view) his or her physical hand, pen marks on top of the screen, plus the other person’s
hand and marks in the image. TeamWorkStation, on the other hand, uses hardware to
fuse video signals [16]. The advantage here is that people can perform their activity
on any work surface (such as a desktop), with a video camera recording and fusing its
image with the work surface image of the other participant. Finally, VideoWhiteboard
allows each user to see the drawings and a shadow of the gestures of collaborators at
the remote site [31]. Here, people see their partners and movements as a silhouette
appearing on the other side of a translucent whiteboard. These video systems are
limited. First, participants cannot manipulate other’s marks, since they only see them
as a video image. Second, these systems are not scalable since serious image deterio-
ration results when too many images are fused.

At the same time, several computational systems were developed that implemented
gestures through multiple cursors. GroupSketchis a computer-based group sketchpad
where one or more people can simultaneously draw, type, and gesture around the
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display [10, 11]. Its cursors were designed specifically for gesturing around the
following criteria:

1. Cursors must have enough prominence on a multicursor display to attract the
attention of other participants. A large 64x64 bit cursor was used instead of the
traditional 16x16 bit cursor.

2. Since gestures must be seen in order to convey information, all cursors within a
work surface are always visible to all participants.

3. Cursors are unique, each identifying the person to whom it belongs. While
face-to-face gesturing has natural cues to help identify who is gesturing, cursors do
not. GroupSketch labels each cursor with its owner’s name and each new cursor is
rotated 90 degrees from the last (while the idea of rotation was first put in to reflect

‘fferent seating orientations of participants around a drawing, its real value was that
it allowed up to four cursors to touch the same pixel without overlapping each other).

4. Cursors always maintain their same relative location on every display so that they
retein their relation to the work surface objects.

-5, Cursor movements appear continuously and with no apparent delay on all
displays, which means that they remain synchronized with verbal communication.

6. Cursors change their shape to reflect a natural action. Four gesture modes are
supported (pointing, writing or drawing, erasing, and directing attention) by distinct
cursor shapes (a pointing hand, pen, eraser, and large arrow, respectively).

In parallel with GroupSketch came the very similar Commune (2, 15, 17]. Instead
of a mouse and a vertical display, Commune users were able to write directly on a flat
screen with a pen. This provided them with improved control or display compatibility
and fine motor coordination. Many second-generation sketching packages now sup-
port gesturing, such as XGroupSketch (11], a functionally richer window-based
version of GroupSketch; WScrawl by Brian Wilson [34], GroupScratchPad (GSP) by
Stephen Hayne [12], and ShDr by Paul Dourish [5]. We are also seeing these ideas
transferred to the domain of structured drawing: GroupDraw [11], MMM [1], and
MUGE [20].

Several researchers are now investigating “gaze awareness,” where a person can see
where on the work surface his or her partner is looking [14]. Although we do not pursue
it further here, a person’s gaze is a gesture as well. By tracking other people’s eye
movement over the work surface, we see their foci of attention and their degree of
interest, and we obtain cues for topic switching, and so on. The few computational
attempts at supporting gaze awareness rely on overlaying the work surface on top of
a video image of a person’s face, and arranging cameras and half-silvered mirrors in
such a way that eye references to the work surface are consistent across sites. Again,
this video configuration may not be scalable to larger groups.

Some computer tools for tasks other than drawing also support gesturing. In ShrEdit,
a shared text editor, all insertion “carets” of participants are visible, as well as the text
that they type [19). In 7/BIS, a hypertext system supporting argumentation, there are
two modes of operation: loosely and tightly coupled. In the latter, a single group cursor
available through turn-taking is visible to all, thus strengthening the feeling of participa-
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tion [22]). Both the Muiti-User Graphical Editor (MUGE) and the Graphical Issue
Analyzer (GIA) by Pendergast and Hayne [13, 20] have implemented specific gestur-
ing cursors (discussed in the next section).

In summary, existing systems support.gesturing through a handful of strategies.
These include a single static pointer that is placed on the screen but does not track
mouse movement, a single dynamic pointer that follows the mouse, multiple pointers
with fine-grained tracking, and video images of actual hands as well as exploring gaze
awareness. Of course, there are also systems that do not support gestures at all, but we
believe these provide an impoverished work surface for group members [11].

4. Design Considerations for Gesturing

HE AIM OF OUR RESEARCH IS TO FOCUS on a computer-based mechanism for
supporting telepresence in the form of gesturing. Telepresence attempts to give
meeting participants the feeling that they are all in the same room [6] by sharing
explicit and implicit participant dynamics. Paramount among these actions are ges-
tures and metalevel communications. As we are not targeting a multimedia environ-
ment, we have chosen to study the requirements for gesticulation as implemented by
multiple cursors that can be displayed on every participant station in real time.

This section describes some of the design considerations we have encountered in
our work on gesturing. It is presented as a loose framework revolving around four
aspects: different ways cursors can express gesturing through motion; the appear-
ance of a gesture cursor; effects of group size and distribution on cursors; and
consequences of relaxed “What you see is what I see” (WYSIWIS) [26]. We
assume a voice channel is available to the group, and that multiple cursors are
preferred over single cursors.

4.1. Gesturing through Cursor Motion

The presence of a cursor on the screen indicates who is active in the session. The
motion of the cursor indicates a pure gesture or a gesture-based activity. We believe
that the best gesturing systems will support real-time motion on all screens. Unfortu-
nately, some platforms may not allow full motion because of limited network
bandwidth, latency, and slow processor speed. The following strategies for supporting
low to high bandwidth cursor motions are presented in order of lowest to highest data
and processing requirements. The implementation model used is that each workstation
sends a message on its cursor status to the other participants’ workstations.

Point: When the user points and presses a mouse button, a single message is sent to
all the remote users. The gesturing cursor leaps to the new location from its old one
and remains there until its owner sends a new location message. The problem is that
a user may not see the sudden transition, thus not noticing the gesture.

Point and quiver: In order to attract the viewer’s attention, the above strategy is
modified so that the receiving station jitters the cursor back and forth in its new
position for a period of time.
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Limited motion: Only a certain number of gesture messages per second are sent
between stations. As the number is increased, the cursor motion moves from being
stilted and jerky to a smoother animation. For example, ShDr [5] allows the user to
control the number of transmitted cursor movements through a slider in the window’s
control panel. The fewer messages sent, the less accurately the motion reflects the
gesture. Also, the jerky cursor is visually unattractive.

Limited motion with smoothing: After receiving a new cursor position from the
sender, the receiving station computes several points between the previous and the
current location, and then animates the cursor through these intermediate points. While
this eliminates jerkiness, it still does not guarantee that the path reflects the actual

novement of the sender. Note that smoothing can also be applied to point, and to point
..d juiver. This technique is applicable to slow networks, but does notovercome slow
P . .SSOIS.

Full motion: Every time the cursor is locally displayed in a new location, a gesture
message is sent. Every movement of the cursor, no matter how small, is immediately
broadcast. If the network and processor are fast enough, every receiver will display
the-cursor exactly as the sender does. For many years the motion picture industry used
16 frames per second as the standard for smooth animation. We feel that 10-20
messages per second will support full motion. While sending more messages may be
possible, it is probably not necessary.

Which is the best choice? We believe that full motion gesturing is preferred for most
situations. However, there may be special occasions when a user would want to leave
a pointer parked at a specific location, such as when long network latency (> 0.5
seconds) is combined with real-time voice. Full motion may be unacceptable when
gestures do not match the spoken communication.

7 4.2. Cursor Appearance

Single cursors are usually presented on a screen as a small (16x16 pixel) bitmap,
usually a left-leaning arrow. A naive approach to multiple cursors is simply to copy
the appearance of single cursors. However, several issues appear that demand a
slightly more sophisticated approach.

Cursor size: Cursors in most single-user graphical user interfaces are quite small.
As screens get larger and the display busier, the cursor becomes difficult to find. Most
people just jiggle their mouse (we can easily spot motion). Some window systems
have tricks for focusing a user on the cursor location. Examples of the latter are
“Xeyes” (two graphical eyes track the cursor), and ““oneko” (where a kitten chases the
cursor around the screen, eventually to sleep on top of it when idle). When multiple
people are using a display, the cursor size becomes much more critical. Since we
maintain that cursors are critical to gesturing, a larger size (say 64x64 pixels) would
be more appropriate for small-group interactions [11, 20]. The trade-off is that cursors
can quickly consume too much screen real estate as group size increases (described
later). While we do not yet know what the optimum size is, we caution implementors
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against choosing the standard 16x16 pixel size just because they are accustomed to it.

Owner identification: Assuming nonanonymous interaction, remote cursors must be
easily discemible from the local cursor, and participants should easily be able to
distinguish who is doing what. In the first case, color or slight shape changes can be
useful. For example, the local cursor might be black (or solid) while the remote cursors
are ‘colored (or outlined). In the second, the cursors can be uniquely labeled by a
participant’s name so that participants can quickly determine who is doing the gesture.
In practice, this may be easy, since user actions are often tied to voice [11]. Although
labeling may be left off if some degree of anonymity is desired, participants will likely
be able to identify its owner by other clues.

Cursor lifetime: While it can be useful to have cursors displayed at all times
(especially to indicate who is present), inactive cursors can become passively intrusive
in larger groups. To address this, remote cursor display can either be put under
individual control or can have a decay function over activity and time. Two interesting
approaches to decay are to have a gravity function which removes the inactive cursor
to a corner of the screen called a parking area, or to have the cursor merely dissolve
away [12].

" Cursor shape: Since many different and natural actions are to be expressed, the

* cursor shape must change depending on the action—this will add to the quality of the
gesture. Both pointing (e.g., finger) and attracting attention (e.g., flashing arrow) have
been identified as crucial general actions [10, 11, 20]. If the application requires
drawing or listing, the cursor should also reflect this by perhaps using a pencil, a caret,
or other shapes that indicate the action. Gratuitous cursor shapes, as implemented in
the Aspects groupware system [32] likely have no positive effect.

| 4.3. Group Size and Distribution

Clearly, cursors convey metalevel communication information, that is, how many
people are in the meeting and how their activity is balanced. As the group size
increases, the number of cursors appearing on the screen could begin to intrude on the
interaction. One approach to managing this problem is to reduce the size of the remote
cursors using a step function. As examples:

1. For one to four people, use the “regular” size of 64x64 pixels;
2. For five to six people, reduce the cursor size to 32x32;
3. For seven to eight people, reduce the size to 16x16.

For larger groups, each user may be displayed as a single pixel on the screen—this
will still provide participants with “gestalt” of the activity level. This step function
was implemented in the latest versions of GroupSketch, MUGE, and GroupScratch-
Pad. Cursor size is altered by the software as people enter and leave the session. This
notwithstanding, we feel that when groups become very large, the lifetime of cursors
will need to be adjusted.

Decreasing the size of the cursor severely limits the amount of information it can
display. Very small cursors do not have room for a label, so identification becomes



g

GESTURING WITH CURSORS IN GSS 51

problematic. Also, as cursor numbers increase, it will become difficult to tell who is
doing something important, and whose voice is tied to which cursor. We believe that
the cursor size should be altered to reflect important actions. For example, the cursor
size in a medium-sized group of eight people could be quite small (4x4 pixels) [11],
but users might press a mouse button and geta large labeled pointing arrow especially
designed to attract the group’s attention. Similarly, whenever someone starts to draw
or type, their cursor grows. Gesturing could be used to get access to the “floor” or
voice channel when individuals are dispersed geographically [25], particularly useful
for sessions using conference calls. Perhaps a “hand-raising” cursor is required.

44 Relaxed WYSIWIS

Much of our discussion assumes strict WYSIWIS, where everyone sees exactly the
same view. Since we feel that most group software will eventually relax WY SIWIS
along congruence of view, transformation of cursor coordinates between the sending
and receiving views must be performed. As well, screens have differing resolutions
and if a windowing environment is used, windows can be placed on different parts of
the screen. This transformation is easily done by mapping the cursor location to a
world coordinate system at the sender and (1) if that location is outside the receiver’s
view, discard the message; or (2) map the world coordinate to the receiver’s viewport
coordinates. It is extremely important that when one user points at a place in his or her
window or screen locally, the same logical place is “gestured” at on the remote
stations.

Of course, this leads to a variety of human factors issues. Consider figure 1, which
shows four users actively working on a shared canvas. From user A’sperspective,B’s

_, view completely overlaps, C partially overlaps, and D is disjoint. First, should A have

peripheral awareness of the others in the virtual canvas, particularly those who are
completely outside A’s viewport (D)? In Shared ARK and MUGE, for example, the
display includes a miniature of the entire canvas that shows the boundaries of each
person’s area of view [20, 25]. This conveys some of the metalevel information
described earlier. Second, if viewports overlap (A and B), what happens to the
gesturing cursor when it moves across a view boundary? For example, if B moves the
cursor to the lower right of the screen, would it suddenly disappear from A’s view (as
in XGroupSketch), or would it “linger” in the last visible spot (as in GroupScratch-
Pad)? What consequence does this have on gesture interaction? Third, how should
views be linked together? Assuming that users will move from aloosely coupled mode
where they are working more or less independently to a tightly coupled mode
throughout a session (and back), there should be ways to link views and gesture spaces
together. For example, MUGE and GSP include the notion of leaders and followers,
where users have the option of making their viewports and scrolling actions slaved
with one another [20]. A user can be both a leader and a follower; leaders take
followers along with them as they move about the work surface (zooming or scrolling).
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Shared Space

Figure 1. Translation between Viewports A, B, C, D

5. Performance Testing

SUCCESSFUL IMPLEMENTATION OF FULL MOTION GESTURING IN GSS applications is
dependent on the performance characteristics of the network and host operating
system. Many of the previous systems have been implemented on UNIX hosts, but we
feel that the more realistic corporate environment of IBM PCs and a graphical user
interface would represent a lowest common denominator. Thus, we conducted our
tests in the University of Calgary Norcen Meeting room which has 34 IBM PS/2
Model 55 (386sx/16) PCs networked using both a 16MB Token Ring LAN and a
10MB Ethernet LAN supported by a Novell Netware (V3.21) file server.

Microsoft Windows 3.1! applications were used and the communication was
managed by the Network Interface Object (NIO) as described by Pendergast [21]. The
NIO manages application layer communications (OSI) by providing a “channel”
object that facilitates the creation of GSS applications by providing virtual, multicast
connections that parallel the meeting room metaphor of communications. Multicast
connections permit communication between two or more stations using a single
network name or address, thus not requiring multiple separate session connections
with each one. The NIO implements multicast channels using two transport level
protocols: (1) reliable session connections, and (2) broadcast datagrams. Depending
on the nature of the data, the applications can dynamically select either the reliable
(session connection) or unreliable (datagram) path when sending the message. Using
the reliable channel requires the NIO to transmit the message to each station in-
dividually. Broadcast datagrams are sent just once, independent of the number of
stations participating. The unreliable path has limited message size (approximately
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and is not acknowledged, while the reliable path has no size limits and are guaranteed
sent until a time-out occurs.

The NIO isincorporated into several GSS applications, including MUGE, GIA, GSP,
and Graphical Brainstorming [12]. Since all Windows (or DOS) based applications
will need to use a network layer (perhaps like the NIO), we felt it necessary to
determine if typical LANs and PCs could support gesturing.

5.1. Transmission Time

This test determined the time required to transmit messages of various sizes over the
. wreliable (broadcast datagram) and reliable (multicast) communication channels. The
" wst .onsisted of a station sending 100 messages as fast as possible and recording the
el.; ;cd time. The number of receiving stations was varied from 1 to 12 for message
2ngths of 100, 1,000, and 2,000 bytes, thus requiring 1, 2, and 4 network packets
respectively. Table 1 presents the elapsed time, in seconds, to transmit 100 messages.
Figure 2 illustrates the performance differences between the multicast and broadcast
datagram channels.

The transmission times for the datagram channel remained constant while the
multicast channel’s rate increased linearly with the number of receiving stations. This
is as expected since the multicast channel transmits a message to each receiver
separately. The amount of time required to transmit (multicast) a 100-byte message
to 12 stations is 0.25 seconds and we predict that for 24 stations it would be 0.50
seconds.“This makes a clear case for the use of unreliable datagram communications
for gesture messages even though some datagrams may be lost.

5.2. Datagram Throughput

-This test was conducted in order to determine the maximum rate that a station could
transmit datagram messages of a size appropriate for gestures. A single station (IBM
PS/2 55) transmitted 100 datagram messages of 100 bytes as fast as possible and
recorded the elapsed time. Using the Novell Netware IPXSPX Windows interface,
this time was measured at 2.314 seconds (average), or 23 milliseconds per message
(43 messages/second). To measure the overhead of the test program and high-level
communications handler (NIO), the actual datagram transmission was then disabled
and the test repeated. The resulting overhead was approximately 5 milliseconds per
message, leaving 18 milliseconds for the actual transmission. This seemed to be slow
considering a 16MHz processor and a 16MB Token Ring LAN. This same test was
also performed using the 10MB Ethernet protocol. The results from this test were
better. It took 14 milliseconds per message, with 5 milliseconds of overhead. However,
9 milliseconds (Ethernet) and 18 milliseconds (Token Ring) still seemed excessive.

To discover if the Windows operating environment had an effect on transmission
rates, a DOS test program was created that measured the time required to transmit 100
datagrams (100 bytes each). This program was able to transmit the 100 messages in
less than 300 milliseconds (Token Ring) and 100 milliseconds (Ethernet), or about 3
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Table 1  Transmission Times in Seconds for 100 Messages

Receivers Multicast Multicast Multicast Datagram
100 bytes 1,000 bytes 2,000 bytes 100 bytes

1 2.257 4,399 8.739 1.982

2 4,729 8.628 17.032 1.928

3 6.871 13.407 25.380 2.477

4 8.463 17.142 33.564 2.422

5 10.608 21.152 42.408 2.532

6 12.638 25.436 50.427 2.587

7 14.890 29.665 58.611 2.615

8 17.032 34.004 66.904 2.642

9 19.037 38.041 75.363 2.395

10 21.041 42.078 83.821 2.148

1 23.101 46.362 92.307 2.065

12 25.161 50.646 100.792 1.982

and 1 milliseconds per message respectively (one-sixth the time of Windows). Due to
the extreme difference between Windows and native DOS, we wanted to pinpoint the
problem in Windows by eliminating the Novell interface to the network and substi-
tuting the IBM NETBIOS interface. This third test gave results identical to the
IPXSPX version. We believe we have verified the existence of a Microsoft Windows-
induced delay in the transmission process. One source of the delay comes from having
%o transfer data packets and command blocks from extended memory to low DOS
memory where the adapter can access it. We also suspect that the Windows kernel
only processes interrupts after a certain arbitrary number of clock ticks. Reducing the
NIO’s overhead by 75 percent would allow transmission of over 50 datagrams/sec-
ond—far more than we feel is required for gesturing. But discovering the reason for
the delay inside of Window’s kernel and reducing it by just 20 percent would yield
the same results.

5.3. Multiple Sender Interaction

A third set of tests determined the network interaction effects that would occur if
several stations were gesturing at the same time. In this test the number of sending
stations was varied from 1 to 4 and the message transmission rate was varied from §
to 25 messages per second. Each message was 100 bytes long and sent using broadcast
datagrams. The results of the test revealed two important thresholds: one when the
network protocol began favoring one station over another and a second when
datagrams began to be lost. These thresholds are shown in figures 3 and 4.
Datagram packets are lost whenever there is a transmission error or if a station does
not have an outstanding receive request. Since real-time gesture messages will
probably be transmitted at a rate greater than 10 per second, we believe the loss of a
few is not a major concern. The favored station threshold does present a problem.
Table 2 presents the data from a 20-second run where four stations were transmitting
(and receiving) at the same time. Station A was not able to transmit at the same rate

.
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Figure 3. Network Favoritism Threshold

as the other stations once the send rate was increased to 7 messages per second. Station
B began being penalized at 9 or 10 messages a second, while stations C and D were
able to transmit at a highrate for all speeds. At the speeds required for smooth gesturing
(minimum of 10-15 per second), station A was only able to transmit one message per
second. This results in a very jerky gesture motion. Since a station’s ability to
transmit/receive is based on processor speed and location on the ring, certain stations
will always be at a disadvantage. This indicates that the software controlling the
gesturing should be intelligent enough to govern its transmission rate whenever two
or more stations are gesturing at the same time. This test was repeated on the Ethernet
"7 LAN, and yielded similar results.

5.4. Video Display

A final performance test was conducted in order to measure the processor overhead
required for displaying different types of gesture pointers. This test consisted of
drawing and erasing a 24x36 pixel bitmap or a five-sided filled arrow polygon, of
roughly the same area, 2,000 times. We felt that the overhead of a bitBlt call might be
larger than the overhead of a drawPolygon call. The test was run on four different
CPUs (see figure 5). For all CPUs, the drawing of the polygon was four to five times
faster than the bitmap. The slowest CPU (Model 55) required 14 milliseconds for the
bitmap and 3.8 milliseconds for the polygon, the fastest CPU (Gateway 486/33)
required 4.1 milliseconds for the bitmap and 0.89 milliseconds for the polygon.
Since polygons are much faster to draw, gesturing programs should use this
technique when running on slower processors. We acknowledge that these results
are highly dependent on the video display hardware, but the test represents the
current state of PC technology.
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Table2  Concurrent Transmitters (messages sent in 20 seconds)

Send Rate Station A Station B Station C Station D
5 9 91 91 91
6 91 91 91 91
7 88" 121 121 121
10 22+ 145 . 178 179
11 21 139 181 181
12 22 141 181 179
13 22 143 178 179
15 25 138 180 182
20 20 32 261 269
5 22 29 293 265
5.5. Summary

The above tests indicated that unreliable datagram communications are appropriate
“for gesturing and that a definite limit exists for transmitting and receiving gestures.
This limit is determined by processor and network speed. To better understand the
processor limits, the following equation was derived from the test data:

Utilization: p; = B((n-1)G) + a(G) < 100 percent;

where B = Msg Receive Time + Gesture Redraw Time; o = Msg Send Overhead +
Msg Send Time + Application Overhead; G = Gesture rate in msgs per second; n =
Number of users gesturing.

Table 3 shows equation results for maximum gesture rates of bitmap and polygon
cursors. If a rate of 10 messages per second is required for smooth gesturing, then
low-end 386sx/16 systems could handle three concurrent gesturing stations and
high-end 486/25 systems could handle ten stations (using bitmap gestures). These
calculations assume that no background tasks are active. If large groups are to be
supported on PC-based systems, gesturing needs to be viewed as a separate operation
from drawing and other schemes such as “point and jitter” need to be explored. It is
not required that all stations’ cursors be displayed at all times, but based on previous
research and our own experience, the richness of the interaction is significantly
reduced. Whether this becomes an impediment to successful group interaction is an
empirical question.

6. Conclusions and Future Directions

WE HAVE ADDRESSED SOME OF THE PRACTICAL CONSIDERATIONS for gesturing within
group support systems applications. We have outlined a framework for implementing
gesturing that spans low to high network bandwidth and processing power. The
framework also addresses issues relevant to group size and interaction style.

We have argued that the appearance of the gesture cursor should vary based on group
size, user activity, and screen size. For small groups the cursor should be large enough
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n Bitmap Polygon n Bitmap Polygon
1 38 38 1 100 100
2 18 21 2 54 71
3 1 15 3 37 55
4 ’ 8 1 4 28 45
5 6 9 5 22 38
6 5 8 6 19 33
7 4 7 7 16 29
8 4 6 8 14 26
9 3 5 9 12 23
10 3 4 10 11 21
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to find and have some sort of owner identification (name, initials, etc.). For large
groups (6+) and/or small screens (14” and smaller), cursors should be made smaller
(16x16) and inactive cursors should decay or disappear. Ideally, the cursor shape will
provide information about the current actions of the user (drawing, pointing, or
requesting the floor). Finally, cursor update modes can be varied to accommodate
system limitations. Full motion gesturing should be used whenever possible, with
limited motion or point and quiver techniques reserved for slower networks.

During performance tests on PC networks we discovered that there is a large penalty
for operating in the Windows GUI environment when transmitting messages. We also
determined that the Ethernet or CSMA/CD protocol is somewhat superior in small
groups than the Token-Ring protocol using full motion gesturing; either provides more
than enough bandwidth. As one might expect, the faster processors were able to
transmit and receive more gesture messages per second. More importantly, slower
CPUs will spend most of their time processing incoming gesture messages and will
not be able to transmit messages of their own. Therefore, if equal participation is
required, one must impose an adaptable governing mechanism that limits the trans-
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mission rates based on the number of stations participating or else limit the commu-
nication via the use of point and jitter and some smoothing mechanisms.

Tt might be argued that all these problems can be solved by using high-performance
workstations. However, for groupware to become commonly used in commercial
environments, problems of this sort need to be solved. Further, when groupware
applications are distributed geographically relying on low-speed networks, processor
problems will be replaced with transmission latency problems. Perhaps the solutions
we suggest to address slow processors can be applied to slow networks as well.

NITE

1 ‘icrosoft Windows is a trademark of the Microsoft Corporation.

REFERENCES

1. Bier, E.A., and Freeman, S. MMM: a user interface architecture for shared editors on a
single screen. In Proceedings of the Fourth Annual Symposium on User Interface Software and
Technology (UIST '91), pp. 79-86. South Carolina: ACM Press, November 11-13, 1991.

2. Bly, S.A., and Minneman, S.L. Commune: a shared drawing surface. In Proceedings of
the Conference on Office Information Systems, April 1990, pp. 184-192.

3. Dennis, A.; Valacich, J.S.; and Nunamaker, J.R. An experimental investigation of the
effects of group size in an electronic meeting environment. [EEE Transactions onSystems, Man,
and Cybernetics, 20, 5 (1990), 1049-1057.

4. DeSanctis, G., and Gallupe, B.R. A foundation for the study of group decision support
systems. Management Science, 33, 5 (May 1987): 589-609.

5. Dourish, P. Awareness and coordination in shared workspaces. In Proceedings of the
Conference on Computer Supported Collaborative Work, November 1992, pp. 75-84.

6. Egido, C. Video conferencing as a technology to support group work: a review of its
failures. In Proceedings of the Conference on Computer Supported Collaborative Work,
September 1988, pp. 13-24.

. 1. Ellis, CA.; Gibbs, S.J; and Rein, G.L. Groupware: some issues and experiences.
ommunications of the ACM, 34, 1 (1991): 38-58.

8. Farallon. Timbuktu User's Guide. 1988.

9. Greenberg, S. Sharing views and interactions with single-user applications. In Proceed-
ings of the ACM/IEEE Conference on Office Information Systems, April 1990, pp. 227-237.

10. Greenberg, S. Computer supported cooperative work and groupware: an introduction to
the special edition. International Journal of Man-Machine Studies, 34,2 (1991): 133143,

11. Greenberg, S., and Bohnet, R. GroupSketch: a multi-user sketchpad for geographically
distributed groups. In Proceedings of Graphics Interface, June 1991, pp. 207-215.

12. Greenberg, S.; Roseman, M.; Webster, D.; and Bohnet, R. Issues and experiences
designing and implementing two group drawing tools. In Proceedings of Hawaii International
Conference on System Sciences, vol. 4, pp. 320-331. IEEE Press, January 1991.

13. Hayne, S.C. Computer support for graphical brainstorming: a group support system.
Working Paper #WPS-10-92, Department of MIS, University of Calgary, 1992.

14. Hayne, S.C., and Pendergast, M.O. Techniques and experiences with object oriented
windows-based group support software development. Working Paper, Department of MIS,
University of Calgary, 1992.

15. Ishii, H., and Miyake, N. Toward an open shared workspace: computer and video fusion
approach of TeamWorkStation. Communications of the ACM, 34, 12 (1991): 36-54.

16. Kobayashi, M., and Ishii, H. ClearBoard: a novel shared drawing medium that supports
gaze awareness inremote collaboration. IEICE Transactions on Communications, 76, 6 (1993):
609-624.

17. Minneman, S.L., and Bly, S.A. Managing & trois: a study of a multi-user drawing tool in




{
{
:
:
¢
3
§

ey L

GESTURING WITH CURSORS IN GSS 61

distributed design work. InACM SIGCHI Conference on Human Factors inComputing Systems,
New Orleans, April 28-May 2, 1991, pp. 217-224.

18. Minneman, S.L., and Bly, S.A. Experiences in the development of a multi-user drawing
tool. In The 3rd Guelph Syposium on Computer Mediated Communication, Guelph, Ontario,
May 15-17, 1990, pp. 154-167.

19. Nunamaker, J.F.; Dennis, A.; Valacich, J.; Vogel, D.; and George, J. Electronic meeting
systems to support group work. Communications of the ACM, 34, 7 (1991): 40-61.

20. Olson, 1.S.; Olson, M.H.; Mack, L.A.; and Wellner, P. Concurrent editing: the group’s
interface. In Human-Computer Interaction: INTERACT' 90. New York: Elsevier, 1990.

21. Pendergast, M.O. Multicast channels for collaborative applications: design and perfor-
mance evaluation. ACM Computer Communications Review, 23, 2 (April 1993).

22. Pendergast, M., and Hayne, S.C.. Alleviating convergence problems in group support
systems: the shared context approach. Working Paper, Department of MIS, University of
Cozary, 1992,

* 22. “andom House College Dictionary. New York: Random House, 1984.

2¢ ‘eim, G.L., and Ellis, C.A. rIBIS: a real-time group hypertext system. International
J - ral of Man—Machine Studies, 34, 3 (1991): 349-368. -

25. Smith, R.B.; O’Shea, T.; O’Malley, C.; Scanlon, E.; and Taylor, J. Preliminary experi-
ences with adistributed, multi-media, problem environment. In Proceedings of the 1st European
Conference on Computer Supported Cooperative Work (EC-CSCW '89), Gatwick, UK, Sep-
tember 13-15, 1989,

26. ‘Stefik, M.; Bobrow, D.G.; Foster, G.; Lanning, S.; and Tartar, D. WYSIWIS revisited:
early experiences with multiuser interfaces. ACM Transactions on Office Information Systems,
5,2 (April 1987): 147-186.

27. Stefik, M.; Foster, G.; Bobrow, D.G.; Kahn, K.; Lanning, S.; and Suchman, L. Beyond
the chalkboard: computer support for collaboration and problem solving in meetings. Commu-
nications of the ACM, 30, 1 (January 1987); 32-47.

28. Tang, J.C. Listing, drawing and gesturing in design: a study of the use of shared
workspaces by design teams. Ph.d. dissertation, Stanford University, April 1989. Also available
as research report SSL-89--3, Xerox Palo Alto Research Center, Palo Alto, CA.

29. Tang, J.C. Findings from observational studies of collaborative work. International
Journal on Man—-Machine Studies, 34, 2 (February 1991): 143-160.

30. Tang, J.C., and Minneman, S.L. Videodraw: a video interface for collaborative drawing,
ACM Transactions on Information Systems, 9, 2 (April 1991): 170-184.

31. Tang, J.C., and Minneman, S.L. Videowhiteboard: video shadows to support remote
collaboration. In ACM SIGCHI Conference on Human Factors in Computing Systems, April

-May 2 1991, pp. 315-322.

32. Group Technologies. Aspects: the first simultaneous conference software for the Macin-
tosh. User’s manual, 1991.

33. Valacich, 1.S.; Dennis, A.; and Nunamaker, J.F. Group size and anonymity effects on
computer-mediated idea generation. Small Group Research, 23, 1 (1992): 49-60.

34. Wilson, B. WSCRAWL 2.0: a shared whiteboard based on X-windows. In S. Greenberg,
S. Hayne, and R. Rada (eds.), Groupware for Drawing and Writing. New York: McGraw-Hill,

forthcoming.






