
Real Time Groupware as a Distributed
System: Concurrency Control and its

Effect on the Interface

Saul Greenberg
David Marwood

1994

Cite as:
Greenberg, S. and Marwood, D. (1994) “Real time groupware as a distributed system: Concurrency

control and its effect on the interface.” Proceedings of the ACM CSCW Conference on Computer
Supported Cooperative Work, October 22-26, North Carolina, ACM Press.

Real Time Groupware as a Distributed System:
Concurrency Control and its Effect on the Interface

Saul Greenberg and David Marwood
Department of Computer Science, University of Calgary

Calgary, Alberta, Canada T2N 1N4
Tel: +1 403 220-6015

E-mail: saul@cpsc.ucalgary.ca

ABSTRACT
This paper exposes the concurrency control problem in
groupware when it is implemented as a distributed system.
Traditional concurrency control methods cannot be applied
directly to groupware because system interactions includes
people as well as computers. Methods, such as locking,
serialization, and their degree of optimism, are shown to
have quite different impacts on the interface and how
operations are displayed and perceived by group members.
The paper considers both human and technical
considerations that designers should ponder before choosing
a particular concurrency control method. It also reviews our
work-in-progress designing and implementing a library of
concurrency schemes in GROUPKIT, a groupware toolkit.

KEYWORDS: Real time groupware, computer supported
cooperative work, distributed systems, concurrency control
algorithms.

INTRODUCTION
Real time distributed groupware allows two or more
geographically-separated people to work together at the
same time through a computerized environment. These
systems typically support a group’s ability to manipulate
their artifacts (documents) through a shared working space.
The groupware controlling the workspace is often
distributed (or replicated) at each participant’s site, where
each site’s software is kept synchronized with its
counterparts by inter-changing appropriate control
messages. If care is not taken, a distributed groupware
system can suffer concurrency control problems due to
events arriving out of order, leading to inconsistencies in
the image, the underlying document, and the group’s mental
model of what is actually going on.

The point of this paper is to expose the concurrency control
problem in groupware, and to illustrate the negative effects
that common synchronization schemes could have on the
groupware interface and ultimately the groupware user. It
does this by surveying traditional concurrency control
approaches, and then applying them to sample groupware
application tasks. While there are many schemes for

managing concurrency in the distributed systems literature,
we will show that groupware must be treated differently
because it includes not only computers but people as well.

The groupware class we are addressing is those supporting
highly interactive real time shared computational
workspaces. Examples are group sketchpads [10,30],
drawing tools [11,20] and group word processors [2,19]. We
expect that participants in these conferences:
• are in real-time communication with each other e.g.,

through audio and video channels;
• focus and coordinate their attentions on what seems to be

a shared visual workspace or document e.g., “what you
see is what I see” [26];

• are aware of each other’s fine-grained actions in the
workspace;

• can interact simultaneously in the workspace;
• use the workspace as either a shared cognitive artifact for

exploring ideas (like a whiteboard); or
• use it as a revision tool for discussing and tuning

documents.

An Overview of the Problem
It is easy for people to conceptualize a multi-user shared
space. We—designers and users—expect a shared space to
behave like its physical counterparts. We perceive them as a
single space containing distinct objects. We expect to see
immediately what all others are doing, and we expect to be
physically constrained from doing particular types of
actions. Computerized shared spaces are not like that. There
are usually multiple copies of the space and the objects they
contain; there are time delays when showing the actions of
others; and physical constraints are a simulated, rather than
a natural, property of the objects.

In particular, concurrency control problems arise when the
software, data and interface are distributed over several
computers. Time delays when exchanging potentially
conflicting actions are especially worrisome. We have been
beguiled by the fast local area nets used to test groupware;
the high latency of most wide area networks increase the
probability of conflicting operations. If concurrency control
is not established, people may invoke conflicting actions.
As a result, the group may become confused because
displays are inconsistent, and the groupware document
corrupted due to events being handled out of order.

Concurrency control concerns researchers and designers in
both CSCW and distributed systems. On one hand, this is a
technical problem that—at least on the surface—appears

Saul
Greenberg, S. and Marwood, D. (1994). Real time groupware as a distributed system: Concurrency control and its effect on the interface. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 207-217, Chapel Hill, North Carolina, October 22-26, ACM Press.

amenable to approaches forwarded by conventional
distributed systems research. On the other, this is a human
problem, for the interface design must reflect the way
people want and expect to work together. Both human and
technical issues must be considered together, for the design
of the interface and choice of concurrency control algorithm
compromise each other.

This paper is not a conventional distributed systems paper,
as it does not propose new algorithms for concurrency
control. Rather, it introduces and surveys traditional
approaches to concurrency control, outlines their
importance to groupware, and indicates unavoidable
problems and tradeoffs that must be considered when
applying them to groupware interface design. It begins by
reviewing basic concurrency control strategies used by
conventional distributed systems. This sets the scene, and
should make the paper accessible to CSCW researchers who
are not computer scientists. The subsequent section
explains how the groupware environment differs from
conventional distributed systems, and illustrates the
profound effects concurrency control methods can have on
the interface and consequently on its users. Next, we
summarize the human and technical considerations that
groupware designers should ponder before choosing a
particular method. We then briefly discuss our own work-
in-progress designing and implementing concurrency
schemes in GROUPKIT, our groupware toolkit. A brief
appendix revisits the need for concurrency control within
the broader context—and ongoing debate—of centralized and
replicated architectures.

TRADITIONAL METHODS FOR MANAGING
CONCURRENCY CONFLICTS
Management of conflicts due to concurrency is a well-
researched topic in distributed databases and parallel
simulation [5,7]. However, the application of concurrency
control to the nuances of groupware is often neglected.
While groupware researchers point to its importance
[6,12,14,15,19,23], application developers typically ignore
it outright, or consider concurrency control to be an issue to
be remedied by some textbook approach. To set the scene,
this section will review what is meant by concurrency
control, and will present typical remedies to concurrency
conflicts used in the database and simulation field. A later
section will show why many of these classical approaches
cannot be applied outright to groupware due to their effect
on the user interface.

The Synchronization Problem
Interaction between distributed sites can be thought of as
the exchange of messages or execution events. An event
goes through a number of stages in its existence, usually
something like: creation, local execution, transmission,
reception, and remote execution (expanded from Ellis and
Gibbs [6]). Without concurrency control, events are
normally executed locally when they are created, transmitted
to the remote site, and executed when they are received. The
catch is that this is a multi-way process, and events can be
interleaved—executed out of order—at different sites, which
could lead to interference and inconsistencies [5]. Figure 1

shows a simple example of two sites losing synchronicity.
Site 1 creates, executes and transmits event A at time t1
then site 2 does the same with event B at t2. Event A is
then received and executed by site 2 at t3, and event B is
later received and executed by site 1 at time t4. At this
point, site 1 has executed event A then B, while site 2 has
executed B then A. The different ordering of actions may
result in both sites being inconsistent and out of step. For
example, problems will occur when these execution actions
are not commutative, or when several local events (e.g.,
A1, A2, A3) are considered part of a local transaction
operation that are vulnerable to corruption by other events
unless they are treated atomically.

Site 1 Site 2

Event A executed
and transmitted

Event B received
and executed

t2

t3

Time

t4

t1

Event B executed
and transmitted

Event A received
and executed

A

B

time

Figure 1: Example of event re-ordering resulting in
possible loss of data integrity.

Concurrency Control through Serialization
Concurrency control is the activity of coordinating the
potentially interfering actions of processes that operate in
parallel. Algorithms work by synchronizing event
interleaving so that atomic transactions (which may consist
of several events) are executed serially across the entire
system, or by repairing effects of out of order events to give
the illusion that they are executed serially [5]. They usually
create a total ordering of the events (e.g., see Lamport [16]).
A scheduler then decides how to execute the events, or how
to detect and repair order inconsistencies.

The “optimism” policy of a scheduler determines how
events can be received1. Non-optimistic techniques ensure
that events can only be received in order, thus guaranteeing
consistency. Optimistic methods allow events to be
received out of order, in which case inconsistencies must be
eventually detected and repaired. Since both give the
illusion of global serialization, we will consider them under
that name2.

Non-optimistic serialization ensures events are executed in
the correct order at all sites by not allowing events to be
received out of order. In Figure 1, for example, Event B

1Terminology for optimism varies in the literature. Another
name for an optimisitic approach is “aggressive”. Non-
optimistic methods are called “conservative” or “pessimistic”.
2This is another teminology problem, as the literature often
talks about optimistic scheduling (in databases) or
synchronization (in parallel simulation). We use the word
“serialization” to distinguish it from locking, which we discuss
later.

must wait for Event A to arrive and be executed before it
can proceed. The cost is that the total execution time of a
sequence could be quite slow, for the scheduler delays each
event execution until its predecessors arrives or until it
knows that it is safe to continue.

Optimistic serialization is based on the assumption that
conflicting events are rarely received out of order, and that it
is more efficient to proceed with execution and then repair
problems than it is to guarantee correct ordering at all
times. Of course, repair of order problems can be tricky,
since one out of order event can put other incoming and
otherwise valid events out of step. This requires the entire
chain to be repaired.

One approach to repair is to have the system roll back to its
state to just before the out-of-order event happened, and then
re-execute the events in order. Consider Figure 1 from this
perspective. At site 2, event B is executed out of order at t2,
which is only noticed upon A’s arrival at t3. Site 2 would
roll back to its state before t2, and then execute events A
and B in the correct order. This can be implemented in
several ways. Jefferson’s TIMEWARP system [13], for
example, actually reverts back to previously saved states—
even sending “anti-messages” to undo effects of messages it
had sent over the network—and continues from there.
Alternatively, a return to an old state can be simulated by
applying undo functions [14], and then redoing events in
the correct order.

Another approach to repair is to transform, via a set of
rules, an arriving out-of order event so that its effect is the
same as if it had arrived in order. For example, let us say
the events in Figure 1 append items to the end of a list.
When Site 2 receives A out of order, it applies a
transformation rule that inserts A before B in the list, rather
than at the end. In practice, many undo systems perform
transformations as well, for it improves efficiency by
reducing the number of undos [14,22].

Each of the above serialization policies have problems. We
have already mentioned that non-optimistic schemes can be
slow. For optimistic schemes, implementing state-saving
and undo can be complex and expensive. A graver concern
is that not all operations are “undoable” or “transformable”.
For example, a system may not be able to recall or
transform events that trigger real world activities.

Privileged Access Through Locking
Another approach to concurrency management is locking, a
method of gaining privileged access to some object (such as
shared data) for a length of time. Locking can be used by a
scheduler to ensure global serialization by controlling the
order that sites obtain and release their locks [5].
Alternatively, it can be used as a way to guarantee local
serialization over an atomic sequence, whose global order
may otherwise not matter.

Typically, a site will request a lock to an object and, if no
one else holds its lock, the request is approved and that site
gains the lock. In this scheme, there may be only one
approved holder of an object’s lock, so if another site
requests that lock, it will be denied. When the lock-holder

no longer requires the lock, it is released and made available
to the community.

The optimism of a lock policy determines whether or not
execution pauses before a lock is approved, and whether a
tentative lock must be approved before it can be released.
Three levels of optimism are summarized in Table 1, and
described in detail below.

Level of Optimism Can manipulate
the object while
waiting for its
lock

Can release the
changed object
while waiting
for its lock

Non-optimistic No No
Semi-optimistic Yes No
Fully-optimistic Yes Yes

Table 1: Levels of optimism for locking.

Non-optimistic locking policies force a site to wait until a
lock request is answered before it is allowed to manipulate
the object. If requests are blocking, the site makes the
request, waits for the response, and then manipulates the
object if and only if it received the lock. If they are non-
blocking, the site may perform other actions while the
request is being served. However, it is not allowed to
manipulate the object until the lock is granted.

Optimistic locking is similar in principle to its
serialization counterpart. It assumes that sites will be
frequently granted its lock requests. After requesting a lock,
the requester immediately acquires a tentative approval, and
it starts manipulating the object before it knows if it really
has the lock. If the lock is then approved, it continues as
normal. If it is denied, the object must be returned to its
original state. Again, the premise is that proceeding
without waiting is worth the occasional repair due to
incorrect optimistic actions.

Fully- and semi-optimistic locking determine what a site is
allowed to do if it has a tentative lock and has finished
manipulating the object. With a fully optimistic lock
policy, the site can put forth a “pending release”, and go on
to do other things (which may require further lock requests).
If the lock is eventually denied, the site must remember
how to revert the object to its original state. The difficulty
is that if the site had manipulated other objects based on the
tentative state of the old one, a full undo or state restoration
system may be required to untangle all the cascading ill-
effects of the illegal manipulation. These problems are
avoided in a semi-optimistic scheme. While sites are
allowed to manipulate objects with a tentative lock, they
are blocked from moving onto other objects until the lock
is approved or denied. At most, only a one step undo is
required.

CONCURRENCY CONTROL IN REAL TIME
GROUPWARE
Most concurrency control approaches are designed for non-
interactive computer systems. They assume that computers
can tolerate the delays associated with non-optimistic
serialization and locking, or that they can accept the local

inconsistencies and requirements of repair demanded by
optimistic schemes. For example, TIMEWARP optimistic
synchronization is often used for parallel simulation; its
goal of optimism is to increase machine efficiency by
pursuing a possible simulation path that is aborted only if
an inconsistency is detected [13]. In replicated databases,
concurrency control is used to guarantee that a data
transaction is permanently recorded only when it can be
completed correctly [5].

Groupware is quite different, because the distributed system
includes not only computers but people as well. As this
section will argue, people can be both more and less
tolerant of concurrency problems than computers. As well,
particular concurrency control schemes and the way it is
presented in the interface will have quite different effects on
the way people perceive groupware interfaces.

The following sub-sections will illustrate the effects of
neglecting concurrency control, of using locking, or of
using serialization on groupware and its participants. Two
simple application scenarios will be used as examples. The
first scenario (Figure 2a), considers a groupware drawing
package that allows people to simultaneously create,
manipulate, and edit objects such as bitmaps, lines, circles,
and so on. The second scenario (Figure 2b), considers a
groupware text editor that allows multiple people to enter
and manipulate text at the same time. Both examples show
two users, each with their own cursor on the display.

dave

saul This is the first line
in the first paragraph.
And this is the second.

 And now we have
another paragraph, with
its own first line. Here
is the second line in the
second paragraph.

Figure 2: a) A group drawing tool, and b) a group editor.

Groupware Without Computer-Mediated
Concurrency Control.
With no concurrency control, sites are free to exchange
events, leading to possible inconsistencies because things
occur out of order, or to competition for a resource that
only one person should acquire. While this may appear
unacceptable, it could be a reasonable strategy for some
groupware situations. In particular, inconsistencies may not
matter, or people will be able to mediate and repair their
own actions and conflicts.

Inconsistencies may not matter. Some types of
inconsistencies in the shared area and final document may
be quite acceptable to people. Let us say participants are
creating a bitmapped object with the tool shown in Figure
2a, where each can only set or clear pixels with a fine paint
brush (e.g., sketching the jig-saw puzzle pieces). An
ordering conflict can occur (as in Figure 1) when (say) one

user sets some points at the same moment another clears it;
the resulting images will differ by a few pixels at the two
sites. This is illustrated in Figure 3, which shows a zoomed
view onto 9 pixels of a larger bitmap. Users Saul and Dave
start with the same image (top frame). Saul then draws with
a diagonal stroke, while Dave erases with a vertical stroke;
the different local views of the bitmap are shown in the
middle frames. The operations then get transmitted and
executed at the other sites, leading to the inconsistent final
images in the bottom frame.

Saul sets pixels
with a diagonal
stroke

Dave clears
pixels with a
vertical stroke

time

Saul's view

consistent
original
view

operations
merged,
inconsistent
final views

Dave's view

Figure 3: A blown-up view of a drawing, showing a
very small 3x3 pixel region. Two users are painting a
bitmap, resulting in a 1 pixel inconsistency due to
out of order events, and neither users’ goals being
satisfied.

A difference of a few pixels in a large image will probably
not matter to the participants, especially if they use the
shared drawing space—as many do—to elaborate ideas,
rather than to produce a document [27,11]. Our own
GROUPSKETCH program ignores concurrency [10,11], and
no user had noticed, let alone complained, about the
occasional small-grained image inconsistencies that crept
in. However, this is not true for all situations. If the
differences become noticeable (e.g., if a wide brush stroke is
used), or if the data integrity of the image must be
maintained (e.g., if the final document is important), then
some form of concurrency control must be used.

People mediate their own actions. People naturally follow
social protocols for mediating interactions, such as
turntaking in conversations, and the ways shared physical
objects are managed. In a shared drawing or editing tool, we
see what others are working on, and we usually would not
perform an action that would interfere with them. Stefik,
Bobrow et al [26] first noticed this behavior in the way
people used COLAB, a face to face computer-supported
meeting room. Whether we are working with a real or
groupware whiteboard, it would be rude to scribble over
another’s marks as they are drawing them, or engage in a
tug of war over a pen. Of course, there are situations where
conflict can occur, such as:
• accidental interference due to one person not noticing

what the other is doing;

• side effects of one action that have consequences on
another (e.g. entering text at one point can repaginate the
document, thus affecting the other person’s view);

• intentional changing of control (interruptions, power
struggles).

The point is that, in many groupware applications,
concurrency conflicts may be rare because people mediate
themselves. When conflicts do occur and slight
inconsistencies appear, they may not be problematic in
practice. Finally, if people do notice conflicts and
problems, they are often quite capable of repairing their
negative effects, and consider it part of the natural dialog.
The computer’s role can thus be seen as one that provides
enough feedback and affordances of shared objects to support
people’s natural abilities. If computer-mediated concurrency
control is used, it just becomes a way of avoiding or
recovering from rare conflicts [26].

Examples of related work. The COLAB face to face meeting
tool used visual feedback to show which screen objects were
“busy” [5]. If an object was selected by a participant, it
would be graying out, acting as a busy signal to tell others
to leave it alone. TIVOLI is a shared distributed drawing
system designed for small group meetings [20]. Its
designers also noticed that conflicts are rare events and
usually result in minor consequences. Still, they worried
about concurrency. Because of the simplicity of how they
treat shared drawing, they decided to treat drawing strokes as
“immutable objects”. If an object is subject to concurrent
operations, a new object is spawned so that each user is
working on their own copy. This is not only a technical
solution since both sites are consistent, but also a human
solution because people see the copies and can repair the
drawing if needed.

Groupware and Locking
Locking can guarantee that people access objects in the
shared workspace one at a time. Issues here are the grain
size of the lock, the delays at acquiring a lock, and the
effects of optimism.

Different grain sizes give a very different feel to groupware.
The grain size of a lock determines how little or how much
of the object(s) on display are managed by a single lock
(grain size has also been referred to as “editable granularity”
[19]). From a system’s perspective, coarse granularity
implies fewer lock requests, but less opportunity for
concurrency as locks will be denied more frequently. The
opposite is true for fine-grained locks. The choice is a
balance between locking overhead and the amount of
concurrency desired [5].

From a person’s point of view, the coarsest grain is to have
a single lock on the entire view or document, which forces
people to revert to a serial interaction model with a
computer-mediated turntaking protocol [8]. This is a
popular strategy for “collaboration-transparent systems” that
allow unaltered single-user applications to be shared by
several people—it makes sense here because these
applications only expect a single input stream [9,17,18].
However, most designers of collaboration-aware groupware

recognize that simultaneous access to the view is critical to
natural interaction [11,27].

Grain size can be progressively finer. The drawing package
in Figure 2a, for example, can have locks on a set of
objects (e.g., the three jig-saw pieces), a single object (the
line or the circle), and even to a single handle of the object
(a line could have two locks corresponding to its
endpoints). This could have quite radical effects on the
interaction feel. For example, consider a simple line. If the
lock is on the handle, then two people could grab different
endpoints and cooperatively move and resize it. If locking is
at the object level, then this richness of interaction is
precluded. Similarly, the text editor of 2b can have locks on
characters, lines, paragraphs, sections—the coarser the lock,
the more difficult it is for people to work closely together.
This effect is worsened if object changes are presented to
other users only after the lock is released—the interface
changes from an “interactive” model of communication to
an inferior “parcel-post” model [28].

Care should also be taken on deciding what to lock. The
SASSE text editor, for example, locked on a user’s text
selection [2]. This worked fine, until users started using the
selection mechanism as a form of gesture to highlight text
they were discussing. Even though users sometimes wanted
to overlap their selections, the locking mechanism made
this impossible.

We strongly believe that the unit and granularity of lock
should be user-centered. If people would find it natural to
grab different endpoints of a line, or change different
characters in a word, then the locks should be at a fine
enough level to allow it. While this seems obvious, some
applications violate this premise simply because they are
designed from a systems-centered viewpoint.

Waiting for locks is not desirable. With non-optimistic
locks, a user will select an object, and then be blocked from
continuing until the lock is granted. If delays are barely
noticeable, this may not matter. Noticeable delays,
however, will interfere with the flow of interaction. For
example, selecting a circle and moving it, or moving a text
cursor forward and then typing should both be enacted as
continuous operations. A delay makes the interface feel
jerky, unresponsive, and unnatural. Another issue is that
the interface would have to provide feedback showing that
the object is waiting for a lock request to be served. Perhaps
the color or outline of the object would change to a waiting
state, or the cursor would transform itself (e.g., a question
mark over a padlock).

Because of their simplicity and ease of implementation, a
non-optimistic locking scheme may be chosen by a
application developer when prototyping, or when response
to lock request are perceived as instantaneous. When the
network or processors suffer a visible delay, the non-
optimistic lock may translate into a poor interface for the
user.

Building a sensible interface for optimistic locking is hard.
Optimistic locking avoids the delays mentioned above.
Consider the case where a lock would be granted. Because

optimistic locks already assume that a request will be met,
the interface should be quite responsive. The problem is
that it is not at all clear what to do when locks are denied,
for the object that has been optimistically manipulated by
the user must be restored to its original state. Let us
consider several cases.
1. While a user is manipulating an object, its lock is

denied. At this point the system could simply revert the
object to its original state. If the user were manipulating
a line, it would snap back to its starting location. If
they were typing a sentence, the new text would
disappear.

2. In a fully-optimistic scheme, a person could manipulate
several objects in sequence that all have tentative locks.
For example, consider a group drawing sequence. A
person first moves a circle, then a line inside of the
circle, and finally shifts their attention to a different part
of the view. Moments later the lock on the line is
denied. Should only the line be snapped back, or should
the entire sequence be undone (the latter is sensible if
actions are interdependent)? Will the person notice that
the line has been moved? When they do, how do they
know if it was due to a lock denial, or if another person
put it back? The late denial of an optimistic lock can
easily cause confusion.

3. In a semi-optimistic scheme, a person is not allowed to
proceed to a new object until the lock transaction on the
last object is completed. Depending on the time
granularity of a person’s interaction with the object, this
could lead to continuity problems similar to non-
optimistic locks (e.g., typing in the group editor would
be jerky if locks were requested character by character).
However, reversion of an object due to a lock denial
would be immediately apparent and easily understood;
the problem arising with the optimistic lock would be
avoided.

4. What do other people see when a person is manipulating
an object that has a tentative lock? Consider the case of
two people grabbing a line, each with a tentative lock.
Should each see a “second” counterpart copy of the
moving line? Would a third person see zero, one, or two
line movements? If we decide not to transmit object
manipulations until a lock is granted, then this would
make the group interaction uneven, and perhaps
unsynchronized with what people were saying to each
other through the voice channel.

Even though optimistic locking has its problems, it is
probably a reasonable strategy for many groupware
applications. It is an easy concept for participants to
understand. Because people mediate their own concurrency
control, conflict should be rare and the gains of optimism
high. The cost to bear is higher implementation costs, and
potential confusion on the (hopefully infrequent) denials.

Examples of related work. Coarse-grain locks, the simplest
locking strategy, is quite effective in particular situations.
Greenberg [8] describes a variety of turn-taking protocols
for shared view systems, which is the equivalent of
document locking. “Lock” requests are usually handled
through special turr-taking interfaces, each with their own

policy that controls how a user can request a turn or
relinquish control. Many version control systems also use
coarse grain locking, where people “check in” and “check
out” portions of documents for lengthy periods of time,
such as software modules (e.g., Tichy’s RCS [29]).

A variety of concurrent text editing systems have locks
based on variable-sized text regions. In MACE, for
example, a user specifies a pair of locks that bounds the top
and bottom of a text region [19]. Since locked regions
cannot overlap, the text is effectively partitioned amongst
its participants. This scheme also means that the size of a
locked region will grow and shrink as its contents are
edited. MACE also allows a user to control how local
changes within the locked region are displayed to others. In
the SASSE text editor, non-optimistic locking of regions
are specified by a user’s text selection operation [2]. The
DISTEDIT toolkit [15,22] also provides region locks on
text, which is set explicitly by the user or automatically by
the system (it tries to acquire the smallest possible lock on
the text region being modified). What makes DISTEDIT
interesting is its handling of multi-operation actions that
affect many regions in a document (such as a global replace-
string operation) [15]. DISTEDIT first executes the action
locally without displaying it to the user, decides what locks
are required, and then tries to acquire all the locks for the
action. If the lock request succeeds, so does the transaction.
If it fails, the operation is internally undone; since the
display was never updated, the user only sees that the
requested operation had failed and is not put into the
position of trying to make sense of the undo operations.

There are a variety of other approaches to locking. Our own
GROUPDRAW system [11] contains a distributed scheme to
handle fine-grained object locking, where locks are requested
at the handle level. The SUITE Multi-User Framework
employs a flexible access-control model to associate data
displayed by the groupware application with a set of
collaboration rights [25]. When conflict occurs, conflict
resolution rules examine the access rights to determine who
gets the object. Finally, specific lock policies can use
heuristics to decide whether a lock in use should be taken
away and granted to another requester. For example, Grief,
Seliger and Weihl [12] describe the “tickle lock” that
reassigns the lock if the current holder is inactive.
Similarly, “pause detection” automatically releases a lock
after a prescribed period of inactivity [8].

Groupware and Serialization
While serialization guarantees data integrity, it also comes
at a tradeoff at the user’s interface to groupware. As with
locking, some of the problems that will occur can depend
on the optimism of the scheme. Others are due to the
unique properties of serialization.

Serialization can lead to strange interaction behaviors. Let
us assume, for a moment, a system that provides
instantaneous serialization. What would a typical
interaction feel like? Consider the drawing program in
Figure 2a, where two people try to move the circle object.
The actual interaction is illustrated in Figure 4; the cross
hairs show the original center of the circle. In Scene 1, both

saul

dave

saul

dave

saul

dave

Circle grabbed
by Saul &
Dave, but not
yet moved

Dave's move
is handled
first; circle
moves to his
location

Saul's move is
next, so circle
moves to
Saul's location

Scene 1

Scene 2

Scene 3

Figure 4: Effects of serialization: the “fight” for control.

This is a line in a
paragraph.

4
saul
dave

 od
saul dave

6

This is a good line
in a paragraph.

saul dave
5

This is a goline in a
paragraph.

saul dave
3This is a line in a

paragraph.

saul

2

dave

1
saul dave

Figure 5: Effects of repairing optimistic
serialization in a group editing session. Common
views are centered, Saul’s view is on the left,
Dave’s on the right.

Saul and Dave grab the circle, but have not yet moved it. In
the next scene, Dave and Saul both move the circle, but
Dave’s move is handled first. The circle moves left to
Dave’s cursor location. Saul move is handled next (Scene
3), and the circle moves right to his cursor location. The
circle continues to bounce between the two; its final resting
place will be at the location of the last person to let go of
it. While the overall behavior is “correctly” serialized, it
leads to an interface tension where users can end up fighting
over control of a shared object.

Serialization is acceptable in some situations. In
applications such as in bitmap drawing, the granularity of
interaction is so small that participants may not even notice
the effects of serialization. The advantage here is that
document integrity is maintained. Another possibility is
that the effect shown in Figure 4 can serve as “feedback” to
participants, where participants see that a control conflict is
occurring, and may then use their own social protocols to
resolve it.

The above scenario assumed instantaneous serialization.
Because life is rarely like that, we have to consider the
effect of mitigating delays through optimization schemes.

Non-optimistic serialization blocks event handling until
there is a guarantee that events are executed in a global
order. Users now have to wait for synchronization to occur
before they can continue. As with a non-optimistic locking
scheme, this interferes with the flow of interaction, and
begs the question of how feedback to this “pending” state
should be handled.

Optimistic serialization does not require the user to wait for
synchronization before events are transmitted. As with
locking, this bodes well when events are in order most of
the time. The difficulty is how the interface shows repair of
the occasional out-of-order sequences through undo or
transformation. To illustrate, consider again the sequence in
Figure 4 from Saul’s perspective, where events occur in the
order shown and starting from Scene 1. Saul’s move is

optimistically considered in-order, so he would then see the
illustration in Scene 3. Dave’s event arrives, so the system
would “undo” back to Scene 1 (because this is the last
common state), then show Scene 2, and then Scene 3. In
effect, the circle will appear to jump erratically between
several cursor locations. Such action would undoubtedly be
confusing and disrupting to the user. While confusion could
be minimized by having the undo system only show the
final undo state rather than the intermediate steps, there is
no guarantee that it would be eliminated.

In the above example, a transformation scheme would avoid
extraneous “bounces” of the circle, for it would notice that
the undo/redo operation simply restores the drawing to the
same state. But consider an optimistic text editing
operation, as illustrated in Figure 5. Saul’s view of events
is on the left, and Dave’s view on the right. Here both Saul
and Dave start in the same paragraph (Time 1, center top).
The global order of operations, marked next to each view,
is:

Time 2: Saul selects the paragraph.
Time 3: Dave types “go”
Time 4: Saul deletes the paragraph
Time 5: Dave types “od “

Due to delays, neither site realizes that events are out of
order until they are all performed. Saul believes that he has
deleted the paragraph, and Dave believes he is typed the
word “good” before the word “line, and the optimistic
serialization provides them the appropriate feedback as
shown in their respective views. When the system notices
that events are out of order, it either undos or transforms
them to be in-order, giving the state shown at time 6. Of
course, this is not what either person wanted, leaving them
in a state of confusion. In this case, an “undo” trace may
marginally help them understand how the screen got that
way, while a transformation would not.

The choice of serialization scheme is a trade-off between the
benefits it gives and the problems it introduces. The
designer needs to consider carefully the particular effects of
applying a serialization approach to a groupware
application, and decide whether or not it is appropriate to

the situation. The designer must also consider how repair
effects are presented to the user.

Examples of related work. The GROVE outline editor uses
the distributed operational transformation algorithm (dOPT)
to transform, via a set of rules, a pair of operations so that
its effect is the same at both sites regardless of order [6].
dOPT is not really a serialization algorithm, for the final
outcome may be quite different than actually executing
operations in order; the goal is to produce a consistent
sensible result rather than maintain order. The designer has
the additional burden of specifying the transformation
matrix, which is non-trivial. “Dependency detection”,
proposed but not implemented by Stefik et al [26], detects
time-stamp conflicts. Rather than repairing the conflict
itself, the system would inform the group about the
conflicting operations, and they are expected to fix it
through manual intervention. The GROUPDESIGN shared
drawing tool uses the Optimal Response Time (ORESTE)
algorithm to manage serialization [14]. Instead of
serializing all events (marked by time-stamps), ORESTE
allows events to be executed out of order when its effects
are the same as if it were executed in order (i.e.,
commutative). When this is not possible, ORESTE applies
undo/redo to reorder the events. This scheme improves
efficiency and unpleasant interface effects by minimizing
the number of unnecessary undos and redos. However, it
does require the designer to state, using the semantics of the
application, what operations are commutative. Finally, the
DISTEDIT toolkit [15,22] and the GINA application
framework [4] explore the notion of group undo from the
different perspectives of concurrency repair and user-initiated
undo.

CHOOSING CONCURRENCY METHODS FOR
REAL-TIME GROUPWARE
The choice of a concurrency control method can be difficult.
A wrong choice can lead to an unusable system. Selecting
an overly powerful approach could be overkill for the
application, and much development time could be expended
for schemes that are unnecessary or used only rarely.
Selection of a conflict management scheme can depend
heavily on implementation considerations and interface
tradeoffs. The discussion below summarizes what we
believe are the main considerations.

Human considerations. Unlike most distributed
applications, groupware demands that we consider the role
of the human when selecting concurrency control schemes.
The foremost human consideration is whether or not it
agrees with a person’s model of events. For example, a
person grabbing and dragging a shape or handle in an
object-oriented drawing normally considers the shape to be
theirs to position and modify. If it were moved by another
user, they could both become confused or irritated. Thus a
locking scheme could work here, or the system may eschew
concurrency control all together and leave its management
to its users. On the other hand, users would not expect to
gain control of a bitmap picture area, and may in fact want
to work very close to each other. In this case, a serialization
scheme may suffice.

The latency of interactions over networks and processors
has a major impact on how interactions are perceived by
users, and ultimately the choice of concurrency strategies. If
the system can approve/deny a lock before the person is
ready to use the object , then a non-optimistic lock is fine.
If it is a bit slower, but can approve/deny a lock before the
object is released, then a semi-optimistic lock would
suffice. Fully optimistic locks should only be considered
when the response times are quite slow, as interaction
continuity may suffer. Similarly, if serialization occurs
almost immediately, a non-optimistic serialization scheme
is fine.

If optimistic serialization and locking schemes are
considered necessary, then attention should be paid to the
way pending operations, undo/redos, and transformations are
presented to the user. “Clever” interface presentations of
lock denial or concurrency repair may minimize user
confusion in particular situations. Unfortunately, there is
no recipe on how this can be achieved in general. The
bottom line is that the interface must present the user with
an understandable model of what is going on when locks are
denied and order problems repaired.

In practice, the designer should walk through a variety of
task scenarios, and consider the effects of particular
concurrency control methods, latency, and feedback
mechanisms on the user’s model of interaction.

Technical considerations. Optimistic serialization and
locking are considerably more difficult to implement than
their non-optimistic counterparts. Optimistic serialization
schemes must be able to receive events out of order but
execute them in order (implying undo/redo and
transformations). Similarly, optimistic locking schemes
must be concerned about returning one or more objects to
their original states if locks are denied after a sequence of
events. Semi-optimistic locking is far easier, for only a
one-step undo is required. Both problems bring complex
implementation issues, making optimistic schemes
significantly more complex than non-optimistic ones.

Resource use must be considered as well, for different
schemes may require significant overhead. The
computational complexity of some optimistic serialization
algorithms can be quite high, particularly those that use
complex undo/redo functions. Similarly, the number of
network transactions should be a concern. Some schemes
may require many message exchanges between sites,
increasing overall network and processor latency. In the
worst case, a system which would have been fairly
responsive without complex concurrency control (and thus
not need sophisticated schemes), could have its performance
dragged down to make it necessary! Memory requirements
can also be excessive on some algorithms. For example,
state-saving is memory intensive, particularly if multiple
copies must be kept.

CONCURRENCY CONTROL IN GROUPKIT: WORK
IN PROGRESS
We are now incorporating concurrency control into
GROUPKIT, a toolkit that makes it easy to build real time,

distributed, and fully replicated applications [24]. Unlike
other groupware researchers who have considered
concurrency control in specific domains (e.g., text outliners
[6], drawing tools [3,11,20,26]; text editors [2,15,19]), we
want GROUPKIT to support a wide variety of applications.
Our philosophy is that no generic method for concurrency
control will suffice, and that the toolkit should provide
many methods and allow developers to pick and choose the
most appropriate one.

This is work in progress, and we have implemented only a
few of the previously mentioned schemes as inter-
changeable layers. A lock layer allows a developer to attach
either non-optimistic or semi-optimistic locks to objects,
as well as a callback procedure that is executed whenever the
lock state is changed. The system then tracks all requests to
the lock, changes the state of the lock as appropriate, and
triggers the callback so that the application can handle it. It
is up to the developer to take the appropriate action i.e., to
show feedback of state, and to undo operations if necessary.
If non-optimistic locks are used, the states are ‘approved’,
‘released’, or ‘denied’; requests for a lock are blocked until a
definite answer can be provided. Semi-optimistic locks add a
‘tentative’ state; lock requests immediately return a tentative
lock, and the interaction can continue. The final lock
approval or denial triggers a state change which executes the
call back, and the appropriate action can be taken by the
application.

The actual locking algorithm can take several forms, and is
implemented in a network layer. This layer provides the
lock layer with communication among the conference
applications. The lock layer asks the network layer if there
are any other lock holders. If there are, the network layer
may indicate that the lock is not available, or may force the
lock holder to release the lock. The application developer
need not know the details of the network layer to use the
locking package. The advantage is that different underlying
locking algorithms can be used.
1. The polling network layer asks all the other sites if they

hold or want to hold the lock. When all sites have
responded, it can return the information to the lock
requester. The performance here is dictated by the
slowest response from all polled sites, but is very easy
to implement.

2. In the token network layer, each lock has an associated
token that is always held by one site. Only the token
holder can hold the lock, so a site wanting the lock
must first request the token from the holder. The token
holder either passes the token to the requesting site, or
informs the site that the token cannot be passed. (This
is similar to the “roving lock” idea proposed by Stefik
et al [26].) This method works well when there is a
high probability that a site will repeatedly request the
same lock. Since it already holds the token, no network
traffic is generated and response is fast. The cost is that
the scheme is more complex to implement.

There are, of course, limitations to our approach. We
designed the layers so that locking and network schemes can
be globally substituted. For example, a single line of code

determines which locking mechanism should be used. On
reflection, this was a mistake. We now realize that different
objects and operations in a single application may require
different concurrency control methods. We will be
redesigning our layers to allow methods to be assigned on a
per object basis. The second limitation is our handling of
undo, for we leave that up to the developer to manage.
While single-step undo is easy, multiple undos and redos
are hard [22] and only the most serious developer would
implement undo from scratch. While we know that we
must provide a framework for undo within the toolkit, we
are stymied on how to do this, since undo/redo is often
tightly intertwined with the application semantics which is
not in our control.

SUMMARY
This paper described a variety of concurrency control issues
that crop up in distributed real time groupware. Its premise
is that groupware is a fundamentally different application
domain from traditional distributed systems, because the
transaction process includes people as well as computers.
Different concurrency control methods, such as locking,
serialization, and the degree of optimism, have quite
different impacts on the interface and how transactions are
shown to and perceived by group members. The presence of
people also means that we can consider human-mediated
concurrency control, especially when it is part of the natural
conversation process. We conclude that there is no superior
method, but that each has its merits and problems. The
final choice rests upon the application domain, system
performance considerations, and—most importantly—the
nuances of distributed group interaction.

The paper also reviewed how we are approaching
concurrency control in GROUPKIT, our groupware toolkit.
Following from the previous discussion, GROUPKIT does
not tout a single method or algorithm. Rather, it gives
groupware developers the power to choose a concurrency
scheme that fits the nuances of their application.

APPENDIX: CONCURRENCY CONTROL IN
REPLICATED & CENTRALIZED ARCHITECTURES
Groupware researchers have long argued the merits of
centralized vs. replicated architectures [1,9,17,18,21]. On
the surface, the simplest way of implementing concurrency
control is through a centralized architecture. The centralized
approach uses a single application program, residing on one
central machine, to control all input and output to the
distributed application. Server processes residing at each site
are responsible only for passing requests to the central
program, and for displaying any output sent to it from the
central program. The advantage of a centralized scheme is
that synchronization is easy, as state information is
consistent since it is all located in one place. Events will
never be received out of order (they are usually handled first-
come, first-served). Locking is also easy, as only one copy
of the object exists. Replicated architectures, on the other
hand, execute a copy of the program at every site. Thus
each replication must use specific concurrency control
algorithms to coordinate their actions, and must worry
about handling undo if optimistic schemes are used.

Because of its simplicity at handling concurrency,
centralized architectures for groupware has had many
advocates [1,9,21,30], and one may wonder why a replicated
approach would ever be considered. The answer concerns the
issue of latency. A centralized scheme implies sequential
processing, and is inherently non-optimistic. A request is
received and handled by the central application before the
next one can be dealt with. If the system latency is low,
this is not a problem. But if it is high, the entire system
will become sluggish. A replicated scheme, on the other
hand, implies parallel processing which maximizes the use
of optimistic schemes. Events can occur in parallel at each
replication, with the optimistic method mediating any
problems. While overkill for low latency, it can address the
interface issues in systems that have noticeable delays.

There is no real answer to whether a centralized or replicated
scheme works best for groupware. Rather, it is a set of
tradeoffs that revolve around the way they handle latency,
ease of program installation and connection, programming
complexity, synchronization requirements, processor speed,
the number of participants expected, communication
capacity and cost, and so on.

Software Availability: GROUPK IT is available via
anonymous ftp from ftp.cpsc.ucalgary.ca, in the directory
pub/projects/grouplab/software.

Acknowledgments. This research was supported by the
National Sciences and Engineering Research Council of
Canada through its strategic and operating grant program.

REFERENCES
1. Ahuja, S.R., Ensor, J.R. and Lucco, S.E. (1990) “A

comparison of applications sharing mechanisms in real-
time desktop conferencing systems.” In Proceedings of
the ACM COIS Conference on Office Information
Systems, pp. 238-248, Boston, April 25-27.

2. Baecker, R.M., Nastos, D., Posner, I.R. and Mawby,
K.L. (1993) “The user-centred iterative design of
collaborative writing software.” In Proceedings of the
ACM INTERCHI Conference on Human Factors in
Computing Systems, pp. 399-405, Amsterdam, April
24-29.

3. Beaudouin-Lafon, M. and Karsenty, A. (1992)
“Transparency and Awareness in a Real-Time
Groupware System.” In Proceedings of the ACM UIST
Symposium on User Interface Software and
Technology, pp. 171-180.

4. Berlage, T. (1992) “The GINA Interaction Recorder.” In
Proceedings of the IFIP TC2/WG2.7 Working
Conference on Engineering for Human Computer
Interaction, Finland, Aug 10-14.

5. Bernstein, P., Goodman, N. and Hadzilacos, V. (1987)
Concurrency control and recovery in database systems,
Addison-Wesley.

6. Ellis, C.A. and Gibbs, S.J. (1989) “Concurrency
control in groupware systems.” In Proceedings of the
ACM SIGMOD International Conference on the

Management of Data, pp. 399-407, Seattle,
Washington, USA.

7. Fujimoto, R.M. (1990) “Parallel discrete event
simulation.” Communications of the ACM, 33(10),
pp. 31-53, October.

8. Greenberg, S. (1991) “Personalizable groupware:
Accommodating individual roles and group differences.”
In Proceedings of the ECSCW European Conference of
Computer Supported Cooperative Work, pp. 17-32,
Amsterdam, Sept 24-27, Kluwer Academic Press.

9. Greenberg, S. (1990) “Sharing views and interactions
with single-user applications.” In Proceedings of the
ACM COIS Conference on Office Information
Systems, pp. 227-237, Boston, April 25-27.

10. Greenberg, S. and Bohnet, R. (1991) “GroupSketch: A
multi-user sketchpad for geographically-distributed
small groups.” In Proceedings of Graphics Interface '91,
pp. 207-215, Calgary, Alberta, June 5-7.

11. Greenberg, S., Roseman, M., Webster, D. and Bohnet,
R. (1992) “Human and technical factors of distributed
group drawing tools.” Interacting with Computers,
4(1), pp. 364-392, December. Butterworth-Heinemann.

12. Grief, I., Seliger, R. and Weihl, W. (1986) “Atomic
data abstractions in a distributed collaborative editing
system.” In Proceedings of the 13th Annual
Symposium on Principles of Programming Languages,
pp. 160-172.

13. Jefferson, D.R. (1985) “Virtual time.” A C M
Transactions on Programming Languages and Systems,
7(3), pp. 404-425, July.

14. Karsenty, A. and Beaudouin-Lafon, M. (1993) “An
algorithm for distributed groupware applications.” In
Proceedings of the 13th International Conference on
Distributed Computing Systems ICDCS'93,
Pittsburgh, May 25-28.

15. Knister, M. and Prakash, A. (1993) “Issues in the
design of a toolkit for supporting multiple group
editors.” Computing Systems (The Journal of the
Usenix Association), 6(2), pp. 135-166, Spring.

16. Lamport, L. (1978) “Time, clocks and the ordering of
events in a distributed system.” Communications of the
ACM, 21(7), pp. 558-565, July.

17. Lauwers, J.C. and Lantz, K.A. (1990) “Collaboration
awareness in support of collaboration transparency” In
Proceedings of the ACM SIGCHI Conference on
Human factors in Computing, Seattle Washington,
April 1-5.

18. Lauwers, J.C., Joseph, T.A., Lantz, K.A. and
Romanow, A.L. (1990) “Replicated architectures for
shared window systems: A critique.” In Proceedings of
the ACM COIS Conference on Office Information
Systems, pp. 249-260, Boston, April 25-27.

19. Newman-Wolfe, R. E. and Pelimuhandiram, H. K.
(1991) “MACE: A Fine Grained Concurrent Editor.” In

Proceedings of the ACM COCS Conference on
Organizational Computing Systems, pp. 240-254.

20. Moran, T., McCall, K., van Melle, B., Pedersen, E.
and Halasz, F. (in press) “Design principles for sharing
in Tivoli, a whiteboard meeting-support tool.” In
Designing Groupware for Real Time Drawing, S.
Greenberg, S. Hayne & R. Rada ed. McGraw Hill.

21. Patterson, J.F., Hill, R.D., Rohall, S.L. and Meeks,
W.S. (1990) “Rendezvous: An architecture for
synchronous multi-user applications.” In Proceedings
of the ACM CSCW Conference on Computer
Supported Cooperative Work, Los Angeles, California,
October 7-10.

22. Prakash, A. and Knister, M.J. (1992) “Undoing
Actions in Collaborative Work.” In Proceedings of the
ACM CSCW Conference on Computer-Supported
Cooperative Work, Toronto, Nov 1-4, pp. 273-280.

23. Rodden, T. and Blair, G. (1991) “CSCW and
distributed systems: The problem of control.” In
Proceedings of the ECSCW European Conference on
Computer Supported Cooperative Work, pp. 49-64,
Amsterdam, Klewar Press.

24. Roseman, M. and Greenberg, S. (1992) “GROUPKIT:
A groupware toolkit for building real-time conferencing
applications.” In Proceedings of the ACM CSCW

Conference on Computer Supported Cooperative Work,
Toronto, Nov 1-4, pp 43-50.

25. Shen, H. and Dewan, P. (1992) “Access Control for
collaborative environments.” In Proceedings of the
ACM CSCW Conference on Computer Supported
Cooperative Work, pp. 51-58, Toronto, Ontario, Nov
1-4.

26. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S. and
Tatar, D. (1987) “WYSIWIS revised: Early experiences
with multiuser interfaces.” ACM Transactions on
Office Information Systems, 5(2), pp. 147-167, April.

27. Tang, J.C. (1991) “Findings from observational studies
of collaborative work.” Int J Man Machine Studies,
34(2), pp. 143-160, February.

28. Tatar, D.G., Foster, G. and Bobrow, D.G. (1991)
“Design for conversation: Lessons from Cognoter.” Int
J Man Machine Studies, 34(2), pp. 185-210, February.

29. Tichy, F. W. (1982) “RCS: A revision control
system.” In Proceedings of the ECICS 82 European
Conference, Stresa, Italy, September.

30. Wilson, B. (in press) “WSCRAWL 2.0: A shared
whiteboard based on X-Windows.” In Designing
Groupware for Real Time Drawing, S. Greenberg, S.
Hayne and R. Rada ed. McGraw Hill.

