(' i. . HUMAN-
oeries on INTERACTION

TreE COMPUTER

USER AS
ToorsmitH

Saul Greenberg

CAMBRIDGE SERIES ON
HUMAN-COMPUTER
INTERACTION

The Computer User as Toolsmith

The Use, Reuse, and Organization
of Computer-based Tools

Cambridge Series on Human—Computer Interaction

Managing Editor:
Professor J. Long, Ergonomics Unit, University College, London

Editorial Board

Dr. P. Barnard, Medical Research Council, Applied Psychology Unit, Cambridge, England.
Professor W. Buxton, Rank Xerox Ltd, Cambridge EuroPARC, England.

Dr. J. M. Carroll, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
Dr. J. Grudin, MCC, Austin, Texas.

Dr. T. Landauer, Bellcore, Morristown, New Jersey.

Professor J. Lansdown, CASCAAD, Middlesex Polytechnic, England.

Professor T. W. Malone, MIT, Cambridge, Massachusetts.

Professor H. Thimbleby, Department of Computing Science, University of Stirling, England.
Professor T. Winograd, Department of Computer Science, Stanford University, California.

Titles in the Series

1. J. Long and A. Whitefield, Cognitive Ergonomics and Human—Computer Interaction
2. M. Harrison and H. Thimbleby, Formal Methods in Human—Computer Interaction

3. P.B. Andersen, The Theory of Computer Semiotics

4. J. M. Carroll, Designing Interaction: Psychology at the Human—Computer Interface
5. 1. J. Darragh and 1. H. Witten, The Reactive Keyboard

6. S. Greenberg, The Computer User as Toolsmith

The Computer User as Toolsmith

The Use, Reuse, and Organization
of Computer-based Tools

Saul Greenberg
University of Calgary

=% CAMBRIDGE

&P UNIVERSITY PRESS

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Victoria 3166, Australia

© Cambridge University Press 1993
First published 1993

Printed in Canada

Library of Congress Cataloging-in-Publication Data

Greenberg, Saul.
The Computer user as toolsmith. The use, reuse, and organization of
computer-based tools

p. cm.— (Cambridge series on human—computer interaction ;
(6D
Includes bibliographical references.
ISBN 0521-40430-4

1. Human-computer interaction. 2. UNIX (Computer file)

I. Title 1II. Series.

QA76.9H85G73 1993

004’,01'9-dc20 92-24677
CIP

A catalog record for this book is available from the British Library.

ISBN 0-521-40430-4 hardback

Contents

List of figures

List of tables

Foreword

Acknowledgments and dedication

1 Introduction
1.1 Using physical tools
1.2 Soft tools in general-purpose computing environments
Definitions
From appliances to manufacturing
Problem statement
1.3 Outline

2 Studying UNIX

2.1 Choosing UNIX
Natural studies
A brief introduction to UNIX
Why study UNIX?

2.2 Techniques for analyzing activitics of UNIX users
Traces of user activity
Protocol analysis

2.3 Data collection for the current study

24 Concluding remarks

3 Using commands in UNIX
3.1 Frequency distributions of commands for large groups
3.2 Usage frequency of particular commands between groups
3.3 Frequency distributions and command overlap between individuals
3.4 Growth of the command vocabulary
3.5 Relations in command sequences
3.6 Discussion
3.7 Concluding remarks

ix

xi

xiii

XV

oL I I o N S S

11

11
12
14
16
16
20
21
25

26
26

30
32
34
36
38

vi Contents

4 Techniques for reusing activities 40
4.1 History mechanisms 41
History in glass teletypes 42

History through graphical selection 44

History by editing transcripts 47

History by navigational traces 49

4.2 Adaptive systems 52
Adaptive menu hierarchies 53

Reuse through text prediction 54

4.3 Reuse through programming by example 59
44 Concluding remarks 63

5 Recurrent systems 65
5.1 A definition of recurrent systems 65
5.2 Recurrent systems in the non-computer world 67
Telephone usage — a limited study 67

5.3 Recurrent systems in information retricval 73
Retrieving topics in manuals 74

5.4 UNIX csh as a recurrent system 74
Recurrences of command lines 75

Command line frequency as a function of distance 79

5.5 Concluding remarks 81

6 Reuse opportunities in UNIX csh - potential and actual 84
6.1 Conditioning the distribution 84
The quality of predictions 85

Different conditioning methods 86

Evaluating the conditioning methods 91

Discussion 101

6.2 Actual use of UNIX history 102
Results 102
Corroboration and extensions 103

Discussion 105

6.3 Concluding remarks 106

7 Principles, corroboration, and justification 108
7.1 Principles and guidelines 108
Principles: how users repeat their activitics 108

7.2 Corroboration 112
The GLIDE study 112

Results and discussion 113

7.3 Stepping back 118

Contents

vil

Plans and situated actions
Recurrences: natural fact or artifact?
74 Concluding remarks

8 Organizing activities through workspaces
8.1 Relating activities
8.2 Implications: suggestions for workspaces
A review of suggestions
Additional workspace suggestions
8.3 Implementations
8.4 Concluding remarks

9 A workspace system: description and issues
9.1 The WORKBENCH system
A brief overview of Sunview
An overview of WORKBENCH
Designing the tool area
Designing the tool cabinet
Underlying architecture of WORKBENCH
9.2 Pragmatic concems and research questions

10 Conclusion
10.1 Argument of the book
10.2 Contributions
10.3 Looking to the future

Appendix A: A sample trace

Appendix B: Summary statistics for each subject
References
Author index

Subject index

118
119
121

123
124
127
128
129
131
140

141
141
142
143
146
149
152
155

159
159
160
161

164
169
177
183

185

List of figures

1.1
1.2

3.1
32

33

4.1
42

43
44
45
4.6
4.7
4.8
49
4.10

4.11

5.1

52
5.3
54
55

5.6

5.7

The Galapagos finch probing for insects with a cactus spine.
An idealized carpenter’s workshop.

The normalized command frequency, compared with Zipf.
Command vocabulary size vs. the number of command lines en-
tered for four individuals.

Sequential structure of UNIX command usage.

Examples of the UNIX csh history mechanism in use.

A portion of the INTERLISP-D environment, showing HIST-
MENU in use.

MINIT’s WINDOW MANAGEMENT WINDOW.

The VERSATERM terminal emulator for the Apple Macintosh.
The HYPERCARD recent screen.

A sample FILE MANAGER window, showing a history list of the
last few files visited.

The Apple Macintosh “open dialog” box, showing the BOOMER-
ANG history menu.

Menu trees generated by uniform and probability subdivision.
Using RK-BUTTON, the UNIX version of the REACTIVE KEY-
BOARD: (a) a dialog with UNIX; (b) some commands; and (c)
screen contents at end of the dialog.

RK-POINTER menu and feedback showing five interaction se-
quences.

The QUICKEYS menu and several scquence-cditing windows.

The number of different calls made vs. the number of calls dialed
so far.

Relation between recurrence rate and the number of calls made.
Recurrences of phone numbers as a measure of distance.

Cumulative recurrences of phone numbers as a measure of distance.

Regression: (a) command line vocabulary size; and (b) the %

recurrence rate vs. the total command lines entered by each subject.

Command line vocabulary size vs. the number of commands en-
tered for four typical individuals.
Processing a subject’s trace for all values of R, ;.

28

33
35

43

44
46
48
50

52

53

55

57

58
62

69
70
72
73

71

78
80

List of figures

5.8

6.1

6.2

6.3

7.1

7.2

8.1
8.2
8.3
8.4

9.1
9.2
9.3
94

(a) Recurrence distribution; and (b) cumulative recurrence distri-
bution as a measure of distance.

Cumulative probabilities of a recurrence over distance for various
conditioning methods.

Cumulative average number of characters saved per submission
over distance.

(a) Cumulative distribution of history; and (b) distribution of history
use as a measure of distance.

Cumulative probabilities of a recurrence over distance for various
conditioning methods.

Cumulative average number of characters saved per submission
over distance.

A user’s flow of activities for one moming’s computer use.
A stylized MENUNIX screen.

The SMALLTALK browser window.

The ROOMS overview screen

The normal appearance of the WORKBENCH window.
Ancillary controls of the tool arca.

Ancillary controls of the cabinct. _

The data structure used to maintain the history list of activities.

82

97

98

104

116

117

125
135
137
139

144
147
150
154

List of tables

2.1
22

3.1

3.2
33

5.1
52

6.1
6.2

6.3

6.4
6.5

6.6

7.1
7.2
13

8.1
8.2

B.1
B.2
B.3
B4
B.5
B.6

Sample group sizes and statistics of the command lines recorded
Trace information annotated by the modified csh

Command distributions of the top twenty commands for five dif-
ferent user groups

Number of users per command

The twenty most shared commands for each user group

Telephone usage statistics
The average recurrence rate of the four sample UNIX user groups

Examples of history lists conditioned by different methods
Probability of a recurrence over distance for various conditioning
methods

Cumulative probabilities of a recurrence over distance for various
conditioning methods

Average number of characters saved over distance per recurrence
Cumulative average number of characters saved per submission
over distance

How history was used by the sample groups

Design guidelines for reuse facilities
A simple GLIDE dialog
Evaluating various conditioning methods in GLIDE

A user’s task set for preparing a specific document
Suggestions implemented by existing workspace designs

Statistics on Novice Programmers subjects 1-35
Statistics on Novice Programmers subjects 36-55
Statistics on the Experienced Programmers subjects 1-36
Statistics on the Scientist subjects 1-35

Statistics on the Scientist subjects 3652

Statistics on the Non-programmers subjccts 1-25

22
24

29
31
32

68
79

87

93

94
95

96
102

109
113
115

124
133

170
171
172
173
174
175

X1

Foreword

Humans are the most versatile of creatures, and computers are their most versatile
of creations. Human—Computer Interaction (HCI) is the study of what they do
together; in particular, HCI aims to make interaction better suit the humans. Com-
puters contribute to art, science, engineering, ... all areas of human endeavor. It is
no surprise, then, that there is heated debate about what the essence of HCI is and
what it should be. What is good HCI? The answer to this question will be elusive
given that there is good engineering that is not art, good art that is not science, and
good science that is not engineering.

It’s easier to see what form of answer there can be by taking a quick excursion into
another field. Imagine the discovery of a dye, such as W. H. Perkin’s breakthrough
discovery of mauve. Is it science? Yes: certain chemicals must react to produce
the dyestuff, and the principles of chemistry suggest other possibilities. Is it art?
Yes: it makes an attractive color. Is it engineering? Yes: its quantity production,
fastness in materials, and so forth, are engineering. Perkin’s work made the once
royal purple accessible to all. Fortunately there is no subject “Human Chemical
Interaction” to slide us into thinking that there is, or should be, one right view
of the work of making or using, designing, standardizing, or evaluating a dye.
Nevertheless, we appreciate a readily available, stunning color, used by an able
artist, and one that lasts without deteriorating. What is good, then, put briefly, is
what is made accessible, reliable, worthwhile.

By analogy: a good contribution to the field of Human—Computer Interaction
is accessible (its principles should work for others and repeatably, potentially by
being computerized), reliable (it should work under prescribed conditions), and
worthwhile (it should do something beneficial, applicable, appealing). One also
requires that these qualities are demonstrable, not only to distinguish fact from
fancy, but so that practitioners can assess whether the contribution is relevant and
applicable to their particular concerns.

Saul Greenberg’s The Computer User as Toolsmith starts from the observation
that humans tend to repeat themselves, and that this is a general phenomenon that
can be studied, understood, and facilitated. It follows that tools used for repeated
activities are themselves reused, and thus that it is desirable to improve the tools
of reuse. The results reported in this book are accessible: but more so, the book
indicates how anyone could access the equivalent results in their own particular
circumstances. This is a broader and more valuable accessibility. In short, reuse is
accessible to anyone who cares to look. It is further a reliable phenomenon, and is
shown to be so by the studies reported here. Finally, to the extent that a computer

xiii

Xiv Foreword

can support and simplify reuse, the concepts are very widely applicable. Greenberg
shows that supporting reuse can be staightforwardly built into interactive computer
systems, and to do so is worthwhile. This is the book’s contribution to engineering
beyond the particular experiments and systems described here.

We gave criteria for good HCI above; this book meets them. It identifies reuse
as a single, core concept (like aniline dye) and demonstrates its generality for
HCI. When computer systems are engineered that embed appropriate facilities for
supporting reuse then, as Greenberg demonstrates, they are quantifiably improved.

As well as making a useful and focused contribution to HCI, this book is its
author’s doctoral dissertation. As such it also makes a good example of what a
dissertation can be, particularly in the interdisciplinary and currently uncertain area
of HCI. There is an idea, refined to a hypothesis, and it is checked in various guises.
Systems are built. And ideas are rechecked, both by appeal to the literature and by
data from the use of other systems that had nothing to do with the author’s work.
The work is described clearly: the book is aware of what it is achieving and its
relation to wider issues in HCI — this greatly adds to the pleasure of reading it.
There is sufficient detail for the interested reader to repeat experiments and check
methods, or, more likely, to progress confidently from where Greenberg leaves off.

Many other dissertations (books too) describe ideas or systems that, however
much they inspire, still leave the next researcher almost as much work to repeat —
and occasionally a nagging suspicion that some of the work is unrepeatable, even
imaginary where it is most inspiring! In the breadth of HCI there is ample scope
for inspirational creativity, but far better to share the means to the ends. The ideas
of this book are creative and they work, and there is both ample evidence and
argument why. That is good for a dissertation. Even better for HCI, the topic is
of such universal applicability that the book is the starting point for evaluating and
improving almost any existing or future system. The book itself is a tool that can
and should be reused.

Harold Thimbleby
Stirling, Scotland

Acknowledgments and dedication

The research described in this book is the result of my dissertation work. My
supervisor Ian Witten struck the fine balance of guiding my research without hin-
dering my own expression and development of ideas. He encouraged me to learn,
to explore, and to publish. As the legendary “Witten filter,” he transformed even
my worst writings into acceptable prose. He set high standards, but never hesitated
to show the steps necessary to reach them.

David Hill introduced me to human-computer interaction, encouraged my re-
search endeavours, and was always available as a tried and true resource. I was
kept constantly on my toes by Brian Gaines and Harold Thimbleby, who made the
field a moving target with their constant twists and paradigm shifts. It was Harold
who encouraged me to transform the dissertation into a book.

Of course there is my family. The faith, love, and support of my wife Judy
kept me going through all the slow academic and writing times. My research
lifestyle was balanced by our many outdoor adventures, where her cheerfulness
and enthusiasm always shone through. Our son Adam, whose birth and growth
paralled this book, was another avid supporter. No matter how tiring the day was,
his ready laughter when I returned home always filled me with joy.

But this book is dedicated to my parents, Morris and Bella Greenberg. Because
of their religion and the oppressive Eastern European politics of their childhoods,
they had no opportunity for advanced education. Yet they never failed to see its
importance, and always encouraged me to pursue its path.

1

Introduction

There is nothing quite so frustrating for the avid do-it-yourselfer than to begin
a project, suddenly need a particular tool, but have no idea where in the house
to look for it.

— Practical Homeowner'’s 1987 Do-1t-Yourself Annual

General-purpose computer environments that furnish a large set of diverse tools are
often hard to use. Although some difficulty is associated with using any particular
tool, this book is concerned with the problems that a person faces when selecting
a tool from the many available, reusing that tool while performing a task, and
organizing the chosen tools in a way that makes them ready to hand later on.
Surprisingly, methods and habits for using physical tools that have evolved over
millions of years have not been transferred effectively to the computer domain.
The goal of the research discussed in this book is to identify properties of a
human—computer interface that supports how people select, reuse, and organize the
tools available in general-purpose computing environments. These properties come
from empirical analyses of user behavior. This introduction sets the scene first by
reviewing physical tools, from their very natural use by animals to ultra sophis-
ticated machinery that taxes human capabilities beyond acceptable performance
limits. Section 1.2 moves to the focus of this book — general-purpose computing
environments that make diverse collections of on-line tools available. It identifies
two problem areas: the dearth of knowledge about people’s use of on-line tools,
and the poor existing user support for everyday interactions with them. The final
section outlines the major themes covered by each of the following chapters.

1.1 Using physical tools

Until the late eighteenth century, humans distinguished themselves from other
animals by claiming to be the only tool-users. Since then, ethologists have reported
extensive tool use by many species of animals. A few examples follow.!

The myrmicine ant drops debris (bits of leaf and bark) on to soft foods that are
otherwise difficult to move. After all the food has soaked into the “sponge tool,”
it is carried back to the colony (Fellers and Fellers, 1976). The Egyptian vulture

LThe definitive treatment of tool use by animals is Benjamin Beck’s Animal Tool Behaviour (Beck, 1980).
Unless stated otherwise, all references to tool use by animals and early humans reported in this section are taken
from Beck’s extensive catalog.

2 Introduction

e
’//////////// s

Figure 1.1. The Galapagos finch probing for insects with a cactus spine.
Ilustration by J. Poehlman, in Smullen, 1978, p. 17.

feeds on tough-shelled ostrich eggs by picking up a stone in its bill and throwing
it down repeatedly until the egg cracks (van Lawick-Goodall and van Lawick,
1968). Figure 1.1 illustrates the well-known woodpecker finch of the Galapagos
Islands. Using twigs and cactus spines held in its bill, the finch probes for otherwise
unattainable insects living in trees or under bark.

The elephant is a frequent tool-user too. Twigs and branches grasped in its
trunk extend its reach, particularly for scratching and chasing away flies, and the
elephant also threatens intruders by waving branches or by throwing “missiles” at
them. Sea otters break open shells by pounding them on rocks that are balanced on
their chests (Hall and Schaller, 1964). Excluding humans, primates are the most
habitual tool-users of all animals. Depending on the species, untrained monkeys,
apes, and chimpanzees throw or drop things (stones, branches) at intruders, use
leaves as sponges to gather water, brandish sticks as clubs, wipe wounds with
leaves, and use various implements to pound open, extend their reach toward, or
probe and rake in food. The extensive tool behavior of captive chimpanzees is
evident to any circus or zoo visitor. They stack and climb upon objects to reach
food, and they have been trained to ride bicycles.

Humans cannot even claim to be the only species that manufactures tools. Al-
though most animals obtain tools from the natural debris of their environment, a
few also fabricate them. Beck (1980) recognized four modes of tool manufacture
in animals. The first is detach, as performed by a woodpecker finch breaking off

1.1. Using physical tools 3

its twig tool from branches. An example of subtract, the second mode, is when a
parrot removes bark from a twig before scratching himself, or when chimpanzees
strip leaves from branches before digging for termites. Some chimpanzees are
known to reshape pieces of wood into tools with pointed tips by chewing. Finally,
implements can be combined, although this has been observed only with captive an-
imals. Chimpanzees, for example, join sticks together to create a further-reaching
tool.

Although humans cannot lay claim to exclusive tool use and manufacture, hu-
mans do distinguish themselves by the complexity of their tools, how they are
used and reused, and how they interrelate. First, humans are the only animals
known who use one tool to produce another. This behavior is believed to date back
2,500,000 years to our hominid ancestors who whittled wooden tools with sharp
flakes of stone (Leakey and Lewin, 1978). Second, humans retain tools for repeated
reuse, unlike most animals who discard them immediately after use.? Again, early
hominid records indicate that stone tools were transported from foreign fabrication
locations and then used extensively before being discarded. Third, humans use tools
at special-purpose sites. Early hominids had special food preparation areas, and
archeological evidence from later periods shows much tool-based activity around
the hearth and well-lit work areas (Gowlett, 1984). The final distinguishing point
of human tool use arises when tools become more numerous and more diverse over
the course of history. One only has to step into a modern kitchen or handyman’s
workshop for proof.

The present age heralds unprecedented availability of numerous tools for indi-
vidual use. Some, like the hammer, are simple refinements of our ancestor’s stone
implements. At the other extreme are machines — examples are airplanes and space-
craft — that are so complex that only a few highly trained individuals can use them.
During World War II, human ability was pushed beyond acceptable performance
limits by the difficulty of using these complex machines. Some aircraft accidents,
for example, were directly attributed to cockpit complexity. This resulted in a
demand for experts in psychological engineering — called human factors in North
America, and ergonomics in Europe — who recognize human limitations and apply
their knowledge to the design of effective human—-machine systems (Fitts, 1951).
One area of human factors involves designing and simplifying tools that are inher-
ently complex. For example, the highly interrelated controls and gauges in large
power plants are often positioned on a map that mimics the physical location of their
corresponding devices, making the plant’s state easier to understand. Another area
of concern — and the theme of this book — is the difficulty of using and managing
large collections of loosely related tools.

When a person’s activity is highly dynamic or not readily specified, the actual

20ne of the few reported cases of tool retention by animals is the otter, which sometimes keeps shetl-cracking
stones in its armpit between several successive feeds while diving for other shells (Hall and Schaller, 1964).

4 Introduction

choice and arrangements of loosely related tools cannot be effectively predicted
by another person. Instead, people have general methods for structuring their
workspaces, and special “organizing tools” for gathering and locating tools and
materials. The following list indicates a few important strategies.

Recently used tools are available for reuse. People recognize when a tool just
used will be used again in the near future. Rather than select tools and then
immediately return them to their original location, they are kept on hand for
a period of time. Examples include retaining used cooking implements on
counters while preparing a meal, and keeping a dictionary and thesaurus on a
desk while writing.

Arranging tools by function. Tools are categorized by function, and each col-
lection is gathered separately. A mechanic, for example, uses the drawers in
a tool cabinet to organize wrenches, screwdrivers, ratchets, and sockets. The
office worker may arrange a desk with a pen and pencil holder, a stationary
drawer, and a forms drawer. A tailor uses pin cushions, racks for holding
spools of thread, shelves for bolts of cloth, and boxes for sewing machine
accessories.

Arranging tools by task. People sometimes store together tools that address a
particular repetitive task. Workbenches and the tools located on them in a
large carpenter’s shop may reflect specialized activities; cutting (power saw,
blades, fences), preparation (large table, glue, vice, clamps, finishing nails),
drilling (drill, bits), nailing (work belt with hammer and nail pouches), and so
on.

The idealized carpenter’s workshop in Figure 1.2 illustrates an integrated use of
these management strategies. Recently used tools and material lying on the central
workbench are readily available for reuse. The tool cabinet and tool panels arrange
tools by function, whereas other work areas are dedicated to certain tasks.

1.2 Soft tools in general-purpose computing environments
1.2.1 Definitions

Some important terms are introduced here. Others are defined and elaborated as
needed throughout the book.

A shell is the top-level interface placed upon a general-purpose computing envi-
ronment (the characteristics of these environments are discussed further in Section
1.2.2). A shell allows users to access a library of existing programs as utilities, to
combine existing utilities as needed, and to extend the library at will. An activity or
submission is defined as a single request submitted to the shell by a person. Activ-
ities typically specify actions and arguments. Actions are commands that indicate

1.2. Soft tools in general-purpose computing environments 5

Figure 1.2. An idealized carpenter’s workshop, adapted from p. 51 in
Working in Wood, by E. Scott, Putnam, NY, 1980.

6 Introduction

the utility to be invoked. Arguments supply information to the utility, through op-
tions that dictate how it is to work, and objects that indicate the computer material
to be manipulated. Incremental interaction is a style of human—computer dialog
characterized by successive activity requests that are submitted to the shell and
responded to in turn (Thimbleby, 1990, p. 55). A computer tool is another name
for a system utility. However, a user may consider the tool to include specific
arguments as well.

Interfaces to conventional operating systems provide good examples of incre-
mental interaction dialogs involving all the notions above. One usually submits
activities to a top-level command shell by typing simple commands and arguments,
although some modern systems augment or replace this primitive dialog style with
menus, forms, natural language, graphics, and so on (Witten and Greenberg, 1985).
The user then waits for the utility to do its task before entering the next submission.

1.2.2 From appliances to manufacturing

Computers and their uses fall under an enormous variety of often overlapping cat-
egories. They range from dedicated turnkey “appliances,” specialized tools that
address highly specific domains, to interactive programming and computing envi-
ronments that function as software “manufacturing” plants. This book is concerned
only with those general, flexible, and heterogeneous computer environments whose
shells provide end-users with many diverse tools and materials, selected through
incremental interaction. These environments lie somewhere between the extremes
above.

The design emphasis in human—computer interfaces for the non-programming
mass market is currently on application areas perceived to be used frequently by
the target population. There is a proliferation of packages for word processing,
painting and drafting, spreadsheet calculations, and so on. These packages may
be considered appliances, highly specialized tools handling very specific tasks.
Some have excellent interfaces that are finely tuned to meet specific user needs.
Modern appliance-oriented top-level interfaces, augmented with a limited repertory
of generic capabilities, act as delivery vehicles for these application packages (e.g.,
the Apple Macintosh; Williams, 1984). However, those users who do not wish
to program may pursue only the relatively small set of tasks addressed by the
applications that are provided. This poses appreciable difficulties.

Computers are increasingly used ...in complex areas ...characterized by the lack
of generally accepted methods and techniques to be used for problem solving. For
this reason it is impossible to construct software tools covering problem solving
completely.

— Dzida, Hoffmann, and Valder, 1987, p. 30

1.2. Soft tools in general-purpose computing environments 7

At the other end of the spectrum, programming environments provide users
with the means to pursue goals not addressed specifically by any one application.
Historically, these systems arose from the second- and third-generation computers
that emphasized programming in high-level languages (Denning, 1971). Their
contemporary versions are highly interactive programming environments that sim-
plify programming “in the small.” Some examples are: SMALLTALK (Goldberg,
1984); INTERLISP-D (Teitelman and Masinter, 1981); PICT (Glinert and Tani-
moto, 1984); and PECAN (Reiss, 1984). By analogy, these programming environ-
ments are highly sophisticated manufacturing plants that can be retooled rapidly to
design and create a variety of complex machinery.

Although appliance environments are overly restrictive for those wishing
to pursue general tasks, programming environments are impractical for non-
programmers, for the actions, objects, and complexity of discourse are expressed
in unfamiliar programming terms (Cuff, 1980). The computer industry is not blind
to this incompatibility, and has spent considerable effort trying to bridge the gap
between specialization and generalization through integrated systems. This ap-
proach groups a set of limited applications into one large integrated product, so that
the boundaries between these applications are minimized or eliminated (Nielsen,
Mack, Bergendorff, and Grischkowsky, 1986). These systems, although a promis-
ing direction, currently offer only slightly more power than appliance-oriented
computers.

Midway between the two extremes are those top-level interfaces that provide
their end-users with a rich set of actions and objects. Each action, together with
the object it manipulates, is available as a tool, and the tools can be combined
in simple ways to manufacture new tools, often without resorting to conventional
programming. The use and organization of these types of tools form the focus of
this book. As summarized by Lee, environments in this general-purpose computer
genre include

collections of heterogeneous but complementary tools that allow users to perform
a wide and varying range of tasks. Furthermore, the environment provides fairly
uniform access to the software tools and permits users to use them for various
purposes.

— Lee, 1988

Generally, tools are flexible to use, can be combined in many ways, and are
reshaped as needed. In addition, these environments support and encourage both
tool manufacture and sharing by a variety of end-users.

1.2.3 Problem statement

The hypothesis of the research reported in this book is that, as with physical tools,
people select and often immediately reuse their recently submitted activities to

8 Introduction

general-purpose computing environments, and consciously organize their activities
by both task and function. If this hypothesis holds, then the interface should give
the user support by keeping recently used activities available for reuse and by
allowing the user to organize activities by function or task.

Yet existing shells invariably provide either uniform access to all system utilities
or group them in a predefined way. Except for a few ad hoc and unevaluated
implementations, there is no on-line support by even contemporary interfaces for
people’s natural strategies for organizing their workspace. Command-based inter-
faces, for example, provide uniform access to all system actions, even though actual
usage of these commands is far from uniform. “History systems” that allow people
to recall old submissions are badly designed, and their effectiveness is unknown.
Menus that explicitly reveal pregrouped system actions may not reflect the user’s
actual task organization.

This research addresses two major problems. First, there is a dearth of knowledge
of how users actually behave when interacting with a general-purpose environment.
Second, current interfaces do not adequately support a user’s natural work. Al-
though some have studied how people choose system utilities from a large set,
no statistics are available on how people generate, select, and repeat their activi-
ties. The bulk of this work is devoted to filling this void, based upon analyses of
long-term observations made of people using UNIX,? a general-purpose computing
environment. The experimental findings are then generalized and used to derive
design principles of a user support facility that aids natural work.

1.3 Outline

The book is divided into four distinct parts. Chapters 2 and 3 list how observations
of user activity in general-purpose computing environments have been collected
and analyzed in the past. The particular method employed in our research is
described, and selected previous works are replicated and the findings are discussed.
Chapters 4 through 7 form the heart of the book. They detail how people repeat their
activities, and how the results can be applied to designing a facility that lets one
reuse (as opposed to reenter) previous submissions. Chapter 8 examines how people
organize activities. Finally, Chapter 9 describes the design and implementation of
a user support tool that allows people to both reuse and impose a structure upon
their old activities. Each chapter is briefly summarized below.

Chapter 2 introduces a study of natural everyday human usage of the UNIX
operating system and its command line interface. The observations made are the
basis for most investigative work performed in later chapters. UNIX is argued
to be a general-purpose environment and therefore appropriate for observation.

3UNIX is a trademark of AT&T Bell Laboratories.

1.3. Outline 9

After several existing data collection methodologies are described, the one finally
employed is detailed.

Chapter 3 covers previous work on how people use commands in UNIX. The
results of several studies are reviewed, and portions of these studies are replicated.
Although the statistical details of the replicated studies are supported, some of
the conclusions made by the original researchers are misleading. In particular,
studying command use — the verbs of a command line — is not sufficient and
presents a distorted view of what actually occurs. The complete command line
entered by the user must be considered too.

Chapter 4 introduces and surveys existing reuse facilities that let users recall,
modify, and resubmit their previous entries to computers. Although the survey
is not exhaustive, it is representative of facilities on commercial, state of the art,
and research systems. The chapter concludes by noting that there is no empirical
evidence justifying any of these designs, either a priori through knowledge of how
people repeat activities, or post hoc by evaluating their actual use.

Chapter 5 continues by providing empirical evidence that people not only repeat
their activities, but that they do so in quite regular ways. It starts with the notion of
recurrent systems, where most users predominantly repeat their previous activities.
A few suspected recurrent systems from both non-computer and computer domains
are examined in this context to help pinpoint salient features. The UNIX data is
analyzed from this perspective, with particular attention being paid to the statistics
of complete command line recurrences. Although people are seen to generate
many new activities, old ones are repeated to a surprising degree. The probability
distribution of the next submission repeating a previous one as a function of recency
is also reported.

Chapter 6 considers the potential and actual reuse opportunities within UNIX.
First, several methods are suggested that could increase the likelihood that the next
submission occurs in a small set of predictions offered to the user for review and
reuse. The UNIX data is conditioned by these methods, and the resulting improve-
ments are determined quantitatively. The second part of the chapter investigates
how well the reuse facilities supplied by the UNIX shell are used in practice.

Chapter 7 summarizes the results as a set of design principles, and existing reuse
facilities are revisited and briefly criticized from this perspective. The findings
of previous chapters are then corroborated by analyzing a different domain — a
functional programming environment — as a recurrent system. A final discussion
concludes that the notion of reuse facilities is conceptually, as well as empirically,
justified as a user support tool.

Chapter 8 argues that a user organizes computer activities by task and by function.
The concept of a user support tool called a workspace is developed. Similar to
a physical workspace, this on-line facility allows people to reuse and organize
their tools for their related activities. Although the idea is not new, several novel
properties of workspaces are elaborated. This chapter reveals how limited our

10 Introduction

knowledge is in this area and suggests that much more investigative research is
required — work that is beyond the scope of this book.

Chapter 9 describes the design of a system that loosely follows the metaphor of a
handyman’s workbench. It embodies the reuse properties suggested in Chapters 4
through 7, and the structuring properties of Chapter 8. The implementation is a
front end to UNIX, and serves to illustrate that serious pragmatic problems are
encountered when user support tools are built as add-ons to existing systems. The
problems encountered during the system’s design and use indicate a few open
research areas.

The book ends with a brief chapter. The contributions are summarized, impli-
cations to modern direct manipulation interfaces are discussed, and future research
directions are proposed.

2
Studying UNIX

This chapter introduces a study of natural everyday human usage of the UNIX
operating system and its command line interface. Analysis of the data collected is
central to the pursuit of knowledge of user behavior when interacting with general-
purpose environments. The chapter begins by describing UNIX and gives reasons
why it is an appropriate vehicle for research. Section 2.2 reviews several methods of
data collection used with previous UNIX investigations, and Section 2.3 describes
the details of the current study. Analyses of data are deferred to later chapters.

2.1 Choosing UNIX

Why perform natural studies on UNIX, with its baroque and outdated user inter-
face, instead of controlled experiments on a modern system? This section starts
by advocating a natural study for exploratory investigation of human—computer in-
teraction. After recognizing several pragmatic problems with such investigations,
UNIX is introduced and its choice is justified.

2.1.1 Natural studies

The thrust of the work presented in this book is that it is possible to capitalize
on patterns evident in human—computer interaction by building special user sup-
port tools. A prerequisite is to “know the user” (Hansen, 1971). One way to
accomplish this goal is through analyzing everyday natural user interactions with
current systems so that existing patterns of activity can be discovered and exploited.
Hanson, Kraut, and Farber (1984) justify this approach by contrast with traditional
controlled experimentation.

Although [a controlled experiment is] appropriate and useful in theory-guided re-
search ... it is less appropriate when the researcher needs to identify new variables or
complex unknown relations between new variables. Nor does it deal efficiently with
highly multivariate phenomena such as human—computer interaction. Where neither
theory nor time will tolerate the isolation of a few controlling variables, assessing
people’s natural use of a computer system may be highly informative. .. .Generally,
observational data of human—computer interaction can allow the testing of simple
hypotheses and intuitions, the discovery of computer features that cause problems
for users, and guidelines for interface design.
— Hanson, Kraut, and Farber, 1984

Investigating people’s natural behavior when using computer systems is not

11

12 Studying UNIX

easy. Several major problems present themselves. First, there is no established
methodology of study. Past experimenters used various methods, leading not only
to hard choices for new researchers, but also to difficulties for those wishing to
contrast or replicate results of previous work. Even when similar methods are
chosen, the lack of controls makes comparison questionable. Investigations are
often performed on widely different or rapidly evolving operating systems and user
interfaces, and habits of user populations may be site-specific.

A second problem with natural studies of user interfaces is the difficulty of
collecting data. Monitoring real life human—computer interaction is not easy.
Source code may not be available for modification; interactions may go through
a suite of programs rather than through a single one; security measures at the site
may preclude close study. Furthermore, subjects may be hard to obtain. People
resist conscription, perhaps due to concerns about privacy or plain inertia, or
site populations are just too small for adequate sampling. Corporate reluctance
also hinders data collection, for computer and human resources are expensive.
Monitoring users takes processor time, physical records of user activities need
substantial disk space, and subjects’ time is costly.

With these provisos in mind, natural studies can, at least in principle, give
valuable insight into people’s behavior when using computers. One popular vehicle
for such studies is UNIX.

2.1.2 A brief introduction to UNIX

UNIX is a widely used multitasking operating system that runs on a variety of
computers, and is well described in many academic and popular publications (e.g.,
Ritchie and Thompson, 1974; Kernighan and Mashey, 1981; Pike and Kernighan,
1984; Waite, 1987). From the user’s point of view, it has several important com-
ponents. One is the file system, where all files are organized within hierarchical
directories. Directories and files can be manipulated by users in all the standard
ways. Users often work within the confines of a single “current” directory, although
resources located in other directories are generally available as well.

Another important feature of UNIX is that no distinction is made between files
containing programs and those containing other things (such as command scripts);
any file is eligible for execution.! Although UNIX contains a large but standard
repertory of programs, there is no difference between invoking a system program
and a user program. This is significant because it allows one to tailor a system to
individual needs simply by writing utility programs and putting them in the right
place, without having to alter the innards of the system in any way. By setting search
paths, users can tell UNIX to look for executable programs in specific directories

LTechnically, an execution bit has to be set before a file can be run as a program. However, this bit can be
easily set by a user with the appropriate permissions.

2.1. Choosing UNIX 13

containing the standard system libraries, the user’s own personal libraries, or files
belonging to other members of the community. However, this flexibility has
drawbacks. It encourages users to build and share extensive libraries of commands,
causing difficulties with the naming of different programs and multiple versions of
programs. Other users may come to rely on programs in a personal library without
the owner’s knowledge, in the erroneous belief that they were “standard” utilities
(Witten and Greenberg, 1985).

The third UNIX component is its user interface, a command line interpreter
called a shell? that comes in several flavors, the most popular in North America
being csh (Joy, 1980). As with most conventional command-driven systems, csh is
a passive slave awaiting orders; no attempt is made to guide or help the user. Csh
implements incremental interaction. Once an order is received, it carries it out and
then awaits the next command. Despite the proliferation of screen-based programs
(especially editors), the basic csh interface is teletype-like. No use is made of
the cursor control features provided by most VDUs. With the exceptions of the
character-erase, word-erase, and line-erase capabilities, the screen is treated as a
long roll of paper. Through the shell, users compose, edit, and then submit an input
line to UNIX. The usual form of a submission is a command, optionally followed
by an argument list.> Although the command may be handled directly by csh, it
typically creates a new process by executing a file containing either compiled code
produced by a programming language, or a script of further command lines. The
argument list is made available to the program, and it can have two components:
options and objects. Options modify the standard meaning of the program, that is,
they “reshape” the tool. The program acts on the objects, which are usually UNIX
file names or strings. Arguments may contain regular expressions (sometimes
called wild cards) that are replaced by the shell with the names of files matching
the expression.

Two other csh facilities are worth noting. With history, users may recall (rather
than retype) part or all of a previously entered command line submission (see
Section 4.1.1). With aliases, users may specify a name (the alias) and a definition.
When the alias is typed on the command line, csh will substitute the definition in its
place. Aliases allow users to redefine a command name, to customize commands
by specifying default options, and to abbreviate a longer command line sequence.

UNIX users can tie together resources by redirecting input and output between
programs, files, the keyboard, and the screen,; this feature distinguishes UNIX from
other command line systems. A standard UNIX program takes its input from the
keyboard and places its output on the screen. Yet the same program can work with
files, simply by using the two redirection symbols < and >, which stream input

2The command line interpreter is called a shell because it surrounds the kernel of the operating system
(Quarterman, Silberschatz, and Peterson, 1985).
3 Although csh contains a rudimentary programming language, it is rarely used at the command line level.

14 Studying UNIX

from file to program and output from program to file respectively. Program-to-
program communication is supported through the pipe symbol |, eliminating the
need for explicit temporary files. For example, consider the sorf command that sorts
its input lines, and the unig command that removes succeeding copies of identical
lines. Typed by itself, sort waits for a user to enter all the input lines through the
keyboard, and prints the ordered results to the screen afterward. In the command
line sort < in > out, the lines in the file in are sorted and then written to the new
file out. Finally, the sequence sort < in | uniq uses the output of sort as the input
to uniq ; an ordered list of the unique lines contained in the file in is written to the
screen. Through redirection and pipes, the user can “combine” UNIX tools.

Because no distinction is made between user and system software, and because
input and output are easily passed between programs, UNIX works well when many
small, general-purpose modules are available as building blocks for new programs.
This follows from the cornerstone philosophy of UNIX:*

Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding “new” features. Expect the output of every
program to become the input of another, as yet unknown program. ... Do not insist
on interactive input.

— Mcllroy, Pinson, and Tague, 1978

The building blocks approach has drawbacks. Although small programs can be
combined in many ways not anticipated by the original designer, it is sometimes
hard to perform common operations without resorting to some level of rudimentary
“programming.” Less experienced users are often overwhelmed by the complexity
of the system (Dzida, Hoffmann, and Valder, 1987). Still, it is the power and
richness of UNIX that make it interesting. Because diverse utilities are available,
and program creation and sharing are encouraged, UNIX fits the description of a
general-purpose environment given in the last chapter.

2.1.3 Why study UNIX?

UNIX is a twenty-year-old operating system whose command line interface no
longer represents current ideas in interface design.> Even at its best, the UNIX
interface is full of well-known deficiencies (Norman, 1981). Then why study
UNIX? Why not look at, say, a modern icon-based interface instead? This section

4Some people believe that current versions of UNIX have seriously compromised the “one tool one job”
philosophy (Waite, 1987; Pike and Kernighan, 1984).

SUNIX was first developed in 1969 by Ken Thompson and the Computer Science Research Center of Bell
Laboratories in Murray Hill. Originally written for the DEC PDP-7 computer and influenced by the Multics
operating system, it was not publicly licensed and widely released until 1976 (Quarterman, Silberschatz, and
Peterson, 1985).

2.1. Choosing UNIX 15

argues that studying UNIX is indeed fruitful for several reasons: it is still in
heavy use; it generalizes across many other systems; a body of knowledge of
UNIX behavior currently exists; and finding and monitoring subjects is relatively
straightforward.

Generalization. One attraction of UNIX is that it is not a contrived “toy” system.
Rather, it is widely used, very powerful, and potentially complex, and has a broad
range of users (Kraut, Hanson, and Farber, 1983). Because it is a general-purpose
computing environment fulfilling many needs, any results garnered from it may
generalize to other systems. In contrast, many high-performance graphical inter-
faces are so customized to particular applications that generalizations would be
difficult to make and support.

Although direct-manipulation systems are becoming more popular, command
line interfaces such as UNIX still pervade computer use. Some examples from
mainframe and personal computing environments are VAX VMS, Honeywell Mul-
tics, APOLLO Domain, CPM, IBM VM, and IBM DOS. Hierarchical menus based
on either text or graphics are usually little more than syntactic sugar placed on top
of a command line system.® Observations made of UNIX usage probably apply to
all these systems too.

If UNIX findings could not be generalized, they would still be valuable in their
own right. Although old, UNIX is far from dying. Rather, it is being rapidly
disseminated as a de facto open system standard on diverse machines, running the
gamut from mainframes to workstations and personal computers. Even users of
graphical direct-manipulation interfaces can thirst for UNIX, as illustrated by the
availability of UNIX on the Apple Macintosh. Vendors have recently modernized
UNIX by embedding it within a window environment. The SUN workstation,
for example, has a suite of window-based front ends to popular UNIX facilities,
including the shell, debugger, mail system, terminal emulator, directory browser,
and so on (Sun, 1986b). More ambitiously, the developers of the NeXT machine
have built a full-blown direct manipulation environment around the UNIX operating
system (but users can still bring up the familiar shell in a glass teletype window).

An existing body of knowledge. Another appeal of UNIX to researchers is that
it has already been studied extensively. There is probably more knowledge and
raw data available on UNIX usage than any other computer system. The scientific
process is more easily realized; other UNIX studies can be replicated, and previous
findings can be built upon.

SMENUNIX, summarized in Chapter 8, is an example of a menu-based interface built directly on UNIX
(Perlman, 1984).

16 Studying UNIX

Finding and monitoring subjects. A pragmatic advantage of studying UNIX is
that it is relatively easy to do, because large groups of diverse people use it at many
different sites. Although the system is generally perceived to be expert-oriented,
there is no question that a significant number of non-programmers with widely
varying needs also harness its power. UNIX is often the standard system employed
by research institutions. The benevolent setting allows large-scale realistic studies
that span user categories.

At the University of Calgary, for example, UNIX is used heavily in the De-
partment of Computer Science by people with quite diverse programming skills
and personal requirements. It is also available to people in several non-computer
departments. The academic setting not only provides a captive audience, but also
encourages participation — bureaucratic procedures are in place for conscripting
subjects for study. Finally, UNIX source code for its programs are available for
modification.

In summary, it is assumed that observed usage patterns of UNIX are fundamental
to most computer-based imperative interactions. Methodological motivation arises
from the number of diverse users, the relative ease of collecting data, and the exis-
tence of other findings for comparison. Studies of UNIX usage are generalizable,
and have already affected the design of leading-edge systems. For example, Card
and Henderson (1987) describe a multiple virtual workspace interface to support
user task switching, motivated by the UNIX study of Bannon, Cypher, Greenspan,
and Monty (1983) (see Sections 8.3 and 8.1).

2.2 Techniques for analyzing activities of UNIX users

As mentioned previously, many computer studies lack a standard methodology for
data collection. UNIX studies are no exception, and records of interactions obtained
range from low-level input traces collected over large user populations through to
protocol analyses elicited from a few select subjects. This section surveys common
methods that have been used for studying UNIX, and indicates their associated
advantages and drawbacks.

2.2.1 Traces of user activity

A record of interactions between user and computer, usually collected through an
unobtrusive software monitor, is called a trace. In natural studies of UNIX usage,
voluminous amounts of data are often collected and sifted through in the hope
that something interesting may turn up. Alternatively, a subject may be asked to
solve particular problems, and his performance monitored over short-term tasks.
This second approach is fruitful for testing hypotheses about user behavior and for
exploring subdomains of UNIX. A measure of validity is obtained by comparing
traces generated by the artificial task to those generated under normal circumstances

2.2. Techniques for analyzing activities of UNIX users 17

(Lewis, 1986).
The methods listed below describe ways that traces have been generated on
UNIX.

Method 1: recording all keystrokes entered. Every single character entered on
the command line is recorded, including the special line-editing characters (e.g.,
<backspace>) and non-alphanumeric characters (e.g., <return>). The monitoring
software is fairly easy to write. In UNIX, for example, an interposed pseudo-
tty filter can catch and note all keystrokes on entry before passing them on to the
primary application. This easily implemented method supplies a complete record of
all input. Yet there are several disadvantages. First, unnecessary data is collected.
Unless the study is concerned with line editing or similar low-level artifacts, no
benefit is gained by including such primitive operations. The final line, as seen by
the user before a <return> is selected, would suffice for most purposes. Second,
such traces are not easily read due to the inclusion of special editing characters.
Consider, for example, the following input characters for a line taken from a typical
script (Lewis, 1986), where AH represents a <backspace>, AM areturn, and Ll a
space:

IsasUAH UAHAH UANAHAH UAHm — AHUAHAH UAHsU —FAM

After editing, the line translates to Is —F.” A third more serious disadvantage is that
the csh manipulations of the line are not recorded. Once a line is entered, the csh
expands wild cards, history substitutions, and aliases. Although the expanded line
may reflect the intention of the user more closely, it is not captured by recording
keystrokes only.

Method 2: session transcripts. A variant of recording keystrokes is recording
complete transcripts of a login session, which includes the user’s input and the
system’s response. Saving transcripts as a textual record is simple, for there is a
standard UNIX facility to do so. No additional programming is necessary. If the
interface follows a glass-teletype style of dialog, the record will be human readable
as a sequential script. If the interface uses cursor control or graphical interaction, it
is probably best to view the transcript as an animated playback record instead (not
available in standard UNIX).

Transcripts are information rich, which is their weakness as well as their strength.
Although they work well for small studies involving short sessions, the data pro-

"The number of keystrokes used to enter text is significantly more than the number of final characters. In a
study of document creation through an editor, Whiteside, Archer, Wixon, and Good (1982) observed that only
one-half of a user’s keystrokes are for text entry. The rest were for cursor movement (1/4), text deletion (1/8),
and so on.

18 Studying UNIX

duced for anything larger is so voluminous that it is almost impossible to handle.
Transcripts are best used in pilot studies, or as a way of augmenting other data
collection methods.

For example, Akin, Baykan, and Radha Rao (1987) performed a case study of
the structure of the UNIX directory space by reviewing transcripts of users asked
to carry out certain tasks. Even though only two subjects were used, and the task
duration was limited to half an hour, they reported that the records were lengthy and
hard to analyze. However, the transcripts did provide insight into user’s movement
in the directory space.

Method 3: recording lines expanded by csh. Instead of collecting data by catch-
ing keystrokes as they are entered, the complete line submitted can be captured as
a chunk after it has been entered and processed by csh. All the noise produced
by line editing would be removed. This is easily accomplished through the csh
history facility, where lines automatically recorded by the system can be saved in a
file. Desmarais and Pavel (1987), for example, collected and analyzed short-term
UNIX traces by this method, and applied the information to generate user models.

Extra information known to csh can be trapped and noted as well by placing
“hooks” within the csh program itself. In-line expansion of history use, aliases,
and regular expressions can be recorded, as well as the current working directory
of the user and the error status after execution is attempted. This is the method
used in the current study, which will be described further in Section 2.3. The data
collected is, of course, substantially richer than the data supplied by standard UNIX
history. The catch is that modifying the source for csk is required. Because this
contains over 16,000 lines of sparsely documented and quite complex code, the
task is daunting.®

There are several problems with recording lines expanded by csh. First, not all
user activity is captured. Although recording csh lines works well for “batch” style
programs that execute and return without user intervention, it is not appropriate
when highly interactive applications are used (e.g., editors). Interactive information
is lost because data is collected from the csh command line only. Also, commands
cannot be considered “equal.” For example, consider a trace containing only two
UNIX commands: Is for listing files; and emacs, which invokes a sophisticated
interactive editor. Whereas file listing is accomplished almost immediately, an
editing session can last for hours. This distinction is not captured by csh. A second
disadvantage with this recording method is that the actual processes spawned by
the command line are not noted. There are many ways to execute programs in
UNIX: directly by name, indirectly through an alias or csh variable, or as a suite

8Four months were required to produce an acceptable tested version of csh that included a robust monitoring
facility, even though the final number of modifications required was relatively small. This time includes the
bureaucratic red tape involved with obtaining csh source.

2.2. Techniques for analyzing activities of UNIX users 19

of programs through a script. Because of this diversity, users can invoke the same
program by many different names. For example, e, emacs, and ed may all invoke
the same editor. Because only the text typed to csh is collected, the actual processes
executed are left as an educated guess.

Tracing lines expanded by csh is a tradeoff between recording too much and
too little information. By selectively combining this method with other ways of
recording data, most problems noted above are correctable. For example, Lewis
(1986) includes the final expanded line along with the command line as issued.

Method 4: recording processes spawned by user’s commands. A popular
method of analyzing UNIX usage exploits data collected by the standard system
accounting packages, which records the processes spawned from a user’s command
rather than the command itself. The advantages lie in the ease of collecting data,
and in having a record of the system’s response to the user’s activity. Unlike some
previous methods, no program generation or modification is necessary.

But recording processes spawned is severely limited. First, many commands
spawn multiple processes not mentioned explicitly by the user. Recording of
processes reflects the user’s command selection only when the generated process
matches the submitted command, which is often not the case. A command may
create multiple processes, and inferring what was actually typed by the user can be
difficult. Researchers using this method have to develop strategies for eliminating
the extra processes from the record. These include sifting the data by hand (Bannon
and O’Malley, 1984), by a filter (Draper, 1984), or by supplementing the process
data with command line data (Kraut, Hanson, and Farber, 1983).

Another major problem with recording processes only is the impoverished in-
formation produced. All options and arguments qualifying the command are lost,
because the record indicates only the processes executed. Yet these are critical
for understanding how a command is used. Also, commands handled directly by
csh cannot be detected, as they do not spawn new processes (e.g., Draper, 1984).
Furthermore, the use of aliases and history use is not noticed, because processes
are created only after the line has been expanded.

A final problem stems from the difficulty of handling processes generated from
user-written programs or scripts that are not part of the standard UNIX library.
These are surely important, for UNIX encourages users to supplement system
software with personal software. Yet some previous studies simply ignored those
processes that were not within the system domain, usually by filtering out the
unknown ones from the process list (Draper, 1984). Still, noting processes gives a
reasonable approximation of the commands entered and executed by users.

20 Studying UNIX

2.2.2 Protocol analysis

Although some analysis of user activities is possible by studying traces, inferring
a user’s high-level intentions from a low-level record is always difficult. A better
method of discovering intentions is to have users describe their activities as they are
performed, a technique called protocol analysis. Some ways that protocol analysis
has been used within UNIX are noted below.

Method 5: annotation of traces. Users are asked to annotate periodically a history
list of commands with their intentions during a login session, perhaps by thinking
aloud or by textual in-line comments. For example, Jorgensen (1987) instructed
subjects to talk aloud while performing an artificial task involving UNIX mail. Their
comments were recorded on audio tape and the important ones were later merged
with transcript logs collected by the second method. Similarly, talking aloud into a
tape recorder has been used in UNIX studies by Jennifer Jerrams-Smith.?

The example below gives a portion of a textually annotated trace, as recorded by
Bannon, Cypher, Greenspan, and Monty (1983).

Write Info report. Its going to take a long time and be interrupted by other activities
15 vi Ireport

Interrupted to prepare a memo. Send note to gm about outcome
16 snd gm

Back to Ireport
17fg
18If HMI...

Alternatively, the researcher may take a more active role and discuss the trace
with the user either during or after the session (see method 7).

An objection to this form of protocol analysis is its obtrusiveness. Because
of this, annotations are sometimes deferred until the end of an interactive session.
Perhaps a more serious problem is that annotations may not reflect actual intentions.
When comments are noted after a set of activities are performed, they may reflect
post hoc rationalizations of actions rather than real situations (Suchman, 1987).

Method 6: constructive interaction. One way of removing the disruptive effect of
annotations is through constructive interaction, where natural discussion between
interacting participants of a study is used to reveal underlying processes (Miyake,
1982). When applied to studies of human—computer interaction, cooperating users
are videotaped while solving a problem on a computer, although other resources
may be made available to facilitate discussion. This is a good way of revealing the

9. Jerrams-Smith, Al Group, Philips Research Laboratories, Redhill Surrey, UK.

2.3. Data collection for the current study 21

users’ mental model of particular concepts, especially when one or both participants
are discussing a topic they do not fully understand (O’Malley, Draper, and Riley,
1984; Suchman, 1987).

In contrast to regular thinking aloud (fifth method), Jorgensen (1987) noted
that sessions involving constructive interaction were “more lively, and that far
more points were elicited spontaneously.” He also suggested that subjects were
encouraged to continue their tasks by the presence of their colleagues. On the
down side, he reported that the mixing of two individual lines of thought into one
sometimes produced a confusing picture of events.

Method 7: interviews and questionnaires. A simple method of eliciting knowl-
edge about the high-level intentions of a user is through questions asked before or
after the user performs a task.’® A group of users may be queried on paper (ques-
tionnaires) or verbally (interviews) for their views on the system. For example,
Sutcliffe and Old (1987) used a questionnaire to elicit preliminary information on
user experiences, attitudes, and knowledge with UNIX, and the typical tasks per-
formed. Command traces were then logged through the fourth method described
in the previous subsection. These were annotated in a set of follow-up interviews
where users were asked to verbalize their recorded task sequences. Sutcliffe and
Old mention that system logs proved the most valuable of the three methods.

2.3 Data collection for the current study

In this study, command line data was collected from users of the UNIX csh com-
mand interpreter. The selection and grouping of subjects, and the method of data
collection, are described in this section.

Subjects. The subjects were 168 unpaid volunteers. All were either students or
employees of the University of Calgary.

Subject use. Four target groups were identified, representing a total of 168 male
and female users with a wide cross-section of computer experience and needs.
Salient features of each group are described below, while the sample sizes (the
number of people observed) are indicated in Table 2.1.

Novice Programmers. Conscripted from an introductory Pascal course, these
subjects had little or no previous exposure to programming, operating systems,
or UNIX-like command-based interfaces. Such subjects spent most of their
computer time learning how to program and use the basic system facilities.

10Because they are not performed during the task, interviews and questionnaires are not, strictly speaking,
methods of protocol analysis.

22 Studying UNIX

Table 2.1. Sample group sizes and statistics of the command lines
recorded

Name Sample Total number Number of command
size of command lines excluding errors
lines total mean std dev
Novice Programmers 55 77,423 73,288 1,333 819.8
Experienced Programmers 36 74906 70,234 1,950 1,276.0
Computer Scientists 52 125,691 119,557 2,299 2,022.9
Non-programmers 25 25,608 24,657 986 1,155.6
Total 168 303,628 287,736 1,712 1,498.8

Experienced Programmers. Members were senior computer science undergrad-
uates who were expected to have a fair knowledge of programming languages
and the UNIX environment. As well as coding, word processing, and em-
ploying more advanced UNIX facilities to fulfill course requirements, these
subjects used the system for social and exploratory purposes.

Computer Scientists. 'This group, comprised of faculty, graduates, and re-
searchers from the Department of Computer Science, had varying experience
with UNIX, although all were experts with computers in general. Tasks per-
formed were less predictable and more varied than other groups, spanning ad-
vanced program development, research investigations, social communication,
maintaining databases, word processing, satisfying personal requirements, and
SO on.

Non-programmers. Word processing and document preparation was the domi-
nant activity of this group, made up of office staff and members of the Faculty
of Environmental Design. Little program development occurred — tasks were
usually performed with existing application packages. Knowledge of UNIX
was the minimum necessary to get the job done.

Because users were assigned to subject groups only through their membership in
identifiable user groups (e.g., computer science graduate students), their placement
in these categories cannot be considered strictly rigorous. Although it was as-
sumed that they generally follow their group stereotype, uniform behavior was not
expected.

Instructions to subjects. As part of the solicitation process, subjects were in-
formed verbally or by letter that:

e data on their normal UNIX use would be monitored and collected at the
command line level only;

2.3. Data collection for the current study 23

the data collected would be kept confidential;
any public reference or dissemination of the data and derived results would
guarantee anonymity, unless explicit permission was given by the subject to
do otherwise;

e atany time during the study period the subject could request that data collection
stop immediately;
there would be no noticeable degrading of system performance;
if requested, data collected from a subject would be made available to him or
her.

These subjects did not require nor did they receive any additional instructions during
the actual study period. No subject asked to be withdrawn from the experiment,
and no one asked to see their personal data.!!

Apparatus. A modified csh was installed on three VAX 11/780s located in the
Department of Computer Science and one VAX 11/750 in the Faculty of Envi-
ronmental Design, all within the University of Calgary. Many different terminals
were available to participants, most which were traditional character-based VDUs.
In addition, CORVUS CONCEPT workstations running the JADE window man-
ager were available to members of the Experienced and Computer Scientist groups
(Greenberg, Peterson, and Witten, 1986). As with many window systems, this
workstation allowed users to create many “virtual terminal” windows, each run-
ning csh, on a single screen.

Method. Command line data was collected continuously for the four months be-
tween February 1987 and June 1987 from users of a modified Berkeley 4.2 UNIX
csh command interpreter (Joy, 1980). From the user’s point of view, monitoring
was unobtrusive — the modified command interpreter was identical in all visible
respects to the standard version. The total number of command lines recorded per
group is listed in Table 2.1.

Data was collected by the third method of Section 2.2.1 — recording lines ex-
panded by csh. Table 2.2 lists the trace information annotated by the modified csh.
Login sessions are distinguished by a record that notes the start and end time of
each session (the ‘S’ and ‘E’ fields in the table). Command lines entered during
this period are then listed in following records, each annotated with the current
working directory, alias substitution (if any), history use, and error status. The
final command line accepted by csh, including history expansions and ignoring
editing operations that form the line, is recorded in the “C” field. The “D” field
notes the directory that the user was in when the command line was entered. The

115ee Appendix A in Greenberg (1988a) for a copy of a typical information sheet provided to subjects.

24 Studying UNIX

Table 2.2. Trace information annotated by the modified csh

Code Description Example
Login session record
S Start time of the login session S Fri Feb 6 15:54:25 1987
E End time of the login session E Fri Feb 6 17:25:01 1987
Command line record
C The line entered by the user Cls-a
D The current working directory D /user/greenberg/bin
A The alias expansion of the previous command (if Als-a
any)
H The line entered had a history expansion in it H True
(True or Nil)
X The error detected in the line by csh (if any). A XN 10

following letter and number code indicates the
category and actual error type.

alias expansion of the line is found in the “A” field, whereas the “H” field indicates
whether or not csh history helped form the line. System errors generated by csh are
registered in the “X” field. Although eleven categories and many sub-categories
of errors are annotated, the distinctions between them are not used in the current
study. The total and average number of command lines collected excluding these
errors are listed in Table 2.1

An example trace is given in Appendix A. Appendix B provides summary statis-
tics for each subject, including the number of login sessions, the command lines
entered, the different commands used, the csh errors noted, the times history was
used, and the different directories accessed.

Data selection. If subjects did not log in at least 10 times and execute at least
100 commands during the study period, their data was not considered. By these
criteria, 12 of the 180 original participants were rejected. Particular manipulations
of the data, the analyses performed, and the results obtained are described in later
chapters.

Motivation. Participants used UNIX as usual. Users were neither encouraged nor
expected to alter their everyday use of the system. As subjects had few reminders
that their command line interactions were being traced, they were largely oblivious
to the monitoring process.

Availability of data. All data collected is available to — and has been used by —
other researchers. A research report describes its format, and includes a cartridge

2.4. Concluding remarks 25

tape of the data (Greenberg, 1988b). The report and data are available from the
Department of Computer Science, University of Calgary, or the author. To ensure
the confidentiality promised above, data was massaged to remove the identity of
subjects.

Problems. Because of implementation difficulties, the details of history directives
are not recorded. The altered csh indicates only that history has been used, and
notes the command line retrieved through history. It does not record the actual
history directive used to produce the modification.

24 Concluding remarks

This chapter argued that it is worthwhile to study data collected from everyday
use of UNIX. Previous methodologies used for capturing UNIX interactions were
examined, and the particulars of the method employed by the current investigation
were listed.

One difficulty of studying and analyzing UNIX comes not from considerations
of methodology, but from personal biases of the scientific and user communities.
Because UNIX is so popular, and because reports of its deficiencies (and corre-
sponding remedies) are so numerous, it is perceived by some to be a “straw man”
that is easily picked upon. A reaction to yet another UNIX study could be apathy.
Yet all UNIX investigations are not alike. The main purpose of this study, like a
handful of others, is not to improve UNIX — it is too late for that. Rather, I assume
that UNIX investigations are best harnessed to illuminate fundamental properties
of human behavior when using similar general-purpose environments. If doubts
exist about generalization, the methodology may be applied to other systems for
empirical comparisons.

This study could have been performed on almost any other system with a rich
set of constructs. UNIX csh was chosen for pragmatic considerations, and because
I believe its usage reflects that of other systems.

3
Using commands in UNIX

This chapter examines how people use commands in command-based systems.!
Like previous work, it is based on an analysis of long-term records of user—computer
interaction with the UNIX csh command interpreter, collected as described in the
previous chapter. The results of the major studies are reevaluated, particularly those
of Hanson, Kraut, and Farber (1984), and Draper (1984), and some of the work is
replicated. Although the statistical results of the studies are supported, some of the
conclusions made by the original researchers are found to be misleading.

The following sections provide details of how people direct command-based
systems in terms of how individual commands are selected and the dependencies
between these commands. It is essential to take into account the fact that pooled
statistics may conceal important differences between individuals. As a conse-
quence, the results are analyzed by user and by identifying groups of similar users,
as well as by pooling data for the entire population.

For the current study, a command is the first word entered in the command line.
Those lines that produced system errors were not considered. The first word is
parsed by removing all white space at the beginning of the line and counting all
characters up to but not including the next white space or end of line. For example,
the command parsed from the command line

print —f 31 —t 40 galley.text

is “print.” The parsed word is almost always a true UNIX command or alias that
invokes a program or shell script. This method does not record all the UNIX
commands used, for an input line may contain more than one command (e.g.,
by redirecting input and output with pipes, or by cascading separate command
sequences). Still, it seems a reasonable approximation.

3.1 Frequency distributions of commands for large groups

Several investigators have examined the frequency of command usage by a
user population (Peachey, Bunt, and Colbourn, 1982; Kraut, Hanson, and Farber,
1983; Hanson, Kraut, and Farber, 1984; Ellis and Hitchcock, 1986). All studies
report results approximated by a Zipf distribution, which has the property that a

ISome of the findings in this chapter were first presented at the 3rd IFAC Conference on Man—Machine
Systems, Oulu, Finland (Greenberg and Witten, 1988a).

26

3.2. Usage frequency of particular commands between groups 27

relatively small number of items have high usage frequencies, and a very large
number of items have low usage frequencies (Zipf, 1949; Witten, Cleary, and
Greenberg, 1984).

A looser characteristic of this kind of rank distribution is the well-known 80-20
rule of thumb that has been commonly observed in commercial transaction systems
— 20% of the items in question are used 80% of the time (Knuth, 1973; Peachey,
Bunt, and Colbourn, 1982).2 In measurements recorded from a UNIX site, Hanson,
Kraut, and Farber (1984) report a similar trend — 10% of the 400-500 commands
available account for 90% of the usage. These models also hold for the frequency
distribution of all help requests made for particular commands through the UNIX
on-line manual® (summarized in Section 5.3.1; also see Greenberg, 1984).

The current study supports these observations. Figure 3.1 illustrates the com-
mand frequency distribution for each of the four different user groups described
in the previous chapter. The frequency distribution is not a probability distribu-
tion. It gives the relative frequency between commands, rather than the actual
frequency of use. The vertical axis shows the number of command invocations,
normalized to one for the most frequent, whereas the horizontal axis shows the
rank ordering of commands, with the most frequent first. Only the twenty highest
ranking commands for each group are shown. For example, the most frequently
selected command by the Experienced Programmer group is positioned first in the
rank order, and is used at a relative frequency of 1. The second most selected (rank
order of two) is used at a relative frequency of 0.94, the third at 0.49, the fourth
at 0.35, and so on down the list. The Zipf curve, normalized in the same way and
calculated as y = z~1, is illustrated by the smooth line in the figure, and seems
to provide a plausible model for the observed frequencies. For each of the four
user groups, 10% of the commands used accounted for 84%—91% of all usage (cf
Hanson’s 10%-90%).* This ratio seems independent of both the actual number of
different commands used by a group and the size of the sample group.

3.2 Usage frequency of particular commands between groups

Even though frequency statistics of different groups are modeled by the Zipf dis-
tribution, it is worth asking whether commands retain the same rank order between
different user groups. If they do, then a command used frequently by one group
will have the same relative usage in another. As will be seen later in this chapter,
this is not necessarily the case.

2This rule is recursive, as the 80-20 rule also applies to the most active 20% (Knuth, 1973).

3Every command in the UNIX system usually has a corresponding manual entry, invoked by typing man
<command>.

4 Although similar results seem to apply to the top 10% of the command set, the recursive property of the rule
cannot be checked reliably. Limits are quickly reached over the relatively small number of remaining commands.

28 Using commands in UNLX

1.09
0.8 — Zipf
— ; -+ Scientists
E . —%- Non-programmers
'?é 0.6 - —& Novices
S T & Experienced
>
2 047
g 1
g
[+
0.2 7
0.0 d T T T T T —
0 5 10 15 20

Command Rank

Figure 3.1. The normalized command frequency, compared with Zipf.

Table 3.1 gives the data from which Figure 3.1isdrawn. Each column shows the
twenty most frequently used commands by each group (including data reported by
Hanson, Kraut, and Farber, 1984) and also provides the total number of commands
executed, the number of different commands executed, and the number of users
sampled. The few common high-frequency commands across the five user groups
are mostly concerned with navigating, manipulating, and finding information about
the file store (such as Is, rm, and cd). Comparison of other commands captures
the differences between the groups. The emphasis on programming by both our
novice and experienced subjects is reflected by the various compilers used (pix and
pi for Pascal, make for “C,” and ada). The non-programmers, on the other hand,
seem concerned with word processing (as indicated by the relatively heavy use of
nroff and spell). The type of editor also indicates group differences — vi and ed are
chosen by Hanson’s group, whereas emacs, e, umacs, fred, and ed have varying
degrees of use within the others.

Grouping all subjects into one category also illustrates the danger of using a
population stereotype to approximate the activity in each group. As shown by
column 1 of Table 3.1, which pools all subjects of this study into one large sample,
some high-frequency commands are not used frequently (if at all) by all groups

(e.g., pix, umacs).

91 ST (4Y 9¢ SS 891
2215 2)dupg

00V 961 158 886 92 LOE'T

spuvwnuod ma4affiq
¥£6'6 LS9VT LSS'611 v€T'0L 88Z°€L 9€L'L8T

pamoaxa hﬁtgc U
L0 Ame | 680 bde (060 ofed 9I'| oym 190 09dpd 0670 uew
Lo pad | 20T P 160 i g1 sd 110 moSo] 60 pay
Lo e | 0Tl AW 660 Py 1¢1 bdp zr0 sedpd 9¢'| pomu
60 B | LT feds Zo'1 d ¢ [rewr ¢o°[rew g0°[few
60 oyod | /71 Q@ SO'1 wdopr ¢¢'1 moe po| pay pI'1 oym
60 102 | I€1 oo gr uew /€] oymr 7’1 d 9¢1 sd
(A dosd | L¢1 [rew (7’1 AW 8GT] do ¢ d gyl do
(A aw | 061 M 65T oym 68’ XBA-XO GE'[SORWR 6] dp
0T [rew | 66°1 arowr 79[' G8'[epe 80T bdi 681 1’0
Sl powu | 691 yond oL1 J o161 602 d 661 [rew
0T e | 99°1 do 161 sd 961 ® 97T 202 bdj
ST <lere sd 90T 0w 70T I 6T duos (¢ 210w
LT Y] sTT bd] 9¢T bd] 997 soewd {97 P L0€ 3
Mw.m ul .\nv.v PR wWN o1 4iie] MO.N ux MO.N 1owr wN.m SorUIg
96 P2 | 99 ur 00'g frew €67 Mew LT ® e uu
6S | 0z9 2 IT¢ w6y arow gI°¢ noopy 2
79 | | ss'6 pomr gy 3wy 3 ¢¢¢ ur peg soewn
96 ® | 966 p> 86§ 2 629 2 318 ST 699 xid
001 s | sgTl SoRWS 7901 P> €0TI P> 68°0T soeum ¢g'g po
(A PO | €681 S| SLST sl 9L'T1 SI ¥9'6¢ xid €e€1 s{
ﬂUmn o& v:«EEoo gms && —ENEEOO vOmB e& v:aEEOQ voms @ v:«EEOU vaD b& _UGNEEOO vOms @ v:«EEOO

dnoad stawmresdoad SISBIUAIDG srpwweldol] slawweidol g s303[qns
s,uosuely ~UuoN Jyndwo) pasudrradxy AN nv
S1dYO Apnj3s JuaLand 3y wodj sdnoin
§Ano.d 4asn 242 [fip

aaif 10f spuvunuiod K1uamy doy ay3 fo suounqusIp pubwiwio)) “1°¢ JQeL

30 Using commands in UNIX

Even though the Zipf form of the frequency distribution remains intact between
different groups of a population (Figure 3.1), the rank order of commands is not, in
general, maintained.

3.3 Frequency distributions and command overlap between individuals

The extent to which the usage statistics of an individual resemble those of a group of
like people is considered next. Does the Zipf distribution characterize each user’s
command interactions, or is it just an artifact of data grouping? Do individuals
within a group invoke the same set of commands? One might expect the variation
between users to be even greater than that between groups.

In the previously mentioned study of the UNIX on-line manual, the frequency
distribution of help requests was analyzed between individuals (Greenberg, 1984).
In general, users constrained themselves to relatively small subsets of the requests
possible — they never accessed a great many potential entries. Moreover, when
users’ subsets were compared, the intersection between their elements was small
and the frequency of access of the common elements varied considerably across
users. Greenberg (1984) suggested that although individual help requests seem to
follow the Zipf distribution in broad outline (but not in detail), it is not possible
to make anything but the grossest generalization from a population perspective of
how individual users will access particular items within a system. This study is
summarized further in Section 5.3.1.

The same is true for command line interactions. While studying the nature of
expertise in UNIX, Draper (1984) estimated the times a command was invoked by
noting the UNIX processes spawned during each user’s interaction with the system
(method 4, Section 2.2.1).5 He suggested that the overall trends observed are rep-
resentative of real command use. First, out of a vocabulary of the 570 commands
available to the population, only 394 (70%) were used at least once. Individuals
knew the system to varying degrees — there was a fairly smooth distribution of
vocabulary size up to the maximum of 236 commands known to one user. Char-
acteristics of the overlap between individuals’ vocabularies were similar to those
found in Greenberg’s (1984) study of the UNIX on-line manual. Generally, very
few of each individual’s commands were used by all the population, a few more
were shared to some degree by other users, and the rest used by each individual
alone. Draper concluded that vocabulary is a poor measure of expertise, and that
each user is actually a specialist in a particular corner of the system.

Sutcliffe and Old (1987) pursued the matter further in a similar study by rank-
ing commands by popularity. They established that the top twenty commands
accounted for 73% of the overall number recorded. The remaining 27% accounted

5Sutcliffe and Old (1987) employed the same method 1o replicate portions of Draper’s work. Their findings
are similar throughout.

3.3. Frequency distributions and command overlap between individuals 31

Table 3.2. Number of users per command

% of users Proportional number of commands shared (%)
sharing a All Novice Exper’d Computer Non- Draper’s
command subjects Prog’rs Prog’rs Scientists prog’rs group

100-91 0.2 2.7 22 0.9 1.5 0.5
90-81 0.3 0.8 0.7 0.8 0 2.0
80-71 03 04 1.0 0.8 2.0 31
70-61 0.4 0.8 1.0 0.6 0.5 33
60-51 0.5 1.5 22 1.9 4.6 31
50-41 0.5 2.7 1.9 1.1 3.1 6.1
40-31 1.2 0 1.2 1.4 4.6 6.1
30-21 1.5 9.1 4.1 44 6.6 8.6
20-11 3.0 12.1 8.9 6.5 34.7 17.8

10-0 92.0 70.1 76.9 81.7 424 49.5
Not shared
68.8 55.3 58.5 63.1 42.3 unknown
Total number of unique commands
1307 264 588 851 196 394
Mean number of unique commands per subject and standard deviation
mean 50.3 27.8 66.4 72.1 29.6 unknown
std dev 32.5 18.0 24.9 32.7 20.1 unknown

for 236 further commands. However, these results may be misleading, for heavy
use of a command by an individual will skew the distribution.

Even though Draper’s method of data collection differed, this study corroborates
his conclusions that users tend to know a particular corner of the system with very
little overlap between them. The first ten rows of Table 3.2 show the proportion
of commands shared by the users comprising a particular group. The following
rows show the proportion of commands that are not shared, the total number of
different commands entered by each group, and the average number of different
commands per user. Table 3.3 lists the twenty most shared commands for each
user group. For example, only 0.2% (i.e., 3) of the 1,307 different commands
used by all subjects were shared by more than 90% of them (these were basic
file manipulation commands for listing, removing, and copying files, as shown in
column 1 of Table 3.3). More surprisingly, a full 92% of all shared commands were
shared by fewer than 10% of the users, and 68.8% of the total command set seen
are not shared at all. These differences are much stronger than those suggested by
Draper’s group (the last column of Table 3.2), probably because of inaccuracies in
his methodology of estimating command use.

Tables 3.2 and 3.3 also reveal that categorizing like subjects into groups changes

32 Using commands in UNIX

Table 3.3. The twenty most shared commands for each user group

All Novice Experienced Computer Non-

subjects Programmers Programmers Scientists programmers
com- #of com- #of com- #of com- #of com- # of
mand users mand users mand users mand users mand users
Is 168 lpr 55 «cd 36 Is 52 1Is 25
rm 164 Is 55 Is 36 mm 51 m 24
cp 154 pix 55 more 36 cat 50 emacs 23
Ipq 149 mm 55 1Ipq 35 «od 50 cd 19
Ipr 144 script 55 man 35 mv 49 o¢p 19
cd 141 cp 53 cat 34 cp 48 nroff 18
cat 140 1Ipq 53 c¢p 34 mail 48 1Ipq 17
mail 131 umacs 47 lpr 34 man 48 ps 16
more 130 cat 46 mail 34 mkdir 46 lpr 14
man 124 more 42 mkdir 34 fip 44 more 14
who 117 «cd 36 mm 34 Ipq 44 logout 13
mv 114 mail 36 ftp 33 ps 44 mail 13
emacs 112 limits 32 ps 32 pwd 44 man 13
mkdir 104 who 30 mv 31 who 44 hpq 12
ps 103 man 28 who 31 fg 42 mv 12
fg 95 pi 28 ruptime 30 e 41 spell 12
script 95 logout 26 fg 29 emacs 41 who 12
pwd 92 help 24 kill 28 lpr 41 kil 11
ftp 91 Iquota 23 limits 28 rlogin 40 pwd 11
logout 88 emacs 23 rwho 28 kil 38 cat 10

Sample size
168 55 36 52 25

the figures less than one might expect. For example, even though individuals in
the novice group used the system for solving the same programming assignments
and were taught UNIX together, there was relatively little intersection of their
vocabularies. Except for a handful of commands, users—even those with apparently
similar task requirements and expertise — have surprisingly little vocabulary overlap.

3.4 Growth of the command vocabulary

In the previous discussion, a user’s vocabulary was taken to be the set of commands
invoked over a fixed period of time. But how dynamic is the command vocabulary
of auser? Do users learn new commands sporadically or uniformly over time? Are
new commands acquired continually, or do users stop acquiring new vocabulary
after some initial period?

Sutcliffe and Old (1987) suggest that the size of a user’s command set grows

3.4. Growth of the command vocabulary 33

120,
Scientist

100
'g Experienced
gw 80|
_§ II;lon
S 60) rogrammer
>
ko)
o
<
g 40
g
(@}
QO

ZO_J

0 1 T T

0 2000 4000 6000

Number of commands lines entered

Figure 3.2. Command vocabulary size vs. the number of command
lines entered for four individuals.

as a function of system usage. They found a significant correlation between the
overall command use by the user and the number of unique commands employed.
This evidence is suggestive but does not actually observe vocabulary acquisition
by particular users. Figure 3.2, on the other hand, illustrates the acquisition of
vocabulary over time for four typical users from the current study, with one from
each group. The vertical axis is vocabulary size, whereas the horizontal axis
represents the number of command lines entered so far. At first, the vocabulary
growth rate seems to be around 5% — each user shown here has a repertoire of 43—64
commands after 1,000 full command lines had been entered. But the growth rate
drops quickly afterward to 1% or less. The later part of the curve is probably a better
reflection of vocabulary acquisition, for the first part does not necessarily reflect a
learning curve. Because users already knew a command subset before monitoring

34 Using commands in UNIX

began, unusually high initial activity is expected as known commands are being
noticed for the first time. Another explanation is that the curve just represents the
arrival probability of infrequent commands whose distribution patterns follow Zipf.

Although Figure 3.2 suggests that the selected subjects have a vocabulary growth
rate that is proportional to the relative sophistication of the group, analysis of
variance shows no statistically significant differences between the mean rate of
each group. However, these rates were determined by counting the new commands
acquired between 1,000 and 2,000 command entries, which meant excluding those
subjects who did not have at least 2,000 entries.

Figure 3.2 also reveals how users acquire new commands. Although there are
short periods where vocabulary growth is relatively uniform, there are also long
periods of quiescence followed by a flurry of activity. As might be expected, these
flurries were sometimes associated with new tasks. For example, the sharp increase
in new activity for the Scientist group subject after she had entered 6,000 command
lines all involved high-quality typesetting. However, there are other instances
where no such task association is evident.

In general, individuals have small command vocabularies and acquire new ones
slowly and irregularly. Given the patterns observed, the Zipf distribution becomes
a questionable model of individual command use. Perhaps all that can be said is
that the distribution of command use is very uneven.

3.5 Relations in command sequences

The previous discussion says nothing about possible relations and dependencies
between commands. Through a multivariate analysis of UNIX commands invoked
by the site population, Hanson, Kraut, and Farber (1984) examined the interaction
effects between commands. Their results show statistically significant relationships
between certain command chains; the relations between the fifty most frequently
used commands are shown in Figure 3.3. Each ball in the network represents
a command, its size indicates the usage frequency, and the arrow indicates the
significant dependencies. One dimension of these relationships is modularity.
Some commands, such as Is, are core commands — they are used frequently and
are surrounded by many other commands (i.e., highly modular and independent).
Others are not; they are surrounded by specific command sequences. An example
of the latter is cp, which is generally preceded by itself and followed by chmod.
Commands are also related by functional clusters, such as editing, process man-
agement, orientation, social communication, and so on (Hanson, Kraut, and Farber,
1984), which may not be revealed by statistics. Consider a user who prints files
in several ways: a short draft may go to the screen; a long listing to a lineprinter;
and a final version to a laser printer. Although these non-sequential and possibly
rarely invoked actions are related by function in the user’s mind, it is unlikely that

3.5. Relations in command sequences 35

UNIX COMMAND SEQUENCES

—— =+ < 005>.0004

Ball diameters are proportional to stationary probability. Lines indicate significant dependencies,
solid ones being more probable (p < .0001) and dashed ones less probable (.005 < p < .0001).

Figure 3.3. Sequential structure of UNIX command usage, from Figure 4
in Hanson et al. (1984).

36 Using commands in UNIX

such a relationship would appear from a multivariate analysis of commands such
as Hanson’s. Additionally, it is a mistake to assume that all dependencies revealed
by analysing a group of users will hold for an individual, because each person uses
a particular subset of commands (as discussed in Section 3.3).

3.6 Discussion

The previous sections reviewed statistics from studies of how people use com-
mands in command-based systems. The purpose behind most of the original works
was to derive implications for the interface design. Yet it is clear that statistics
produced by pooling users into one large sample are not necessarily indicative of
an individual’s statistics. As a consequence, some of the conclusions made by the
original researchers are misleading.

First, the rank frequency distribution of a population should not be applied to an
individual. Careful interpretation must be used before following the advice of one
researcher, who says “the Zipf distribution may prove to be a useful model of user
behavior in studying command usage” (Peachey, Bunt, and Colbourn, 1982). It is
all too easy to read into such a statement two implications. First, the Zipf model is
a reasonable estimate for a single person’s frequency of command use. Second, the
rank order derived from a population applies to an individual. These are certainly
not the case. Next, and more specifically, Hanson et al. recommend that commands
used frequently by the population should be treated differently:

the uneven distribution of command use suggests that computer systems should find
ways to increase the prominence and ease of access to frequently used commands.
— Hanson, Kraut, and Farber, 1984

Given the results of the previous sections, this should more correctly read “to
increase the prominence and ease of access to an individual’s frequently used com-
mands.” The slight wording difference is crucial. Whereas the original conclusion
implies that command prominence may be judged and treated generically, the
corrected version would require a personalized approach.

Second, it is a mistake to assume that users have similar vocabularies. Hanson
et al. went on to say that computer systems should be organized with sets of
frequently used core commands, implying that these sets are reasonably large
and that core commands are shared. But the findings detailed in Section 3.3
refute this prescription in two ways. First, individuals have very few common
commands. Second, people may use different resources for implementing those
few actions that they have in common, for example, different editors and compilers
for text processing and programming respectively. Sutcliffe and Old explain these
phenomena.

3.6. Discussion 37

Considering UNIX is a system rich in functionality but relatively unstructured, it is
not surprising [that] users have created a variety of tasks with the tools available
... great creativity is exercised in implementing a rich diversity of tasks.

— Sutcliffe and Old, 1987

Perhaps the few shared and frequently used commands could best be handled as
exceptions, possibly by bundling them into a finely tuned application. For example,
the extremely heavy use by all users of the basic file manipulation commands, as
noted in Tables 3.1 and 3.3, suggests that users require not only constant feedback
on the contents of the current directory, but some simple tools for manipulating
them as well. Feedback can be provided by keeping a permanent display of the
current files on view, a simple task given a window-based environment. If screen
real estate is a concern, transient windows popped up by a mouse press may be
used instead (Greenberg, Peterson, and Witten, 1986). These findings also support
the inclusion of the more sophisticated file browsers that are found in many modern
programming environments.

Third, the relations between commands seen by Hanson’s pooled statistics do
not necessarily apply to individuals (Section 3.5). The dependencies and clus-
tering observed may result from a small handful of people using a set of related
commands frequently, and not from common use of the same commands by every
person. Consider the recent findings of Sutcliffe and Old (1987). They replicated
and extended Hanson’s work by eliminating all dependencies but those that were
significant for at least five or more individual users (cf. Figure 3.3). The resulting
network was a fragmented subset of the population network. Sutcliffe and Old
concluded that only a small number of commands were used in common tasks by
a majority of individuals. Hanson, then, has insufficient evidence to suggest that

it would be practical to organize the commands around task-related menus. Com-
mands that are likely to be used in one context may also be needed in others.
— Hanson, Kraut, and Farber, 1984

To their credit, Hanson et al. also state that such menus are best viewed as default
organizations that, because of individual differences, should be customizable by
the user.

In another area, many intelligent tutoring systems and the models they employ
are motivated by possibly incorrect assumptions of command usage. Consider
Hecking (1987), for example, who quotes the statistic “people use only 40% of all
UNIX functions” (cf. Draper’s 70%, Section 3.3). He claims that this situation is
a poor one and advocates intelligent help systems as a remedy. Yet Draper (1984)
contradicts this claim by suggesting that users are best viewed as specialists in their
own corner of the system. Next, consider how expertise models are formed. One
approach for deciding what knowledge should be presented to the user employs
an “expert” and a “student” model (Sleeman and Brown, 1982). For example, the

38 Using commands in UNIX

differential model of Burton and Brown (1982) bases its instructional presentation
on the differences between a student’s and an expert’s behavior, and has been
advocated in the UNIX domain (Chin, 1986). Desmarais and Pavel (1987) use a
similar model to generate knowledge structures of commands. These structures
indicate the likelihood that an observed command has been mastered by a person,
and are used to infer what other commands he might know. Another expertise-
based strategy is employed by the well-known UNIX Consultant, which stereotypes
users into one of four levels of expertise and tailors its advice to them accordingly
(Chin, 1986). But the above approaches are ill founded. Experienced users of
general-purpose environments such as UNIX do not share particular command
sets. Except for the very few common commands, it is not possible to decide
what commands should be offered to the student. Consequently, the differential
model is not necessarily appropriate for teaching people how to use general-purpose
computer systems.

3.7 Concluding remarks

This chapter has surveyed and replicated studies in several areas involving user
interactions with command-based computer systems. The trends observed are
presumed to be shared by most command-based interactions; they are not just
artifacts of the UNIX implementation. The major findings follow.

1. The rank frequency distribution of command usage by groups of like and
unlike users is approximated by a Zipf distribution.

2. With a few exceptions, the frequency of use of most commands differs between
groups - rank order is not maintained.

3. There is little overlap between the command vocabulary of different users,
even for those with apparently similar task requirements and expertise.

4. Individuals have small command vocabularies, and new commands are ac-
quired slowly and irregularly. Consequently, the Zipf model may not be an
accurate estimate of an individual’s behavior.

5. Some commands cluster around or follow others in statistically significant
ways, although these dependencies vary from one individual to another.

These conclusions tell us more about individual differences than about similarities,
and they are not as useful as one might hope. Although they do refute some
previously held beliefs, the conclusions do not suggest any general new directions
in interface design.

I believe that these studies place undue attention on command usage. The
reductionist approach may have been pushed too far. Commands, after all, are
only the verbs of the command line. They also act on objects, are qualified with
options, and may redirect input and output to other commands. These other facets

3.7. Concluding remarks 39

are surely important and should not be ignored. For example, UNIX lines sharing
the same initial command may have completely different meanings. Consider the
two command lines sort file and sort file | uniq — | sort —r. The first just sorts a
file, whereas the second produces a frequency count of the identical lines in the
file. Another problem is that the same command line may satisfy rather different
intentions. Ross, Jones, and Millington (1985) give an example of one person
invoking the UNIX command line Is -/ to distinguish between ordinary files and
directories, whereas another person could use the same sequence to discover file
creation dates and sizes. Accordingly, the UNIX usage data, analyzed in this
chapter in terms of commands, is reanalyzed in Chapter 5 in terms of command
lines.

How does all this fit into tool use, the theme of Chapter 1? If only commands
are considered to be tools, then the tool set chosen by each user does not seem
particularly rich. Few are selected, and of these only a handful are used to any
great extent. Alternatively, if commands are viewed as simple building blocks
used to manufacture more sophisticated or specialized tools — perhaps by reshaping
(setting options), combining them (redirection, pipelines, and sequencing), or by
varying the objects they deal with — then every unique command line entered can
be considered a new tool. The latter view is advocated in the remaining chapters.

I will argue that, as with tools, the work environment should support and enhance
the way people use complete command lines. Recently used submissions should be
available for reuse, and people should be able to organize their command lines by
function and by task. The next four chapters of the book consider the first strategy
—reuse. Afterward, Chapter 8 considers the ways people organize their activities,
and Chapter 9 describes an implemented design of a user support tool that allows
people to reuse and store command lines (as they do tools) through a workbench
metaphor.

4

Techniques for reusing activities

Those who ignore history are destined to retype it
— Ben Shneiderman

It is evident that users often repeat activities they have previously submitted to
the computer. These activities include not only the commands they choose from
the many available in command-driven systems (Chapter 3), but also the complete
command line entry. Similarly, people repeat the ways they traverse paths within
menu hierarchies, select icons within graphical interfaces, and choose documents
within hypertext systems. Often, recalling the original activity is difficult or tedious.
For example, problem-solving processes must be recreated for complex activities;
command syntax or search paths in hierarchies must be remembered; input lines
retyped; icons found; and so on. Given these difficulties, potential exists for a
well-designed “reuse facility” to reduce the problems of activity reformulation.

But most system interfaces offer little support for reviewing and reusing previous
activities. Typically they must be completely retyped, or perhaps reselected through
menu navigation. Those systems that do provide assistance offer ad hoc “history”
mechanisms that employ a variety of recall strategies, most based on the simple
premise that the last n recent user inputs are a reasonable working set of candidates
for reselection. But is this premise correct? Might other strategies work better?
Indeed, is the dialog sufficiently repetitive to warrant some type of activity reuse
facility in the first place? As existing reuse facilities were designed by intuition
rather than from empirical knowledge of user interactions, it is difficult to judge
how effective they really are or what scope there is for improvement.

The next four chapters of this book explore the possibility of people reusing
(as opposed to reentering) their previous activities. This chapter surveys and
provides examples of interactive reuse facilities that allow users to recall, modify,
and resubmit their previous entries to computers. Although the idea is simple —
anything used before can be used again — it is effective only when recalling old
activities is less work for the user (cognitively and physically) than submitting new
ones. As we shall see in this chapter, the main differences between reuse facilities
arise from their ability to offer a reasonable set of candidates for reselection, and
from the user interface available to manipulate these candidates.

For example, consider a user who has submitted n activities to the system (say
n > 100) and whose next activity is identical to a previous one. An optimal reuse
facility would be an oracle that correctly predicted when an old action could be
reused and submitted it to the system in the user’s stead. Incontrast, a non-predictive

40

4.1. History mechanisms 41

system that merely presents the user with all previous n submissions would be less
effective, for the user’s overhead now includes scanning (or remembering) the
complete interaction history and selecting the desired action. Real systems are
situated between these extremes. A small set of reasonable predictions p is offered
to the user (p << n), sometimes ranked by probability. The intention is to make
the act of selecting a prediction less work than entering it anew; the metric for
“work” is, of course, ill defined.

Reuse facilities have loose analogies in non-computer contexts. A cook can
explicitly mark preferred recipes in a cookbook by using bookmarks (n = total
recipes used, p = total bookmarks). “Adaptive” marking takes place when the
book naturally opens to highly used locations through wear of the binding and
food-encrusted pages. Or consider the audiophile who places records just listened
to at the top of the pile. Assuming that certain records are favored over others,
popular records tend to remain near the top of the stack and unpopular ones near the
bottom. A carpenter’s workbench has an implicit reuse facility — the work surface
is large enough to leave recently used tools on hand.

Three kinds of reuse facilities are distinguished in the following sections. The
first covers history mechanisms that let users manipulate a temporally ordered
list of their interactions. The second, adaptive systems, uses dynamic models of
previous inputs to predict subsequent ones, which are then made available to the
user. Finally, programming by example is concerned with reuse and generalization
of long input sequences.

The three subsequent chapters will assume an experimental approach to reuse.
Analyses of data and discussions are focused toward seeing how people repeat
their activities on UNIX and other systems, and the results are distilled into design
principles for empirically based reuse facilities.

4.1 History mechanisms

History mechanisms assume that the last few user submissions are good candidates
to make available for reuse. This notion of “temporal recency” is cognitively
attractive because users generally remember what they have just entered and can
predict the offerings the system will make available to them. Little time is wasted
searching in vain for missing items.

History mechanisms are by far the most common reuse facility available, and
are implemented across diverse systems in a variety of flavors. Four fundamentally
different interaction styles are described in this section: glass teletypes; graphical
selection; editing transcripts; and navigational traces. The first three pertain to
command line interfaces, whereas the last applies to systems in which users traverse
some information structure.

42 Techniques for reusing activities

4.1.1 History in glass teletypes

Traditional command line dialogs were created for the teletype; as a result many of
today’s VDUs are still a fixed viewport into a virtual roll of paper. Two functionally
rich history systems designed for these physically limited “glass teletypes” are the
UNIX csh and the INTERLISP-D programmer s assistant. Both systems have users
retrieve old commands by “history directives,” which are themselves commands
interpreted in a special way.

UNIX csh maintains an invisible record of user inputs, where every string entered
on the command line is recorded in a numbered event list (Joy, 1980). Special
syntactic constructs allow previous events to be partially or completely recalled,
either by position on the list (relative or absolute) or by pattern matching. The
recalled events can be viewed, edited, and reexecuted. Even though the set of
predictions is in principle unbounded, in practice it is small for users will forget all
but the last few items they have entered. Although users may request a snapshot
of the event list, they usually choose not to because of the extra work and time
involved.

Figure 4.1 illustrates an event list (top box) and a few possibilities of csh history in
use on the next event (bottom box). Inputs in the bottom left column are translated
by csh to the actions shown in the middle, and the right column describes the
semantics.of the history directives. As the examples illustrate, the syntax is quite
arcane, and deters use of the more powerful features (see Chapter 6; also Lee and
Lochovsky, 1990). Because the event list is generally invisible — snapshots of its
current state are displayed only by special request — it is difficult for the csh user to
refer to any but the last few events.

Another functionally powerful history mechanism is the programmers assistant,
designed for the INTERLISP-D programming environment (Teitelman and Masin-
ter, 1981; Xerox, 1985). Although INTERLISP-D is window-based, the top-level
“Interlisp-D Executive” occupies a plain scrolling window (a glass teletype) where
the user types lisp expressions (Figure 4.2). The user can also select and process
historical events by typing special command directives into this window, which
are interpreted by the programmer’s assistant. For example, the request USE cons
FOR setq IN -1 will replace the string “setq” by “cons” in the previous command.
The programmer’s assistant history mechanism is functionally richer than UNIX
csh. Through its history mechanism, users can retrieve and manipulate several
events at a time, specify iteration and conditionals, edit items, undo effects of pre-
vious entries, and so on. Figure 4.2 shows a sample dialog in the window labeled
“Interlisp-D Executive,” where events 85 and 87 make use of the programmer’s
assistant. As with csh, the system maintains a true time-ordered event list — every
entry is shown, even duplicates and erroneous statements.

4.1. History mechanisms

43

Example Event List

9 mail ian
10 emacs figl fig2 fig3
11 catfigl
12 diff fig*

Examples and Results of History Uses

User Input Action

Description

" diff fig*

11 cat figl

-2 cat figl

!mai mail ian
1?71an? mail ian

! fig3 diff fig* fig3

AdiffApage page fig*

:p diff fig*
page !10:1-2 - page figl fig2

Redo the last event

Redo event 11

Redo the second event from last

Redo last event with prefix “mail”

Redo last event containing the string “ian”
Append “fig3” to the last event and redo
Substitute “page” for “diff” in the last
command

Print without executing the last event
Include the 1st and 2nd arguments of event 10
and redo

Figure 4.1. Examples of the UNIX csh history mechanism in use.

Techniques for reusing activities

Prompt Window -- Lisp: 7-Feb-86 Loops: v

A

o[82« (sETQ & 15) :

] 1s

s
30 J(PLUS 20 B)
84« (PLUS A B) (PLUS A B)
45 “|(SETQ B 30)
85<use 20 for A ZJ(SETQA 15)
50 2| (+ AA)
86« (SETQ C 5) - |DIRECTORY

> Aoa
87«<use A for C (H|StoryMer|U 15)

(A reset) (CLOSEW (WHICHW))
5 | (DIRECTORY)

88<«A -

5
89«

Figure 4.2. A portion of the INTERLISP-D environment, showing
HISTMENU in use.

4.1.2 History through graphical selection

Present-day terminals allow text to be placed anywhere on the screen, and high-
resolution bitmapped workstations with a pointing device (usually a mouse) are
common. Interaction styles have progressed accordingly, from text-oriented menus
and forms to mouse-oriented graphical systems running within windows (Witten
and Greenberg, 1985). History mechanisms have been extended to present a (pos-
sibly transient) menu of previous events, where items are selected and manipulated
with the pointing device. In contrast to previous history mechanisms that relied
heavily on a user’s memory of submissions and their relative ordering, predictions
are now offered by presenting them explicitly on the screen. Because selection
is usually just a matter of pointing to the desired item, the syntactic knowledge
required by the user is kept to a minimum.

One example is HISTMENU, which provides a limited yet simple way of access-
ing and modifying the INTERLISP-D programmer s assistant history list (Bobrow,
1986). Figure 4.2 illustrates its use. Commands entered to the “INTERLISP-D

4.1. History mechanisms 45

Executive” window are recorded on the history list, part of which is displayed in
the “History Window” (by default, the last fifty items are shown; we show only
thirteen in the figure). Although the internal list is updated on every command, the
window is redrawn only when the user explicitly requests it. When pointed at with
a mouse, items (which may not fit completely in the narrow history window) are
printed in the “Prompt Window” (top of figure). Any entry can be reexecuted by
selecting it. Moreover, a pop-up menu allows limited further action: items can be
“fixed” (i.e., edited), undone, printed in full including additional detail (the “??”),
or deleted. The history window also has a shrunken form, as shown by the icon in
the figure.

MINIT is another graphical package that combines command processing and
the history list into a single WINDOW MANAGEMENT WINDOW (Barnes and
Bovey, 1986). It differs from other systems in that only through this window can
the user send commands to the other windows. The WINDOW MANAGEMENT
WINDOW is divided into three regions (Figure 4.3). The bottom region is an
editable typing line in which commands are typed. Once entered, they are auto-
matically added to the second region that contains a scrollable history list. As with
HISTMENU, the user may select items using a pointing device and control further
action with a pop-up menu — options are available to execute the item in various
windows and to insert the item into the typing line for further editing. The final
region at the top of Figure 4.3 contains a history management menu. Options are
available to

scroll the history list, clear it, or save it for future use;
textually search for specific items;

delete specific items;

insert text in the typing line without executing it.

Two more mechanisms complete MINIT’s history management capabilities. First,
the user can customize the system to prevent short commands that are easily retyped
from being added to the list. Second, history is viewable in either alphabetical or
execution order. Duplicate lines are eliminated in both methods. In execution
order, the user controls whether the original of a repeated command entry remains
in its original position or is moved to the end of the history list.

It is less easy to provide a history facility for a graphical interface such as a
painting or drawing program, and we are aware of only one system that comes
close to offering such capabilities. CHIMERA adopts the metaphor of a “comic
strip,” a graphical record of the user’s past activities that consists of a sequence
of panels, each of which illustrates an important moment in a story (Kurlander
and Feiner, 1990). Instead of showing miniatures, panels record just the objects
being manipulated and the actions performed on them without unnecessary detail.
This graphical history provides more power than just reuse, and it is far closer

46

Techniques for reusing activities

deleting
a history

for scrolling .
: item

the history list

history }4 \

insert typing
line without save/clear
execuling it history list

Y

management -~ up| down |del

ins [save|clear

menu -
cd Figures; If
cpto notes/sc300eagle -i B -r
If execute history item
mkdir Figures in a new window
mv *.pad *.cmp Figures %/ . o
exec/new wind execute history item in
p adtocmp : " foreground window
preview me R
tcp 96 edit/replace L edit history item in
history e queye the typing line
list edit

the typing “y» $0 |

line

Figure 4.3. MINIT’s WINDOW MANAGEMENT WINDOW, redrawn
from Barnes and Bovey (1986).

4.1. History mechanisms 47

in spirit to a full undo, skip, and redo facility (Vitter, 1984). The user can then:
expand a particular panel as necessary; delete, modify, undo, and redo the actions
it expresses; and even add new actions into the sequence.

4.1.3 History by editing transcripts

Some systems do not have a command history mechanism per se, but provide
similar capabilities through editing a transcript of the dialog. Instead of having
the sequential text dialog scroll off the screen (as with a glass teletype), it can
be maintained as a scrollable transcript. When text appearing previously can be
selected and used as input to the system, the transcript becomes a rudimentary
history mechanism.!

Copy and paste capabilities are available in most modern-day window-based
environments, where any text can be copied and pasted anywhere else. A typi-
cal example is VERSATERM, a terminal emulator for the Apple Macintosh that
maintains the transcript in a scrollable window (Figure 4.4).2 As shown in the
figure, text appearing within the transcript can be selected, then copied and pasted
by choosing the pull-down menu option. This will insert the text into the command
input area after the text cursor at the window’s bottom, where it may be edited as
needed. Explicit history lists are not maintained except as part of the scrollable
dialog transcript. Although there are some slight interface differences, many other
popular window-based terminal emulators allow one to select a text region any-
where on the display and paste it to the command input area, for example, xterm
within the standard X window system (Quercia and O’Reilly, 1990), pads within
APOLLOs DOMAIN window system (Apollo, 1986), and the command tool within
the OPEN LOOK DESKSET environment (Sun, 1990). Although any text in a
transcript is potentially executable in all these systems, the tradeoff is that mixing
previous input commands with output makes useful candidates more difficult to
find.

Another example is emacs, an editing environment that provides multiple views
of buffers through tiled windows (Stallman, 1981). Although buffers typically
allow users to view and edit files, it is also possible to run interactive processes (or
programs) within them. In most implementations of emacs, it is a simple matter
to call up a window running UNIX csk (e.g., Stallman, 1987; Unipress, 1986).
All capabilities of emacs are then available — commands may be edited, sessions
scrolled, pieces of text picked up from any buffer and used as input, and so on.

A further variant of transcript editing is the zmacs editor running within the

L The ability to scroll over a session’s transcript and select text for reexecution goes by a variety of names:
spatial browsing (Kurlander and Feiner, 1990), history through command typescripts by direct manipulation (Lee,
1990), and history by editing transcripts (this chapter).

2VERSATERM 4.0 software produced by Abelbeck Software.

“ore Indur puewrod Jy) 01 3dudsuer] 2y WOIJ dUI] PUBTIWOD
pio ue Sunsed pue SutAdod Aq uorssiuqns XN B S20pa1 Iasn Y "ysol
-uroey 9[ddy oy1 10 J0lRINWA [eUTULd) NYHLY SYFA UL v 2In31]

;o1yasmg sap |-
Yoy 3ygdnodn/yoyargdnoag/ sus,/ (hos/soud/qassn s/ || TTTSpUBLILEOT 11p]
pmd s31323mg S24 |- “auoyd 11p3

Yo} aygdnoug/ysyasdnougsous) |
yoyavsdnoun /oy assdno.ag/oas/ |-
yoyavgdnoug/yolangdnodg/ods po a1iaemg say |
2UOW | Yy D'y FUHNLSOH d26 31332mg s34 |

ajqe] fidoj
/3% aysed-hdo)

ONNDS/ PUnOS/ods/ | | .
QNNOS/ PUNoO=/2ds/ , |-
ONNOS/PYNOS/Dus P2 ,213123m5 S34 | Addajing i1ea|]
BJ0W | Y 3 JWUNLSOH doERPCEREChaEcht 3B ajsed
Ruoysiy/ous/ | ‘g0 mnou

RJ0}s1y/Dus po ;21393mg s3p |-
AJUD322UIp 40 211} Yohs of Y 4 :doaub| G

00110 330 - uLiajes.iaj

4.1. History mechanisms 49

SYMBOLICS GENERA lisp environment. This editor contains features of all
history systems discussed so far (Symbolics, 1985). Within the top-level lisp
listener, zmacs extends the functionality of emacs. Although used here primarily
for entering and editing command lines, previous inputs appearing within the
transcript become mouse-sensitive. A box appears around them as the mouse
passes over them, and pressing one mouse button copies the old command line
into the input area and makes it available for editing. Other button combinations
immediately reexecute previous commands, copy arbitrary command words, show
context-sensitive documentation, and so on. Alternatively, part or all of the mouse-
sensitive event list can be displayed within the lisp listener window. Keyboard-
based retrieval is also available within zmacs. Using the standard editing commands
within the one-line input area, a user can search, cycle through, and recall previous
events, similar to the command line capabilities of the VMS operating system
(DEC, 1985), the UNIX tcsh (Greer, Ellis, Placeway, and Zachariassen, 1991), and
GNU emacs (Stallman, 1987).

4.1.4 History by navigational traces

History has been applied to information retrieval and to systems where items must be
retrieved by some navigational process. These include traversing menu hierarchies,
searching through file directories, navigating hypertext, and so on. Here, history
can record both the route paths taken through the information structure and the
actual information finally selected, and then allow users to travel quickly through
previously traveled paths and choose old items.

In many systems, users tend to retrieve items of information that have been ac-
cessed previously (Greenberg and Witten, 1985a). The assumption that previously
read documents are referred to many times has been supported by a study of man,
the UNIX on-line manual (see Section 5.3.1; also Greenberg, 1984). Each user fre-
quently retrieved the same small set of pages from the large set that was available,
where sets differed substantially between users. By keeping a history list of the
documentation retrieved or nodes selected, users can avoid renavigating the path to
a previously viewed topic. Because items on the list can be viewed as placeholders
in a large document, they are sometimes known as “bookmarks.”

The Macintosh HYPERCARD is a simple hypertext facility that allows authoring
and browsing of stacks of information comprised of cards. Navigating cross-
links between stacks and cards is usually accomplished by simple button or menu
selections. Recent is a history facility within HYPERCARD that maintains a
pictoral list of up to the last forty-two unique cards visited (Figure 4.5). Each
picture is a miniature view of the card, placed on the list in order of first appearance.?

3Figure 4.5 is a fairly accurate representation of the screen. Because these miniature pictures are of poor
quality, the value of the current recent implementation is questionable. However, this problem could be overcome

"UIRIDS U224 (YVIYAJAH UL 'S'p 2n31g

Il.lom!.

N EANTS

=] _..uq.l_ T L _, + = +f- AD -luv.h:lﬁ.—v -HWM T .I,‘ Q5 R *_ T ._..

4.1. History mechanisms 51

The last card visited is distinguished by a larger border, as illustrated by the second
miniature in the first row of the figure. A pull-down menu option pops up the
recent display, and old cards are revisited by selecting their miniatures from the list
(Goodman, 1987). When more than forty-two unique items have been selected, the
first row of seven items is cleared and made available for new ones (even though a
card in the first row may have recently been selected).

Feiner, Nagy, and van Dam (1982) push the notion of miniatures even further
in their experimental hypertext system. Hypertext nodes contain images that are
displayed on a document page; the page comprises the image plus controls for
moving between pages. One control is the “back page” button, a miniaturized image
of the last page visited with the word “back” overlaid on top of it. Selecting this
control will replace the current page with the last one visited. More complex is the
special “timeline” page, a time-stamped event list of the pages visited. What makes
it interesting is that miniatures are presented in a scrollable two-dimensional grid.
The horizontal axis represents chronological order, and the vertical axis represents
the chapters in the document. Miniatures of the visited pages are positioned on the
grid by their parent chapter and chronological order of selection. As with the “back
page” button, selecting a miniature will transport the reader back to that page.

The SYMBOLICS environment includes a very large on-line manual view-
able with the DOCUMENT EXAMINER - a window-based hypertext system
(Symbolics, 1985). The main window is divided into functionally different panes:
a documentation display area, a menu of topics, a bookmarks area, and a com-
mand line. The bookmarks area displays a history list of previously viewed topics,
where each title is a bookmark. Further bookmarks may be explicitly added by
the user (these are visually distinguished from historical bookmarks). Selecting a
bookmark displays either full documentation or a brief summary of the topic in the
documentation area. A similar bookmark strategy has been proposed previously
for videotext systems (Engel, Andriessen, and Schmitz, 1983).

These reuse techniques are not limited to document navigation. Navigation
occurs in many human—computer interfaces, from hierarchical menu and folder
systems, to structured browsers for programming systems. Many modern window
environments now supply graphical file browsers to let users visually navigate
through their (usually hierarchical) file stores. Some include history facilities.
FILE MANAGER, the file browser provided in the OPEN LOOK DESKSET
environment, keeps a history list of all directories through which the user has
navigated (Sun, 1990). Figure 4.6 illustrates its use. The list can be popped up as
a menu by selecting the “Home” button, and selecting any of the directory paths
presented will immediately bring the user there. As with recent, items are presented
in their order of first appearance. A more elaborate scheme is available on the Apple

by higher-resolution miniatures or perhaps by including a “magnifying glass.”

52 Techniques for reusing activities

File Manager: /tmp_mnt/fsc/fsc.userb/profs/saul/src

(m) (View v) (Edit v) (CProps v) (mA
/home/profs/saul
/tmp_mnt/fsc/fscuserb/profs/saul/src
Stmp_mntifsc/fsc.userb/profs/saul/book new /ch8
/tmp_mnt/fsc/fscuserb/profs/saul/book.new/ch3g
| /tmp_mnt/fsc/fscuserb/profs/saul/book.new
/tmp_mnt/fsc/fscuserb/profs/saul
/home/profs/saul/ wastebasket

Netphone
[NewMouse [] Share9o [Stat [x~stuff [Xaroupsketch
[xview [history) pty_demo [share [sound

[stat Cxdu [netphone.tar.z

[————GL] (1~

|

Figure 4.6. A sample FILE MANAGER window, showing a history list
of the last few files visited.

Macintosh. Within an application, a file is usually opened through an “open dialog
box,” a simple mechanism that lets users navigate up and down a folder hierarchy,
with files shown as a scrollable and selectable list (left side of Figure 4.7). Whereas
the basic system has minimal support for history — the previously opened folder
is presented by default to the user — a third party system called BOOMERANG
adds full history support onto the open dialog box.* The menu on the right side
of Figure 4.7 shows a person using BOOMERANG'’s top-level menu to access a
history-ordered list of previously opened files (files that cannot be opened by the
current application are grayed out and are not selectable). Similar functionality is
also available for folders and for disks.

4.2 Adaptive systems

History mechanisms model the user’s previous inputs by recording them in a time-
ordered list. Adaptive systems build more elaborate statistical dynamic models and

4BOOMERANG 2.0 developed by Zeta Soft (H. Yamamoto) and distributed by Now Software, 2425B
ChanningWy, Suite 492, Berkeley, California.

4.2. Adaptive systems 53

Edit Format Font Document Utilities Window

Select a Document:
[U of C technical report]

Groupsketch.galley.ref |:
Disk P| Groupsketch.galley.final |:
Option P Bafusdrawing :

| Uniuersal ga
| Open l tiect i oy.tes

G art12.sty
Cancel Brive i Hea‘mjmeJ

] Read Only Project marking sheet
fiyingline

Timer

Tiraer Profor Here

0 Groupsketch.galley.fi...
0 Groupsketch.galley.ref

=iFile
30580K a|

Figure 4.7. The Apple Macintosh “open dialog” box, showing the
BOOMERANG history menu.

use them to predict subsequent inputs, which are presented to the user for selection
or approval. In this section we will describe two types of adaptive systems, one for
accelerating selection in a hierarchical menu system and the other for the entry of
free text. Both employ predominantly frequency-based, rather than recency-based,
models.

4.2.1 Adaptive menu hierarchies

It is possible to devise interactive menu-based interfaces that dynamically recon-
figure a menu hierarchy so that high-frequency items are treated preferentially, at
the expense of low-frequency items. ADAPTIVE MENUS provide an attractive
way of reducing the average number of choices that a user must make to select
an item without adding further paraphernalia to the interface (Witten, Cleary, and
Greenberg, 1984; Greenberg, 1984). Consider a telephone directory where the
access frequencies of names combined with their recency of selection define a
probability distribution on the set of entries, which reflects the “popularity” of the
names selected (Greenberg and Witten, 1985a). Instead of selecting regions at
each stage to cover approximately equal ranges of names, it is possible to divide
the probability distribution into approximately equal portions. During use, the act
of selection will alter the distribution and thereby increase the probability of the
names selected. Thus the user will be directed more quickly to entries that have

54 Techniques for reusing activities

already been selected — especially if they have been selected often and recently —
than to those that have not.

Figures 4.8a and 4.8b depict two menu hierarchies for a very small dictionary
with twenty name entries and their corresponding top-level menus. Figure 4.8c
calculates the average number of menus traversed per selection. In Figure 4.8a, the
hierarchy was obtained by subdividing the name space as equally as possible at each
stage, with a menu size of four. The number following each name shows how many
menu pages have to be scanned before that name can be found. Figure 4.8b shows
a similar hierarchy that now reflects a particular frequency distribution (the second
number following the name shows the item’s probability of selection). Popular
names, such as Graham and Zlotky, appear immediately on the first-level menu.
Less popular ones are accessed on the second-level menu, whereas the remainder
are relegated to the third level. For this particular case, the average number of menus
traversed by probability subdivision is less with probability subdivision than with
uniform subdivision, although this improvement is not as much as is theoretically
possible (Figure 4.8c). As probabilities also decay over time, once-popular (or
erroneously chosen) names eventually drop to a low value. A decay factor also
builds in a way of balancing frequency and recency. Whereas low decay will see
frequently chosen items migrate up the tree, a high decay rate gives more room to
recently chosen items.

Given a frequency distribution, it is not easy to construct a menu hierarchy that
minimizes the average number of selections required to find a name. Exhaustive
search over all menu trees is infeasible for all but the smallest problems. However,
simple splitting algorithms achieve good (but not optimal) performance in practice
(Witten, Cleary, and Greenberg, 1984).

With ADAPTIVE MENUS, previous actions are almost always easier to resub-
mit. Also, because no extra detail is added to the interface presentation, screen
usage is minimized. However, users must now scan the menus for their entries all
the time, even for those accessed frequently. Because paths change dynamically,
memory cannot be used to bypass the search process. Experimental evidence sug-
gests that this is not a problem in practice. As long as the database of entries is
large, the benefits will usually outweigh the deficiencies (Greenberg and Witten,
1985a). 1t is also possible to have the system monitor the average depth of the menu
selection process over time. If for some reason the average depth increased beyond
what would be normally expected, a static menu system could be substituted for
the adaptive one

4.2.2 Reuse through text prediction

History facilities assume that the last submissions entered are likely candidates
for reexecution. They are the ones visible on the screen in graphical and editing
systems, the ones most easily remembered by the user in glass teletypes, and the

4.2. Adaptive systems 55
(Arbor (2))
Barncy (2) (1) Arbor — Eagan
Dacker (2) (2) Farel — Kruger
Danby (3) (3) Kwant — Obrien
Eagan (3) (4) Perry — Zlotky
Farel (2)
Graham(2) The top level menu
Issac (2) b /
Jacobs 3) —\
Kruger 3) (
Kwant (2) Let n = numberof ilems
Levin (2) m; = menus traversed 1o reach item i
Martin (2) pi = probability that item i is selected
Moreen (3)
Obricn (3) A) Average menus traversed by uniform
Perry (2) subdivision
SRldc.ler g; Zml‘ (12*2)+(8*3)
agin = . c 20

Unger 3)
Zlotky 3)

a) Menu tree generated by uniform subdivision

Arbor (2, .09)
Barney (3, .02)

Dacker (3, .02)
\ Danby (3,.02)
02)

Eagan (3,
Farel (2,.09)
Graham (1, .25)

Issac (3, .02)
Jacobs (3, .02)
Kruger (3, .02)
Kwant (3,.02)
Levin (3,.02)
Martin (3, .02)
Moreen(3, .02)
Obrien (3,.02)
Perry (3,.02)
Ridder (3,.02)
Sagin (3,.02)
Unger (3,.02)

Ziotky (1,.25)

b) Menu tree reflecting popularity of items

= 2.4 menus traversed / item

B) Average menus traversed by probability
subdivision

1

mj p;
(2*1*.25) + (2*2*.09) + (16*3*.02)
1.82 menus traversed / item

C) Theoretical optimum menus traversed with the
given probabilities (4-choice entropy)

S: pi *logypi

- ((12*.02*log4.02) + (2*.09*10g4.09)

+ (2*.25*]0g4.25))

1.49 menus / item

1]

¢) Calculating the average menus traversed
for various conditions

- J
(1) Arbor — Farel W
(2) Graham
(3) Issac—Unger
(4) Zlotky

The top level menu

/

Figure 4.8. Menu trees generated by uniform and probability subdivi-

sion.

56 Techniques for reusing activities

ones weighted into the probability distribution in ADAPTIVE MENUS (although
the latter is a function of the decay factor).

Two systems provide an alternative strategy for textual input — the REACTIVE
KEYBOARD (Darragh, 1988; Witten, Cleary, and Darragh, 1983; Darragh, Witten,
and James, 1990; Darragh and Witten, 1992) and its precursor PREDICT (Witten,
1982).5 Although implementation details differ, both use a dynamic adaptive model
of the text entered so far to predict further submissions. At each point during text
entry, the system estimates for each character the probability that it will be the next
one typed. This is based upon a Markov model that conditions the probability that
a particular symbol is seen on the fixed-length sequence of characters that precede
it. The order of the model is the number of characters in the context used for
prediction. For example, suppose an order-3 model is selected, and the user’s last
two characters are denoted by zy. The next character, denoted by ¢, is predicted
based upon occurrences of zy¢ in previous text (Witten, Cleary, and Darragh,
1983).

PREDICT filters any glass-teletype package, although limited character graphics
capabilities are required for its own interface. It selects a single prediction (or none
at all) as the most likely and displays it in reverse video in front of the current
cursor position. The user has the option of accepting correct predictions, which
is equivalent to actually typing them, or rejecting them by simply continuing to
type. Because only a single prediction is displayed, much of the power of the
predictive method is lost; at any point the model will have a range of predictions
with associated probabilities, and it is hard to choose a single “best” one (Witten,
1982).

The REACTIVE KEYBOARD, on the other hand, has two versions of a more
sophisticated interface that allows one to choose from multiple predictions. The
first, called RK-BUTTON, has a similar interface to PREDICT except that users
now have the option to cycle through a probability-ordered list of predictions. An
interaction with UNIX using RK-BUTTON is shown in Figure 4.9. The predicted
characters are written in reverse video on the screen, and represented in the figure
with enclosing rectangles. Control characters are preceded by A, and AJ is the end-
of-line character. The column on the right shows the keys actually struck by the
user. Figure 4.9b gives the meaning of a few of the control keys; in fact, many more
line-editing features are provided. Although not illustrated in the figure, the system
is set up so that typing non-control characters simply overwrites the predictions;
thus one may use the keyboard in the ordinary way without even looking at the
screen.

The second version of the REACTIVE KEYBOARD, called RK-POINTER,
displays a menu containing the best p predictions, which changes dynamically

5These systems, their use, and their algorithms are completely described in another book in the Cambridge
Series on Human—Computer Interaction (Darragh and Witten, 1992).

4.2. Adaptive systems 57

n
w
cd(;k/papers/ieee.computerAJ1 L
cd rk/papers/ieee.computer

[Emacs paper.texAi “L
emacs paper.tex

[;h paper.tex.CKP paper.tex.BAK"J L
rm paper.tex.CKP paper.tex.BAK

Iwc -W paper.tequ L

wC -w paper.tex

|readnews -Nn comp.sources.unix”J

N
W
N
L

maillJ] ’
mail bdarragh%uncamult.bitnet@ucnet.ucalgary.caAEAI »
mail bdarragh%uncamult.bitnet@ucnet.ucalgary.ca

Key Description

e Accept the next predicted character

W Accept the next predicted word

"L Accept the whole predicted line

"N Show the next alternative prediction

~P Show the previous alternative prediction

w ¥ W W»n W»

cd rk/papers/ieee.computer
emacs paper.tex

rm paper.tex.CKP paper.tex.BAK
wWC -w paper.tex

mail bdarragh%uncamult.bitnet@ucnet.ucalgary.ca

Figure 4.9. Using RK-BUTTON, the UNIX version of the REACTIVE
KEYBOARD: (a) a dialog with UNIX; (b) some commands; and (c)
screen contents at end of the dialog.

58 Techniques for reusing activities

& File Edit Options A
Untitled |== predictions Window =QZ

This text has been generated with the ‘5h|]r|r|0r|_‘_-3;hgr|r|0r“i\:.
Re Luithotheo| I8 earchoandoupdd™

J:E,uﬁlearguandul
Likely—continuati

vdat i3
act ive-Keyboard.-
turn''wcan<be.co
habilitations.areg

This text has been generated with the searcheandou

Eact ive-Keyboard. Jith-theeRe

This text has been generated with the This-text-has.beg

Reactive Keyboard | ¥eyboard- mheu

communication.ai
to.generateduwitHS

This text has been generated with the thee

Reactive Keyboard primed with med_m austandardwconmu
bothothewpredicti
your-program, -the

‘,
This text has been generated with the bdoprined. | IR verylarged
Reactive Keyboard primed [Rne withothee H

correct.and-dest i
toothecmodel.is

Figure 4.10. RK-POINTER menu and feedback showing five interaction
sequences; from Figure 4.4 in Darragh and Witten (1992).

with the immediate context of the text being entered (Darragh, 1988; Darragh
and Witten, 1992). Figure 4.10 shows RK-POINTER in action by displaying five
interaction sequences of the user composing some free text in the window on the
left, with a window of predictions on the right. In the “Predictions Window,”
the left region contains the context string upon which predictions are made (its
length is adjustable by the user). In the right region are rank-ordered predictions,
presented as alternative pieces of text from which the user can choose the next
characters. Interaction is through a pointing device, such as a mouse. Selection is
two-dimensional, in that the user can point anywhere within a prediction to accept
only the previous characters (the selected characters are shown in reverse video in
Figure 4.10). Less likely predictions are available through page-turning.

Text prediction based upon adaptive modeling appears promising. Keystroke
reductions of 50% and 90% have been achieved with PREDICT and the REACTIVE

4.3. Reuse through programming by example 59

KEYBOARD, respectively. However, these figures depend heavily on the type of
text entered and how the system has been primed. Considerable variation is likely in
practice. Theoretical benefits are also tempered by practical considerations. If the
cognitive and mechanical task of reviewing and (perhaps) accepting predictions
takes more time than simple text reentry, then keystroke reduction becomes a
misleading measure of the system’s overall performance. Furthermore, as users
themselves may not be able to predict the system’s offerings, they must scan the list
to see if a desired item is present. It is certain that a skilled typist will be capable
of entering free text faster than someone using the REACTIVE KEYBOARD, for
the time needed to review the predictions offered after every keystroke is far longer
than the time required just to type it in. However, these are powerful systems for
physically disabled people (see also Greenberg, Darragh, Maulsby, and Witten,
1993). As Darragh notes:

Of all potential users, those with severe physical limitations and communication
disabilities stand to gain the most from the REACTIVE KEYBOARD. Certain in-
dividuals within this group will find the REACTIVE KEYBOARD a valuable time
and energy saving enhancement (or replacement) for their standard communication
aid when writing or accessing computer systems.

— Darragh, 1988, p. 133

Systems that predict character sequences are appealing because they deal with
any free text. They are not limited, as history mechanisms are, to repeating lines or
other forms of incremental command submission. Yet this generality is also their
weakness when used as a front end to the command-based systems. There is no
guarantee that predictions will form valid command lines, because the underlying
Markov model has no knowledge about (say) UNIX. There is nothing to stop
predictions from being either syntactically malformed or nonsensical.

On the other hand, predictive systems have, for at least one person, proven
effective for csh interaction. Darragh, who is partially paralyzed, mentioned that
RK-BUTTON was (and is) indispensable for his day-to-day computer use. It
provided assistance on over thirty thousand command lines over a two-year period,
and averaged ten character predictions per line (Darragh, 1988, p. 136). He has
received similar comments on its helpfulness from other disabled users. He also
notes an interesting side effect — long descriptive file names are now used instead
of short ones.

4.3 Reuse through programming by example

The schemes discussed so far attempt to facilitate the reuse of individual items
of activity, such as commands, command lines, menu selections, or characters
predicted in context. This is sufficient if incremental activities have a one-to-one
correspondence with tasks the user may wish to repeat later. Often, however, tasks

60 Techniques for reusing activities

are accomplished by sequences of several primitive activities.

Closure is defined as the user’s subjective sense of reaching a goal, of completion,
or of understanding (Thimbleby, 1980). Previous sections have assumed that
closure is associated with each individual user action (the entry of a command or
command line, the selection of a document, and so on). If the task to be redone
involves a sequence of such activities, even though they are all independently
available through a reuse facility, the user would have to decompose mentally
his task into its primitives and choose each of them from the event list. For
example, viewing a specific file can comprise two activities: navigating to the
correct directory, and printing the desired file to the screen. In some cases, it will
be easier for the user to think about and recall these items as a single chunk rather
than as two separate activities.

When tasks are a sequence of activities, they constitute a procedure that can
be specified by the user giving one or more examples of the instance of the se-
quence. The goal of programming by example is to allow sequences and more
complex constructs to be communicated concretely, without the user resorting to
abstract specifications of control and data structure (e.g., in a programming lan-
guage) (Witten, MacDonald, and Greenberg, 1987; Myers, 1986)

The simplest programming by example procedure is a verbatim playback of a
sequence. The user performs an example of the required procedure and the system
remembers it for later repetition. For example, the use of “start-remembering,”
“stop-remembering,” and “do-it” commands enables a text editor to store and
play back macros of editing sequences (Gosling, 1981; Stallman, 1987; Unipress,
1986). Except for these special commands, the macro sequence is completely
specified by normal editing operations. With a little more effort, such sequences
can be named, filed for later use, and even edited (if presented in a human-readable
form). A practical difficulty with having a special mode — remembering mode — for
recording a sequence is that frequently one has already started the sequence before
deciding to record it, and so must retrace one’s steps and begin again.

The ability to generalize these simple macros could extend their power enor-
mously. Some programming by example strategies allow inclusion of standard
programming concepts — variables, conditionals, iteration, and so on — either by
inference from a number of sample sequences, or through explicit elaboration of
an example by the user. To illustrate the latter, an experimental system called
SMALLSTAR has been constructed for the Xerox Star office workstation that
operates according to the direct manipulation paradigm (Halbert, 1981; Halbert,
1984) In the first version of SMALLSTAR, a pop-up menu allowed one to indicate
explicitly the generalization required. For example, icons selected at specification
time are disambiguated by name, by position, or by asking for a similar object. But
because people found it hard to elaborate programming constructs when tracing
through an example, a later version had users employ an editor to specify constructs
after macro composition (Halbert, 1984).

4.3. Reuse through programming by example 61

Reminiscent of the editing capabilities of SMALLSTAR is QUICKEYS, a com-
mercial macro facility for the Apple Macintosh.® Through a pull-down menu (left
side of Figure 4.11), the user can start, stop, and pause recording sequences, choose
selected macros for playback (there are two shown at the bottom of the menu),
and look at a reference card containing all the macros that have been recorded
previously. Once a macro has been defined, it may be edited. The right side of
Figure 4.11 shows a user editing a macro sequence she has named “Open Database”
(background window). A mouse “click” primitive, which was used to open a win-
dow, has been chosen (middle window), and the user now has the option of having
QUICKEYS find the window by its name on playback, rather than by its position
on the window stack. The problem is that editing takes much detective work to
find the correct primitive, for operations are recorded and presented at a very low
syntactic level (such as a mouse click) instead of its semantic meaning (such as
opening a particular window). Only after navigating through several presentation
screens will the user discover what the mouse click really does.

Other research on programming by example has concentrated on inferring con-
trol constructs from traces of execution given by the user (Witten, MacDonald, and
Greenberg, 1987), and some systems use domain knowledge, teaching metaphors,
and highly interactive interfaces to maximize the speed of transfer of procedures
(e.g., Maulsby and Witten, 1989; Maulsby, Witten, and Kittlitz, 1989; Maulsby,
Witten, Kittlitz, and Franceschin, 1991). However, there has been little research on
ways of naming, filing, and accessing procedures taught by example, and particu-
larly on knowledge and history-based methods of splitting up a stream of activities
into user-oriented “tasks.” This limits the practical use of programming by example
in reuse systems.

The appeal of programming by example is the belief that a user’s activity follows
a preconceived plan that can be encapsulated as a procedure. Intentions are realized
as plans-for-actions that directly guide behavior, and plans are actually prescriptions
or instructions for actions. These plans reduce to a detailed set of instructions
(which may also be subplans) that actually serve as the program that controls the
action. Suchman (1987) disputes this notion by claiming that plans are derived from
situated action — the necessarily ad hoc responses to the contingencies of particular
situations. Initial plans must be inherently vague if they are to accommodate
the unforeseeable contingencies of actual situations of action. It is only the post
hoc analysis of situated action that makes it appear as if a rational plan were
followed. Assuming that user activity on computers does arise from situated action,
then a programming by example system would not suffice by itself as a complete
user support tool, for it would not respond well to the changing circumstances of
situations. When previous actions are collected as fixed goal-related scripts of

8QUICKEYS is produced by CE Software Incorporated.

"'SMOp
-uim Sunipa-20uanbas [e1oAds pue nusw $XATIDINO UL 11+ NSy

1l

|ajuey A0

—

— — PIOH
j8Jue] _ﬁ N0 Q_ 211D
Ju0.4y Wouy E U010 d @ b3
_ aloNpul| aweN O] m
fiuy O
l8tasd) uado
fiq puyy I 1++2sd) uado
mopuim h| :awen faxaing auo .Eoumm
A1) Qe8P
_ HOHRD |
| podul] [woua Y, (4 e Butpinnay days 4aputinininanoay
Iy feun Y, awi] |eay piolray [aued 1043u0)
310N pl0la .
q. W Pi0day | U0 33 o1l asuanbas piolay 1350047
"-pie] 82Ua.1333YNIIND +1010103e)
E"mv_obmmmx_ Twmnfmﬁcmac_ :aweN
=+z sha)an 3
ajuanbag ¢ A1ND .

"*dapul4 ay) jnoqy

leoads main wp3 a4 BN

4.4. Concluding remarks 63

events, flexibility is lost. It should be augmented by a reuse facility that collects
the actual responses to given situations, allowing one to select, possibly modify,
and redo the individual activities.

44 Concluding remarks

A reuse facility arranges for submissions entered to the application to be collected
and presented so that they are available for reuse. Three classes of reuse facility
were distinguished in this chapter: history mechanisms, adaptive systems, and
programming by example. A large number of ad hoc implemented designs were
surveyed within this framework, illustrating the diversity of techniques available.
Their appeal is the assistance they offer in any dialog that exhibits recurrence.
Because no semantic knowledge of the domain is usually needed, it is quite a
general approach. However, particular methods appear less than promising because
the cognitive and mechanical effort required to reuse most old submissions is
obviously greater than entering them anew.

The taxonomy of reuse facilities presented in this chapter is oriented toward a
survey of designs, and is certainly not the only structure possible. The mechanism
underlying reuse facilities — monitoring the user’s interaction and maintaining an
internal model of it — has potential for supplying more extensive user support. For
example, Lee (1988, 1990) gives the following eight ways that people could make
use of a history model.”

!—l

History for reuse allows a person to reuse an old item.

2. Relating input and output is a more specialized form of reuse, for it further
describes and disambiguates the objects and actions of reference in the context
of the dialog.

3. History through navigation allows users to reflect on where they have been
and where they are now, and use it to guide their progress.

4. History through user recovery includes undo capabilities.

5. History for functional grouping lets users group a set of history items into a
functional unit.
6. Recording and playback covers verbatim replay of action sequences.

7. History for consultations and reminders allows the user to consult past actions
and provides the user with reminders.

8. History for prediction helps anticipate and predict what the next user command
would be.

A key deficiency in this general area is the absence of empirical evidence justi-

7Lee’s distinctions cite and incorporate the ones made in this chapter.

64 Techniques for reusing activities

fying designs for reuse facilities, either a priori through knowledge of how people
repeat activities, or post hoc by evaluating their actual use. Nor are there any guide-
lines for how intuitive and empirical knowledge gleaned from one application might
generalize to others. The next three chapters address these deficiencies.

S

Recurrent systems

Schemes for activity reuse are based upon the assumption that the human—computer
dialog has many recurring activities. Yet there is almost no empirical evidence
confirming the existence of these recurrences or suggestions of how observed
patterns of recurrences in one dialog would generalize to other dialogs. The next few
chapters address this dearth. They provide empirical evidence that people not only
repeat their activities, but that they do so in quite regular ways.! This chapter starts
with the general notion of recurrent systems, where most users predominantly repeat
their previous activities. Such systems suggest potential for activity reuse because
there is opportunity to give preferential treatment to the large number of repeated
actions. A few suspected recurrent systems from both non-computer and computer
domains are examined in this context to help pinpoint salient features. Particular
attention is paid to repetition of activities in telephone use, information retrieval
in technical manuals, and command lines in UNIX. The following chapters further
examine UNIX as a recurrent system, and then generalize the results obtained into
a set of design properties.

5.1 A definition of recurrent systems

An activity is loosely defined as the formulation and execution of one or more
actions whose result is expected to gratify the user’s immediate intention. It is
the unit entered into incremental interaction systems (as defined in Section 1.2.1)
(Thimbleby, 1990). Entering command lines, querying databases, and locating and
selecting items in a menu hierarchy are some examples. Copy typing is not: it is
continuous rather than incremental, and it is not a cognitive activity (at least, not
for the skilled typist).

A recurrent system is defined as an open-ended system in which users predom-
inantly repeat activities they have invoked previously.? In other words, although
many activities are possible, most (but not all) are repetitions of previous activities
rather than freshly generated ones.

The fundamental notion behind recurrent systems is that activities are repeated.
The frequency of repeats is called the recurrence rate, and it identifies the proba-

1 Some of the findings in this chapter were first presented at the 1988 ACM CHI Conference on Human Factors
in Computing Systems held in Washington, D.C. (Greenberg and Witten, 1988b).

2] first conceived the idea of recurrent systems in an earlier work (Greenberg, 1984). Originally called
repetitively accessed databases, it concerned information retrieval of items from a database. The current term
and definition subsumes the previous one.

65

66 Recurrent systems

bility that any activity is a repeat of a previous one. The total activities is a count of
all submissions the user has entered, whereas different activities count only those
that are different. The recurrence rate R over a set of user activities is calculated

as:

total activities — different activities
R = ﬁ - x 100%
total activities

For a system to be classed as “recurrent,” the recurrence rate may exhibit a moderate
variation across users, provided that the average rate is fairly high.

Although many old activities are repeated, new ones are constantly added to the
repertory. The rate at which new activities are composed and introduced to the
dialog is the composition rate C:

__ different activities
" total activities

x 100% =100 — R

Activity formation within recurrent systems is open-ended, as there are a very
large number of possible activities available. A dynamic recurrent system is one that
incorporates new activities regularly. They are static when C is close to zero (e.g.,
using commands, Chapter 3). Even when new activities are constantly generated,
only a small subset of the possibilities could be selected by any one user.

One purpose of this chapter is to clarify further what a recurrent system is. A few
systems that fit the definition given in this section are studied and their common
properties extracted. To start with, command use is obviously a recurrent system.
It seems reasonable to suggest that the findings reported in Chapter 3 are also
properties of recurrent systems. First, the set of activities invoked by any particular
user is typically a small subset of the activities usually available. Second, the set
of activities invoked may be disjointed or overlapping for different users of the
system. Finally, different people may repeat common activities at different rates,
and particular activities may be repeated by the same user at very different rates.
The frequency distribution of activity selection is not expected to be uniform.

This definition and list of properties is not a strong one, for the boundary between
recurrent and non-recurrent systems is not distinguished. Such a boundary specifi-
cation, even a “fuzzy” one, would be subjective and would also depend upon other
aspects of the system being investigated. For example, time between recurrences
might be a consideration, where only short-term recurrences are counted but those
repeated only after long intervals are considered different. Still, the properties pro-
vide a reasonable checklist for judging whether particular systems have potential
for reuse.

It would seem that, at least on the surface, recurrent systems are just a weaker way
of denoting patterns of behavior already well described by Zipf’s law. However,
major differences exist. First, many human-oriented observations characterized by
Zipf’s law are based upon cumulative results of the population. One study, for
example, examined the statistics of all terms used to retrieve items over all users of

5.2. Recurrent systems in the non-computer world 67

two separate bibliographic databases, and describes how they conform to Zipf’s law
(Bennett, 1975). Similar large-scale statistics have been applied to many facets of
library science (a list is given by Peachey, Bunt, and Colbourn, 1982). Yet there is
no evidence that the same distribution applies to individuals. Recurrent systems, on
the other hand, are centered around the statistics of activities of individuals, rather
than large groups. Second, Zipf’s law typically deals with very large numbers, and
tends to break down with few observations (see Bennett, 1975 for one example).
Recurrent systems are quite comfortable with small numbers. As will be seen,
patterns within some recurrent systems may be identified by observing a sequence
of less than one hundred actions performed by one individual (see Section 5.2.1).

5.2 Recurrent systems in the non-computer world

Are recurrent systems just artifacts peculiar to computer use, or are they every-
day phenomena in the natural world? This section suggests the latter. Without
belaboring the point, a few natural and reasonable possibilities follow.

e A cookbook has a subset of recipes referred to repeatedly by a single home-
maker. However, usage patterns differ because not all people favor the same
recipes. Some cooks prefer tried-and-true recipes, and thus will use a small set
of recipes many times. Others desire variety and select from a larger recipe set
with less repetition. A similar analogy may be made to selections from a book
of verse, readings in the Bible, or sections and columns read in a newspaper.

e An audiophile listens to different records repeatedly. Some are heard more
than others, and new styles come into favor while old ones fall out.

e Within tool-oriented contexts, tradespeople and artisans use some tools more
often than others.

e Procedures carried out by most office workers are routine. Still, special
procedures are sometimes followed for rarer conditions and exceptions, and
new ones are created to handle unexpected situations.

Empirical evidence supports the existence of recurrent systems in a variety of
task domains. Telephone use is one example, and our investigation is described
in this section. Subsequent sections will illustrate two other examples: retrieving
topics from technical manuals, and entering command lines in UNIX.

5.2.1 Telephone usage — a limited study

Telephone usage is examined as a first example of a recurrent system, where an
activity is simply a number being dialed. This seems a natural choice, for we know
from experience that:

68 Recurrent systems

Table 5.1. Telephone usage statistics

Results per subject
Measures 1 2 3 4 5
Total calls 313 129 119 106 106
Different calls 104 55 60 53 39
Recurrence rate 66.8% 57.4% 49.6% 50% 63.2%
Average recurrence rate 57.4% (std dev = 7.7)

many calls are to people/firms that have been called before;
some calls are new ones that have not been made before;
numbers are called with differing frequencies;

usage patterns evolve slowly over time.

This section will describe a few simple analyses that determine empirically some
characteristics of telephone usage as a recurrent system.

A small-scale study was conducted previously on individual telephone usage, as
reported in an earlier work (Greenberg, 1984). The intent was to inspect telephone
usage for patterns of recurrences in the numbers dialed. Fourteen telephone users
known to the researcher were asked to keep a list of all calls originating from
their office and/or home telephones. Instructions were to record consistently all
completed calls they had made, including busy or wrong numbers and repeated
calls. The time frame varied from one to three months. Although the original
report summarized results for all subjects, the present analysis removes artifacts
ascribed to subjects who had made relatively few calls. Only those five users who
had made over one hundred calls are described here. Data is also reanalyzed to see
how new calls are generated over time, to review the equilibrium of the apparently
stable recurrence rate, and to see if the frequency distribution of recurring numbers
exhibits temporal recency.

Telephone use by the top five single users was surveyed and compiled, with the
results summarized in Table 5.1. The collected data was surprisingly consistent in
many respects. First, new telephone numbers were dialed regularly, as indicated
by the relatively smooth and seemingly linear lines in Figure 5.1. The horizontal
axis represents the number of calls made, whereas the vertical axis indicates the
number of different calls. This result suggests that telephone use is not restricted
to a few numbers dialed repeatedly, but is, in fact, open-ended.

How many calls are recurrences of previous ones? The recurrence rate R
calculated over all calls made by each subject is noted in Table 5.1. The average
observed value over all users is about 57%.

But how stable is the recurrence rate (or, for that matter, the seemingly linear
composition rate)? What is the relationship between the rate and the number of

5.2. Recurrent systems in the non-computer world

100
80

Number

of _
different i subject 3
calls
subject 4 subject 2

40

subject 5
20

0 v T T T T T T T T T
0 50 100 150 200 250
Number of calls dialed

Figure 5.1. The number of different calls made vs. the number of calls

dialed so far.

70 Recurrent systems

704

601 Subject 1

50+
Recurrence
rate 4o

(%)

304

201

101

0 50 100 150 200 250 300 350
Number of calls dialed

Figure 5.2. Relation between recurrence rate and the number of calls
made.

phone calls dialed by a single user? The recurrence rate over the number of calls
made was reanalyzed, and the result for the most prolific caller (Subject 1) is plotted
in Figure 5.2.3 The graph indicates that the rate of recurrences rises quickly over the
first twenty calls and less quickly up to one hundred calls. The original report noted
that R then seems to approach an equilibrium. However, a regression analysis
made on the recurrence rate for 150 calls and over indicates a positive correlation
between the rate and the number of calls dialed (r = .661,df = 162,p << .01),
although the rate of increase is small (slope = .012). Because the recurrence rate
R should equal the slope of Figure 5.1 (the composition rate C), the trends seen
there are, in fact, non-linear.

Note that the study observed people who already had established patterns of
telephone use. The initial recurrence values (and their corresponding inflated
composition rate) are low only because some established and highly repeated
numbers are being encountered for the first time. One interpretation of the graph is
that users repeat phone numbers almost immediately, as shown by the rapid initial
rise. Second, some calls are probably repeated over a slightly longer period of time,

3 Although the original graph in Greenberg (1984) averaged the data points over slices of ten calls, Figure 5.2
gives a true mapping of the recurrence rate up to each call. Also, only one subject is drawn here for clarity. Plots
of the other subjects showed similar trends.

5.2. Recurrent systems in the non-computer world 71

as revealed by the slow but steady increase in the middle of the curve. Finally,
there is a near cessation of increase in the rate of recurrences after eighty calls.
This indicates that although some calls are repeated over a long time period, a high
number of new and rarely repeated calls are made. For example, the composition
rate C was estimated at 33% for this subject (as shown in Figure 5.1). There seem
to be four general categories of calls: highly popular numbers that are called quite
often; moderately popular ones called infrequently; once-only calls that are never
or very rarely repeated, and new ones never seen before that are incorporated in the
repertory. This view agrees well with introspective expectations.

The original report also examined the frequency distribution of all calls made, by
ranking each subject’s calls by frequency. Of particular importance in the findings
is the decreasing trend in frequency of use over the calls, indicating a diverse
spectrum between highly and rarely repeated numbers. It was suggested that the
same decreasing trend can be loosely modeled by the Zipf distribution, although
the Zipf decrease is significantly more pronounced than in the telephone usage
distribution.

Finally, telephone numbers that have just been dialed are more likely to be
repeated than those dialed long ago. This notion of “temporal recency” is illustrated
by the five frequency distributions, one for each subject, drawn in Figure 5.3. The
method of analysis is described in Section 5.4.2. The horizontal axis represents the
distance of the number about to be submitted from the position of a matching old
one maintained in a temporally ordered list. The vertical axis shows the recurrence
rate for particular distances. For example, 10% of Subject 1’s calls are a repeat of
the last call made, 8% repeat the second from last, 5% the third from last, and so on
down the list. Figure 5.4 draws the same results for Subject 1 in a slightly different
way — the vertical axis is now the running sum of recurrences over distance. For
example, around 41% of all calls are repeats of one of the previous ten dialed. The
horizontal line at the top is R (67%), which, because new calls are also composed
regularly, is the limit of the running sum. The striking feature of both figures is that
the last few calls are more likely to be repeated than any others.*

In summary, the review of this study indicates that telephone usage is a dynamic
recurrent system, and adds the property that the probability of an item recurring is
related to its recency of selection. However, the limited number of subjects polled
over a relatively short time period does not supply enough data to support anything
but general statements about usage patterns.

4Even if this distribution were uniform probability, the last few calls would still exhibit a higher frequency of
recurrence, and could be misconstrued as temporal recency. However, Greenberg (1988a) shows that the artificial
recency effect produced by the uniform probability distribution is far smaller than the recency effects actually
observed, and can be effectively ignored.

72 Recurrent systems
20 20}
;\\0/16- 164
2
o
o 121) 12
§ Subject 1 Subject 4
SR 8
(&)
[
o
4 4
04 04
0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50
20, 20,
:\315. 164
o
©
w124 . 124
Subject 2 i
3) Subject 5
g 84 8
3
O
(]
T 4 4]
0 o Hﬂ”m”[ﬂﬂrun ﬂ S|
0 10 20 30 40 50 0 10 20 30 40 50
Distance
201
g 16+
2
© 42
[0} .
Q Subject 3
2 e
3
[&]
[h)
Tl
0
0 10 20 30 40 50

Distance

Figure 5.3. Recurrences of phone numbers as a measure of distance.

5.3. Recurrent systems in information retrieval 73

07 maximum possible
60 Subject 1
Cumulative
recurrence go.
rate
(%)
40
30
20
104
0 I T T T ~T T
0 50 100 150 200 250 300

Distance

Figure 5.4. Cumulative recurrences of phone numbers as a measure of
distance.

5.3 Recurrent systems in information retrieval

A second potential area of high recurrences is in information retrieval. Intuitions
about the recurrence rate of such systems are perhaps not so immediate as with
telephone access. Still, a few arguments for suspecting recurrences follow. First, it
isusually difficult to remember particular details of information retrieved, especially
if it is obscure, technical, or numerical in nature. Retrieval recurrences over short
time periods are therefore likely, because details of a document require constant
reviewing. Second, different information fragments are not sought equally. People
may recall “important” information fragments repeatedly over long time periods.
Finally, previously acquired information may become stale. As information is
rarely static, the same question may be posed repeatedly and the answer checked
for changes. Airline arrival and departure information available through teletext
environments is one example of dynamic information. Another example is the
slowly changing standards described in technical manuals, which become obsolete
over time.

This section reviews how people retrieve topics in one type of information system
— technical manuals.

74 Recurrent systems

5.3.1 Retrieving topics in manuals

Empirical evidence supports the existence of manuals as recurrent systems. M.
E. Lesk, in an analysis of work logs of Boeing engineers, noted that up to 70%
of all lookups of hard copy manuals (e.g., standards, product manuals) were to
specific things the engineers had seen before but had forgotten (reported in Dumais
and Landauer, 1982). The high figure is perhaps not surprising in retrospect, for
technical details found in engineering manuals do not lend themselves to easy
recall.

A previous study shows that topic retrieval in computer-based technical manuals
is also characterized by high recurrences. All usages of the UNIX on-line manual
by students and employees in a computer science department were collected for
one month (Bramwell, 1983) and analyzed for recurrences (Greenberg, 1984). A
total of 4,978 correct retrievals was made by 443 users. The salient findings are
summarized here.

1. The recurrence rate of retrievals was generally high, approaching an average
of 50% for each user after relatively few retrievals.

2. Moderate variation in the recurrence rate was noted between individuals. For

example, users who had made between 17 and 19 retrievals had a standard

deviation of 17.1% over the average rate of 45.2%. Extremes were 12% and

71%.

Each user retrieved only a small subset of the topics available.

4. Few common retrievals were noted between users, even when user tasks were
similar.

5. The frequency distribution of the topics retrieved by an individual varied
substantially from user to user. Although no uniform distribution was noted,
the general trend was to access most topics between one and three times, with
a smaller set being called on more often.

w

In general, one can conclude that retrieving topics in technical manuals is highly
repetitive. The properties of recurrent systems listed so far are also supported. It
is hypothesized that these results generalize to most structured documents, such
as those found in hypertext systems, and to general information retrieval facilities
provided by standard databases. Further work is required to substantiate this
hypothesis.

5.4 UNIX csh as a recurrent system

As mentioned previously, command use is certainly a recurrent system, although
it is a “static” one because C is so low. A separate question is whether complete
command lines submitted to general-purpose command-based environments also
follow the properties of recurrent systems. If they do, what patterns do these recur-

5.4. UNIX csh as a recurrent system 75

rences exhibit? This section investigates statistics of command line recurrences by
subjects using the UNIX csh.

Because commands often act on objects and are qualified with options, it is
important to look at the command line as a whole (see the concluding remarks
of Chapter 3). After introducing some terminology, two questions particularly
relevant to reuse facilities are addressed in this section. Both concern the statistics of
complete command lines entered by the user to UNIX. This is especially important,
for lines are the incremental unit of csh. Also, reuse facilities usually simplify
redoing the complete activity, rather than its isolated components. This section first
examines how often a user actually repeats command lines over the course of a
dialog. Particular attention is paid to the variation in this rate between groups and
between individuals, and its stability over the number of command lines entered.
Second, the probability that the next command line will match a user’s previous
input is described. This is measured as a function of the number of entries that
have elapsed since that input.

In the following discussion, a command line is a single complete line (up to
a terminating carriage return) entered by the user. This is a natural unit because
commands are interpreted by the system only when the return key is typed, and the
complete line is a more detailed reflection of one’s activity than just the command
itself. Command lines typically comprise an action (the command), an object
(e.g., files, strings), and modifiers (options). A sequential record of command lines
entered by a user over time, ignoring boundaries between login sessions, is known
as a history list. Erroneous submissions noticed by csh are not included. Unless
stated otherwise, the history list is a true sequential record of every single command
line typed. Duplicate activities, for example, are included. The distance between
two lines is the difference between their positions on the list. A working set is a
small subset of items on the history list. The number of different entries in the
history list is the command line vocabulary. Although white space is ignored,
syntactically different but semantically identical command lines are considered
distinct.?

5.4.1 Recurrences of command lines

Although Section 3.3 showed that only a few commands account for all actions of
a particular user, it is not known how often new command lines are formed and
old ones recur. This is important, as it is the recurrence rate — the probability that
the next item has been previously entered — that existing reuse facilities exploit
best. One might expect that command lines would recur infrequently, given the

5For example, the command lines Is —Jas and Is —Isa are treated as different vocabulary items, even though
they mean the same thing. Although this strategy overestimates the vocabulary size, a semantic analysis was
deemed too expensive for the large data set covered.

76 Recurrent systems

limitless possibilities and combinations of commands, modifiers, and arguments.
Surprisingly, this is not the case.

Iinvestigated how often lines are repeated by counting the command line vocab-
ulary size. Let ¢, nes be the total number of command lines entered by the user
(i.e., the size of the history list), and vomq ines be the vocabulary size, or number of
distinct items in that set. The overall recurrence rate, using this slightly different
terminology, is calculated as described in Section 5.1:

R — tcmd lines — Vcmd lines X 100%
tcmd lines

Do users extend their vocabularies continuously and uniformly over the duration
of an interaction? If not, then the recurrence rate, measured locally, will change
over time as the user’s history list grows. Furthermore, calculating group means
for R could be confounded by the large variation between the number of command
lines each user enters, which was noted in Table 2.1. As R is a function of V.4 jines
and .4 1imes, it is necessary to investigate how the vocabulary size depends upon
the actual number of commands entered. If users never extend their vocabulary
after some short initialization period, little correlation with £,,,4 jnes 1S €xpected. On
the other hand, a strong correlation is likely if new command lines are composed
regularly by a user.

A simple regression analysis was performed by contrasting ¢.p ines a0d Vemd lines
for each subject. The regression line is plotted in Figure 5.5a, where each point
in the scattergram represents the value observed for each subject at the end of the
study period. A statistically significant and strong correlation was found (r = .918,
df = 167, p < .01). The moderate slope (C = 23%) of the regression line makes
the correlation practically significant as well.

It seems reasonable from the scattergram of Figure 5.5a that v g nes increases
linearly with ¢4 ;ines, indicating that the recurrence rate is independent of the actual
number of lines entered. This was checked in two ways. The first was a simple
regression analysis of 4 jines With R. The regression line is shown in Figure 5.5b.
Here, each point represents the recurrence rate observed for each subject at the end
of the study. A statistically significant correlation was found (r = .253, df = 167,
p < .01), indicating that the recurrence rate increases with the number of commands
entered. However, the high variance of data points around the line (r? = .064),
and its low slope (0.002), makes this finding insignificant for practical purposes.
Consequently, R is considered independent of ¢,y fines-

The second and perhaps more convincing way of observing the independence of
the recurrence rate is by examining in detail the vocabulary growth of individuals.
The formation of new command lines is surprisingly linear and regular, as illustrated
by Figure 5.6. Similar to Figure 3.2, and using the same typical users, the horizontal
axis still represents the number of lines entered so far, but now the vertical axis
indicates the size of the command line vocabulary. For example, the Scientist

5.4. UNIX csh as a recurrent system 77

1800,

16001

1400
Command

vocabulary 1000-
size
8001

600
4001
2001

0 1000 2000 3000 4000 5000 6000
Total number of comand lines entered

100}

901

80
Recurrence

701 . .

rate of e o o6 - 0,002
command of " ~, " . = slope = 0.

lines % .
(%) 50{*., °©

401
301
201
10-

0 - — — . . .
0 1000 2000 3000 4000 5000 6000
Total number of command lines entered

Figure 5.5. Regression: () command line vocabulary size; and (b) the
% recurrence rate vs. the total command lines entered by each subject.

78 Recurrent systems
1500] Scientist
o Experience
N
w
Non
%\1000 Programmer
=)
Q
m
O
S
® Novice
£ 500
o
ja-
©
E
-
@)
@)
O T T T
0 2000 4000 6000

Number of command lines entered

Figure 5.6. Command line vocabulary size vs. the number of commands
entered for four typical individuals.

5.4. UNIX csh as a recurrent system 79

Table 5.2. The average recurrence rate of the four sample UNIX user
groups

Sample name Recurrence rate Range

mean stddev minimum maximum
Novice Programmers 80.4% 72 64.7% 91.7%
Experienced Programmers 74.4% 9.7 51.4% 90.0%
Computer Scientists 67.7% 8.2 46.4% 82.0%
Non-programmers 69.4% 8.1 50% 84.3%
Total 73.8% 9.6 46.4% 91.7%

subject has composed close to 1,400 new command lines after 6,000 lines were
entered. The long periods of quiescence and the flurries of new activity seen in
Figure 3.2 are notably absent from Figure 5.6.

Table 5.2 lists the mean recurrence rate, standard deviation, and ranges of R
for each subject group. An analysis of variance of raw scores rejects the null
hypothesis that these means are equal (F(3,164) = 21.42,p < .01). The Fisher
PLSD multiple comparison test suggests that all differences between group means
are significant (p < .01), except for the Non-programmers versus Scientists. As
the table indicates, the mean recurrence rate for the groups ranges between 68%
and 80%, with Novice Programmers exhibiting the highest scores.

Although recurrence rate depends upon user category, and very slightly on the
number of command lines entered, it is reasonable to simplify this descriptive
statistic by assuming the mean R over all users to be 75% and C of 25%, independent
of t.maines- In other words, an average of three out of every four command lines
entered by the user already exists on the history list. Conversely, an average of one
out of every four command lines appears for the first time.

5.4.2 Command line frequency as a function of distance

For any command line entered by a user, the probability that it has been entered
previously is quite high. But how do previous items contribute to this probability?
Do all items on the history list have a uniform probability of recurring, or do the
most recently entered submissions skew the distribution? If a graphical history
mechanism displayed the previous p entries as a list (e.g., HISTMENU, Bobrow,
1986), what is the probability that this includes the next entry?

The recurrence distribution as a measure of distance was calculated for each
user. First, let R, 4 be the recurrence rate at a given distance for a single person,
obtained by processing each subject’s data. Figure 5.7 shows the algorithm used
to obtain all values of R, 4 from a subject’s trace. The mean recurrence rate for a

80 Recurrent systems

Given:
e a trace numbered from 1 through n, where n is the last line entered;
e an array of counters used to accumulate the number of recurrences at a
particular distance.
Algorithm:
/* For each item, find its nearest match on the history list and record it */
for (i:=1ton)
for (j := i-1 downto 1)
if (submission; = submission;) then begin
distance := i—j;
counter[distance] := counter[distance] + 1;
break; /* jump out of inner loop */
end
/* The averaged value found in each counter is R, 4 */
for (distance :=1 to n)
counter[distance] := (counter[distance]/n) * 100;

Figure 5.7. Processing a subject’s trace for all values of R, 4.

5.5. Concluding remarks 81

given distance d over all S subjects in a particular group is then calculated as:

1 S
Rd = g;na,d

These group means are plotted in Figure 5.8a. The vertical axis represents R4, the
rate of command line recurrences, whereas the horizontal axis shows the position of
the repeated command line on the history list relative to the current one. The slight
distortional effects of the uniform probability distribution are ignored. Taking
Novice Programmers, for example, there is a R4, = 11% probability that the
current command line is a repeat of the previous entry (distance = 1), R4, = 28%
for a distance of two, R43 = 9% for three, and so on. The most striking feature of
the figure is the extreme recency of the distribution.

The previous seven or so inputs contribute the majority of recurrences. Sur-
prisingly, it is not the last but the second-to-last command line that dominates the
distribution. The first and third are roughly the same, whereas the fourth through
seventh give small but significant contributions. Although the probability values
of R4 continually decrease after the second item, the rate of decrease and the low
values make all distances beyond the previous ten items equivalent for practical
purposes. This is illustrated further in Figure 5.8b, which plots the same data for the
grouped total as a running sum of the probability over a wider range of distances.
The running sum of the recurrence rate up to a given distance D for a single person
is called R p. Its mean value over a group of subjects is calculated as

152
7zD = g Z Z Ra,d
s=1d=1
The most recently entered command lines on the history list are responsible for
most of the cumulative probabilities. For example, there is a Rp,, = 47% chance
that the next submission will match a member of a working set containing the ten
previous submissions. In comparison, all further contributions are slight (although
their sum total is not). The horizontal line at the top represents a ceiling to the
recurrence rate, as C = 26% of all command lines entered are first occurrences.
Figure 5.8a also shows that the differing recurrence rates between user groups,
noted previously in Table 5.2, are mostly attributed to the three previous command
lines. Recurrence rates are practically identical elsewhere in the distribution. This
difference is strongest on the second to last input, with the probability ranging from
a low of 10% for Scientists to a high of 28% for Novice Programmers.

5.5 Concluding remarks

This chapter introduced the notion of recurrent systems and provided empirical
evidence of their existence in both natural and computer domains. The three

82 Recurrent systems

304 (a)
254
Command .
line oql @ Novice Programmers
recurrence B Experienced Programmers
rate A Computer Scientists
(%) 151 ¢ Non Programmers
+ All Subjects
104
5]
0

o 2 4 6 8 10 12 14 16 18 20
Distance of command line from the current one

0, (b)

maximum possible
70+
Cumulative
command 601 all subjects
line
recurrence 90
rate
(o/o) 40‘
304
201
10
0 -

0 5 10 15 20 25 30 35 40 45 50
Distance of command line from the current one

Figure 5.8. (a) Recurrence distribution; and (b) cumulative recurrence
distribution as a measure of distance.

5.5. Concluding remarks 83

diverse examples studied — telephone usage, information retrieval, and command
line interfaces — show remarkable similarity in the way activities are repeated. All
sati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>