
Sifting through Hierarchical
Information

Doug Schaffer
Saul Greenberg

Department of Computer Science,
University of Calgary

Calgary, AB, T2N 1N4 Canada
schaffer, saul@cpsc.ucalgary.c

+1-403-220-6087

ABSTRACT

Modern computer users must often sift and manage vast amounts of hierarchically

structured information. However, conventional interface tools have not kept pace

with the information explosion, leaving users with inadequate means to manage

their data. This paper promotes ideas of information filtering and fisheye views of

hierarchies through the use of dynamic queries. In particular, we present

FLEXVIEW, a graphical system for visualizing file systems.

KEYWORDS: Fisheye views, information filtering, dynamic queries,

visualization.

saul
Text Box
Schaffer, D. and Greenberg, S. (1993). Sifting Through Hierarchical Information. Report 1993-499-04, Dept. of Computer Science, University of Calgary, January.

Sifting through hierarchical information 2 Schaffer & Greenberg

INTRODUCTION

As storage mediums decrease in cost, the information people keep in their personal space

is increasing at an explosive rate. 120 megabyte disks are standard on many personal

computers, and gigabyte disks are not uncommon. Of course Parkinson’s law applies, and

even large discs are filled to capacity. Unfortunately information visualization and

management methods, originally designed for modest data spaces, have not kept pace and

do not extend adequately.

This paper is concerned with new techniques for viewing hierarchically structured

databases that are quite common to computers, e.g. electronic documents and filing

systems. It is not really a question of creating better keyword search or database query

systems. Rather, people need a way to explore their information space. They require an

overall feel for what is there and how things relate to each other. They should be able to

give fairly fuzzy query specifications, and see the results as a range of candidates.

Four innovations help meet users’ requirements mentioned above. With filtering, the

hierarchy is screened by some criterion such that only elements passing the criterion are

displayed. With dynamic queries [1], a user can interactively vary several filter attribute

values; a restricted (and animated) view of the hierarchy is updated in real time. This

technique is particularly valuable because the information updates emphasize the

relations between attributes as well as the actual results. With clustering [5], a set of

related points of information are grouped together and a representative symbol is

displayed in their place. With fisheye views [2], focal points containing interesting

information are emphasized on the screen at the expense of items of lesser importance.

Recent systems based on some of these ideas include TREE-MAPS [3], CONE TREES [4]

and VARIABLE ZOOM [6].

By combining these four innovations, users should be able to specify fuzzy searches, see

the results and their relations in the context of the hierarchical space, and reduce the

clutter of non-important information on the display.

DESCRIPTION OF FLEXVIEW

The ideas of fisheye views, dynamic queries, filtering, and clustering are combined and

extended in our FLEXVIEW prototype. We use FLEXVIEW for viewing file hierarchies,

where each file/directory contains a set of attribute values. File attributes could include:

time of creation, modification, or last access; size; type; frequency and recency of access

Sifting through hierarchical information 3 Schaffer & Greenberg

or modification; links to other files; and so on. However, the ideas behind FLEXVIEW can

be generalized to any tree and attribute set.

Figure 1. FLEXVIEW file system display with Emphasis range of 0-30 days. The
Threshold range is:

left view: 0-45 days,
right view: 0-40 days.

Clicking on an item causes information about that file to be displayed in the lower information
window.

FLEXVIEW works as follows. As with other popular file-viewing systems, the hierarchy is

displayed through a scrollable list, with each level indented in. As seen in the figure,

each rightmost horizontal entry is a file, while directory names occur to the left of vertical

brackets. Each bracket encloses its subdirectories and files. The difference is that users

can filter their view by setting a threshold range for a file attribute, with items outside the

threshold disappearing from view. A multi-foci fisheye view effect occurs through two

methods. First, users can set an emphasis range (a sub-range of the threshold), where

items within this range are made prominent on the screen through color, boldface, or font

size. Second, files whose attribute value lies outside the emphasis range fade from black

to gray on the display as they approach the threshold limit, disappearing when they

exceed it. Dynamic queries occur when people use sliders to change the ranges; the view

is immediately updated as the slider is moved.

Sifting through hierarchical information 4 Schaffer & Greenberg

At the time of writing, FLEXVIEW has been implemented for a single attribute, the file

modification date. Through dynamic queries, users can quickly find all the files that they

have recently used, with older work filtered off the display and newer work emphasized.

If searching for something that occurred a longer time back, one simply increases the

threshold until the right files come into view. For example, the figure shows two views of

the same information system, with the one on the left including older files than on the

right (although the emphasized files are held constant). Note the multiple focal points, as

filtering and emphasis works on many parts of the hierarchy.

EXTENSIONS AND GENERALIZATIONS

We are extending FLEXVIEW and its ideas in several ways. First, it will allow users to

query a database with multiple attributes. The decision on whether to filter or emphasize

an item could be made on either the specific value of any of its single attributes, or as a

weighted value of some or all of its attributes considered together. An issue is whether

attribute values are continuous (such as date or size) or just values in a set (such as file

type), for it is not clear how users pose dynamic queries on the later or how they can be

factored into a weighting formula.

Second, while FLEXVIEW provides some coarse animation during dynamic queries, full

animation would be a great improvement in seeing how items are inserted or deleted from

the display (which happens when threshold values are passed) [4]. Current insertions and

deletions are discrete, leading to a “jumpy” image.

Third, FLEXVIEW should be tied to the actual file system. The view should change as the

user alters those files, and file manipulation facilities common to file browsers should be

available (e.g. opening applications, moving things around, deleting items, and so on).

Because FLEXVIEW is only a prototype, it just works on a static map of the file hierarchy,

and does not allow files to be manipulated beyond some simple information retrieval.

Fourth, FLEXVIEW can use clustering to replace lists of files by a single directory name.

For example, when a directory contains items at or near the threshold value, the directory

name can be substituted for a lengthy file list. The user gains a cue that something

interesting may be there without the expense of screen clutter.

Finally, the most important step yet to be taken is generalization. There is nothing in

FLEXVIEW that restricts it to file systems, and all its ideas can be extended to a broad

range of hierarchical structures. We are developing a generalizable widget that can attach

Sifting through hierarchical information 5 Schaffer & Greenberg

dynamic queries, filtering, clustering, and fisheye views to any attribute set in any

hierarchical data space. Developers can then attach callbacks to items to determine their

behavior when a user selects an item.

CONCLUSION

You have to use FLEXVIEW on your own filing system to appreciate its capabilities. Even

with this early prototype, people comment on the flexibility they now have in viewing

their files. We believe it fairly straightforward to extend existing file (and hierarchy)

browsers to incorporate the ideas in FLEXVIEW.

ACKNOWLEDGMENTS

This work was supported the National Science and Engineering Research Council of

Canada.

REFERENCES

1. Ahlberg, C., Williamson, C. & Shneiderman, B. (1991) “Dynamic queries for

information exploration: An implementation and evaluation.” CAR-TR-284, Dept of

Computer Sciences, U. of Maryland, USA.

2. Furnas, G. W. (1986) “Generalized fisheye views.” Proc ACM Human Factors in

Computing Systems, 16-23.

3. Johnson, B. & Shneiderman, B. (1991) “Tree-Maps: A space-filling approach to the

visualization of hierarchical information structures.” Proc IEEE Visualization, 284-291.

4. Robertson, G. G., Mackinlay, J. D. & Card, S. K. (1991) “Cone trees: Animated 3D

visualizations of hierarchical information.” Proc ACM Human Factors in Computing

Systems, 189-194.

5. Sarkar, M. & Brown, M. H. (1992) “ Graphical fisheye views of graphs.” Proc ACM

Human Factors in Computing Systems, 83-91.

6. Schaffer, D., Zuo., Z., Bartrun, L., Dill, J., Dubs, S., Greenberg, S. & Roseman, M.

(1992) “Comparing fisheye and full-zoom techniques for navigation of hierarchically

clustered networks” Report 92/491/29, Dept of Computer Science, U. of Calgary,

Canada.

