
Sifting through Hierarchical Information
Doug Schaffer and Saul Greenberg

Department of Computer Science, University of Calgary
Calgary, AB, T2N 1N4 Canada

schaffer, saul@cpsc.ucalgary.ca; +1-403-220-6087

ABSTRACT
Modern computer users must often sift and manage vast
amounts of hierarchically structured information. However,
conventional interface tools have not kept pace with the
information explosion, leaving users with inadequate means
to manage their data. This paper promotes ideas of
information filtering and fisheye views of hierarchies
through the use of dynamic queries. In particular, we
present FLEXVIEW, a graphical system for visualizing file
systems.
KEYWORDS: Fisheye views, information filtering, dynamic
queries, visualization.

INTRODUCTION
As storage mediums decrease in cost, the information
people keep in their personal space is increasing at an
explosive rate. 120 megabyte disks are standard on many
personal computers, and gigabyte disks are not uncommon.
Of course Parkinson’s law applies, and even large discs are
filled to capacity. Unfortunately information visualization
and management methods, originally designed for modest
data spaces, have not kept pace and do not extend
adequately.

This paper is concerned with new techniques for viewing
hierarchically structured databases that are quite common to
computers, e.g. electronic documents and filing systems. It
is not really a question of creating better keyword search or
database query systems. Rather, people need a way to
explore their information space. They require an overall
feel for what is there and how things relate to each other.
They should be able to give fairly fuzzy query
specifications, and see the results as a range of candidates.

Four innovations help meet users’ requirements mentioned
above. With filtering, the hierarchy is screened by some
criterion such that only elements passing the criterion are
displayed. With dynamic queries [1], a user can
interactively vary several filter attribute values; a restricted
(and animated) view of the hierarchy is updated in real time.
This technique is particularly valuable because the
information updates emphasize the relations between
attributes as well as the actual results. With clustering [5], a
set of related points of information are grouped together and
a representative symbol is displayed in their place. With
fisheye views [2], focal points containing interesting
information are emphasized on the screen at the expense of
items of lesser importance. Recent systems based on some
of these ideas include TREE-MAPS [3], CONE TREES [4]
and VARIABLE ZOOM [6].

By combining these four innovations, users should be able
to specify fuzzy searches, see the results and their relations
in the context of the hierarchical space, and reduce the
clutter of non-important information on the display.

DESCRIPTION OF FLEXVIEW
The ideas of fisheye views, dynamic queries, filtering, and
clustering are combined and extended in our FLEXVIEW
prototype. We use FLEXVIEW for viewing file hierarchies,
where each file/directory contains a set of attribute values.
File attributes could include: time of creation, modification,
or last access; size; type; frequency and recency of access or
modification; links to other files; and so on. However, the
ideas behind FLEXVIEW can be generalized to any tree and
attribute set.

FLEXVIEW works as follows. As with other popular file-
viewing systems, the hierarchy is displayed through a
scrollable list, with each level indented in. As seen in the
figure, each rightmost horizontal entry is a file, while
directory names occur to the left of vertical brackets. Each
bracket encloses its subdirectories and files. The difference
is that users can filter their view by setting a threshold
range for a file attribute, with items outside the threshold
disappearing from view. A multi-foci fisheye view effect
occurs through two methods. First, users can set an
emphasis range (a sub-range of the threshold), where items
within this range are made prominent on the screen through
color, boldface, or font size. Second, files whose attribute
value lies outside the emphasis range fade from black to
gray on the display as they approach the threshold limit,
disappearing when they exceed it. Dynamic queries occur
when people use sliders to change the ranges; the view is
immediately updated as the slider is moved.

At the time of writing, FLEXVIEW has been implemented
for a single attribute, the file modification date. Through
dynamic queries, users can quickly find all the files that
they have recently used, with older work filtered off the
display and newer work emphasized. If searching for
something that occurred a longer time back, one simply
increases the threshold until the right files come into view.
For example, the figure shows two views of the same
information system, with the one on the left including older
files than on the right (although the emphasized files are
held constant). Note the multiple focal points, as filtering
and emphasis works on many parts of the hierarchy.

EXTENSIONS AND GENERALIZATIONS
We are extending FLEXVIEW and its ideas in several ways.
First, it will allow users to query a database with multiple
attributes. The decision on whether to filter or emphasize an
item could be made on either the specific value of any of its
single attributes, or as a weighted value of some or all of its
attributes considered together. An issue is whether attribute
values are continuous (such as date or size) or just values in
a set (such as file type), for it is not clear how users pose
dynamic queries on the later or how they can be factored
into a weighting formula.

Schaffer, D. and Greenberg, S. (1993). Sifting Through Hierarchical Information. In Proceedings of ACM INTERCHI
Conference on Human Factors in Computing System-Adjunct Proceedings, p173-174, April 24-29, ACM Press.

Second, while FLEXVIEW provides some coarse animation
during dynamic queries, full animation would be a great
improvement in seeing how items are inserted or deleted
from the display (which happens when threshold values are
passed) [4]. Current insertions and deletions are discrete,
leading to a “jumpy” image.

Third, FLEXVIEW should be tied to the actual file system.
The view should change as the user alters those files, and
file manipulation facilities common to file browsers should
be available (e.g. opening applications, moving things
around, deleting items, and so on). Because FLEXVIEW is
only a prototype, it just works on a static map of the file
hierarchy, and does not allow files to be manipulated
beyond some simple information retrieval.

Fourth, FLEXVIEW can use clustering to replace lists of
files by a single directory name. For example, when a
directory contains items at or near the threshold value, the
directory name can be substituted for a lengthy file list. The
user gains a cue that something interesting may be there
without the expense of screen clutter.

Finally, the most important step yet to be taken is
generalization. There is nothing in FLEXVIEW that restricts
it to file systems, and all its ideas can be extended to a broad
range of hierarchical structures. We are developing a
generalizable widget that can attach dynamic queries,
filtering, clustering, and fisheye views to any attribute set in
any hierarchical data space. Developers can then attach
callbacks to items to determine their behavior when a user
selects an item.

CONCLUSION
You have to use FLEXVIEW on your own filing system to

appreciate its capabilities. Even with this early prototype,
people comment on the flexibility they now have in viewing
their files. We believe it fairly straightforward to extend
existing file (and hierarchy) browsers to incorporate the
ideas in FLEXVIEW.

ACKNOWLEDGMENTS
This work was supported the National Science and
Engineering Research Council of Canada.

REFERENCES
1. Ahlberg, C., Williamson, C. & Shneiderman, B. (1991)

“Dynamic queries for information exploration: An
implementation and evaluation.” CAR-TR-284, Dept of
Computer Sciences, U. of Maryland, USA.

2. Furnas, G. W. (1986) “Generalized fisheye views.” Proc
ACM Human Factors in Computing Systems, 16-23.

3. Johnson, B. & Shneiderman, B. (1991) “Tree-Maps: A
space-filling approach to the visualization of hierarchical
information structures.” Proc IEEE Visualization, 284-
291.

4. Robertson, G. G., Mackinlay, J. D. & Card, S. K. (1991)
“Cone trees: Animated 3D visualizations of hierarchical
information.” Proc ACM Human Factors in Computing
Systems, 189-194.

5. Sarkar, M. & Brown, M. H. (1992) “Graphical fisheye
views of graphs.” Proc ACM Human Factors in
Computing Systems, 83-91.

6. Schaffer, D., Zuo., Z., Bartrun, L., Dill, J., Dubs, S.,
Greenberg, S. & Roseman, M. (1992) “Comparing
fisheye and full-zoom techniques for navigation of
hierarchically clustered networks” Report 92/491/29,
Dept of Computer Science, U. of Calgary, Canada.

Figure 1. FLEXVIEW file system display with Emphasis range of 0-30 days and Threshold range of (l) 0-45 days, (r) 0-40 days.

Clicking on an item causes information about that file to be displayed in the lower information window.

