
THE UNIVERSITY OF CALGARY

Design of a Real-Time Groupware Toolkit

by

Mark Roseman

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

FEBRUARY, 1993

 Mark Roseman 1993

ii

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled ÒDesign of a Real-Time Groupware

ToolkitÓ submitted by Mark Roseman in partial fulfillment of the requirements for the

degree of Master of Science.

Supervisor, Saul Greenberg

Department of Computer Science

Brian Gaines,

Department of Computer Science

David Hill,

Department of Computer Science

Stephen Hayne,

Department of Management Information Systems

(Date)

iii

Abstract

Real-time groupware systems, where several users work simultaneously with the same

information, are notoriously difficult to construct. This thesis describes the design and

implementation of a toolkit for building real-time groupware. Following a user-centered

methodology, a number of requirements for groupware toolkits are presented. The

requirements are both human-centered, such as support for work surface activities, flexible

group processes, and integration with conventional work, and also programmer-centered,

such as communications and a shared graphics model. Based on these requirements, a

prototype toolkit called GROUPKIT is described. It contains three sets of components used

to meet the requirements: a communications infrastructure; overlays for work surface

activities; and open protocols for flexible group processes. Other concerns in the toolkit

design are minimizing the developerÕs work; encouraging use; extensibility; and flexibility.

A number of sample applications built with GROUPKIT are described.

iv

Acknowledgements

It would be most ironic if a thesis about collaborative work were a truly individual effort.

Many people have contributed to this work, and it has been enriched because of them.

Most importantly, Saul Greenberg introduced me to the new and exciting area of Computer

Supported Cooperative Work, initially hiring me as a research assistant over the summer of

1991. He also managed to keep my interest in the area throughout my MSc., despite the

numerous threats to defect to the Philosophy department. He has provided excellent ideas

and perspectives on the work as it evolved, and provided both the guidance and the

freedom that made this a most rewarding experience.

The open and friendly atmosphere in the labs may not have always improved productivity,

but did serve as a source of new ideas, victims for proofreading, and many much-needed

diversions. Thanks to Doug Schaffer, my partner in crime, INTERVIEWS frustrations, and

6:30 a.m. squash, for the never-ending Òover the shoulderÓ chats. Thanks also to Shelli

Dubs, Eric Schenk, Natascha Schuler, Sonja Branskat, Rob Kremer, and Ted OÕGrady for

the enlightening discussions and inspiration.

Thanks to Ron Baecker for sponsoring my visit to DGP, which provided a work

environment that somehow allowed large portions of this text to be generated. Gifford

Louie, Alex Mitchell, Beverly Harrison, Michel Beaudouin-Lafon and George Fitzmaurice

made my stay in Toronto a useful and enjoyable one. Feedback from the Computer

Science Department at the U of T as well as from the world-wide CSCW community has

helped to improve this work.

This research was supported by the National Sciences and Engineering Research Council.

v

Table of Contents

Approval Page i i

Abstract iii

Acknowledgements i v

Table of Contents v

List of Tables vi i

List of Figures viii

1. Motivation and Goals 1

Real-Time Conferencing Systems .. 2

User-Centered Toolkit Design... 4
Specify Toolkit Domain .. 5
Identify Developers .. 6
Identify Use of Toolkit . 7
Consider Target Applications .. 7
Design for Proper Use.. 8
Apply Design Affordances .. 8
Iterate Design .. 10

Outline of Thesis.. 11

2. Design Requirements 1 3

Human-Centered Requirements.. 16
Supporting multi-user actions over a visual work surface........................... 17
Flexible structuring of group processes during a meeting.. 22
Integration with conventional ways of doing work .. 24

Programmer-Centered Requirements.. 26
Technical support of multiple and distributed processes............................. 27
Technical support of a graphics model... 29

Existing Toolkits. 31
Rendezvous .. 32
MMConf.... 33
Conference Toolkit. 34
Liza... 36
Other Systems .. 36
Comparative Evaluation .. 38

Summary..... 40

vi

3. Design and Implementation 4 1

End User Perspective... 42

Communications Infrastructure and Messages .. 44
Overview ... 44
Example Scenario .. 46
Messages .. 51
Attribute Lists. 52
Monitoring the User List . 53
Implementation Notes.. 54

Overlays..... 55
Implementation Notes.. 59

Open Protocols.. 59
Implementation Notes.. 63

Summary..... 63

4. Design Rationale 6 5

Minimize Developer's Work... 65

Encourage Use .. 67

Extensibility .. 71

Flexibility .. 76

Summary..... 78

5. Evaluation 8 0

Nature of Evaluation.. 80

G R O U PK IT Implementation.. 81
Coverage of design principles .. 81
Usage experiences.. 81
Comparative Evaluation .. 88

Design Principles and User-Centered Design .. 91

Critical Reflection.. 92

6. Concluding Remarks 9 5

Ongoing and Future Work.. 95
Expanding Design and Implementation.. 95
Shared Graphics.. 96
High-Level Components .. 97
Asynchronous Groupware and Everyday Work...................................... 98
Portability .. 99

Summary of Contributions .. 100

Bibliography 102

Appendix A. User's Guide and Reference Manual 111

vii

List of Tables

Table 2.1. Summary of toolkit design requirements. 15

Table 2.2. Results of Xerox PARC classification of workspace activity. 19

Table 2.3. Summary of features provided by toolkits...................................... 39

Table 5.1. Coverage of design requirements by GROUPKIT features. 82

Table 5.2. Detailed comparison of GROUPKIT and existing toolkits.. 83

Table 5.3. Size of GROUPK IT applications.. 86

Table 5.4. Single-user widgets distributed with GROUPKIT.. 87

Table 5.5. Size of programs developed without use of a groupware toolkit. 89

Table 5.6. Estimated replication of existing systems using GROUPKIT. 90

viii

List of Figures

Figure 1.1. Taxonomy of groupware systems. 3

Figure 3.1. End-user view of GROUPKIT applications. 43

Figure 3.2. Communications infrastructure of GROUPKIT.. 45

Figure 3.3. Interface for a typical Registrar Client.. 47

Figure 3.4. Object interactions during conference registration and initiation. 49

Figure 3.5. Interactions between objects during conference maintenance. 50

Figure 3.6. Interactions between objects during conference termination................. 51

Figure 3.7. Code fragment for sending messages. 52

Figure 3.8. Code fragment to add a callback for receiving messages. 53

Figure 3.9. Code fragments showing use of attribute lists. 54

Figure 3.10. Code fragment for monitoring the conference user list....................... 55

Figure 3.11. Adding a multiple cursor overlay to an application. 56

Figure 3.12. Flow of input events and drawing operations with overlays. 57

Figure 3.13. Adding a multiple cursor overlay to a GROUPKIT program. 57

Figure 3.14. Code to produce a simple sketchpad using overlays. 58

Figure 3.15. Simple sketchpad created using overlays. 58

Figure 3.16. Open protocol between Registrar and Registrar Client.. 61

Figure 4.1. Standard INTERVIEWS main program... 71

Figure 4.2. Standard GROUPKIT main program... 71

Figure 4.3. Bitmap annotations kept separate using a Page glyph. 74

Figure 5.1. Screen capture of the GROUPKIT ÒVoteÓ demonstration program.. 85

Figure 5.2. Screen capture of the ÒMaster-Registrar-Client.Ó . 85

Figure 6.1. Layering of high-level toolkit support.. 98

1

Chapter 1

Motivation and Goals

Groupware is a generic term for software systems designed to assist groups of people

working together (Johansen 1988). This is in contrast to most software systems that only

support interaction between a single user and the computer. Although the roots of

groupware can be traced to the late 1960Õs (Engelbart and English 1968), the systems have

only recently begun to proliferate. The research discipline that studies groupware, as well

as the wider context in which groupware is used, is referred to as Computer Supported

Cooperative Work, or CSCW (Grief 1988).

The development of groupware systems has shown that there are many difficulties

associated with building these systems (Greenberg, Roseman, Webster and Bohnet 1992).

Developers must consider technical issues such as synchronization, concurrency,

communications, registration and more. Several Òhuman-centeredÓ issues Ñ issues arising

out of the social context in which the groupware is used Ñ must be dealt with, or the

systems may be rejected by their users (Grudin 1989). Finally, all the difficulties

associated with single-user systems remain present when developing groupware systems.

Time spent dealing with these difficulties is an obstacle to progress in CSCW research,

where it is essential to evaluate real systems Ñ systems that have to overcome these

difficulties (Grudin 1989).

Several groupware toolkits are now emerging from universities and research labs to

address these difficulties, assisting the software developer by providing software libraries

that eliminate many of these difficulties. However, most of these toolkits have been

2
developed in a restricted way, leaving many of the problems, particularly those

surrounding human-centered issues, unresolved.

This thesis describes the design principles behind a groupware toolkit, and how they are

instantiated in GROUPKIT (Roseman and Greenberg 1992b). GROUPKIT addresses several

of the problems left unsolved by current toolkits. It is unique in that its design focus is on

the needs of groupware developers, largely embodied in both the technical (or programmer-

centered) and human-centered features of the applications they are constructing.

This chapter begins by providing background to the particular application domain the thesis

considers Ñ Òreal-time conferencing systems.Ó The next section argues that toolkits are a

reasonable approach to building groupware, and introduces the principle of Òuser-centered

toolkit design.Ó The chapter concludes by outlining the rest of the thesis.

Real-Time Conferencing Systems

Groupware systems are often divided into four categories, as shown in Figure�1.1

(Johansen 1988). This taxonomy is based on two dimensions, time and location.

Groupware systems can support users working at the same time (synchronous) or at

different times (asynchronous), as well as users working in the same physical location (co-

located) or at a distance (distributed). While most systems support work in only one

quadrant, a few are designed to span the dimensions. This thesis is particularly concerned

with groupware systems used for real-time work, both in the same location or at a distance,

called real-time conferencing systems.

There are many real-time conferencing systems available today. This category includes

shared text editors, e.g. SHREDIT (Killey 1991), text-based chat and talk programs, e.g.

CANTATA (Chang 1986), freehand sketching systems, e.g. GROUPSKETCH (Greenberg

3

Same Time Different Times

Same Place

face-to-face

interaction

asynchronous

interaction

Different Places

synchronous

distributed

interaction

asynchronous

distributed

interaction

Figure 1.1. Taxonomy of groupware systems.

and Bohnet 1991), structured drawing programs, e.g. GROUPDRAW (Greenberg,

Roseman et al 1992), group decision support systems, e.g. GROUPSYSTEMS (Nunamaker,

Dennis, Valacich, Vogel and George 1991), and video-based desktop conferencing

systems, e.g. TEAMWORKSTATION (Ishii 1990).

Much of the recent interest in groupware has been in real-time conferencing systems.

While most groupware should be developed to support both synchronous and

asynchronous work (Dourish and Belloti 1992), the problems associated with building the

two types of systems are sufficiently diverse that providing the necessary underlying

support would be a large undertaking. Further, with the exception of studies of electronic

mail usage, e.g. Eveland and Bikson (1988), much of the research into group behavior has

occurred in synchronous domains, e.g. Tang(1991), Tatar, Foster and Bobrow (1991) and

Mantei (1989). Additionally, there is a greater amount of research discussing

implementation issues for synchronous systems, e.g. Greenberg, Roseman et al. (1992),

Lauwers, Joseph, Lantz and Romanow (1990) and Ellis, Gibbs and Rein (1991). This

wider body of research provides a substantially better basis for deriving design principles

and generalizations for toolkits Ñ particularly human-centered design principles Ñ than is

available in asynchronous domains.

4

User-Centered Toolkit Design

Software developers use toolkits to produce better programs faster. This not only saves

programming time, but can increase the quality of the resulting program by using well-

constructed and principled modules. The support is usually provided by a number of

library subroutines, or increasingly, object-oriented class libraries (Booch 1990). These

library routines or class libraries provide components with very general functionality,

leaving only application-specific functionality to be written by the developer.

Toolkits exist for many different problem domains, providing components for building

applications specific to those domains. An example domain is Human Computer

Interaction (HCI) and specifically user interface design, where toolkits can simplify the

development of interfaces (Myers and Rosson 1992). Though other types of development

tools exist, such as interface builders or User Interface Management Systems, toolkits offer

the greatest flexibility to the developer. Toolkit users can use pre-defined components,

often can alter or extend them, or can eschew standard components for custom-made

solutions. This flexibility can be important for non-standard applications, where desired

features may be difficult to implement in more restrictive development tools. This

flexibility is especially important to groupware, for it is far too early to conclude what a

ÒstandardÓ groupware application would be.

In order for a toolkit to be successful, it must provide the necessary components and

functionality required by the groupware developer. Yet how can the developerÕs needs be

determined?

Consider traditional interface design practice. When designing interfaces for end users,

developers are taught to observe the users of their system, to focus on the type of work the

users need to do, and to take into account their needs and preferences. Such user-centered

5
design (Norman 1986) has proven to be reasonably successful at determining the

requirements for new systems.

This thesis argues that a user-centered approach can also be applied to designing software

intended for developing other software Ñ toolkits. The users here are the application

developers who build interface software. These developers have particular needs in

building their applications that should be carefully considered by toolkit builders. These

needs can be identified by examining their work practices. What problems do developers

encounter when building software? What sorts of applications are they building? What

features are necessary, which are important, and which will never be needed? Addressing

these sorts of questions provides the foundations necessary to support developers.

An outline of steps that can be used when designing a toolkit using a user-centered

approach is presented below. This particular set of steps is completely analogous to steps

found in the traditional practice of user-centered design of applications for end users:

observe users, design and prototype, elicit feedback, then repeat (Norman 1986; Gomoll

and Nicol 1990; Tang 1991). Each of the steps is illustrated by considering the particular

needs of groupware developers.

Specify Toolkit Domain

The first step is to identify the domain in which the toolkit will be used. Special needs

application domains such as groupware can benefit from toolkit support unnecessary for

most applications. This is important to determine what features will and will not be

included in the toolkit. As with end-user applications, the more that is known about the

domain the easier it is to build a good system that meets the specific needs of the users.

6
The toolkit domain considered in this thesis is that of real-time conferencing applications,

as described previously. Asynchronous groupware applications such as electronic mail are

explicitly excluded. While strong claims can be made that groupware systems should span

the synchronous vs. asynchronous dimension, e.g. Cockburn and Greenberg (1993) and

Dourish and Belloti (1992), the needs of the two types of groupware are different enough

that supporting both is non-trivial. While an ideal groupware toolkit should provide

support for both, this project is restricted to synchronous groupware.

Identify Developers

Having identified the target domain, it is then important to identify the developers who will

use the toolkit. Knowing the types of developers will have important consequences for

how the toolkit will be designed, the level of functionality provided, and how that

functionality will be delivered to the developer. Several important considerations can arise.

Toolkits should attempt to use programming languages already known by the developer.

The selection of computing paradigms, such as an object-oriented paradigm will depend on

the developersÕ skills and experiences. If developers have experience with other toolkits,

familiar concepts from those toolkits should be exploited in the design. The acceptable

learning curve for the toolkit depends on its use by developers, whether for short-term or

long-term projects.

Since most groupware is being developed in research labs, it is sensible to assume

sophisticated developers. This has several implications for building the toolkit, for

example selection of an object-oriented language, or a sophisticated underlying user

interface toolkit as a basis for the groupware toolkit.

7
Identify Use of Toolkit

Toolkits can either provide building blocks for making domain-specific objects, or provide

the domain-specific objects themselves. In the first case, developers must act as widget

builders, creating high-level components that are then used to build the end applications. In

the second case, the high-level components in the toolkit are used directly in the end

application, such as complete dialog boxes provided by many interface toolkits.

For the real-time conferencing domain, the first approach seems beneficial. While several

high-level components can be identified and should be provided in the toolkit, in general

the domain is too new and diverse to predict the set of high-level components that will be

necessary. A toolkit supporting this domain should then be created in an open-ended and

extensible way, encouraging developers to create new groupware components.

Consider Target Applications

The toolkit features required by developers depend heavily on the applications they are

constructing. Studying these applications can suggest common needs that can be translated

into functionality and features best incorporated into the toolkit. Existing applications in the

selected domain are easiest to consider, but considering possible future applications can be

valuable as well.

Many real-time conferencing applications exist today, e.g. sketchpads, structured drawing

programs, and editors, as previously discussed. Much of the research in CSCW is

concerned with evaluating the features and paradigms used by these applications

(Greenberg, Roseman et al 1992; Grudin 1989; Stefik, Bobrow, Foster, Lanning and Tatar

1987). This research provides an excellent basis for deriving toolkit features. Chapter 2

provides examples of how this research can be transformed into toolkit design

requirements.

8
Design for Proper Use

The previous steps should generate a set of necessary components and features of the

toolkit, should raise issues about the flexibility of components, and should suggest

information about the implementation language and other important concepts. Yet it is

important not merely to piece together all these features and information into the toolkit, but

to combine and structure the information in a way useful to the developer.

A toolkit provides more than an alphabetic list of routines in a library to the developer. A

toolkit should contain a philosophy of how applications should be developed using the

toolkit, and should encourage developers to build good programs properly. This can be

done in several ways. The structure of the toolkit can suggest appropriate ways that

applications can be created. Documentation can go beyond describing how to use particular

components, and concentrate also on when to use them. Example programs included with

the toolkit can highlight instances of good design, and are perhaps more likely to be used

than documentation. One goal in GROUPKIT is to make it easier for developers to do the

right things in building their systems, and examples of this are presented throughout the

thesis.

Apply Design Affordances

A toolkit is more than simply a set of components or library routines. Developers must be

encouraged to actually understand and use the appropriate components when the situation

demands it. With careful design, toolkits can actually encourage the creation of better

programs. This section develops the idea of a design affordance to address this issue.

Affordance theory has been applied to the design of interfaces by several people (Gaver

1991b; Norman 1988), where an affordance is defined as the properties of objects that

suggest particular uses to users. For example, the raised appearance of buttons in modern

9
interfaces suggests ÒpushingÓ to the user. Gaver (1991b) believes the theory can guide

developers in designing artifacts that emphasize desired affordances and de-emphasize

undesired ones.

The use of affordances can be extended beyond conventional applications in interface

objects to the level of software objects. A design affordance is defined as a property of a

toolkit object that suggests how it can be used. The design objects are at the level of

underlying software tools, not end-user applications. Design affordances therefore involve

interactions between such tools and program developers, not end users. In this sense a

toolkit can have affordances, where the affordances suggest appropriate uses of the toolkit

to the software developer.

It is important to distinguish between design affordances and Òfeatures.Ó Features can be

all too easily hidden within a toolkit, can be difficult to use, and it can be hard to

comprehend when or why they would be used. In contrast, design affordances are situated

in the overall toolkit to present themselves to developers when needed. Design affordances

clearly suggest to the developer how a particular feature can be used and why it should be

used. Affordances may also combine a set of individual features into a high-level concept

or construct that can be easily applied to simplify development.

Design affordances can be used by toolkit builders to aid developers in building better

programs. Most user interface toolkits, for example, provide Òcontrol panelsÓ that collect

buttons, valuators, menus, and so on. As an affordance, this suggests a particular

interaction style to the developer, and indeed control panels are prevalent in many of

today's applications. Other common toolkit constructs-as-affordances are graphical

canvases, text editors, and terminal windows.

10
Similarly, a toolkit supplying consistent looking components will encourage building

consistent looking interfaces. Supporting keyboard accelerators by default at the toolkit

level will encourage their adoption. Programs built using a toolkit with an embeddable

control language, e.g. TCL (Ousterhout 1990), will themselves be structured to support

this language, providing user-level scripting and a highly tailorable system. Nothing forces

developers to incorporate these features in their applications, but because of the toolkit's

design affordances it is easy and natural to do so.

Iterate Design

Finally, it is essential to iterate the design, using preliminary versions of the toolkit to

design standard applications, identify problems, redesign, and try again. Toolkit design is

inherently a Òwicked problemÓ (Rittel and Webber 1973), where there can be no definitive

formulation of the problem. Developers have diverse and often conflicting needs, and

these needs change rapidly in response to changes in technology and supporting research.

As with applications, the chances of getting the design right the first time are extremely

small. Iterating the design helps refine both the set of features and the ways of structuring

those features.

The GROUPKIT system described in this thesis is the result of several iterations. Because

of time restrictions, these are currently based on the experiences of the toolkit developer.

Significant changes have resulted as a direct consequence of the iteration. An effort has

been made to highlight these changes throughout the thesis, to highlight the ongoing design

rationale rather than present the illusion of a static artifact resulting from a deterministic

design process (Kuhn 1962). A preliminary version of the system has been released to the

CSCW research community, so that ongoing work on GROUPKIT can be based on

feedback from developers.

11
This user-centered approach to designing software toolkits seems a natural and promising

extension to the user-centered design of interfaces. The Òobserve, design, prototype,

repeatÓ cycle should allow toolkit builders to design systems that more accurately reflect the

needs of the application developers.

Outline of Thesis

The remainder of this thesis describes and evaluates the design and implementation of

GROUPKIT, which is carried out using the user-centered toolkit design methodology

presented in the previous section.

Chapter 2, ÒDesign Requirements,Ó surveys many of the existing groupware systems and

how they are used to determine some of the features that are necessary for building real-

time conferencing systems. These are generalized as human-centered and programmer-

centered design requirements for groupware toolkits. The chapter then uses these

principles to compare some of the existing toolkits for real-time groupware.

Chapter 3, ÒDesign and ImplementationÓ details the design and implementation process that

resulted from these design requirements. The emphasis in this chapter will be on

describing the set of features developed in GROUPKIT. These components include a

communications infrastructure, overlays for providing work surface actions, and open

protocols for flexible software policies.

Chapter 4, ÒDesign RationaleÓ examines why particular design decisions were made in

GROUPKIT, in the hope that this knowledge can guide other developers of toolkits. The

components in Chapter�3 are considered in terms of minimizing the developerÕs work,

encouraging use of components, extensibility, and flexibility.

12
Chapter 5, ÒEvaluationÓ reflects on the resulting design and implementation, evaluating the

project in terms of the GROUPKIT implementation, as well as the underlying principles and

requirements which directed the implementation.

Chapter 6, ÒConcluding RemarksÓ presents several areas for future work, and summarizes

the contributions of this research.

13

Chapter 2

Design Requirements

This chapter surveys many of the existing groupware systems as well as studies of their

use. This provides a basis for determining some of the features of groupware that are

important for its success. These features can then be interpreted as design requirements for

a groupware toolkit.

This chapter divides toolkit requirements into two categories: human-centered and

programmer-centered. Human-centered requirements are motivated by the needs of

groupware users. They suggest common features that people require to work together

effectively, and that may be critical for the successful adoption of the system. These are the

features that people see as part of groupware. Strictly speaking, a programmer can build

groupware and ignore all the human-centered requirements, for they are not as fundamental

in the engineering sense as, for example, network communications. Given that human-

centered requirements may make difficult implementation demands, application developers

may neglect to follow them. The result may well be an impoverished or unusable system.

Embedding human-centered requirements in a toolkit encourages application developers to

include them in software, arguably producing better programs.

In contrast, programmer-centered requirements are typically visible only to the application

developer, and not to the end user. These are engineering requirements that are necessary

for building nearly any groupware system providing a basic level of functionality. For

example the ability to easily set up communication between different computer processes

forms a basic programmer-centered requirement. When programmer-centered requirements

14
are embedded in a toolkit, application developers gain easy access to well-designed features

they would otherwise have to build themselves.

Table 2.1 summarizes the human-centered and programmer-centered design requirements

discussed in this chapter.

The chapter closes by considering the support provided by some existing groupware

toolkits, compared with the design requirements derived in this chapter. While this

comparison is not a fair one Ñ different toolkits were constructed in response to different

needs Ñ it does suggest that current toolkits have emphasized programmer-centered

requirements (which developers have to worry about anyway) while largely ignoring

human-centered requirements (which developers may overlook if support is not provided).

15

Requirements Rationale Examples

Human-centered requirements

Supporting multi-user

actions over a visual

work surface

Human factors work

suggests people often

gesture over and annotate

diverse artifacts

 ¥ provide support for

gesturing

¥ provide support for

graphical annotation

Structuring group

processes during a

meeting

Many conferences need to

be structured, but different

groups require different

sorts of structure to accept

software

¥ provide various floor

control policies

¥ support different

registration methods

¥ support latecomers

Integration with

conventional ways of

doing work

People are comfortable

with using other media,

e.g. telephone and other

programs

¥ integrate other forms of

communication

¥ allow use of single-user

applications

Programmer-centered requirements

Technical support of

multiple and distributed

processes

Programmers must, for

any conference, manage

multiple, distributed

processes, and connections

between them, including

starting up connections,

keeping them active, and

tearing them down.

¥ provide processes for

basic conference

management

¥ provide a robust com-

munications

infrastructure

¥ provide support for

persistent sessions

Technical support of a

graphics model

Many applications can be

seen as shared visual work

surfaces, requiring textual

and graphical primitives

that can cope with issues

such as concurrency and

WYSIWIS view sharing

¥ provide primitives to a

shared graphics library

¥ provide object

concurrency control

¥ separate the view of an

object from its

underlying representation

Table 2.1. Summary of toolkit design requirements.

16

Human-Centered Requirements

This section looks at some of the human-centered requirements for real-time conferences

that have been derived from CSCW research. Human-centered requirements are all too

often ignored in software design (Mulligan, Altom and Simkin 1991), because they are not

only difficult to build, but their benefits are often hard to quantify and evaluate. With

CSCW, as with more traditional HCI, the requirements do not seem to affect the softwareÕs

functionality, they do not add to lists of features in advertising brochures, and they are

often termed non-essential by management in software development organizations.

However, Grudin (1989) claims that software ignoring human considerations, particularly

groupware, will not be accepted or adopted by the group. Groups have particular work

practices, and are reluctant to change these work practices. Computer systems that require

changes to these work practices are likely to be left unused by the group. Unfortunately, it

is a long and difficult process to design the necessary features required by the group

(Pendergast 1992). Further, the way those features are packaged and presented to users Ñ

human considerations in the software Ñ is critical to the programÕs success (Francik,

Rudman, Cooper and Levine 1991). Development effort directed towards state-of-the-art

technical features is wasted if the product is not used. Thus the inclusion of human-

centered requirements is critical to the overall success of a software product.

By observation and study of work situations, requirements arise that cannot usually be

determined a priori, through introspection or Òdesktop design.Ó Such introspective

methods are difficult enough to apply for single-user applications, but break down for

groupware (Grudin 1989). These methods would require the ability to predict the

reactions of all members of the work group, taking into account the interactions between

the different group members in a variety of work situations. Therefore it is essential to use

17
methods from the social sciences, such as task analysis and ethnography (Hughes, Randall

and Shapiro 1992), observing how people actually work. As will be seen with the

examples that follow, many of these principles and requirements seem Òobvious.Ó

However, it is only through the studies that they became evident.

This section presents three critical human-centered requirements that have emerged from the

literature. These are: support of generic multi-user actions over a work space (e.g.

gesturing and annotation), flexibility in structuring group processes (e.g. floor control and

conference registration), and integration with conventional ways of doing work (e.g.

telephone, video and single-user applications). These requirements are now considered in

turn, with comparisons being drawn to everyday work situations.

Supporting multi-user actions over a visual work surface

A common occurrence in many organizations is the small group design meeting. These

meetings occur when a group of people get together informally to discuss a problem. A

common feature of most of these meetings is the inclusion Ñ and often central focus Ñ on

a shared surface, typically a whiteboard or a sheet of paper on a table. These visual work

surfaces perform an important function during these meetings, serving as both a repository

for ideas as well as a focus for group interaction.

Simulating this shared surface for meeting participants who are not co-located was an early

application of groupware systems (Group Technologies Inc. 1990; Stefik, Bobrow et al

1987). Each user in the meeting was equipped with their own computer terminal running

special software to simulate an electronic whiteboard. These systems permitted actions

such as drawing and typing on one userÕs screen to be transmitted and displayed on all

other usersÕ screens. This transmission occurred at discrete intervals, often when an entire

stroke or object was completely drawn. The commonly held belief was that since the work

18
surface was a place merely to store information, that this would be enough to support

design meetings at a distance.

However, when people actually used these systems, problems appeared. The following

quotes were typical of observations of these systems, in this case COGNOTER (Tatar,

Foster et al 1991).

ÒWhy can't I see that?Ó

ÒI don't see what use it is to have a big screen if we can't all contribute to it.Ó

ÒClick DONE so I can see it.Ó

P1: ÒP2, do you have anything you want to say?Ó

P2: ÒI won't be able to see it up there, right?Ó

There were many problems with reference Ñ people speaking with reference to items on

their own screens, but other users could not identify the referenced items. What happened

was that the results of drawing or typing were displayed on other users' screens, but not as

the drawings or text were being created. The user creating the drawing would see it as it

was being created, and would speak with reference to the drawing, but other users would

not see the drawing until it was complete.

This motivated researchers at Xerox PARC (Bly 1988; Tang 1991) to study how people in

design meetings use conventional work surfaces such as whiteboards. In several small

group design sessions, actions around a surface were enumerated and classified. A

framework was developed, containing three actions (list, draw, and gesture) and three

functions of the actions (store information, express ideas, and mediate interaction). Table

2.2 shows the resulting classification from one of several studies run (Tang 1991). Results

in other studies were similarly distributed.

19

List Draw Gesture Total

Store
Information

18% 8% 1% 27%

Express
ideas

1% 28% 15% 44%

Mediate
interaction

0% 9% 20% 29%

Total 19% 45% 36% 100%

Table 2.2. Results of Xerox PARC classification of workspace activity. (n = 225)

Surprisingly, the conventional view of work surfaces (listing and drawing to store

information) accounts for only 37% (59 actions) of all work space activity. Averaging over

all the studies this figure is about 25%. The remaining functions, expressing ideas and

mediating interaction, together account for a significant portion of work surface usage.

Also gestures are used extensively to both express ideas and mediate interaction.

These considerations had not been included in the design of earlier systems. This was

largely because incorrect theories of human communication were applied to the system

designs. For example, a Òparcel-postÓ model of communication (Tatar, Foster et al 1991)

was often assumed, whereby a group of work surface actions were broadcast at discrete

intervals to remote users. This is insufficient because the marks on the work surface are

used as an expression of ideas, and are closely coupled with verbal communication. When

there is a delay in broadcasting changes to the work surface, this communication became

unsynchronized, resulting in confusion amongst users. Six design implications arose from

this work.

20
1. Convey process. The process of creating and using drawings is often more

important than the resulting artifact or drawing. Further, the process is usually closely

synchronized with speech. It is important that systems transmit changes to the work

surface immediately to other users, providing immediate fine-grained feedback rather than a

Òparcel-postÓ model of interaction. Systems based on TangÕs recommendations such as

GROUPSKETCH (Greenberg and Bohnet 1991), COMMUNE (Bly and Minneman 1990),

and GROUPDRAW (Greenberg, Roseman et al 1992) provide immediate feedback to solve

the referencing problems.

2. Simultaneity. The studies also highlighted frequent instances of several people

working on the drawing surface at the same time. If it is desired to emulate such a surface,

users must be able to interact at the same time, as opposed to following a strict turn-taking

or floor control policy. Observations of computer systems supporting simultaneous actions

by users, e.g. Greenberg, Roseman et al (1992), note that simultaneous work occurs often

on the computer systems, where users do not physically impede each other.

3. Modeless interface. The studies identified many cases of frequent mode switches

Ñ users switching rapidly and frequently between listing, drawing and gesturing.

Supporting this fluid switching in software requires that modes be eliminated or that the

overhead of switching modes in the software is minimized.

4. Common view. Providing a common view to the shared work surface permits users

to share a common orientation, so that it is easier to reference items in the work space.

This has typically implied a ÒWhat You See Is What I SeeÓ (WYSIWIS) work surface

(Stefik, Bobrow et al 1987) where all participants share an identical view.

5. Gestures. With conventional work surfaces, gestures are used by people to reference

existing items on the work surfaces, and also to mediate access to the work surface. Early

21
systems did not support any use of gestures, which increased the difficulty of references

between participants.

Modern systems based on the Xerox studies support the use of gestures, using telepointers

or multiple cursors Ñ a cursor for each user that is visible on other usersÕ screens Ñ

allowing all users to point to objects on the work surface with a mouse or stylus. Usability

tests on these systems, e.g. Minneman and Bly (1991), Greenberg and Bohnet (1991) and

Scrivener, Garner, Palmen, Smyth, Clark et al (1992), show that using computerized work

surfaces is close to using conventional work surfaces when gesturing is provided.

Gesturing seems a generally useful activity, applicable to a wide variety of computer

systems. For example, the ability to point to cells in a shared spreadsheet provides the

same benefits as pointing to graphics or text in shared drawing surfaces. This is because

many different applications can be envisioned as a shared work surface.

6. Annotation. A similar activity that can be valuable for shared surfaces is annotation,

where a graphical or textual marking is attached to an artifact in the work surface. The

Xerox studies noted many instances of using drawing or writing to express ideas.

Annotation is commonly seen when, for example, a document is being proofread Ñ

graphical and textual marks are made, again referring to items or artifacts in a work surface.

Several systems, such as FREESTYLE (Francik, Rudman et al 1991) and the PROOF-

MARKS language in VMACS (Lakin 1990) support graphical annotation of objects in a work

surface.

Flexible structuring of group processes during a meeting

A contentious issue in the CSCW literature is the role of socially vs. technically-supported

protocols and processes for controlling a groupÕs behavior during meetings. Social

22
protocols imply the absence of explicit control in software for the groupÕs behavior,

allowing the group to negotiate protocols through normal channels. Technically-supported

protocols, on the other hand, use the software to impose a particular model of social

interaction on the group.

The choice between social and technically-supported protocols must be considered

carefully. Advocates of social protocols, e.g. Dykstra and Carasik (1991), often argue that

we donÕt understand the way that humans work together well enough to formalize a

protocol describing that work. Further, different groups require different types of

protocols, and entrenching a single protocol in the software will alienate many groups

(Grudin 1989). Natural protocols evolve and change throughout the course of even a

single meeting, and while humans can quickly and fluidly adapt to these changes, it may be

more difficult to provide smooth transitions if protocols are embedded in software.

However, advocates of technically-supported protocols, e.g. Nunamaker, Dennis et al

(1991), note the many problems or Òprocess lossesÓ associated with unstructured meetings,

such as poor usage of time (Jay 1976). Management research has created numerous

models of organizational behavior that can assist a group in improving their productivity.

By embedding much of this theory in software, it is argued that computer meetings can be

made more productive as well.

More moderate approaches are of course also possible, e.g. Greenberg (1991), Johnson-

Lenz and Johnson-Lenz (1991). It is individual developers of groupware applications who

must determine the role of social and technically-supported protocols based on the needs of

their user groups, whether the group will accept and benefit from including structured

processes in the software or not. However, toolkit developers would be advised to provide

the facility whereby developers can build structured protocols into their software if needed.

23
This facility should have several characteristics. First, developers should not be required to

use structured protocols, if it is not desirable in a particular application. Second, the facility

should allow a wide range of protocols to be implemented, to better accommodate the needs

of different groups. Finally, it should be possible to build several different protocols for

the same operation, allowing designers the ability to provide a library of protocols to end

users or group moderators. This could allow end-users to select and switch between

different protocols at run-time, adjusting their tools as their needs change.

This flexibility is of paramount importance if toolkits are to assist developers in meeting the

needs of their end users. Three examples showing the need for flexibility in protocols are

now discussed.

1. Floor control. Floor control can mediate access to shared objects in a real-time

conference. For example, floor control used with a shared text editor can control which

users can type at any given time. Many different floor control policies are possible,

ranging from free floor control (anyone can type anytime), to preemptive floor control (any

user can grab control from the active floor holder) to explicit release (users can grab control

only when the floor holder explicitly releases the floor). Lauwers (1990) and Greenberg

(1991) recommend that systems should Òsupport a broad range of (floor control) policiesÓ

providing different policies to suit the usersÕ needs. Mantei observed these needs are

different between groups and may even change within a single meeting of one group,

where the participants select different styles of working (Mantei 1989).

2. Registration. Every conference must provide a mechanism allowing users to join.

Yet even the method of joining can vary between conferences. Some conferences are more

open or informal, allowing anyone to join the conference at any time. For other

conferences, perhaps those resembling formal business meetings, there should be tighter

24
control of who can join a conference. New users might be required to appear on an Òaccess

listÓ or be approved by an existing conference user. As another example, sometimes more

spontaneous creation of conferences is desired to simulate casual interactions (Kraut,

Egido and Galegher 1990; Root 1988) while other situations may require a central

facilitator to handle registration (Nunamaker, Dennis et al 1991). Toolkits should provide

the flexibility to support any reasonable registration process.

3. Conference Latecomers. As a consequence of spontaneous conferences and due to

the nature of conventional meetings, all users will rarely be present at the start of the

meeting. There should exist ways for newcomers to join at any time, as well as existing

members to leave. Strategies should also be supported to assist the newcomers in Ògetting

up to speed.Ó This may involve simply sending the current conference state to the new

user (Greenberg, Roseman et al 1992) or may involve providing summary information, in

the form of transcripts or snapshots (Dubs and Hayne 1992), on the progress of the

conference from its beginning. Though many are interested in this problem, e.g.

Patterson, Hill, Rohall and Meeks (1990) and Crowley, Baker, Forsdick, Milazzo and

Tomlinson (1990), much research remains on exactly how latecomers can be smoothly

integrated into a conference.

Integration with conventional ways of doing work

Groupware systems are only one set of tools used to do work. Groups can work together

using other means, such as traditional face to face meetings not augmented by computers,

e.g. Tang (1991) and Jay (1976), through telephone conversations, and through

conventional paper documents. To further complicate matters, ÒindividualÓ work, done

with pen and paper or single-user computer applications must often be incorporated into

ÒgroupÓ work, allowing individuals to share their work with the whole group. This section

25
suggests human-centered requirements based on the challenge of integrating individual

work into group scenarios.

1. Integrate with Non-Computer Artifacts. An excellent example of integrating

daily work into computer conferences is the TEAMWORKSTATION system (Ishii 1990).

That system, and others like it, e.g. VIDEODRAW (Tang and Minneman 1990), use video

fusion techniques so that users working together can use both the computer and items on

the normal desktop. Video cameras display one userÕs desktop on other usersÕ monitors,

with the ÒrealÓ and ÒvirtualÓ desktop fused together. In this way, computers can even be

used to discuss paper documents between remote users without having them scanned in to

the computer. Ishii refers to this important concept as ÒseamlessnessÓ (Ishii, Kobayashi

and Grudin 1992), where the barrier or seam separating computer-based and individual

work is reduced. This approach provides excellent results, but includes extra costs such as

the hardware involved. The following two methods for integrating conventional work at a

low cost are also desirable.

2. Integrate Other Forms of Communication. Voice communication is an

important factor in most conferences (Chapanis 1975). In the Xerox PARC observations

for example, it was noted that voice was used frequently, and also directly related to

artifacts on the drawing surfaces. Given the ubiquity of telephones, it can be assumed that

a voice channel is available. Some systems have been built that closely integrates other

forms of communication with computer conferencing, allowing a user to begin a normal

telephone call or video-conference from their computer workstation, e.g. the RAPPORT

conferencing system (Ensor, Ahuja, Horn and Lucco 1988). Given the close ties between

computer conferencing and other forms of communication, it is important that they are

handled in a consistent way, preferably through the conferencing system.

26
3. Integrate Single-User Applications. Groupware applications today are far from

ubiquitous. There are many tasks that can currently be done only with single-user

software. Further, many users are comfortable with particular single-user programs. If

single-user applications can be made to function in the multi-user conference setting, both

this extra functionality and extra familiarity can be used to the advantage of the group.

Shared text screen systems like SHARE (Greenberg 1990), and shared window systems

like SHAREDX (Garfinkel, Gust, Lemon and Lowder 1989) provide the ability to

incorporate single-user systems into multi-user settings. Input from several participants is

merged into a single input channel, perhaps moderated using floor control strategies, and

then sent to the single-user application as if from a single-user. The applicationÕs output,

normally sent to a single screen, is distributed to all the conference usersÕ screens. Though

this does not result in true multi-user aware applications, it can be an effective medium for

presenting individual work to the group.

Programmer-Centered Requirements

The previous section dealt with the human-centered features that should be included in

groupware applications to encourage user acceptance, and to provide tools that assist

people in doing work. This section now deals with the construction of groupware,

involving issues hidden from the end user but essential to the developer. The groupware

developer is faced with a wide range of new challenges not encountered when developing

single-user software. Toolkits can help by providing reusable components to be included

in the software, limiting the amount of design and code that must be created from scratch.

This section looks at several fundamental components that can be provided, based on

requirements derived by reviewing groupware systems. Studies of these systems highlight

the commonalities between them and suggest toolkit components. By managing these

programmer-centered requirements at the toolkit level, the application developer can save

27
effort in designing, implementing and testing common groupware components. In this

section two sets of requirements are identified, dealing with distributed processes and

graphics respectively, which suggest the design of toolkit components.

Technical support of multiple and distributed processes

At a fundamental level, groupware systems for real-time distributed work require support

for maintaining several different processes, often distributed across a network. Not only

must these processes be maintained, but communications channels must be available so

they can communicate and interact with one another. These processes and communications

channels provide the mechanisms whereby higher-level components, such as conferencing

tools, can be built and interact with each other. Several fundamental aspects of multiple

and distributed process support are now discussed.

1. Conference Management. Conference management includes participant

registration, conference initiation, conference maintenance, and conference teardown.

Participant registration allows users to join conferences. Users must first locate existing

conferences, or alternately create new ones, and then join the conference. Conference

initiation actually creates a new conference process, whether locally invoked (e.g. a user

asks to create a new conference) or remotely (e.g. a meeting facilitator opens a voting tool

on all usersÕ screens). Conference maintenance involves the communications between

conference users, discussed in the next paragraph. Finally, conference teardown is the

process whereby an existing conference is ended. Issues here mainly concern the

disposition of conference artifacts.

Groupware toolkits should strive to support all aspects of basic conference management.

This allows application developers to concentrate on the functionality specific to their

application, without concern for establishing communications. In light of the human-

28
centered requirements, conference management must be implemented flexibly, so that

developers have choices where appropriate, such as different strategies for participant

registration.

2. Communications Infrastructure. It must of course be possible for the distributed

processes to communicate. At the minimum, any process must be capable of sending a

message to any other process, without concern for low-level communications issues.

Because there is often a need in groupware systems to send the same message to some or

all conference participants, it is preferable if a multi-cast facility is available.

 Communications architecture may be designed in one of two ways, centralized or

replicated. In centralized architectures, all messages are sent through a central machine,

which forwards messages to other conference users. In replicated architectures, no central

mediary is used and processes communicate directly with each other. The trade-offs

between the two architectures have been well-documented (Ahuja, Ensor and Lucco 1990;

Lauwers, Joseph et al 1990), with centralized architectures simplifying concurrency control

and replicated architectures being more efficient and robust to machine failure. It is also

possible to build hybrid architectures, where some services are provided in a replicated way

(e.g. most communications between programs) while other services are provided in a

centralized way (e.g. lock servers for concurrency).

3. Persistent Sessions. Often computer conferences will span more than a single

session, as occurs frequently in decision support meetings (Nunamaker, Dennis et al

1991). It is desirable to maintain all session state information over the full duration of the

conference. There should exist general mechanisms whereby conference objects can be

made persistent. Facilities for persistence are discussed mainly in the distributed systems

literature, for example the OBJECT REPOSITORY (Liskov, Gruber, Johnson and Shrira

29
1991) which provides a highly reliable generic facility for storing persistent objects. In

groupware systems, the use of persistence can be seen in many hypertext-based systems,

such as SEPIA (Haake and Wilson 1992).

Technical support of a graphics model

As previously seen, many groupware systems can be thought of as visual work surfaces,

shared between conference participants. In light of this, groupware will require

mechanisms to allow users access to such a shared work surface. Though in theory the

basic communications discussed in the previous section can serve as a basis for a shared

work surface, a higher level of support is desired. This support includes a framework for

implementing shared visual objects, such as structured graphics or text, concurrency

control for mediating access to these shared objects, and a method of separating the

underlying structure of an object from its view, allowing users with different needs to view

the objects differently.

1. Shared Visual Objects. Many groupware applications require shared visual objects

for displaying objects such as shared lines, rectangles, and text. Much work is involved in

creating such objects, and it is undesirable to repeat the work for each new type of object

created. Greenberg, Roseman et al.Õs discussion of GROUPDRAW (1992) describes

technical issues of a shared object-oriented drawing package, and provides a design for an

abstract drawing object that can be sub-classed into concrete objects such as shared lines.

Some guidelines for the behavior of fine-grained editors for simple visual objects are

provided by Bier and Freeman in their MMM system (Bier and Freeman 1991), while the

RENDEZVOUS project has spawned a large collection of graphical editors (Brinck and

Gomez 1992). UNIDRAW (Vlissides and Linton 1989) provides a single-user framework

for creating graphical editors, allowing developers to create underlying components,

graphical views on the components, and commands and tools for manipulating the

30
components. Ideally, a groupware toolkit should provide the same support for creating

shared graphical editors.

2. Object Concurrency Control. Many groupware systems support access to some

sort of shared object, be it structured graphics or a text buffer. Concurrency control is

often needed to mediate access to the object, for example in the case where two people try

to manipulate the same point on a line (Greenberg, Roseman et al 1992). As will be seen

shortly, concurrency schemes have already been a focus for several current generation

groupware toolkits, such as RENDEZVOUS (Patterson, Hill et al 1990) and LIZA (Gibbs

1989). Ellis et al. (1991) discuss several ways that concurrency can be implemented,

ranging from simple locking to more complicated schemes such as transactions, with the

suitability of different schemes depending on the particular application. The ARJUNA

system (Parrington and Shrivastava 1988) is one example of using object-oriented

techniques to provide for flexible locking strategies, while Chin and Chanson (1991)

provide a more general discussion of issues in concurrency and distributed objects.

Flexible concurrency control for groupware systems has been identified as important by

Dewan (1991), motivating the use of coupling status Ñ objects that are private, public, or

sharable between usersÑin systems like GROUPDRAW (Greenberg, Roseman et al 1992)

and CAVEDRAW (Lu and Mantei 1991). Finally, a concurrency control algorithm well

suited to real-time groupware systems is presented by Beaudouin-Lafon and Karsenty

(1992) which uses a selective undo / redo of actions based on application semantics to

guarantee messages received in different orders at different sites are processed in an

equivalent manner.

3. Separate View from Representation. Many single-user graphical systems

separate the underlying structure and properties of an object from its view on the screen.

Patterson argues that this separation is critical in groupware (Patterson 1991; Patterson,

31
Hill et al 1990), and that abstractions should be used to create an interface-independent

representation of data. As a consequence, users can have multiple perspectives on the same

data. The example given is of a card table, where different users see different cards

differently (i.e. their own face-up), and the orientation is different for each player.

Separating view from representation accommodates different usersÕ needs for the data. For

example, view separation in a multi-user CASE tool would allow different ways of viewing

data for managers and programmers. Different users of a shared drawing tool could select

from a different set of tools for working on the same drawing (Brinck and Gomez 1992).

Existing Toolkits

This section briefly reviews existing groupware toolkits. The toolkits will be reviewed

using the requirements detailed in the previous sections. Again, this is not a fair

comparison, as the different toolkits were constructed to meet different purposes.

However, the intent is to highlight the fact that current toolkits have done well in satisfying

programmer-centered requirements, but have limited their attention to the human-centered

requirements.

Rendezvous

RENDEZVOUS (Patterson 1991; Patterson, Hill et al 1990) is a toolkit for developing

synchronous multi-user applications that has been developed at BellCore. The system is

derived from the MEL User Interface Management System, a language extension to

Common Lisp providing support for graphics, object-oriented programming, and

constraint management. RENDEZVOUS consists of two parts, a start-up architecture and a

run-time architecture. The start-up architecture is used to separate or decouple the chores of

registration from the application itself. Users join a RENDEZVOUS conference through the

32
Rendezvous Access Point, or RAP. Communications are also handled via the start-up

architecture.

However, it is RENDEZVOUSÕs run-time architecture that is impressive. Its constraints are

used extensively to provide different dimensions of object sharing. They are used to share

underlying information about objects between different users, maintaining all shared

objects in a consistent state. Constraints have also been used to build a What You See Is

What I See (WYSIWIS) abstraction for shared objects. RENDEZVOUS makes a clear

separation between the underlying object and views on that object, allowing different

members of the group to have different views on the same object. Constraints maintain

consistency between the underlying object and its views. This is exemplified by a multi-

user card game, where each user has a different view of the card table (Patterson 1991).

Finally, constraints have been used Ñ although the details are not clear from (Patterson,

Hill et al 1990) Ñ to build turn-taking or floor control protocols. Several applications,

notably an interface design program based on the PICTIVE (Muller 1991) technique and a

suite of drawing tools (Brinck and Gomez 1992) have been developed at BellCore using

RENDEZVOUS.

As a toolkit, RENDEZVOUS supplies a strong, well-designed foundation on which to build.

Unfortunately, its applications run very slowly, likely because of their reliance on Lisp and

an elaborate constraint maintenance system. The communications architecture is

centralized, leading to robustness problems when machines fail. In general, the system has

not addressed many of the human-centered issues identified earlier in this chapter.

Several future directions for RENDEZVOUS are planned. Out of band communication

channels, such as telephone and video links using the CRUISER system (Root 1988), are

being more closely integrated into the RENDEZVOUS conferencing system. The graceful

33
incorporation of conference latecomers into a session (potentially via summary information)

is also being addressed, as are persistent sessions. Finally, the developers are looking at

alternate ways of maintaining structural consistency between underlying objects and views,

suggesting that the constraint-based mechanisms currently used are not as powerful as

required.

MMConf

MMCONF is a tele-conferencing toolkit whose primary focus is the smooth integration of

single-user applications into group conferencing situations (Crowley, Baker et al 1990).

However, facilities are provided for the development of pure multi-user applications. The

toolkit, implemented under Unix, contains several components for multi-user conferences.

Each user is assigned a conference manager to oversee all aspects of basic conference

management and communications. The conference startup process is limited in that the

user creating the conference must at startup time specify all other users (by user and host

name) that will be part of the conference. There are plans to provide a more general startup

architecture that would permit latecomers.

Single-user applications are easily incorporated into a conference. MMCONF takes special

care with these applications, changing their behavior when used by a group. For example,

while continuous scrolling works well in single-user applications, it does not transfer well

to group situations. MMCONF disables continuous scrolling for such applications when

used by groups. Similarly, customizations made by individual users are ignored, and the

system makes an effort to provide each user with local copies of data being used by the

conference.

MMCONF has provisions for floor control, with several different policies implemented.

These policies are based on flexible control of a single token, which can be passed to

34
various users to establish a floor. The token may also be ignored, allowing a free floor

policy to be adopted. While this implementation scheme does provide a number of useful

protocols, it is not completely general, by not permitting several users (but not all) to have

control of the floor.

Several applications have been built using MMCONF. The BBN/SLATE Document Editor

is provided for editing multi-media documents that may contain voice or video information.

A shared terminal emulator is provided called VIEWSHELL, along with a tool for creating

slide shows (PRESENTER), and the VIDEO INFORMATION SERVER for sharing video

resources among workstations. A simple graphics editor called SKETCH is also provided,

which can be used as a normal drawing tool or to annotate snap-shots of conference

windows.

Conference Toolkit

CONFERENCE TOOLKIT (Bonfiglio, Malatesa and Tisato 1989) is part of the ESPRIT

Multimedia Integrated Workstation project. The toolkit is primarily concerned with basic

connectivity requirements, permitting use of traditional single-user or specially designed

conference aware applications. The toolkit, developed under Unix and the NeWS

windowing environment, consists of several communicating processes. A Multiplexer

process manages the communication between other processes, mediating the sharing of

data. Multiplexers can be designed to optimize sharing of application-specific data, or can

handle general transmission (e.g. voice). A Bridge Manager controls the behavior of a

single conferencing applications, in particular negotiating which users and applications can

communicate with the controlled application. This is done using floor control strategies Ñ

both for users and applications Ñ which can be chosen from several different strategies

provided by the toolkit. Finally, a Conference Manager collects the various pieces of the

conference, including the set of connected users, the set of shared applications (i.e.

35
bridges), and a number of conference attributes and data channels used to control the

conferenceÕs behavior.

A prototype application, the CONFERENCE DESK, has been built using the toolkit. The

CONFERENCE DESK supports a shared terminal emulator, a simple graphics viewing

surface, integration of a voice channel, as well as an interface to the Conference Manager.

Arbitrary single-user NeWS applications could also be inserted into the conference. As

well, two conference aware applications have been built, the VOICE BLACKBOARD and the

SLIDE MULTIPLE PROJECTOR.

Though much detail is provided on the technical aspects of managing the communication

channels, there seems to be little focus on higher level components for groupware.

Further, some details are left undiscussed. In particular, it is not clear if new features can

be easily integrated into the toolkit, although object-oriented subclassing can be used for

adding new components similar to existing components. Though the toolkit does not

impose a particular process of interaction for the group, it is unclear how software-based

group processes could be added. Finally, the status of the project is unclear, and the future

work noted seems more involved with supporting technical problems (e.g. adding support

for X as well as NeWS) rather than looking at the facilities for conferencing itself.

Liza

LIZA is an extensible groupware toolkit developed at MCC (Gibbs 1989). The

conferencing applications built using LIZA consist of active objects, based on the notion of

Actors (Agha 1986). These applications, called tools, run as clients to a single LIZA server

running on each machine. Communication between the various tools is done via Unix

sockets. Several tools have been developed using the LIZA system including: a ROOM

TOOL (showing where the session participants are located), a GRAPH TOOL (allowing

36
editing of a shared graph), a SLIDE TOOL (for viewing a slide show), and a VOTE TOOL

(allowing voting on issues).

Unfortunately, Gibbs (1989) provides few details on the facilities and architecture provided

by LIZA, and little can be concluded. It does appear that basic support is provided for

conference management and communications mechanisms, but there is nothing said about

higher level groupware constructs.

Other Systems

Some other systems have been described in the literature which, though not complete

toolkits, provide valuable discussion of issues and techniques that could be incorporated

into future toolkits. These include: SUITE which considers multi-user primitives, MMM

which investigates fine-grained editing, GROUPDESIGN which provides object

concurrency, GROUPDRAW which looks at issues for shared drawing, and SHARE, which

discusses flexible floor control.

SUITE (Dewan 1990; Dewan and Choudhary 1991) provides primitives for programming

multi-user interfaces, based on single-user interface primitives. Facilities have been

provided for authenticating users, setting properties and executing code in a userÕs

environment. As well, ÒcouplingÓ or the degree of access to shared objects, has been

explored, allowing different coupling strategies to be adopted in different situations.

MMM (Bier and Freeman 1991) is a user interface architecture allowing several users to

share a single screen by attaching several input devices to a single machine. A prototype

system has been developed allowing fine-grained editing of simple rectangles or a text

buffer. The system looks at strategies for sharing both the devices and the shared objects,

37
as well as handling user preferences within a single system. The ideas presented have

potential to be developed into a useful architecture for fine-grained editing of objects.

GROUPDESIGN (Beaudouin-Lafon and Karsenty 1992) provides a general object

concurrency algorithm the authors argue is suitable for a wide variety of groupware

applications. The system, based on a single-user structured graphics editor, also addresses

several human factors concerns.

GROUPDRAW (Greenberg, Roseman et al 1992) is a prototype system for shared object-

based drawing. A detailed description of the architecture for shared objects is discussed,

using object-oriented techniques to provide behavior for an abstract object that can be

inherited by specific programmer-defined objects. This behavior could be used to build

general concurrency control and persistence for example.

SHARE (Greenberg 1990; Greenberg 1991) is a system for sharing terminal emulators. It

provides a flexible and extensible notion of floor control, and the strategy described can be

generalized to a number of uses beyond just floor control. The papers provide details of

both the architecture and the implementation of several protocols.

Comparative Evaluation

Table 2.3 summarizes the support provided by RENDEZVOUS, MMCONF, CONFERENCE

TOOLKIT, and LIZA with respect to the five design requirements presented earlier. Note

that this summary is based on the features described in the papers cited previously,

allowing the possibility of additional features that have been developed since publication.

Further, note that all the toolkits were not developed for exactly the same purpose, and the

implementation emphasis in each is different. Thus, a detailed comparison, based on a

38
single set of standards, is at least to some degree hiding many issues and ideas addressed

by the toolkitsÕ developers.

In general, RENDEZVOUS has done an excellent job, particularly in their support of a shared

graphics model, emphasizing flexibility and strong view separation using constraints to

manage the dependencies in the model. MMCONF provides many interesting tools, yet

significant effort has not yet been spent on the toolkit as a whole. CONFERENCE TOOLKIT,

though providing a reasonable communications architecture, has not yet addressed many of

the issues important for groupware development beyond simple connectivity. Finally,

LIZA seems to again provide connectivity with little higher level support, though again,

(Gibbs 1989) is not specific.

Overall, the current generation of synchronous groupware toolkits have done a great deal to

provide basic connectivity. Higher level human-centered support, however, is scarce.

Though MMCONF does provide several tools, they seem to be prototypes, rather than

smoothly integrated into a style of developing groupware applications. Most of the other

toolkits seem to have this problem as well. RENDEZVOUS has by far the most consistent

and thoughtful design philosophy, and as this is applied to other areas of groupware

support, shows excellent promise for the future.

Requirement
RENDEZ-

VOUS

MMCONF CONF.
TOOLKIT

LIZA

Human-centered Requirements
Actions over visual work surfaces

convey process + o o o
simultaneity + + o o
modeless interface . ? o o
common view + o o o
gestures . + . .
annotation o + . .

Flexible group processes

39
floor control + ++ + ?
registration
latecomers

Integration with conventional work
non-computer artifacts
other communication + + . .
single-user apps ? ++ + .

Programmer-centered requirements
Multiple distributed processes

conference management + + + +
communications infrastructure + + ++ +
persistent sessions . ? ? ?

Shared graphics model
shared visual objects ++ . . .
object concurrency ++ . . .
separate view ++ . . .

++ system provides good support

+ system provides support

o system can handle but does not specifically support

. system does not support

? not clear if support is provided

Table 2.3. Summary of features provided by toolkits.

Summary

Groupware toolkits should be specifically designed to provide support for the types of

applications people are building. The CSCW literature, as reviewed in this chapter, has

suggested several design features and requirements that are important for synchronous

groupware conferencing systems. These include a number of human-centered design

requirements, such as supporting actions over a visual work surface, providing capabilities

to structure group processes, as well as integrating group work with conventional work.

Technical or programmer-centered requirements for groupware conferencing include

support for multiple, distributed processes, as well as supporting a shared graphics model.

40
Contemporary toolkits have generally not provided the desired level of support,

concentrating primarily on basic components for connectivity. While this is important, it

leaves the application developer to deal with many human-centered concerns for groupware

development. Future generations of toolkits, to prove useful, must begin to address these

human-centered concerns to provide the level of support that groupware developers

require.

41

Chapter 3

Design and Implementation

The previous chapter motivated the design of a groupware toolkit from both human and

programmer-centered perspectives. This chapter describes how a number of the resulting

design requirements are instantiated in GROUPKIT. Due to time limitations, the work on

GROUPKIT does not cover all the design principles outlined in Chapter 2. Future work,

described in Chapter 6, will result in more of the design requirements being satisfied, and

further design requirements being derived.

In particular, this chapter discusses how the design requirements are satisfied,

concentrating on descriptions of the GROUPKIT components, and how they would be used

by application developers building groupware systems. Chapter 4 will provide some

insights into why these components were designed in the way they were, and list the

critical design decisions made.

GROUPKIT is written as a C++ class library, based on the INTERVIEWS toolkit (Linton,

Calder and Vlissides 1988). Applications built using GROUPKIT run on any machine

supporting INTERVIEWS, that is, Unix workstations running X-Windows. GROUPKIT

relies on the INTERVIEWS glyph mechanism for its user interface constructs. Glyphs are

lightweight objects (similar to widgets in other toolkits) that are composed to make

interfaces. The INTERVIEWS Dispatch library Ñ a front end to Unix sockets Ñ is used as

the backbone for communications.

The chapter opens by describing what an end user working with a GROUPKIT program

would see. Later sections discuss the three sets of components implemented in

42
GROUPKIT. The first is the communications infrastructure and messaging scheme, which

provides the facilities necessary for basic conference management, including registration,

communication, and conference termination. Second, overlays provide an abstraction to

easily add support for generic work surface activities, such as gesturing or annotation, to

groupware applications. Finally, open protocols provide a scheme whereby group

processes, such as for floor control or conference registration, can be encoded into

groupware applications in a flexible way, accommodating different groups who require

different working styles.

End User Perspective

To provide a context for the detailed discussion of underlying GROUPKIT components in

the rest of the chapter, this section provides a brief description of what a typical end user of

a GROUPKIT application would see.

Figure 3.1 shows a screen dump of a typical GROUPKIT usage scenario. The window at

the top left of the screen labelled ÒstartupÓ is a Registrar Client. A GROUPKIT user begins

a session by running a Registrar Client program, of which there are several different kinds.

All of them serve the same basic purpose, which is to let the user find out about groupware

programs (called Conferences in GROUPKIT terminology) that other users are running, or

to run new groupware programs. The Registrar Clients also allow users to join and leave

groupware Conferences.

Each Registrar Client can be responsible for a number of different Conferences running at

the same time. In the figure, three Conferences are running, as shown in the

ÒConferencesÓ list of the Registrar Client. The dialog box on the top right of the screen

dump (the untitled window) would allow the user to create new groupware Conferences.

43

Figure 3.1. End-user view of GROUPKIT applications.

To do so, the user gives the Conference a name and selects the type of Conference from the

list of available types.

Finally, the three windows at the bottom of the screen dump are the three groupware

Conferences that the Registrar Client is responsible for running. The three are a groupware

sketchpad program (in the ÒgsÓ window), an anonymous group brainstorming tool (in the

ÒbstormÓ window) and a window to display information about Conference users (in the

44
ÒmonÓ window). Though these programs were started by the Registrar Client, they run

independently of it and each other.

The remainder of this chapter discusses the three sets of software components used by the

application developer in constructing groupware applications with GROUPKIT.

Communications Infrastructure and Messages

A fundamental programmer-centered requirement is the provision of facilities to support

multiple and distributed processes. GROUPKIT provides a communications infrastructure

that supports this requirement. It offers basic conference management, including

participant registration, conference maintenance, and conference teardown, as well as

mechanisms for simple interprocess communication.

Overview

GROUPKIT applications consist of several processes, arranged in a distributed or replicated

architecture on a number of machines, as illustrated in Figure 3.2.

The components are now briefly described in turn, providing a Òprocess viewÓ of the

communications architecture. The example scenario following these descriptions elaborates

on their behavior.

Registrar. The central Registrar provides the master record used to locate Conferences.

It maintains a list of all the conferences active on the system, including their users, and

responds to requests from other processes. The Registrar itself implements no policy on

how conferences are created or deleted, or how users join or leave them. Commands are

provided so that other processes can manipulate the lists, registering or deleting

conferences and users. The Registrar is invisible to the end user.

45

Registrar

Conference

Conference

Registrar
Client

Coordinator
Conference

Registrar
Client

Coordinator

process

object

socket
connection

object message
passing

Machine A

Machine B

Machine C

Figure 3.2. Communications infrastructure of GROUPKIT. Here, objects owned by
one user (rightmost Registrar Client, Coordinator, and Conference) interact with
objects owned by another use, as well as the central Registrar.

Registrar Client. The Registrar Client (one per user) allows users to create, delete, join

or leave conferences. It interacts with other Registrar Clients through the central lists

provided by the Registrar. The Registrar Client provides both a user interface as well as a

policy dictating how conferences are created or deleted and how users enter or leave

conferences. Different Registrar Clients can be created to suit different registration needs,

and can even interact with each other to produce complex registration schemes.

Coordinator. The Coordinator (one per user) acts as an interface between application

conferences and the Registrar Client that created them. The Coordinator responds to the

registration system by creating and then maintaining connections to any number of

46
conferences, allowing them all to share the same registration mechanism. The Coordinator

is invisible to the end user.

Conference. The Conference is the heart of the groupware application itself, separate

from the registration system. Spawned by the Coordinator object, the Conference

application maintains communication facilities necessary for exchanging messages with

Conferences run by other users. The user interface portions of groupware applications use

these facilities extensively.

Example Scenario

To illustrate the interactions of the infrastructure components, this section provides an

example usage scenario. The scenario consists of four parts: registration, conference

initiation, conference maintenance, and conference termination.

Registration. Suppose a user wants to discuss a design problem with a remotely located

colleague through a shared drawing surface . To initiate the GROUPKIT-based program,

the user first creates a conference. This is done through the Registrar Client, which

provides an interface to the central Registrar.

The Registrar allows the user to create, join or leave one or more conferences. The

Registrar Client is responsible for implementing particular registration policies, e.g.

deciding who enters the conference, how they do so, and what the interface looks like.

Figure 3.3 shows the interface for one Registrar Client (other clients are possible). The

communications interface between the Registrar and the Registrar Client is described in

detail in the ÒOpen ProtocolsÓ section.

The Registrar itself is an independent process (invisible to the user) that maintains a list of

all conferences and their users. One central Registrar would exist at each installation. The

47

Figure 3.3 Interface for a typical Registrar Client.

Registrar itself is policy-free, and leaves it to the Registrar Clients to implement a particular

registration policy and to present a reasonable interface to the user. This allows different

policies to be implemented to accommodate group differences.

While GROUPKIT allows new Registrar Clients to be programmed, it also provides a

library of predefined Registrar Clients implementing particular registration policies and user

interfaces. For example, users may choose a Registrar Client allowing any user to enter

any conference. On other occassions, users may choose a Registrar Client where new

users must be ÒapprovedÓ before joining an existing conference. One novel aspect of this

scheme is that it allows group members to use different Registrar Clients to enter a single

conference.

Conference Initiation. In the scenario, the user has just requested a new conference

through the Registrar Client, which in turn passes the request on to the Registrar. Next,

the Registrar Client asks the Coordinator to create a new Conference object. The

Coordinator acts as an intermediary between the Registrar Client and application

Conferences, permitting multiple conferences (e.g. sketching and editing applications) to

share a common registration mechanism. Its main duties are to create Conferences at the

48
request of the Registrar Client, and to forward information (such as new users joining)

from the Client to the appropriate Conference.

The Coordinator spawns a new process containing a Conference object. This could be the

shared drawing surface. The new Conference object connects back to the Coordinator, so

that messages from the registration system (such as announcements of new users) can be

received by the Conference object. It is the Conference object that actually runs the specific

groupware application. GROUPKIT provides a generic Conference object, handling users

joining and leaving, and providing support for interprocess communication. In the

scenario, the generic Conference object is combined with a programmer-defined graphical

interface supporting a shared drawing surface. The interface will rely heavily on the

communications facilities provided by the Conference object.

Figure 3.4 provides a timing diagram illustrating the conference initiation phase of the

scenario. Two Registrar Clients begin connected to the Registrar. One of the Registrar

Clients creates a new Conference. It does so by sending a Òcreate conferenceÓ message to

the Registrar which is echoed to all Registrar Clients. It then asks its Coordinator to spawn

the new Conference process, which connects back to the Coordinator to receive further

information. At the same time, the Registrar Client sends a Ònew userÓ message to the

Registrar in order to join the newly created Conference. Again, this is echoed so that all

Registrar Clients are kept synchronized.

Conference Maintenance. Other users can also create Conference objects. As each

Conference locates existing participants via the Registrar, communications channels are

opened between all Conference objects. Facilities in the generic Conference are provided

for exchanging messages with other user processes. Users within each conference are

identified by a unique integer Òuser numberÓ assigned by the Registrar.

49

Coord-
inator

Registrar
Client Registrar

Registrar
Client

Coord-
inator

Conference

new-user

echo new-user

create
conference

create
 conference

connect

create
conference

echo create conference

Figure 3.4. Object interactions during conference registration and initiation.

Communications between distributed processes are maintained by messaging objects. The

two types of messaging objects (ÒWriterÓ and ÒReaderÓ) provide a convenient method of

communicating with processes owned by remote conference participants. These objects,

derived from the INTERVIEWS Dispatch library, provide a primitive Remote Procedure Call

(RPC) facility. Writer objects specify messages they can send, while Reader objects

provide functions to be called when particular messages are received.

Figure 3.5 illustrates the maintenance phase of the scenario. The other user joins the

previously created conference, as before by sending a Ònew userÓ message to the Registrar

which is echoed to the other Registrar Client. While the new userÕs Registrar Client

spawns its Conference process, the other Registrar Client initiates a connection to the new

Conference. The connection is initially made to the userÕs Registrar Client, which passes

the connection via the Coordinator to the Conference once it has been created. From that

50

Coord-
inator

Registrar
Client Registrar

Registrar
Client

Coord-
inatorConference

Conference

new-user

echo new-user

connect
to new

connect
to new

connect
to new

connect
to new

connect

connect
to new

application specific messages

application specific messages

create
conference

create
conference

Figure 3.5. Interactions between objects during conference maintenance. A new
user joins and messages are interchanged between the two conferences.

point, communications between the two Conference objects are established and messages

can be transmitted between them.

Conference Termination. As with initiation, conference leaving and termination is

handled through the Registrar Client. If a user wishes to leave the conference without

terminating it, their Registrar Client sends the Òdelete-userÓ message to the Registrar.

Some Registrar Clients may permit explicit conference termination, allowing any user to

end the conference, while more typically the Registrar Client for the last user to leave will

end the conference. This is done by sending a Òdelete-conferenceÓ message to the

Registrar, which will be broadcast to any remaining users' Registrar Clients.

Figure 3.6 illustrates the conference termination phase of the scenario. Both users quit out

of the Conference, by sending a Òdelete userÓ message to the Registrar. When this is

51

Coord-
inator

Registrar
Client Registrar

Registrar
Client

Coord-
inatorConference Conference

delete user

echo delete user

delete
conference

delete
conference

delete user

echo delete user

delete
conference delete

conference
delete
conference

echo delete
conference

Figure 3.6. Interactions between objects during conference termination.

echoed back, the Coordinators are instructed to delete the Conference, which is in turn

delegated to the Conference, which deletes itself. The last userÕs Registrar Client, seeing it

is the last user in the Conference, deletes the entry for the Conference by sending a Òdelete

conferenceÓ message to the Registrar.

Messages

Messages are used to communicate between different applications. A message consists of a

Òmessage-typeÓ which identifies the message, and an Òoption-stringÓ which provides any

information needed by the message-type. Message-types are just integers, and while a

number are pre-defined, others can be trivially added. Option-strings are normal character

strings, in any format, provided of course that the sender and receiver agree on the same

format.

To send messages, a ÒConnectionListÓ is provided as part of the Conference object, which

maintains a list of Connections to all other conference users. The ConnectionList provides

52

 char option_string[80];

 sprintf (option_string, "%d:%d:%d:%d", x0, y0, x1, y1);

 conference->connections()->sendTo (remote_user_number,

 new StrMsgSender (DRAW_LINE, option_string));

 conference->connections()->toAll (

 new StrMsgSender (ERASE_LINE, option_string));

Figure 3.7. Code fragment for sending messages.

methods for sending messages to a single user (specified by their unique user number in

the conference) or to all users of the conference. Messages are sent using special

ÒMessage-SenderÓ objects, which can send the same message over several Connections.

Figure 3.7 illustrates sending messages to a single user or every other user in the

conference.

To receive messages, a ÒcallbackÓ routine must be set up, so that whenever a particular

message (of a given message-type) is received, the routine will be called, with the

messageÕs option-string passed as a parameter to the routine. The ConnectionList

maintains a table of callback routines for different message-types, so that adding a callback

is done using the code fragment in Figure 3.8.

Attribute Lists

While option-strings can be constructed and interpreted manually using standard string

processing commands, GROUPKIT provides a higher-level construct, attribute lists.

Attribute lists maintain a list of <attribute,value> pairs, where all the attributes in a given

list are guaranteed to be unique. Attributes can be added or removed from lists. This

provides a general data structure that can describe a wide variety of objects or actions.

 conference->connections()->callbacks()->insert(

 DRAW_LINE,

 new StrActionCallback(Sketchpad)

 (my_sketchpad, &Sketchpad::DrawLine));

Figure 3.8. Code fragment to add a callback for receiving messages.

53
More relevant here, the attribute lists can be converted back and forth to strings in order to

be transmitted. The conversion process takes into account special characters within the

<attribute,value> pairs. Because messages often consist of commands accompanied by a

number of parameters for the commands, attributes are a natural encoding for sending and

receiving messages. Using attribute lists simplifies the programmer's task, removing the

need for lengthy conversion code, as well as providing a generally useful abstract data

type. Figure 3.9 shows examples of creating, encoding, and decoding attribute lists.

Monitoring the User List

By default, all changes to the conferenceÕs user list, such as when users first enter or when

they leave, are automatically handled by the Conference object, so that the application

developer need not explicitly be concerned with the changes. However, under many

circumstances the application developer would like to be informed of users coming and

going. A special ÒConferenceMonitorÓ class can be used to receive notification about users

entering or leaving the conference.

By registering a ConferenceMonitor with the Conference object, the programmer can be

notified any time users enter or leave the conference. The ConferenceMonitor must define a

ÒnewUserÓ method that will be notified and receive information (as an attribute list) about

any new users, while a ÒuserLeavingÓ method is notified when users exit the conference.

This is illustrated in Figure 3.10.

54

 char option_string[1000], id[80];

 AttributeList* al = new AttributeList(); // create attribute list

 al->attribute("id", "123"); // add the pair <id,123>

 al->attribute("name", "Mark"); // add <name,Mark>

 al->attribute("temp", "blah"); // add <temp,blah>

 al->attribute("id", "45"); // replace <id,123> by <id,45>

 al->remove_attribute("temp"); // remove <temp,blah>

 al->write(option-string); // encode list to string

 AttributeList* al2 = AttributeList::read(option-string);

 // decode the string into a new list

 if (al2->find_attribute("id", id)) // if attribute in list

 printf("id is %s\n", id); // print out value

 else printf("id not in list\n");

Figure 3.9. Code fragments showing use of attribute lists.

Implementation Notes

The communications facilities are based on the INTERVIEWS Dispatch library, a front-end

to standard Unix TCP sockets. Writer objects are a simple extension to the INTERVIEWS

ÒRpcWriterÓ class, adding a method to send messages having a particular message-type and

option-string. Reader objects extend the ÒRpcReaderÓ class to use an arbitrary table for

callbacks rather than an array, supporting discontinuous message-types. Callbacks for

communications are specified in the same way that INTERVIEWS handles callbacks from

interface components, using ÒActionÓ subclasses.

Overlays

 class Sketchpad : public ConferenceMonitor {

 // class definition...

 };

 Sketchpad::Sketchpad() {

 // tell the conference we want to monitor;

 // this sets up a callback so the routines below will be called

 conference->monitors()->append(this);

 }

 void Sketchpad::newUser (AttributeList* new_user_attrs) { ... }

 void Sketchpad::userLeaving(int leaving_user_id) { ... }

Figure 3.10. Code fragment for monitoring the conference user list.

55
GROUPKIT provides components that may be included in any conferencing application

through an overlay strategy. Overlays are transparent ÒwindowsÓ placed on top of the main

application graphics. Graphics in the overlay sit atop the application, without disturbing

what is underneath. They are intended to satisfy the human-centered requirement of

providing multi-user actions over a visual work surface. Currently, overlay components

have been implemented for gestural communication (via multiple cursors over a surface)

and annotative communication (via freehand drawing over a surface). The motivation is

that such components could be useful for a variety of groupware applications, as discussed

in Chapter 2.

Figure 3.11 provides a conceptual picture of adding an overlay for displaying multiple

cursors to an existing application graphic, here an organizational chart. The transparent

cursor overlay is written as an INTERVIEWS glyph that overlays any other glyph. Neither

the cursor glyph nor the main application glyph need any knowledge of the other. Local

input events are received by the cursor glyph, which updates cursors as necessary. The

local event (e.g. mouse move) is then passed to the application glyph, to use as needed.

The application glyph need not even know the event went through the cursor glyph. As

with single-cursor window systems, event-driven drawing operations are performed

normally by the application glyph, based on these events, with the cursor glyph sketching

the cursors on top of the normal graphics. Figure 3.12 illustrates this flow of control for

both event handling and drawing.

56

Main
Application

Overlay

Figure 3.11. Adding a multiple cursor overlay to an application.

Main
Application

Overlay

Input Events
(e.g. mouse
move)

Drawing
Events

Figure 3.12. Flow of input events and drawing operations with overlays.

 new ApplicationWindow(// create a window

 new CursorOverlay(// create an overlay

 new MyConfGlyph(style, conference) // graphics under overlay

 , style, conference))

Figure 3.13. Adding a multiple cursor overlay to a GROUPKIT program.

To incorporate the multiple cursor overlay into an application, the programmer instantiates a

ÒCursorOverlayÓ which surrounds the applicationÕs graphic. Code in the overlayÕs

constructor allows the CursorOverlay Ñ using the communications features discussed

earlier in the chapter Ñ to communicate with remote conference objects and ask about new

conference users. However, the application programmer need not be concerned with these

details which are hidden within the CursorOverlay. Figure 3.13 shows a code fragment

illustrating how a CursorOverlay is added to a GROUPKIT program. The underlying

application need not even be aware that the overlay is present, but can continue to draw and

process events normally.

An overlay has also been implemented to support primitive annotation, via bitmap

57
sketching over work surface artifacts. Users can create simple sketches Ñ a series of line

segments Ñ using the mouse, and such sketches are immediately transmitted to all other

users. Further, overlays can be combined, so that multiple cursors can overlay bitmap

sketches that in turn overlay a main application. Figure 3.14 illustrates a simple program

combining the two overlays over an empty work surface, resulting in an application (see

Figure 3.15) resembling simple bitmap sketchpads such as GROUPSKETCH (Greenberg

and Bohnet 1991) or COMMUNE (Minneman and Bly 1991).

 int main(int argc, char** argv) {

 GroupSession* session = new GroupSession("GroupSketch", argc, argv);

 Conference* confer = session->conference(); // Conference object

 session->run_window(// start program running

 new ApplicationWindow(// in this window

 new CursorOverlay(// outside layer is gesturing overlay

 new Sketchpad(// inside that is annotation overlay

 new EmptyGlyph(session->style(), confer, 300, 300)

 // and very inside is empty graphic

 ,session->style(), confer)

 ,session->style(), confer)));

 }

Figure 3.14. Code to produce a simple sketchpad using overlays.

58

Figure 3.15. Simple sketchpad created using overlays.

This overlay technique seems promising. Through the composition mechanism, adding

overlay components to applications is straightforward. As well, the overlays are kept

separate Ñ conceptually and in the code Ñ from the underlying applications. The

techniqueÕs strength is that the overlay does not interfere with the underlying graphics of

the application, even if those graphics are changing. Because of this, it is a trivial matter to

add, for example, annotation capabilities on top of a ÒliveÓ shared terminal application.

Unlike other systems that only allow annotation of static screen snapshots, e.g. MMCONF

(Crowley, Baker et al 1990), with GROUPKITÕs overlays the underlying application can be

fully active. It is expected that further research will suggest other components that could be

transparently added to a variety of conferences.

59
Implementation Notes

A virtual ÒOverlayÓ class is used to create a glyph that passes events to child glyphÕs after

handling the events itself. This is done through extensive changes to the ÒpickÓ method of

the glyph, which handles hit detection. Subclasses of Overlay handle the drawing and

layout themselves, using other INTERVIEWS components. For example, the

ÒCursorOverlayÓ uses an INTERVIEWS ÒPageÓ glyph, allowing arbitrary placement of the

cursor bitmaps over a background glyph, the underlying application. The ÒSketchpadÓ on

the other hand uses the ÒLayoutKit::overlayÓ to control its layout and drawing.

Open Protocols

One human-centered design requirement for GROUPKIT is to provide flexible policies

where appropriate, allowing group processes to be structured during a meeting, and to

accommodate group differences. Open protocols provide a means of implementing this

flexibility in software.

Open protocols have three components: a controlled object that maintains a state, a

controller object, and a protocol describing how the two communicate. The controlled

objectÕs behavior does not incorporate any policy determining how its state can be

manipulated. Instead, a protocol is defined for manipulating the state, and the controlled

object obeys any external requests made to it to change its state. The controller is an

external object that implements a particular policy by the requests it sends to the controlled

object. This is in contrast to most client / server architectures, where access policy resides

in the server, not the client. Using open protocols, the responsibility is for the client

(controller), not the server (controlled) to implement access policies; the server merely

obeys a set of general commands according to its protocol.

60
Open protocols are a generalization of work on floor control in the SHARE system

(Greenberg 1991). Under that system, floor control was used to mediate access to a shared

terminal Ñ Òfloor holdersÓ could type to the shared screen, while those not holding the

floor could only observe. Rather than implementing a small, fixed set of floor control

policies into the system, a protocol was defined whereby independent modules could be

attached to the system to manage floor control. The shared terminal itself maintained a flag

for each user in the conference. If the flag was set, the user could type to the shared

terminal, while if the flag was reset, the user could not type. A protocol was defined

whereby floor control modules could attach to the shared terminal and set or reset the flag

for any user. This scheme allowed a wide variety of floor control policies to be built,

including round-robin, free floor, preemptive, and explicit-release. The floor control

modules were developed independently from the main shared terminal, and others could be

added dynamically. Under this scheme, the shared terminal acted as the controlled object,

maintaining state information in the form of the flags for each user. The floor control

modules acted as the controller objects, specifying the pattern of state changes of the flags

in the shared terminal. Finally, the protocol between the shared terminal and the floor

control modules was open in the sense that it supported a wide variety of different policies,

defined by the floor control modules and not the shared terminal.

As an example of the use of open protocols, GROUPKIT defines open protocols to handle

registration for conferences. As described earlier in the chapter, GROUPKIT decouples

registration from the main groupware application. A central Registrar maintains lists of

conferences and their users, while different Registrar Clients can connect to the Registrar to

alter these lists. Here, the Registrar is the controlled object, and the Registrar Client is the

controlling object. The two objects, and the protocol by which they communicate, are

shown in Figure 3.16.

61

Registrar Registrar
Client

send-conference-list
send-user-list

add-user
delete-user
display-users
new-conference
delete-conference
display-conferences

Figure 3.16. Open protocol between Registrar and Registrar Client.

The Registrar responds to any request from its clients, broadcasting the result to all attached

Registrar Clients. This allows any client to ask the Registrar to create a new conference, or

conceivably even to delete any user from any conference. While this does make it possible

to create a Òsuper-userÓ version of the Registrar Client, it also provides the flexibility to

create any number of other Registrar Clients interfacing to the Registrar, without making

any changes to the Registrar itself.

As an example, consider the implementation of a free registration policy. Under such a

policy, any user may create a conference, and users can join any existing conference, as in

Figure�3.3. The implementation here is straightforward. To join an existing conference,

the Registrar Client sends an Òadd-userÓ message to the Registrar, which is broadcast to the

other Registrar Clients in the selected conference. The Registrar Client also requests the

Coordinator to create a new application Conference, because under the policy, the user is

guaranteed entry to the conference. The Conference makes connections with the other

users, and interaction proceeds normally.

In contrast, a ÒsponsoredÓ registration policy does not permit new users to join an existing

conference unless sponsored by an existing conference participant. Here, the Registrar

62
Client again sends an Òadd-userÓ message, which is broadcast to the other users. At this

point, the local Registrar Client does not ask the Coordinator to create a new Conference.

The remote users are asked by their Registrar Clients if the new user should be accepted. A

remote user can accept the new user, and sends them a message, prompting the new user to

create the conference as before. If rejected (either explicitly or by timeout), the Òdelete-

userÓ message is sent to the Registrar.

Similarly, a facilitated Registrar Client can be created, emulating the registration policies

often found in group support systems meetings (Nunamaker, Dennis et al 1991). A central

facilitator running one client can create several conferences, such as brainstorming sessions

or voting. Users in the facilitated meeting use a different client, which merely obeys the

requests from the facilitatorÕs client. The facilitator could cause a user to join a

brainstorming session, by sending an Òadd-userÓ message for the user and conference to

the Registrar. The userÕs client, receiving the message via the Registrar, would obey the

request, creating the application Conference and connecting to other users. The facilitator

could then remove the brainstorming session by sending a Òdelete-userÓ message for the

user and conference. The userÕs client would again receive this message and obey it,

deleting the brainstorming conference. Again, the flexibility of the open protocol permits a

wide variety of registration schemes to be implemented.

As with overlays, the open protocol strategy appears useful in general. By providing a

simple protocol to change states, building new policies becomes a matter of expressing the

policyÕs semantics in the language of the protocol. While open protocols assume well-

behaved clients, their flexibility allows application developerÕs to more easily build a wide

variety of protocols in their system to accommodate different groupsÕ preferences.

Implementation Notes

63
Open protocols are built on top of the communications facilities described earlier. Attribute

lists are used extensively to represent system state Ñ a user or conference is represented by

an attribute list, and the protocol provides the means to change this attribute list. A virtual

ÒRegistrarClientÓ class is provided that handles sending and receiving messages to the

Registrar, but does not implement particular policies. Subclasses such as ÒOpenRegClientÓ

must interpret the messages to implement particular policies. Clients have been

implemented for the free registration policy, for a facilitator in a strictly facilitated

conference, and for a user in a strictly facilitated conference.

Summary

This chapter has described the design and implementation of several GROUPKIT

components that satisfy many of the design requirements described in Chapter�2. Future

work on GROUPKIT will extend this subset of requirements.

Three sets of components were discussed. A communications infrastructure provides the

developer with components for participant registration, conference maintenance, message

passing between processes, and conference teardown. Overlays provide a method to

incorporate generic work surface activities such as gesturing and annotation easily into

groupware applications. Finally, open protocols provide a means to build very flexible

group processes into the groupware application itself, allowing groups to select appropriate

modules that reflect their work patterns.

64

Chapter 4

Design Rationale

This chapter documents many of the design decisions behind the features of GROUPKIT

described in Chapter�3. It explains why particular features are designed the way they are,

uncovering the underlying design rationale. This material is therefore particularly useful

for others developing toolkit support for groupware or other domains.

According to the user-centered toolkit design approach, design should take place with the

interests of the developer in mind. The purpose in constructing a toolkit is to provide

useful tools for the developer. Therefore it is important not only that features are provided,

but that they are provided in a way that is accessible to the developer. Design affordances,

introduced in Chapter�1, provide a framework for delivering appropriate and accessible

toolkit components to the developer.

Design rationale is considered in terms of four areas: minimizing the developer's work,

encouraging the developer to use appropriate features, extensibility of the toolkit, and

flexibility of toolkit components. Examples for each of these areas are drawn from the

implementation described in Chapter�3. The issues raised suggest strategies for designing

other toolkit components that meet the needs of application developers.

Minimize Developer's Work

A goal of any toolkit should be to minimize the work developers need to create their

applications, while still producing high quality products. Appropriate toolkit components

can encapsulate potentially large amounts of effort into easily used modules. Examples of

65
this in GROUPKIT can be found in many components. Here, three of these are presented,

including low-level socket setup and message passing, attribute lists, and the registration

system.

1. Sockets and message passing. Communications facilities are non-trivial and time-

consuming to develop. One obvious benefit of providing the communications

infrastructure is that developers are able to concentrate solely on the specific application,

without concern for generic communications tasks such as setting up sockets or sending

messages. The infrastructure establishes connections to and from other machines,

establishes callbacks for messages, maintains lists of all connected users, and manages

broken socket connections.

It is important to note that the provided components work at a high level of abstraction.

For example, received messages are automatically dispatched to appropriate message

handlers by the system, so that developers need not worry about initial parsing of incoming

messages. To send a message, whether to a single user or to every user in the conference,

is an atomic operation. Common operations are kept simple.

2. Attribute lists. Attribute lists again raise the level of abstraction so that the developer

is not concerned with encoding and decoding sets of parameters transmitted with

commands Ñ the option-strings in Chapter 2. As with message passing, this mechanism

allows the developer to focus strictly on the task at hand. The utility of attribute lists is

based on observations of the type of messages sent by several different groupware

systems. Most messages consist of single commands with a number of parameters or

attributes associated with the command. Because these attributes often contain numbers

and strings with special characters, parsing of the messages is a significant effort. Attribute

lists allow encoding and working with such data in a straightforward manner.

66
3. Decoupled Flexible Registration. In GROUPKIT, the user registration system, in

the form of the Registrar Clients is detached from the main application. Clearly, there is

great benefit in separating registration concerns from the conference application. If

separated, application developers can again concentrate on the functionality specific to their

applications. The conferenceÕs only concern (much of which is handled automatically) is

when users join or leave the conference. This makes it easier to build a variety of different

registration systems. Provided the systems at some point resolve registration down to

ÒnewUserÓ and ÒuserLeavingÓ messages, the application can easily accommodate a great

diversity in registration schemes. The fact that the registration system is designed in a

flexible way acts as a design affordance Ñ developers are encouraged to build more

flexible components or create new registration components to fit their own needs if the

situation warrants. Of course, developers can rely on standard clients provided by the

toolkit with no extra programming, if this is appropriate for the group.

Encourage Use

While providing appropriate time-saving features is necessary for a toolkit, it is also

important to provide those features in such a way that the developer can clearly recognize

the need for them. Well designed sets of features with obvious uses Ñ design affordances

Ñ can also encourage developers to produce better programs, programs that include

important human-centered features or are more robust. Certainly the best example in

GROUPKIT is the overlays that encourage developers to include support for work surface

activities, such as multiple cursors for gesturing, in their programs. Other interesting

examples are attribute lists, which can result in a more robust system, and the toolkit

documentation and examples, which can promote a particular style of use. Appealing to

familiar concepts and general ease of use issues are also important considerations when

67
encouraging developers to use toolkit features. Issues which arise in GROUPKIT include

the use of familiar programming models and minimizing the use of inheritance.

1. Overlays. Overlays are a clear example of a toolkit design affordance. Developers

can: recognize the use of overlays Ñ supporting work surface activities; can understand

conceptually how they work Ñ operating on a familiar composition model; and because it

is straightforward to apply them Ñ typically a single line of code Ñ are more likely to do

so when the application would benefit from it. For such technically Ònon-essentialÓ

features such as gesturing, it is important to encourage developers to build them into

programs when appropriate. Many early shared drawing programs, which would clearly

benefit from the ability to gesture, did not implement gesturing because it was technically

difficult. If a component were available to these developers that allowed a quick and easy

implementation of gesturing, it is likely gesturing would have been included, arguably

resulting in better programs. Thus one main strength of the overlay strategy is that it is not

only clear what overlays do and how they work, but that it is very easy to add them to

developed applications.

2. Attribute lists. Good programming practices would suggest extensive use of abstract

data types. However, in practice it can be tempting to Òhard-codeÓ data structures rather

than relying on higher-level constructs. Toolkits can and should encourage developers, by

using design affordances, to choose higher-level structures whenever possible. The best

example in GROUPKIT is the attribute lists. Developers are encouraged to Òbuy-inÓ to

using attribute lists primarily because they allow data to be transmitted easily, special

characters to be handled, and so on. As added benefits, however, using them results in

simpler and more robust programs. Attribute lists remove the need for many simple hand-

coded data structures (such as are often used for storage), and there is less concern for

using uninitialized data structures Ñ the method that returns a value given its attribute

68
explicitly checks if the pair exists. As well, attribute lists encourage expansion. An early

prototype of the Registrar used hard-coded lists for names, host numbers, etc. These have

all been replaced by a single attribute list, where Registrar Clients can use the list in any

way they choose without explicit support from the Registrar. Clients can easily attach any

attribute to a conference or user, while in the earlier version adding extra attributes involved

either changes to the Registrar or unconventional use of the available data structures. The

Registrar code has been simplified, made more robust, yet at the same time is more

powerful.

3. Documentation and examples. Documentation is an all-too-often neglected part of

toolkit development. Good documentation describing the toolkit can highlight not only

how to use particular components, but more important when to use them. GROUPKITÕs

documentation consists of not only a detailed reference manual explaining the different

classes and how they relate to one another, but also a tutorial designed to show the

appropriate uses of the components (Roseman 1993). A sample of both the tutorial and

reference manual is included in Appendix A. Example programs included with the toolkit

are valuable resources, and probably more likely to be used than even the best

documentation. Good examples can highlight instances of good application design, which

are sure to be remembered when similar new projects arise. The current GROUPKIT

software distribution consists of several such sample programs, which are described in

Chapter 5.

4. Familiar programming models. The toolkit should strive to build on previously

learned concepts wherever possible, rather than forcing developers to learn new concepts.

One way this familiarity is exploited in GROUPKIT is in the initial start up of applications.

Single-user INTERVIEWS applications rely on a ÒSessionÓ object to manage program-wide

concerns. In GROUPKIT, this is extended so that now a ÒGroupSessionÓ Ñ a functional

69
superset Ñ manages concerns such as creating new Conference objects, establishing

connections to the Coordinator that spawned it, handling GROUPKIT specific resources,

and so on. The figures below show a standard INTERVIEWS main program (Figure 4.1) as

compared with a GROUPKIT main program (Figure�4.2). Both programs proceed by

creating an overall session, and then display a window containing a particular interface

glyph. The glyphs (ÒHelloWorldGlyphÓ and ÒMultiUserHelloWorldGlyphÓ) are created by

the programmer to handle the graphical display and interaction for the application.

Exploiting already familiar concepts can ease the developerÕs burdens in learning a new

system.

5. Inheritance. Ousterhout (1991) makes the claim that object-oriented inheritance is a

useful model to support interface toolkit developers, but not to support application

developers who use the toolkit. Instead, he argues for composition of interfaces, creating

larger pieces by directly combining smaller ones. This is supported not only by

Ousterhout's TK toolkit, but also by the INTERVIEWS C++ toolkit, which relies heavily on

composition as its primary model for building interfaces (Linton, Vlissides and Calder

1989).

Early prototypes of GROUPKIT used inheritance extensively for creating interfaces. For

example, the functionality of the current ConferenceMonitor was gained by subclassing the

generic Conference object. Messaging objects were subclassed from virtual messaging

objects to send particular message types. This proved extremely awkward, particularly

with the high overhead of subclassing in C++. The current scheme, where inheritance has

been minimized when using the toolkit, has resulted in shorter and clearer implementations.

Additionally, the result was conceptually closer to the basic INTERVIEWS model Ñ

inheritance is used to create new functionality, but existing components can be used

without inheritance.

70

 main(int argc, char** argv) {

 Session* session = // overall program manager

 new Session("HelloWorld", argc, argv);

 session->run_window(// start up a window ...

 new ApplicationWindow(// .. that we create

 new HelloWorldGlyph(// .. that contains this interface

 session->style())));

 }

Figure 4.1. Standard INTERVIEWS main program.

 main(int argc, char** argv) {

 GroupSession* session = // overall groupware program manager

 new GroupSession("HelloWorld", argc, argv);

 session->run_window(// start up a window...

 new ApplicationWindow(// .. that we create

 new MultiUserHelloWorldGlyph(// .. with this interface

 session->style(),

 session->conference()))); // with a pointer to conference

 // for communications etc.

 }

Figure 4.2. Standard GROUPKIT main program.

Extensibility

Ideally, it should be possible to extend the functionality of objects in the system with

minimal disruption to the developer. With careful design, object-oriented inheritance and

polymorphism can provide this functionality. It is important to separate the interface to the

class from the implementation details (Linton 1992) , which can be difficult in languages

like C++ (Stroustrup 1986).

71
The interfaces for many of the GROUPKIT objects are designed with extension in mind.

These include the main Conference, the ConnectionList, and attribute lists. An important

consideration when constructing extensible components is keeping the basic component

simple enough for use by the developer. This is illustrated in GROUPKIT by the annotation

overlay. Finally, it is important to create general techniques in toolkits wherever possible,

which provides the greatest promise of extensibility.

1. Conference. The current Conference object, which starts and maintains connections

to other conferences, operates under the assumption of a fully replicated communications

architecture. Under some circumstances, a centralized architecture may be beneficial. A

ÒCentralizedConferenceÓ could be created based on the main Conference, to allow

implementing a centralized architecture rather than a replicated architecture. While the

implementation details would change, the developer would still use the Conference in the

same way. Unnecessary details of the underlying architecture are kept hidden.

2. ConnectionList. Currently, the GROUPKIT ConnectionList object simulates a multi-

cast by sending the same message over all socket connections, in the ÒtoAllÓ method. This

is because standard Unix systems do not have a true multi-cast facility. Developers already

using the ÒtoAllÓ method would be able to instantly take advantage of hardware multi-cast

support with a single change to this method.

3. Attribute lists. Attribute lists currently use an ASCII string representation when

transmitted over a socket. Without change to the interface, this could easily be changed to a

binary transmission mode, which would increase efficiency by minimizing data

conversions.

4. Complexity of overlays. As with many designs, the design of overlays involves

many tradeoffs. Consider the bitmap annotation overlay, which presents a simple bitmap

72
overlaying an entire application, so that users can annotate artifacts in the underlying

application. However, what if these underlying artifacts move? In the simple overlay that

has been implemented, the annotations remain in place and do not follow the changing

artifact. Extra work would be required of the application developer to support movable

annotations. While the current configuration is restricted because there is not even an

option for movable annotations, its advantage is that application developers require only a

single line of code to add the primitive annotation capabilities. Again, the Òbuy-inÓ is low,

which encourages more use of the facility than the higher cost that would be incurred by

providing a more powerful overlay that required more work to include in a program.

Powerful features will likely not be used if the initial expense of including them is high.

While it is important that the initial cost to the developer to use a simple feature is kept low,

it is also important that developers have the option to devote extra effort to achieve greater

functionality. Though not yet implemented, a useful extension to the bitmap annotation

overlay that would support attaching annotations to specific artifacts in the work surface is

now described.

While the current implementation retains one large bitmap containing all annotations, an

alternate approach is illustrated in Figure 4.3. Rather than one large bitmap, individual

annotations or strokes Ñ see (McCall, Moran, van Melle, Pedersen and Halasz 1992) Ñ

are kept as separate bitmaps, which can be moved independently around the work surface.

In INTERVIEWS this could be done using a Page glyph, which is the basis for the multiple

cursor overlay. Thus this would provide the ability to move annotations.

73

Figure 4.3. Bitmap annotations kept separate using a Page glyph. Here each

annotation can be individually placed on the work surface.

The next step is to define a protocol whereby annotations, when first created, can ask the

underlying application to locate artifacts near the annotation. A protocol would also be

needed so that when application artifacts are moved the overlay is notified and can adjust

the position of the annotations. This implementation would be a reasonable amount of

effort for the developer, although this could be lessened if an object framework, such as

that of GROUPDRAW (Greenberg, Roseman et al 1992), could be extended to support the

necessary protocols. The important point is that developers are more likely to go to this

effort once the initial idea of providing annotation capabilities has been accepted, rather than

if the initial acceptance involves a large amount of initial work.

5. Generality of overlays. The strength of overlays is not in the particular two

overlays that have been implemented, but in the promise of the overlay technique in

general. In a toolkit, application developers should be provided with such techniques so

that they can develop their own components, and not just be provided with end

components. The recent interest in Òshared feedbackÓ (Dourish and Belloti 1992) provides

examples of other components that could be provided with overlays. Shared feedback

74
looks at providing more awareness to the user about other usersÕ actions. Gesturing with

multiple cursors is therefore one form of shared feedback. The SASSE word processor

(Baecker, Nastos, Posner and Mawby 1993) suggests other components that could be used

for shared feedback. First, a Ògestalt viewÓ provides a miniature version of the shared

document, highlighting areas where other users are working. A Òmulti-user scrollbarÓ

augments conventional scrollbars by identifying the positions of other collaborators, while

still retaining the normal view of the document. Non-speech audio cues Ñ see also

(Gaver 1991a) Ñ can be used to augment awareness of other usersÕ actions. Finally, view

sharing, view slaving, Òlead and followÓ techniques and others (Pendergast and Hayne

1992) are emerging that allow users to more closely monitor the work of other users over

the shared work surface.

General components for all these functions could be implemented using an overlay, or

more generally, composition technique, where an outer layer or overlay augments the

behavior of the inner layer. This is analogous to the use of a ÒpaneÓ in single-user toolkits,

where an arbitrary large work surface is composed within a pane to permit scrolling of the

work surface, without any work required by the developer of the inner work surface. A

Ògroup-aware paneÓ could extend this idea to provide the multi-user scrollbars or view

slaving as general toolkit components, which could be easily applied to a wide variety of

groupware applications.

Though the clear benefit of overlays is in ÒWhat You See Is What I SeeÓ or WYSIWIS

situations, a number of issues arise where a Òrelaxed WYSIWISÓ situation is desirable.

Stefik et al. (1987) suggests four dimensions on which WYSIWIS can be relaxed. A

potential area for future work might be considering how overlays could be applied to each

of these dimensions. Some suggestions follow.

75
1. Display space (which objects are viewed?) Ñ If particular objects in the underlying

application are not to be viewed by others, mechanisms in the overlay could prevent

annotations attached to those objects from being displayed as well.

2. Display time (when are views synchronized?) Ñ Gestures, annotations, and other

potential overlays could be designed to update information on remote displays at only

periodic intervals rather than immediately.

3. Subgroup population (who shares view?) Ñ Gesturing could be dependent on the

subgroup, so that cursors of only subgroup members are visible, reducing clutter

when larger groups are working.

4. Congruence of view (see same areas of view?) Ñ The multi-user scrolling pane could

implement multiple strategies for separating or combining views of participants, as in

the examples by Pendergast and Hayne (1992) described above.

Flexibility

Building toolkit components inevitably involves a trade-off between flexibility and ease of

use. Taking a flexible approach permits developers to build a wide variety of different

systems, although implementation may be more difficult if few higher-level constructs are

provided. In contrast, providing higher level components with less flexibility may result in

some programs that are easier to build, whereas building other programs may involve

abandoning the toolkit support entirely. Flexibility is an issue in three GROUPKIT areas,

including communications, security, and particularly open protocols.

1. Communications. In GROUPKIT's communication facilities, the flexibility approach

is preferred. The capability is provided to send messages to any user, yet few high-level

constructs such as guaranteed message ordering over all sites are provided. For a domain

such as groupware, this flexibility is important, as a wide variety of different applications

could be constructed. Converging too quickly on higher level constructs may unduly

76
restrict developers in new, unexpected situations. As well, it is possible to provide higher

levels of support based on the primitives that are provided. These levels can include for

example concurrency control, data encryption, or persistent objects.

2. Security. While open protocols permit any client using the protocol to interact with

the controlled objects, this brings up the issue of malicious clients, and the associated

security problems. For example, a malicious Registrar Client could easily delete users

from conferences. In offering the flexibility, open protocols do open security risks. For

several reasons this may not be particularly troublesome. Consider:

¥ In many organizations, social and organizational pressures will tend to prevent such

abuses, because of the sense of community and trust present in many workgroups, or

possibly the ramifications of such inappropriate actions. Security may be more of a

concern in loose organizations such as the Internet, yet still there are several channels

whereby problems with malicious users can be resolved.

¥ There is a certain cost to build any client, malicious or otherwise. Such an

implementation requires a certain level of knowledge and some amount of time. This

minimizes the possibility for accidental abuse Ñ a novice accidentally typing some

incorrect commands Ñ yet in itself does not prevent experienced hackers from

creating malicious systems.

¥ Finally, nothing actually prevents security measures from being programmed into the

systems. Security may take the form of restricted access lists, password protection,

or other such authentication and approval mechanisms. Open protocols do not

prevent such mechanisms from being implemented, they simply do not require the

mechanisms to be implemented.

77
3. Open protocols. The main advantage of the open protocol strategy is the flexibility

gained. A wide variety of tools such as registration modules can be easily attached to the

system, providing behaviors that were never anticipated by the original developers. More

interestingly, open protocols allow several different controllers to interact, so that even

within the same group different systems can be used. As discussed, this flexibility is

important to accommodate different groups.

As another example of the flexibility possible with the open protocol approach, Brinck

(1992) describes a set of inter-operable group drawing programs built using the

RENDEZVOUS system. The programs, ranging from simplistic free-hand drawing to

complex drawing systems with structured graphics and constraints, share a common

underlying representation of the drawing surface. The difference between the programs is

the particular set of drawing tools that operate on the drawing surface. This allows

different users to work with different sets of tools, according to their needs and ability

levels. Yet because the underlying representation of the drawing surface is the same, these

different programs can work together effectively. This technique works because, as in

open protocols, the drawing objects (controlled objects) are kept simple, while sets of tools

(controllers) can be built and included in programs that interact with the drawing surface in

a well-defined way (the open protocol).

Summary

This chapter has considered the underlying rationale for the design of many of the features

described in Chapter 3. In doing so, many of the tradeoffs and issues that are necessarily

considered when undertaking any design process have been made explicit. This rationale

should prove useful for other developers who must confront similar issues in toolkit design

projects.

78
The chapter focused on how toolkit functionality can be provided to best meet the needs of

the application developer. Four areas Ñ minimizing the developer's work, encouraging

use of features, toolkit extensibility, and component flexibility Ñ provided the focus for

discussing some important issues.

79

Chapter 5

Evaluation

This chapter reflects on the design and implementation of GROUPKIT described in the

previous chapters. The evaluation considers the GROUPKIT implementation as well as

more general issues of the design requirements and user centered toolkit design.

Nature of Evaluation

A thorough evaluation of the design and implementation process is difficult at this point.

Under the user-centered approach described in Chapter�1, any realistic evaluation must

primarily take into account the experiences of toolkit users Ñ groupware developers using

the system to build real groupware applications. Unfortunately, as of this writing, only the

first version of GROUPKIT Ñ the result of several design iterations based solely on the

toolkit developerÕs experiences and informal interaction with developers Ñ has been

released to the research community via the Internet. To provide an adequate basis for

evaluation, feedback from these developers is necessary, both to evaluate and to further

evolve the toolkit.

Having acknowledged the preliminary nature of any such evaluation, comments can be

made about several areas of this work. The GROUPKIT implementation can be considered

in terms of its coverage of the human and programmer-centered design principles, as well

as some initial experiences in constructing simple groupware applications. Both the design

requirements and the user-centered toolkit design approach itself can also be briefly

considered.

80

GROUPKIT Implementation

The implementation of GROUPKIT, described in Chapters 3 and 4, can be considered in

two ways. First, because the toolkit was designed in response to a series of design

principles derived from human-centered and programmer-centered considerations, the

implementation can be evaluated according to those principles. Second, usage experiences,

currently limited to the toolkit developer, can be analyzed. Several simple groupware

applications, such as sketchpads and group support tools, were constructed to help this

analysis.

Coverage of design principles

The design principles from Chapter 2 serve as the basis for the GROUPKIT implementation.

As mentioned in Chapter�3, time limitations restricted the set of principles covered by the

implementation. Table�5.1 shows the mapping between the support in the current

implementation and the design requirements. Table 5.2 provides a more detailed look at

how GROUPKIT satisfies the requirements. The first four columns cover the toolkits

described in Chapter�2 (R ENDEZVOUS, MMCONF, CONFERENCE TOOLKIT, and LIZA).

The fifth column (GK) summarizes the coverage of requirements by the version of

GROUPKIT described in this thesis. Similarly, the last column (GK+) summarizes a Òwork

in progressÓ version of GROUPKIT, discussed in the next chapter, which also includes

prototypes of an object graphics layer and a shared terminal.

Usage experiences

Although several groupware developers around the world have begun experimenting with

GROUPKIT, because of its recent availability the only known applications constructed using

it have been written by the toolkit developer. These applications are primarily intended as

simple demonstrations of toolkit features and are therefore not full-featured.

81

Requirement Technique Implemented support

Actions over work surface overlays multiple cursors, bitmap annotation

Structure group processes open protocols flexible registration

Integrate conventional work shared terminals in progress

Multiple distributed

processes

 communications

 infrastructure

separate registration, messaging and

simulated multi-cast facilities

Shared graphics model object layer in progress

Table 5.1. Coverage of design requirements by GROUPKIT features.

Conference-Label displays the name of the conference in a window. It is about

the smallest application possible, but provides fully replicated processes. The

basic code for this application was provided in Figure 4.2 of Chapter�4.

Deck-Flip allows users to switch between several strings in a window. The current

string selected is transmitted to others in the conference. This program illustrates

message passing between processes.

Monitor allows users to browse the list of users in the conference and their

attributes. This program demonstrates the use of the ConferenceMonitor facility

to watch users joining and leaving the conference.

Brainstorm presents a simple group support tool where single-line ÒideasÓ from

users are anonymously transmitted to other conference users and compiled into a

list containing all the groupÕs ideas.

Vote allows users to call a vote of conference users on ÒYes/NoÓ questions, with the

ongoing results being tallied by the vote-caller as others respond (see Figure 5.1).

Cursor-Demo illustrates the use of the Cursor overlay on top of an empty glyph.

This shows the simplest case of adding a single overlay to an application.

82

Requirement
REND-

VOUS

MM-
CONF

CONF.
T-KIT LIZA GK GK+

Human-centered Requirements
Actions over visual work surfaces

convey process + o o o o +
simultaneity + + o o o +
modeless interface . ? o o o o
common view + o o o o +
gestures . + . . ++ ++
annotation o + . . ++ ++

Flexible group processes
floor control + ++ + ? o ++
registration ++ ++
latecomers +

Integration with conventional work
non-computer artifacts
other communication + +
single-user apps ? ++ + . . +

Programmer-centered requirements
Multiple distributed processes

conference management + + + + ++ ++
communications infrastructure + + ++ + + +
persistent sessions . ? ? ? . +

Shared graphics model
shared visual objects ++ ++
object concurrency ++ ++
separate view ++ ++

++ system provides good support

+ system provides support

o system can handle but does not specifically support

. system does not support

? not clear if support is provided

Table 5.2. Detailed comparison of GROUPKIT and existing toolkits.

83
Group-Sketch uses the Cursor and Sketchpad overlays on top of an empty glyph

or arbitrary image to create a simple group sketchpad (see Figure 3.15).

Share-Shell presents a Unix shell overlayed by the Cursor and Sketchpad overlays,

and is capable of supporting the SHARE program (Greenberg 1990) which allows

several users to share a single terminal, combining their input into a single stream

and directing the output to each userÕs screen.

Draw-Lines is a simple program allowing users to draw and manipulate lines,

which remain consistent on all usersÕ screens. This program contains most of a

general group object framework, adapted from GROUPDRAW (Greenberg,

Roseman et al 1992).

Open-Registrar-Client is the ÒstandardÓ registrar client, allowing users to create,

join and leave conferences (see Figure 3.3, Chapter 3).

Master-Registrar-Client is a prototype of a registrar client suitable for a meeting

facilitator, who can control the programs used by the meetingÕs users (see Figure

5.2, below).

Slave-Registrar-Client is a prototype registrar client suitable for users in a

facilitated meeting.

Though the applications are merely demonstrations and are missing many normal features

(saving files, cut and paste, printing, etc.) they are otherwise reasonable multi-user

applications with interfaces supporting interface elements such as multiple windows,

dialogs, and menus. For example, Figure 5.1 illustrates the ÒVoteÓ application, while

Figure 5.2 illustrates the ÒMaster-Registrar-Client,Ó an alternative to the standard client

illustrated in Figure 3.3 of Chapter 3.

84

Figure 5.1. Screen capture of the GROUPKIT ÒVoteÓ demonstration program.
Shown are the initial window to start a new vote (top left); dialog box to specify the
question to be voted on (top right); dialog box for vote initiator to record vote tally
(bottom right); and dialog box allowing users to vote on the question (bottom left).

Figure 5.2. Screen capture of the ÒMaster-Registrar-Client.Ó This client is intended
for use by a meeting facilitator. Other meeting participants appear along the left side
of the window. The facilitator can start new applications, such as brainstorming or
voting, by selecting them from the ÒNewÓ menu. Users are added or deleted from
applications by the facilitator using the check boxes. The facilitator may also
remove a user from the entire meeting using the ÒbootÓ beside each name.

85

Program Lines of Code

Conference-Label 51

Deck-Flip 210

Monitor 240

Brainstorm 212

Vote 442

Cursor-Demo 101

Group-Sketch 137

Share-Shell 66

Draw-Lines 1089

Registrar 328

Open-Registrar-Client 796

Master-Registrar-Client 800

Slave-Registrar-Client 357

Table 5.3. Size of GROUPKIT applications.

One informative measure is the size of each of these applications. Table�5.3 shows the

number of lines of code contained in each of the programs. The lines of code here includes

such thing as C++ header files, include lines, comments, blank lines as well as the code

itself, so is perhaps somewhat inflated.

Reducing the amount of code need not necessarily reduce overall complexity or

development time. Some qualitative observations about the sample applications are

therefore also appropriate. First, much of the code in the programs is related to common

single-user application concerns, particularly window and dialog construction, with small

86

Widget Description

String Browser browser allowing selection of a string from a list

Labeled Scroll List a String Browser bundled together with a label and a scroll bar

Shell a VT-100 terminal emulator, supporting a Unix shell process via

pseudo-tty connections

Tabular a composite widget made up of aligned rows and columns of

arbitrary widgets

Table 5.4. Single-user widgets distributed with GROUPKIT.

amounts dealing specifically with ÒgroupÓ concerns. The ÒgroupÓ code tends to be task-

specific at an appropriate level of abstraction, e.g. Òsend an ideaÓ to other users in the

brainstorming program is essentially an atomic action. The exception to this is the line

drawing program, where much of the code deals with general concurrency issues and is not

task-specific. This suggests that most of the generalities in that program should be

embedded in the toolkit itself, not left for individual applications, an issue considered in the

next chapter. Overall, the complexity of writing GROUPKIT programs appears to be kept

low, that the decreased amount of code required has not resulted in an unacceptably

increased complexity for writing each line.

Most of the programs were quick to develop Ñ generally under two hours Ñ yet this relied

heavily on experience with the underlying INTERVIEWS toolkit. This is not surprising, as

most of the code in the examples deals with interface components such as menus, dialogs,

control panels, and other such widgets. The extensive need for such code prompted the

creation of a number of new single-user widgets that have been released with the

GROUPKIT distribution, as shown in Table 5.4. While some feedback from developers

suggests that the learning curve for GROUPKIT experienced by someone knowledgeable in

87
INTERVIEWS is reasonably minimal, the curve that could be expected for an INTERVIEWS

novice is very considerable. The lack of a strong knowledge of C++ and INTERVIEWS

seems to be the primary difficulty in writing GROUPKIT programs.

Comparative Evaluation

How does development with GROUPKIT compare to development without using any

groupware toolkit? The previous discussion suggests development using GROUPKIT is

substantially easier. Table 5.5 gives the size of several groupware applications developed

without the benefit of a toolkit. All these projects took at least several months of

concentrated development time. Many problems were encountered during development that

were tangential to the specific application at hand (Greenberg, Roseman et al 1992). These

included difficulties with establishing communications, the need for registration, complex

message parsing and dispatching, and dealing with multiple cursors.

Of course, these figures could be misleading, as the applications are more sophisticated

than the GROUPKIT counterparts. Table 5.6 provides a better estimate. The figures, based

on the sample applications described previously, highlight the effort required to replicate

particular functions in three existing programs using GROUPKIT: a shared paint program

(GROUPSKETCH), an object based drawing program (GROUPDRAW), and a shared Unix

terminal (SHARE). For example, in order for the GROUPKIT sketching demo to compare

with the functionally richer GROUPSKETCH application, the cursor overlay would need to

be extended so that cursors change shape depending on the usersÕ actions. Similarly, to

compare the line drawing demo with GROUPDRAW, a number of menu commands for

changing an objectÕs coupling status would need to be added to the former. This

comparison is confounded by differences in the underlying interface toolkits, as adding

features with INTERVIEWS is often simpler than with toolkits used in the three applications.

88
The qualitative comments made in the previous section seem to apply as well; that despite

the decreased amount of code, complexity of development per line of code was not

substantially increased. In fact, the GROUPKIT based systems eliminated many confusing

interdependencies, such as code for gesturing mixed with code for drawing. Use of

GROUPKIT reduces many of the groupware difficulties; the apparent result is that

developers can focus on the problems specific to their particular groupware application,

reducing development time by very significant margins.

Program

Target

Environment

Development

Tool Description

Lines of

Code

GROUPSKETCH Unix C Simple paint program 4500

GROUPDRAW Macintosh Think C / TCL Object drawing program 8000

SHARE Unix C Shared Unix terminal 7300

XGROUPSKETCH Unix / X C / XView Fancy color paint program 5000

WSCRAWL Unix / X C / Motif Deluxe color paint program 17500

SHDR Unix / X C / XView Simple 2-user paint program 750

Table 5.5. Size of programs developed without use of a groupware toolkit.

89

System / Feature
Approximate
Lines of Code

Estimated GROUPKIT

Lines of Code

GROUPSKETCH (based on Group-Sketch demo)
 Socket setup and messaging 650 4
 Registration 700 0
 Window management 650 40 + 50 (menus etc.)
 Drawing and erasing 500 3 + 50 (add erasing to overlay)
 Load and save 150 100
 Event handling 600 0
 Caricatures 250 110
 Multiple cursors 400 3 + 50 (cursor change w/ buttons)
 Miscellaneous 600 40
 Total 4500 450

GROUPDRAW (based on Draw-Lines demo)
 Socket setup and messaging 1700 100
 Registration 600 0
 Window management 2500 100 + 300 (extend tools, menus)
 Generic object 900 850
 Specific object types 700 700
 Object interaction 400 150
 Event handling 500 50
 Multiple cursors 300 3
 Miscellaneous 400 100
 Total 8000 2353

SHARE (based on Share-Shell demo)
 Socket setup and messaging 1000 4 + 20 (send/receive typing msg)
 Registration 2200 0
 Unix process input/output 200 0
 Generic floor control 700 300 (based on open protocols)
 Specific floor control policies 2600 600 (subclass from generics)
 Miscellaneous 600 50
 Total 7300 974

Table 5.6. Estimated replication of existing systems using GROUPKIT. Italics
indicate estimates while Roman type shows actual figures from GROUPKIT sample
applications.

90

Design Principles and User-Centered Design

The design principles presented in Chapter�2 are a useful set of core requirements for a

groupware toolkit. They are clearly not intended as a complete set. As research continues

into the use of CSCW applications, as developers continue to encounter problems in

building groupware, and as novel groupware applications continue to appear, the set of

design principles must continue to grow. It is important that growth continues not only on

the programmer-centered side, which has been the emphasis of most toolkit work to date,

but also on the human-centered side, which has largely been neglected. The design

principles selected here are a good model because they focus on both aspects of groupware

design.

The user-centered toolkit design approach developed in this thesis is harder to evaluate,

based on the single case of GROUPKIT that itself is not complete. The approach was not

strictly adhered to in the work described here due to time restrictions. Though some early

feedback from developers was received, as a result of a poster presentation at CHI Õ92

(Roseman and Greenberg 1992a) and early drafts of a conference paper (Roseman and

Greenberg 1992b), much more could have been done to solicit feedback from developers.

Questionnaires on past and planned groupware development projects, familiar development

tools, and other issues would provide much valuable feedback. Electronic discussion

groups to discuss issues as they arise, or focus groups at conferences where groupware

developers regularly gather would be useful sources of information. Toolkit development

also might prove a fertile area for participatory design (Blomberg and Henderson 1990),

where toolkit developers can collaborate with knowledgeable application developers already

sharing a common vocabulary and approach to development.

91
The benefit of the user-centered toolkit design approach seems to be not that it presents

anything novel, but instead articulates existing notions of good software architecture

design. Designers of good toolkits likely follow a user-centered approach, consciously or

not. By defining an explicit framework for toolkit developers to follow, a structured

process is made available to ease toolkit design decisions. Whether the particular

framework will result in better toolkits cannot now be shown, yet by defining such a

framework, a starting point for discussion among toolkit developers is created, allowing

the framework to evolve.

Critical Reflection

One of the goals of this thesis has been to provide aid and guidance for developers who

will be engaged in future toolkit development efforts, to describe not just a generic path

through the GROUPKIT development project, but to expose the high points as well as the

roadblocks and shortcuts which altered the path. It is not the final destination that matters

as much as the journey along the way.

One of the definite high points in the journey was the early identification of human-centered

requirements as a legitimate basis for building a toolkit. Though human factors work for

groupware applications was identified early on as critical to their success, little explicit

effort was made by previous toolkit developers to help application developers cope with

these issues. Some toolkit developers were including human-centered components, but did

not explicitly recognize human-centered requirements as important Ñ decidedly different

from technical requirements perhaps yet equally valid as engineering goals. The

identification of human-centered issues as requirements that can and should be incorporated

into a toolkit is probably the major contribution of this thesis.

92
The high level design of the software is another high point. The design of the toolkit

components provides a lot of power at a reasonable cost to the application developer. They

address many high level issues and bundle them into useful packages for developers. The

design does encapsulate enough of the underlying groupware issues so that developers can

worry about the specifics of their particular applications.

Of considerable importance is the underlying portability of the design and the ideas it

contains. Aside from the overlays, little in the design is heavily dependent on the chosen

implementation platform. The overall design could be easily replicated on many different

platforms. Regardless of whether developers embrace the actual GROUPKIT system, the

design of the components provides a useful model for application and toolkit developers

alike. These developers can benefit greatly from many of the toolkit issues discussed in

detail in Chapter 4. Many of the detailed issues raised there Ñ generality of components,

use of inheritance, documentation and examples, security Ñ can greatly influence the

resulting software design.

The actual GROUPKIT implementation was more of a bumpy stretch of road with many

unexpected curves. There was a great deal in the INTERVIEWS platform which helped to

accelerate the system development, including a rich graphics model and true inheritance of

widgets. Yet this choice of platform will undoubtedly restrict the target audience,

minimizing actual use of the system and subsequent feedback. Support for INTERVIEWS

has not advanced nearly as far as expected when this project began Ñ slow and incomplete

migration to the current release, a dearth of documentation for new users, and an out-of-

date interface builder Ñ coupled with an uncertain future have made the platform a less

useful basis than desired. Though proposals to support INTERVIEWS from within the MIT

X Consortium may yet address these issues, at present the lack of a complete widget set

93
that can be reasonably learned and used by developers is an obstacle to successful adoption

of the GROUPKIT platform.

The user-centered toolkit design methodology itself was not adhered to as much as it

should have been. Though a useful idea in theory Ñ again, not because of its novelty but

its explicitness Ñ it could have been much better applied in practice. This was largely a

result of the ideas being made explicit relatively late in the project. User-centered toolkit

design evolved out of the human and programmer-centered requirements, not the other way

around. As discussed in the previous section, more efforts could have been made to

directly solicit developer feedback early on in the process, augmenting the more indirect

feedback received from studies of existing systems and their use.

94

Chapter 6

Concluding Remarks

This chapter reflects on the design and implementation of GROUPKIT described in the

previous chapters. A number of interesting possibilities for future work are discussed,

including support for shared graphics, high-level components such as text editing,

asynchronous groupware, conventional work, and portability between systems. The thesis

concludes with a brief review of the contributions of this research.

Ongoing and Future Work

The work presented in this thesis offers a useful framework for considering the design of

toolkits for groupware application developers. Still, there are many areas left to be

addressed. Some of this work has already been started, and is noted below.

Expanding Design and Implementation

Groupware development and CSCW itself are new disciplines. As the disciplines continue

to evolve, new requirements for groupware will evolve, based both on the development of

radically new systems and also on the results of field studies of those systems. The

principles described in Chapter 2 present only the first step of an inherently evolutionary,

iterative and open-ended process. To remain useful, the principles must evolve with the

challenges of newer systems and human factors concerns.

On the implementation side, new implementation techniques must be found as more design

requirements are discovered. While the components described in Chapter�3 are general

enough to satisfy some new requirements, further techniques will be required. The design

95
rationale in Chapter�4 can serve as a guide in designing these new techniques. New

techniques and components will need to consider the issues of minimizing the developerÕs

work, encouraging use, extensibility and flexibility to be most useful to groupware

developers.

Shared Graphics

One design requirement unsatisfied by the current implementation of GROUPKIT is the

provision of a shared graphics model as a general toolkit component. Such a model would

provide the notion of a shared group object, encapsulating issues such as concurrency

control, consistency, and separate object views. These are important but difficult issues to

deal with, and providing toolkit level support would free the programmer from many such

concerns.

The GROUPDRAW system (Greenberg, Roseman et al 1992) provides a shared graphical

model that is suitable for inclusion in GROUPKIT. Many aspects of the model are

consistent with the GROUPKIT design philosophies discussed in Chapter�4. Object-

oriented inheritance is used extensively to provide a basic level of concurrency, yet

permitting more complex and application-specific behaviors to be accommodated within the

framework. The object-oriented design simplifies not only using standard toolkit

components, but also building higher-level components. Finally, the communication

support required by the model is simple message passing, of the sort provided by

GROUPKIT.

Most of this work has already been completed. The ÒDraw-LinesÓ demonstration program

contains most of the underlying GROUPDRAW framework. The message passing required

was easily accommodated by GROUPKIT, and resulted in a great simplification of the

GROUPDRAW code. Because the GROUPDRAW code relied on a high degree of separation

96
between the underlying objects and the graphical views of those objects, the object level

code was easy to extract. Porting GROUPDRAW from Think C (a subset of C++) to C++

was relatively trivial, and C++ features such as constructors and destructors resulted in

improved clarity of the code. The higher level interface, providing views of the underlying

shared objects as well as means for manipulating them was not ported, due to underlying

differences between the Think Class Library used in GROUPDRAW and INTERVIEWS.

High-Level Components

Many single user interface toolkits provide high-level components such as shells, editors,

canvases and dialogs that are composed out of simpler building blocks. The idea of

providing high-level components to the developer transfers well to the groupware domain.

The graphics model described above could be such a component, situated as a ÒlayerÓ in the

toolkit, based on the communications and graphics primitives already provided by

GROUPKIT and INTERVIEWS (see Figure 6.1). The communications provided by

GROUPKIT could support the message passing needs of the component, while

INTERVIEWS provides support for the graphics primitives. An application based on the

graphics component could also use the underlying services for its own particular needs.

Support for group text editing is another essential component. Work on the single-user text

model in the INTERVIEWS ÒDocÓ application Ñ a ÒWhat You See Is What You GetÓ

document editor Ñ has provided useful abstractions such as separate text item and view

objects, using inheritance to provide higher-level document objects (Calder and Linton

1992). This might usefully be combined with the group text models and interaction

strategies now found in the SASSE editor (Baecker, Nastos et al 1993).

Other possible high-level components include group hypertext models, or components for

decision making or facilitation. In all these cases, the goal would be to provide a general

97

Underlying toolkit
(e.g. InterViews)

Basic GroupKit
(e.g. communications)

High-level components
(e.g. Graphics layer)

Groupware Application

Figure 6.1. Layering of high-level toolkit support.

level of functionality in a toolkit layer, which may be customized as appropriate by the

application developer.

Asynchronous Groupware and Everyday Work

The work described in this thesis considers real-time or synchronous groupware only.

Ideally, a groupware toolkit should be able to support the construction of both synchronous

and asynchronous groupware systems. A similar design process could be undertaken:

study existing asynchronous groupware along with its associated human factors issues,

derive design requirements, and generate techniques and toolkit components that can satisfy

the design requirements. Transitions between synchronous and asynchronous systems Ñ

so-called semi-synchronous systems (Dourish and Belloti 1992) Ñ present an interesting

subset of groupware problems. Intelligent support for selecting appropriate communication

channels, whether synchronous or asynchronous, is another problem worth investigating

(Cockburn and Greenberg 1993). Finally, integration with conventional media such as the

98
normal desktop, telephone, and increasingly video conferencing to supplement the

computer based conferencing is an important area of investigation. The GROUPKIT

registration mechanisms provide a useful framework for constructing support in these

areas, by providing a policy-free mechanism to launch and terminate applications.

Portability

An important issue for groupware developers is cross-platform development, or designing

applications that can interact across different types of hardware. While also an issue in

single-user systems, it becomes increasingly important in work groups using

heterogeneous computer equipment. While the current implementation has a high

dependence on the platform (Unix, X-Windows, and INTERVIEWS), many of the

underlying ideas could prove useful steps towards portability. The idea of separating

objects from views decreases dependencies on particular graphics systems. The interfaces

for many GROUPKIT classes abstract away from the hardware, so that the communications

modules could be easily ported to other systems. Finally, open protocols suggest that by

properly designing the communications protocols, many different interfaces Ñ including

those on other types of machines Ñ can be accommodated.

One project currently being investigated is to provide a common text editing framework

between Unix and the Macintosh, based on the text support provided by SASSE (Baecker,

Nastos et al 1993). A goal of the project is to distill a set of requirements necessary for

building portable groupware systems. While this work is still in the very preliminary

stages, a number of directions are emerging. Such portability requires a high abstraction

from the interface, which has not been a common characteristic of current groupware

systems. Such abstraction requires the use of view separation as described previously, so

that the interface initiates and reflects changes to an underlying object. While it seems

likely that high level interfaces will be entirely hand-coded on particular machines, it is

99
unclear how much code of the underlying objects may be completely portable across

systems.

Summary of Contributions

This thesis has applied principles of user-centered design to the design of software toolkits,

in particular for the domain of real-time or synchronous groupware conferencing systems.

User-centered toolkit design advocates the following seven design steps:

1. Specify toolkit domain

2. Identify developers

3. Identify use of toolkit

4. Consider target applications

5. Design for proper use

6. Apply design affordances

7. Iterate design

 To provide the support needed by the developers, a number of design requirements were

derived based on existing groupware applications and human factors observations of these

systems and work practices in general. Thus the requirements are based on both human-

centered issues that directly affect groupware users, as well as technical or programmer-

centered issues which primarily affect the groupware developer:

1. Human-Centered Issues:

a. Support multi-user actions over a work surface like gesturing and annotation.

b. Provide flexible structuring of processes like registration and floor control.

c. Integrate with conventional work such as telephones and single-user software.

2. Programmer-Centered Issues:

100
a. Support distributed processes for conference management and messaging.

b. Provide a shared graphics model with concurrency and separate object views.

Based on the design requirements, the GROUPKIT system was constructed as a prototype

groupware toolkit. Underlying GROUPKITÕs design are three sets of techniques that serve

to satisfy many of the derived design principles:

1. A Communications Infrastructure manages generic registration and communications

needs, allowing developers to focus on their particular applications rather than

developing a generic infrastructure.

2. Overlays provide generic work surface activities such as gesturing or annotation on

top of particular applications, providing high-level groupware abstractions.

3. Open protocols provide a mechanism for implementing a wide variety of group

processes, allowing developers to provide more flexible applications usable by a

wider variety of groups.

Throughout the thesis, the design rationale behind the various components of the toolkit

was made explicit, to capture many of the complex design decisions that must be dealt with

in toolkit projects. This design rationale is important in considering toolkit design, and

making it explicit will be a boon to toolkit developers in the future.

The result of the research is an effective design and implementation that developers can use

as a basis for building groupware applications without concern for the myriad of difficulties

that have traditionally plagued them.

101

Bibliography

Agha, G. (1986) Actors: A Model of Concurrent Computation in Distributed Systems, MIT

Press, Cambridge, Massachusetts.

Ahuja, S. R., Ensor, J. R. and Lucco, S. E. (1990) ÒA comparison of applications sharing

mechanisms in real-time desktop conferencing systems.Ó In Proceedings of the

Conference on Office Information Systems (COIS '90), pp. 238-248.

Baecker, R., Nastos, D., Posner, I. and Mawby, K. (1993) ÒThe User-Centered Iterative

Design of Collaborative Writing Software.Ó To appear in Proceedings of InterCHI 93.

Beaudouin-Lafon, M. and Karsenty, A. (1992) ÒTransparency and Awareness in a Real-

Time Groupware System.Ó In Proceedings of UIST '92.

Bier, E. A. and Freeman, S. (1991) ÒMMM: A User Interface Architecture for Shared

Editors on a Single Screen.Ó In Proceedings of User Interface Software and

Technology (UIST '91), pp. 79-86.

Blomberg, J. L. and Henderson, A. (1990) ÒReflections on Participatory Design: Lessons

from the Trillium Experience.Ó In Proceedings of the ACM CHI'90 Conference on

Human Factors in Computing Systems, pp. 353-360.

Bly, S. (1988) ÒA use of drawing surfaces in different collaborative settings.Ó In

Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW

'88), pp. 250-256.

Bly, S. A. and Minneman, S. L. (1990) ÒCommune: A shared drawing surface.Ó In

Proceedings of the Conference on Office Information Systems (COIS '90), pp. 184-

192.

Bonfiglio, A., Malatesa, G. and Tisato, F. (1989) ÒConference Toolkit: A framework for

real-time conferencing.Ó In Proceedings of the 1st European Conference on Computer

Supported Cooperative Work (EC-CSCW '89).

102
Booch, G. (1990) Object Oriented Design with Applications, Benjamin/Cummings

Publishing Company Inc., Redwood City, California.

Brinck, T. and Gomez, L. M. (1992) ÒA Collaborative Medium for the support of

Conversational Props.Ó In Proc. of the Conference on Computer Supported

Cooperative Work (CSCW '92), pp. 171-178.

Calder, P. and Linton, M. (1992) ÒThe Object-Oriented Implementation of a Document

Editor.Ó In Proceedings of OOPSLA '92.

Chang, E. (1986) ÒParticipant Systems.Ó Future Computing Systems, 1(3), pp. 253-270.

Chapanis, A. (1975) ÒInteractive human communication.Ó Scientific American, 232(3),

pp. 36-42.

Chin, R. S. and Chanson, S. T. (1991) ÒDistributed Object-Based Programming

Systems.Ó ACM Computing Surveys, 23(1), pp. 91-124.

Cockburn, A. and Greenberg, S. (1993) ÒMaking Contact: Getting the Group

Communicating with Groupware.Ó Research Report 93/498/03, Department of

Computer Science, University of Calgary, January 1993.

Crowley, T., Baker, E., Forsdick, H., Milazzo, P. and Tomlinson, R. (1990) ÒMMConf:

An infrastructure for building shared applications.Ó In Proceedings of the Conference

on Computer-Supported Cooperative Work (CSCW '90).

Dewan, P. (1990) ÒA Tour of the Suite User Interface Software.Ó In Proceedings of the

ACM Third Annual Symposium on User Interface Software and Technology (UIST

'90), pp. 57-65.

Dewan, P. (1991) ÒFlexible user interface coupling in collaborative systems.Ó In

Proceedings of the ACM CHI'91 Conference on Human Factors in Computing

Systems, pp. 41-48.

Dewan, P. and Choudhary, R. (1991) ÒPrimitives for Programming Multi-User

Interfaces.Ó In User Interface Software and Technology (UIST '91), pp. 69-78.

103
Dourish, P. and Belloti, V. (1992) ÒAwareness and Coordination in Shared Workspaces.Ó

In Proc. of the Conference on Computer Supported Cooperative Work (CSCW '92),

pp. 107-114.

Dubs, S. and Hayne, S. C. (1992) ÒDistributed Facilitation: A Concept Whose Time Has

Come?Ó In Proc. of the Conference on Computer Supported Cooperative Work

(CSCW '92), pp. 314-321.

Dykstra, E. A. and Carasik, R. P. (1991) ÒStructure and support in cooperative

environments: The Amsterdam Conversation Environment.Ó International Journal of

Man Machine Studies, 34(3), pp. 419-434.

Ellis, C. A., Gibbs, S. J. and Rein, G. L. (1991) ÒGroupware: Some issues and

experiences.Ó Communications of the ACM, 34(1).

Engelbart, D. and English, W. K. (1968) ÒA research center for augmenting human

intellect.Ó In Proceedings of the Fall Joint Computer Conference, pp. 395-410, San

Francisco, Calif., AFIPS.

Ensor, J. R., Ahuja, S. R., Horn, D. N. and Lucco, S. E. (1988) ÒThe Rapport

Multimedia Conferencing System Ñ A Software Overview.Ó In Proceedings of the 2nd

IEEE Conference of Computer Workstations, pp. 52-58.

Eveland, J. D. and Bikson, T. K. (1988) ÒWork group structures and computer support: A

field experiment.Ó In Proceedings of the Conference on Computer-Supported

Cooperative Work (CSCW '88), pp. 324-343.

Francik, E., Rudman, S. E., Cooper, D. and Levine, S. (1991) ÒPutting innovation to

work: Adoption strategies for multimedia communication systems.Ó Communications

of the ACM, 34(12), pp. 37-63.

Garfinkel, D., Gust, P., Lemon, M. and Lowder, S. (1989) ÒThe SharedX Multi-user

Interface UserÕs Guide, Version 2.0.Ó STL-TM-89-07, Hewlett-Packard Laboratories.

Gaver, W. (1991a) ÒSound Support for Collaboration.Ó In Proceedings of the 2nd

European Conference on Computer Supported Cooperative Work (ECSCW '91).

104
Gaver, W. (1991b) ÒTechnology Affordances.Ó In Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI '91), pp. 79-84.

Gibbs, S. J. (1989) ÒLIZA: An Extensible Groupware Toolkit.Ó In Proceedings of the

ACM CHI'89 Conference on Human Factors in Computing Systems, pp. 29-35.

Gomoll, K. and Nicol, A. (1990) ÒDiscussion of guidelines for user observation.Ó

Technical Report, Apple Computer, Inc.

Greenberg, S. (1990) ÒSharing views and interactions with single-user applications.Ó In

Proceedings of the Conference on Office Information Systems (COIS '90), pp. 227-

237.

Greenberg, S. (1991) ÒPersonalizable groupware: Accomodating individual roles and

group differences.Ó In Proceedings of the 2nd European Conference on Computer

Supported Cooperative Work (EC-CSCW '91).

Greenberg, S. and Bohnet, R. (1991) ÒGroupSketch: A multi-user sketchpad for

geographically-distributed small groups.Ó In Proceedings of Graphics Interface '91.

Greenberg, S., Roseman, M., Webster, D. and Bohnet, R. (1992) ÒHuman and Technical

Factors of Distributed Group Drawing Tools.Ó Interacting with Computers, 4(3), pp.

364-392.

Grief, I. (ed.) (1988) ÒComputer-Supported Cooperative Work: A Book of Readings.Ó ,

San Mateo, California, Morgan Kaufmann Publishers.

Group Technologies Inc. (1990) ÒAspects: The First Simultaneous Conference Software

for the Macintosh.Ó User Manual .

Grudin, J. (1989) ÒWhy groupware applications fail: problems in design and evaluation.Ó

Office: Technology and People, 4(3), pp. 245-264.

Haake, J. M. and Wilson, B. (1992) ÒSupporting Collaborative Writing of

Hyperdocuments in SEPIA.Ó In Proceedings of the Conference on Computer

Supported Cooperative Work (CSCW '92), pp. 138-146.

105
Hughes, J. A., Randall, D. and Shapiro, D. (1992) ÒFaltering from Ethnography to

Design.Ó In Proceedings of the Conference on Computer Supported Cooperative Work

(CSCW '92), pp. 115-122.

Ishii, H. (1990) ÒTeamWorkStation: Towards a seamless shared space.Ó In Proceedings of

the Conference on Computer-Supported Cooperative Work (CSCW '90), pp. 13-26.

Ishii, H., Kobayashi, M. and Grudin, J. (1992) ÒIntegration of Inter-Personal Space and

Shared Workspace: ClearBoard Design and Experiments.Ó In Proceedings of the

Conference on Computer Supported Cooperative Work (CSCW '92), pp. 33-42.

Jay, A. (1976) ÒHow to run a meeting.Ó Harvard Business Review, 54(2), pp. 43-57.

Johansen, R. (1988) Groupware: Computer Support for Business Teams, Macmillan Inc.,

New York.

Johnson-Lenz, P. and Johnson-Lenz, T. (1991) ÒPost-mechanistic groupware primitives:

rhythms, boundaries and containers.Ó International Journal of Man Machine Studies,

34(3), pp. 385-418.

Killey, L. (1991) ÒShrEdit 1.0: A Shared Editor for Apple Macintosh. User's Guide and

Technical Description.Ó , Cognitive Science and Machine Intelligence Laboratory,

University of Michigan.

Kraut, R. E., Egido, C. and Galegher, J. (1990) ÒPatterns of contact and communication

in scientific research collaborations.Ó In Intellectual Teamwork: Social Foundations of

Cooperative Work, pp. 149-172, J. Galegher, R. E. Kraut and C. Egido ed. Lawrence

Erlbaum Associates.

Kuhn, T. S. (1962) The Structure of scientific revolutions, University of Chicago Press,

Chicago.

Lakin, F. (1990) ÒVisual languages for cooperation: A performing medium approach to

systems for cooperative work.Ó In Intellectual Teamwork: Social Foundations of

Cooperative Work, pp. 453-488, J. Galegher, R. E. Kraut and C. Egido ed. Lawrence

Erlbaum Associates.

106
Lauwers, J. C. (1990) ÒCollaboration transparency in desktop teleconferencing

environments.Ó PhD Thesis, Stanford University, Computer Systems Laboratory.

Lauwers, J. C., Joseph, T. A., Lantz, K. A. and Romanow, A. L. (1990) ÒReplicated

architectures for shared window systems: A critique.Ó In Proceedings of the

Conference on Office Information Systems (COIS '90), pp. 249-260.

Linton, M. (1992) ÒEncapsulating a C++ Library.Ó In Proceedings of the USENIX C++

Conference, pp. 57-66.

Linton, M. A., Calder, P. R. and Vlissides, J. M. (1988) ÒInterViews: A C++ Graphical

Interface Toolkit.Ó Research Report CSL-TR-88-358, Stanford University.

Linton, M. A., Vlissides, J. M. and Calder, P. R. (1989) ÒComposing User Interfaces

with InterViews.Ó IEEE Computer, 22(2).

Liskov, B., Gruber, R., Johnson, P. and Shrira, L. (1991) ÒA Highly Available Object

Repository for Use in a Heterogeneous Distributed System.Ó In Fourth International

Workshop on Implementing Persistent Object Bases: Principles and Practice, pp. 255-

266, A. Dearle (ed).

Lu, I. and Mantei, M. (1991) ÒIdea Management in a Shared Drawing Tool.Ó In

Proceedings of the 2nd European Conference on Computer Supported Cooperative

Work (EC-CSCW '91).

Mantei, M. (1989) ÒObservation of Executives Using a Computer Supported Meeting

Environment.Ó Decision Support Systems, 5, pp. 153-166.

McCall, K., Moran, T., van Melle, B., Pedersen, E. and Halasz, F. (1992) ÒDesign

Principles for Sharing in Tivoli, a Whiteboard Meeting-Support Tool.Ó In Workshop

on Real Time Group Drawing and Writing Tools at CSCW '92, Toronto, Canada.

Minneman, S. L. and Bly, S. A. (1991) ÒManaging a trois: A study of a multi-user

drawing tool in distributed design work.Ó In Proceedings of the ACM CHI'91

Conference on Human Factors in Computing Systems, pp. 217-224.

107
Muller, M. J. (1991) ÒPICTIVE Ñ An Exploration in Participatory Design.Ó In

Proceedings of the ACM CHI'91 Conference on Human Factors in Computing

Systems, pp. 225-231.

Mulligan, R. M., Altom, M. W. and Simkin, D. W. (1991) ÒUser Interface Design in the

Trenches: Some Tips on Shooting from the Hip.Ó In Proceedings of the ACM CHI'91

Conference on Human Factors in Computing Systems, pp. 232-236.

Myers, B. and Rosson, M. (1992) ÒSurvey on User Interface Programming.Ó In

Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI

'92), pp. 195-202.

Norman, D. (1988) The Psychology of Everyday Things, Basic Books, Inc., New York.

Norman, D. A. (1986) User Centered System Design: New Perspectives on Human-

Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R. and George, J. F. (1991)

ÒElectronic meeting systems to support group work.Ó Communications of the ACM,

34(7), pp. 40-61.

Ousterhout, J. K. (1990) ÒTcl: An Embeddable Command Language.Ó In Proceedings of

the 1990 Winter USENIX Conference.

Ousterhout, J. K. (1991) ÒAn X11 Toolkit Based on the Tcl Language.Ó In Proceedings of

the 1991 Winter USENIX Conference.

Parrington, G. D. and Shrivastava, S. K. (1988) ÒImplementing Concurrency Control in

Reliable Distributed Object-Oriented Systems.Ó In Proceedings of ECOOP '88, pp.

233-249.

Patterson, J. F. (1991) ÒComparing the programming demands of single-user and multi-

user applications.Ó In Proceedings of the Fourth Annual Symposium on User Interface

Software and Technology (UIST '91), pp. 87-91.

108
Patterson, J. F., Hill, R. D., Rohall, S. L. and Meeks, W. S. (1990) ÒRendezvous: An

architecture for synchronous multi-user applications.Ó In Proceedings of the

Conference on Computer-Supported Cooperative Work (CSCW '90).

Pendergast, M. (1992) ÒGroupGraphics: Prototype to Product.Ó In Workshop on Real

Time Group Drawing and Writing Tools, CSCW '92, Toronto, Ontario.

Pendergast, M. and Hayne, S. (1992) ÒAlleviating convergence problems in group support

systems: The shared context approach.Ó Working paper , Department of MIS,

University of Calgary.

Rittel, H. and Webber, M. (1973) ÒDilemmas in a general theory of planning.Ó Policy

Sciences, 4, pp. 155-169.

Root, W. R. (1988) ÒDesign of a multi-media vehicle for social browsing.Ó In Proceedings

of the Conference on Computer-Supported Cooperative Work (CSCW '88), pp. 25-38.

Roseman, M. (1993) ÒGroupKit: User's Guide and Reference Manual.Ó Technical Report

93/509/14, Dept. of Computer Science, University of Calgary.

Roseman, M. and Greenberg, S. (1992a) ÒGroupKit: A Groupware Toolkit (Interactive

Poster).Ó In ACM Conference on Human Factors in Computing Systems (CHI '92).

Roseman, M. and Greenberg, S. (1992b) ÒGroupKit: A Groupware Toolkit for Building

Real-Time Conferencing Applications.Ó In Proceedings of the Conference on

Computer-Supported Cooperative Work (CSCW '92).

Scrivener, S. A. R., Garner, S. W., Palmen, H. K., Smyth, M. G., Clark, S. M., Clarke,

A. A., Connolly, J. H. and Schappo, A. (1992) ÒCSCW research using product

design: Findings from proximal studies.Ó Submitted to Design Studies .

Stefik, M., Bobrow, D. G., Foster, G., Lanning, S. and Tatar, D. (1987) ÒWYSIWIS

revised: Early experiences with multiuser interfaces.Ó ACM Transactions on Office

Information Systems, 5(2), pp. 147-167.

Stroustrup, B. (1986) The C++ programming language, Addison-Wesley, New York.

109
Tang, J. C. (1991) ÒFindings from observational studies of collaborative work.Ó

International Journal of Man Machine Studies, 34(2), pp. 143-160.

Tang, J. C. and Minneman, S. L. (1990) ÒVideodraw: A video interface for collaborative

drawing.Ó In Proceedings of the ACM CHI'90 Conference on Human Factors in

Computing Systems, pp. 313-320.

Tatar, D. G., Foster, G. and Bobrow, D. G. (1991) ÒDesign for conversation: Lessons

from Cognoter.Ó International Journal of Man Machine Studies, 34(2), pp. 185-210.

Vlissides, J. M. and Linton, M. A. (1989) ÒUnidraw: A Framework for Building Domain-

Specific Graphical Editors.Ó In Proceedings of the ACM SIGGRAPH Symposium on

User Interface Software and Technology.

110

Appendix A

UserÕs Guide and Reference Manual

This appendix contains a subset of the GROUPKIT UserÕs Guide and Reference Manual,

available in its entirety with the GROUPKIT software distribution or as:

Roseman, M. (1993) ÒGROUPKIT: User's Guide and Reference Manual.Ó

Technical Report 93/509/14, Dept. of Computer Science, University of Calgary.

The excerpt from the UserÕs Manual discusses the creation of a very simple conference

program, which does not even communicate with other conference program. This serves

as a starting point for an example which is built up through the rest of the manual to add

communications and overlays. The excerpt here discusses creating the various parts of the

program, compiling it, integrating it with the GROUPKIT registration system, and running

it.

The excerpt from the Reference Manual is part of a section on ÒConference Support.Ó The

manual is structured so that related components are considered together, with a brief

introduction explaining the relationships. Individual components are described with a

complete list of methods contained in the component, often with reference to other

components which use those methods, as well as examples of how the components are

used by the application developer.

