Greenberg, S. and Witten, 1. H. (1993).
Supporting command reuse: Mechanisms for Reuse. Report 1993-497-2, Dept
Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Supporting Command Reuse:
Mechanisms for Reuse

Saul Greenberg
Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N 1N4
email: saul@cpsc.ucalgary.ca

Ian H. Witten
Department of Computer Science
University of Waikato
Hamilton, New Zealand
ihw@waikato.ac.nz

Abstract: Reuse facilities help people to recall and modify their earlier activities and re-submit them to the
computer. This paper examines such mechanisms for reuse. First, guidelines for building reuse facilities are
summarized. Second, existing reuse facilities are surveyed under four main headings: history systems, adaptive
systems, programming by example, and explicit customization. The first kind relies on temporally ordered
lists of interactions, the second builds statistical dynamic models of past activities and uses them to expedite
future interaction, the third collects and generalizes more extensive sequences of activities for future reuse,
while in the fourth the user collects items of interest explicitly. Third, the paper presents WORKBENCH, a
reuse facility that uses an empirically-derived history system as a way of capturing and organizing one’s
situated activities. An appendix reports a study of a widely-available history system, the UNIX csh, and
explains why it is poorly used in practice.
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1 Introduction

Users often repeat activities that they have previously submitted to the computer. In command-driven systems, these
activities comprise both individual commands and command lines complete with filenames and options. Likewise,
people repeat the ways they traverse paths in menu hierarchies, select icons in graphical interfaces, navigate through
file hierarchies, and choose document nodes in hypertext systems. Yet recalling the original activity can be both
difficult and tedious. For example, mental contexts must be re-created for complex activities, command syntax or
search paths must be remembered, input lines retyped, icons found, directories and files opened, and so on.

There is potential for a well-designed reuse facility to alleviate the problems of activity reformulation by keeping
previous activities that are likely to be repeated ready to hand. Interactive reuse facilities allow users to recall,
modify, and re-submit previous entrics to computers. Clearly, this is only effective if recalling old entries is easier
for the user (cognitively and physically) than constructing new ones. Salient differences between reuse facilities arise
from their choice of pertinent offerings and from the operations they provide to manipulate them.

Reuse facilities abound in every day life. A cook can flag preferred recipes in a cookbook with bookmarks.
“Adaptive” marking also occurs because the pages fall open to popular locations through wear of the binding. An
audiophile returns records to the top of the pile so that popular ones tend to remain near the top. A carpenter’s
workbench has a work surface large enough to keep recently used tools close by.

Reuse facilities abound for computers as well. They fall into four classes. The first comprises history mechanisms

that let users manipulate a time-ordered list of their previous interactions. Items are retrieved and selected through
textual syntactic constructs, by pointing to menu items and buttons, or by editing dialogue transcripts. We include
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in this category history to support the way people navigate to items in networks, as in hypertext, file hierarchies,
and menu hierarchies. The second class, adaptive systems, uses statistical models of previous inputs to predict
upcoming ones. Examples are hierarchical menus that are dynamically configured to give preference to high
frequency items, and text predictors that maintain statistical models of the text entered so far to predict future
submissions. The third class, programming by example, addresses the reuse and generalization of long input
sequences. The final class, explicit customization, provides tools for users to tailor their working environment to
their own liking.

This paper examines existing reuse facilities, beginning with a summary of important design guidelines culled from
the literature (Section 2). Sections 3 through 6 surveys schemes for reuse under the four class headings mentioned in
the previous paragraph, and illustrate how the diversity of techniques fit the design guidelines. Section 7 describes
WORKBENCH, a novel reuse facility that follows the metaphor of a handyman’s workbench. It incorporates many of
the reuse design guidelines. Through direct manipulation editing, WORKBENCH allows the user to pick items off a
history list and stash them temporarily on a visible tool shelf or place them semi-permanently within a drawer of a
tool cabinet. Finally, an appendix shows the results of a study of 168 users using one particular history system, the
UNIX csh. By comparing actual usage to the theoretical potential of reuse, we see how poorly csh performs and
suggest how such history systems can be improved.

2 Designing Reuse Facilities: A Summary of Guidelines

This section summarizes guidelines applicable to the design of reuse facilities, listed in Table 1. There are three
fundamental design requirements: a user’s previously submitted activities should be available for recall; activities
should be grouped into high-level task sets and switching between these sets should be supported; and end-user
customization of activities and task sets should be permitted. These guidelines are derived from our own empirical
studies (Greenberg 1993; Greenberg and Witten 1988; Greenberg and Witten 1993), from usage observations of other
researchers (Bannon, Cypher, Greenspan and Monty 1983; Card and Henderson Jr 1987; Cypher 1986), and from
design insights provided by existing systems (as surveyed in this paper). This section provides only brief
descriptions of the guidelines; readers are referred to the original papers for full detail and argumentation.

2.1 A user’s previously submitted activities should be available for recall

A major theme of most reuse facilities is to allow users to repeat a single activity identical or similar to one invoked
previously. The minimum requirement for a useful system is that the interface must supply users with good
candidates for reuse, and that recall should be less work than re-entering activities (Table 1, guidelines 1a,b,c)
(Greenberg and Witten 1993).

There are several reasonable strategies for allowing activities to be reused, as outlined in Sections 3 through 6. Items
can be recorded into a time-ordered history list and presented to the user through various presentation methods (as
evaluated in Greenberg and Witten (1993) (guidelines 1d,e). Alternatively, the system can use schemes other than
recency to favor certain activities or others (e.g. adaptive methods, end-user customization) (guideline 1f). We have
noticed that when people use history, the items they recall tend to be reused again and again (Appendix A). These
items should somehow get preferential treatment (guideline 1g).

Most of the approaches for reuse require that activities must be recorded in a workspace if they are to be reused.
However, there is no real need to show these activities in their raw (and often ugly) syntactic form. Instead,
meaningful symbols that remind users of the meaning behind an action can label an activity (guideline 1h). For
example, the UNIX command

lpr -Palw3 -d galley.dvi

could be shown instead as the more meaningful (to the user, at least) “Print text galley.” Similarly, symbols can
represent other attributes associated with an activity. Each entry can be annotated with extra information, such as
help text or a property sheet specifying new input parameters (guideline 1i). For example, the help string “Print the
paper (a LaTeX document) onto the printer in the main office” may be attached to the above command line.
Depending on how one selects the symbol, the activity may be executed, help text displayed, or even a property
sheet raised for further clarification.

—Table 1 around here—
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2.2 Support grouping of activities into high-level tasks, and switching between tasks
Activities are not necessarily independent of each other, but may be related in many ways. First, linear sequences of
activities may represent the steps of a repeatable procedure. If the procedure can be captured, the user may recall the
entire procedure in a single step (Table 1, guideline 2a) (Witten, MacDonald and Greenberg 1987).

Second, users may partition their actions and the objects they manipulate (such as files) into sets of goal-related
tasks, each called a task set. Bannon, Cypher et al (1983) studied UNIX users, and noticed that people performing
particular tasks would consistently use the same particular command lines. These differ from procedures as command
lines did not always follow in the same order or frequency, and that the activity selected at any moment from the task
set seemed to depend on the user’s particular circumstances. Also, other activities loosely related to the task set may
be interposed from time to time.

Third, relations between activities may arise from the function they serve, rather than the particular task they address.
Example functions are shaping text, orienting oneself in the environment, process management, printing to various
devices, and so on (Hanson, Kraut and Farber 1984). We believe it self-evident that users organize their activities in
many (perhaps vague) ways throughout the computer dialog. The implication is that the system should somehow
group together those activities associated with a task or function, and present them to the user as a set (guideline 2b).

Tasks are not invoked sequentially, but are interleaved because the user switches, suspends, and resumes his goals
(Cypher 1986). For example, a user may be “simultaneously” working on a document, reading some mail, chasing
references, and so on, Because tasks are frequently interrupted, the system should save and restore the task state
between excursions, and allow users to navigate easily between the different sets of activities associated with the
tasks (guideline 2c). Since these task sets can act as visible place-holders to reduce one’s mental load, task switching
and resumption should be fast, and should recreate as much as possible of the user’s mental context (Card and
Henderson Jr 1987) (guideline 2d).

Of course, task sets are not necessarily independent from one another, and may be related in quite strong ways
(perhaps as a goal/sub-goal relationship). Information in one workspace may be related to another, and the display
should make such relations obvious. Also, items from one task set can be useful in others. Items could be shared
among several tasks, and their visual presentation should be task-specific (Card and Henderson Jr 1987). Inter-
dependencies should be allowed between task sets and the items they contain (Bannon, Cypher et al 1983) (guideline
2e,f).

2.3 Support end-user customization of workspaces

A workspace is a software tool that not only keeps activities available for reuse, but allows them to be organized
into related sets. Yet who actually builds and maintains workspaces—the overall structure, the activities included,
and the symbols chosen? From a population perspective, designers can create only a few default workspaces, as there
is little overlap between what individuals actually do (Greenberg and Witten 1993). Particular users have their own
unique task sets, and no universal scheme can cater to individual idiosyncrasies. Ideally, when a need arises that is
not addressed well by predefined workspaces, the system should try to create one for the user. However, this will be
at best a close approximation to what the user really requires. Alternatively, each user should be able explicitly to
create the workspace organization that best suits their needs (Table 1, guideline 3a). As user needs, tasks, and
preferences change over time, the workbenches and their contents should be easily modifiable (guideline 3b.c).

Users, however, will not take advantage of a customizable workspace facility if it involves a significant overhead.
The interface must therefore minimize the mechanical and cognitive overhead of manipulating workspaces (guideline
3d). But how can this be accomplished? Even with the best interface, consider the cognitive overhead of forming
activities collected by a workspace. If users must anticipate what they are going to do, then the burden of collecting
the appropriate activities into the workspace will be high. People may not know precisely what activities are required
for their task. Those that are known must be composed, debugged, and tested to ensure that they perform correctly.

A better approach would have users create candidates for a workspace by recalling previous activities (Greenberg
1993; MacLean, Carter, Lovstrand and Moran 1990). By merging a reuse facility with a customizable workspace, and
by allowing old activities to be changed into workspace items, considerable power can be gained. Users would not
only be able to redo old actions but could use the history list as the primary source of tried and tested candidates for
their task sets. They could select, copy, and add them directly into their workspace (guideline 3e). The potential
benefits are important. First, workspace items do not have to be anticipated. Instead, users can perform their tasks as
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normal and decide at any time to assemble the relevant previous activities that make up the task sets. Second,
because these items are directly available, they are recalled rather than composed. Third, they have already been
debugged and tested to some extent. Finally, interaction tedium is minimized, because modern techniques for
selecting and transferring activities (the cut/copy/paste metaphor) take only a moment.

Finally, MacLean, Carter et al (1990) argue that end-user customization will occur best within a community that has
a culture of changing the workstation environment. Users not only create innovations useful to themselves, but may
recognize when things are of value to the community at large. Specialists can reduce a non-programmer’s burden by
bundling up activities into a simple interface, and then passing it on. Even if the fit is not perfect, non-programmers
may be able to modify the workspace to their particular task by simple changes (guideline 3f).

The remainder of this paper examines particular systems built to support reuse. Generic design ideas of these
facilities are abstracted, and (when necessary) related to the guidelines of in Table 1.

3 Reuse through History Mechanisms

History mechanisms assume that the last few user submissions are good candidates to make available for reuse (see
guidelines 1a-d). This notion of “temporal recency” is cognitively attractive because users generally remember what
they have just entered and can predict the offerings the system will make available to them. Little time is wasted
searching in vain for missing items.

By far the most common reuse facility available, history mechanisms are implemented across diverse systems in a
variety of flavors. Four fundamentally different interaction styles can be identified: glass teletypes, graphical
selection, editing transcripts, and navigational traces. The first three pertain to command-line interfaces, while the
last applies to systems in which users traverse some information structure.

3.1 History in glass teletypes

Traditional command-line dialogues were created for the teletype, and as a result many of today’s VDUs are still a
fixed viewport into a virtual roll of paper. Two history systems designed for these “glass teletypes” are the UNIX csh
and the INTERLISP PROGRAMMER'’S ASSISTANT. Both systems have users retrieve old commands by “history
directives,” themselves commands interpreted in a special way.

UNIX csh maintains an invisible record of user inputs, where every command is recorded in a numbered event list
(Joy 1980). Special syntactic constructs allow previous events to be partially or completely recalled, either by
position on the list (relative or absolute) or by pattern-matching. The events can be viewed, edited, or re-executed.
Although the set of predictions is in principle unbounded, in practice it is small, because users forget all but the last
few items they have entered. While users may request a snapshot of the event list, they rarely do so due to the extra
work and time involved.

Figure 1 illustrates an event list (top box) and a few possibilities of csh history in use on the next event (bottom
box). Inputs in the bottom left column are translated by csh to the actions shown in the middle, and the right
column describes the semantics of the history directives. The syntax is quite arcane, and deters use of the more
powerful features (Greenberg 1988; Lee 1988). Since the event list is generally invisible, it is difficult for the csh
user to refer to any but the last few events.

—Figure 1 around here—

Another functionally powerful history mechanism is the PROGRAMMER'’S ASSISTANT, designed for the INTERLISP
programming environment (Teitelman and Masinter 1981; Xerox 1985). Although INTERLISP is window-based, the
top-level “Interlisp-D Executive” occupies a plain scrolling window where the user types lisp expressions (Figure 2).
Historical events may be selected and processed by special command directives entered in this window. For example,
the request

USE cons FOR setq IN -1

will replace “setq” by “cons” in the previous command. Through the history mechanism, users can retrieve and
manipulate several events at a time, specify iteration and conditionals, edit items, undo effects of previous entries,
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and so on. Figure 2 shows a sample dialogue in the window labeled “Interlisp-D Executive,” where events 85 and 87
make use of the PROGRAMMER’S ASSISTANT (the other statements are normal lisp expressions). As with csk, the
system maintains a true time-ordered event list—neither duplicates nor erroneous statements are pruned.

—Figure 2 around here—

In general, history in glass teletypes follows only the smallest subset of the guidelines listed in Table 1: records of
activities are kept, and users can recall the last few submissions through memory. However, the mechanical overhead
is great (complex recalls demand much typing) and cognitive overhead is obviously high. This violates guideline 1c.
We believe this is the reason why UNIX csh history is so poorly used, as documented in Appendix A.

3.2 History through graphical selection

Present-day terminals allow text to be placed anywhere on the screen, and high-resolution bitmapped workstations
with a pointing device (usually a mouse) are common. Interaction styles have progressed accordingly, from text-
oriented menus and forms to mouse-oriented graphical systems running within windows (Witten and Greenberg
1985). History mechanisms have been extended to present a (possibly transient) menu of previous events, where
items are selected and manipulated with the pointing device. In contrast to previous history mechanisms that relied
heavily on a user’s memory of submissions and their relative ordering, predictions are now offered by presenting
them explicitly on the screen. Because selection is usually just a matter of pointing to the desired item, the syntactic
knowledge required by the user is kept to a minimum. The mechanical and cognitive effort of recall is fairly low
(guideline 1c).

One example is HISTMENU, which provides a limited yet simple way of accessing and modifying the
PROGRAMMER'’S ASSISTANT history list (Bobrow 1986). Figure 2 illustrates its use. Commands entered to the
“Interlisp-D Executive” window are recorded on the history list, part of which is displayed in the “History Window”
(by default, the last 50 items are shown). Although the internal list is updated on every command, the window is
only redrawn when the user explicitly requests it. When pointed at with a mouse, items (which may not fit
completely in the narrow History Window) are printed in the “Prompt Window.” Any entry can be re-executed by
selecting it. Moreover, a pop-up menu allows limited further action: items can be “fixed” (i.e. edited), undone,
printed in full including additional detail (the “?7”), or deleted from view. The History Window also has a shrunken
form, as shown by the icon in the Figure.

MINIT is another graphical package that combines command processing and the history list into a single window
management window (Barnes and Bovey 1986). It differs from other systems in that only through this window can
users send commands to the other ones. The window management window is divided into three regions (Figure 3).
The bottom region is an editable typing line in which commands are typed. Once entered, they are automatically
added to the second region which contains a scrollable history list. As with HISTMENU, the user may select items
using a pointing device and control further action—for example, executing the item in various windows or inserting
it into the typing line for further editing—with a pop-up menu. The region at the top of Figure 3 contains a history
management menu. Options are available to

« scroll the history list, clear it, or save it for future use;

= search for specific items (available through the typing line);

» delete specific items;

« insert text from the typing line into the history list without executing it.

—Figure 3 around here—

Two more mechanisms complete MINIT’s history management capabilities. First, the user can customize it to
prevent short commands which are easily retyped from being added to the list. Second, history is viewable in either
alphabetic or execution order. Duplicate lines are eliminated in both methods. In execution order, the user controls
whether the original of a repeated command entry remains in its original position or moved to the end of the history
list.

It is less easy to provide a history facility for a graphical interface such as a painting or drawing program, and we are
aware of only one system that comes close to offering such capabilities. CHIMERA adopts the metaphor of a “comic
strip,” a graphical record of the user’s past activities that consists of a sequence of panels, each of which illustrates
an important moment in a story (Kurlander and Feiner 1990). Instead of showing miniatures, panels record just the
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objects being manipulated and the actions performed on them without unnecessary detail. This graphical history
provides more power than just reuse, and it is far closer in spirit to a full undo, skip and redo facility (Vitter 1984).
The user can then expand a particular panel as necessary; delete, modify, undo and redo the actions it expresses; and
even add new actions to the sequence.

How do these graphical systems fare against the guidelines listed in Table 1? They definitely improve upon history
through glass teletypes, for guideline 1c is now supported. It is far easier to recognize and select items in a menu
than it is to recall them through memory and retype them. Also, all systems usually display at least 10 time-ordered
submissions (guideline 1d). However, most waste screen real estate by displaying more than 10 items, for these add
little to the overall probability that the next submission is on the menu (Greenberg and Witten 1993). MINIT allows
duplicates to be pruned from the history list, increasing the usefulness of the menu (guideline 1e). However, it also
allows alphabetical ordering of items, which has been shown to perform very poorly in practice (Greenberg and
Witten 1993).

3.3. History by editing transcripts

Some systems do not have a command history mechanism per se, but provide similar capabilities through editing a
transcript of the dialogue. Instead of having the sequential text dialogue scroll off the screen (as with a glass
teletype), it can be maintained as a scrollable transcript. When text appearing previously can be selected and used as
input to the system, the transcript becomes a rudimentary history mechanism.!

Copy and paste capabilities are available in most modern-day window-based environments, where any text can be
copied and pasted anywhere else. As a typical example, VERSATERM? is a terminal emulator for the APPLE
MACINTOSH that maintains the transcript in a scrollable window (Figure 4). As shown in the Figure, text appearing
within the transcript can be selected, then copied and pasted by choosing the pull-down menu option. This will insert
the text into the command input area after the text cursor at the window’s bottom, where it may be edited as needed.
Explicit history lists are not maintained except as part of the scrollable dialogue transcript. Although there are some
slight interface differences, many other popular window-based terminal emulators allow one to select a text region
anywhere on the display and paste it to the command input area. Examples include xterm within the standard X-
WINDOW SYSTEM (Quercia and O'Reilly 1990), pads within APOLLO’s DOMAIN window system (Apollo 1986),
and the CommandTool within the OPEN LOOK DESKSET environment (Sun-Microsystems 1990). Although any text
in a transcript is potentially executable in all these systems, the tradeoff is that mixing previous input commands
with output makes useful candidates more difficult to find.

—Figure 4 around here—

Another example is emacs, an editing environment that provides multiple views of buffers through tiled windows
(Stallman 1981). Although buffers typically allow users to view and edit files, it is also possible to run interactive
processes (or programs) within them. In most UNIX-based implementations of emacs, it is a simple matter to call up
a window running UNIX csh (for example, Stallman 1987; Unipress 1986). All capabilities of emacs are then
available—commands may be edited, sessions scrolled, pieces of text picked up from any buffer and used as input,
and so on.

A further variant of transcript editing is the zmacs editor running within the SYMBOLICS GENERA LISP
environment, This editor contains features of all history systems discussed so far (Symbolics 1985a). Within the
top-level Lisp Listener, zmacs extends the functionality of emacs. Although used primarily for entering and editing
command lines, previous inputs appearing within the transcript become mouse-sensitive. A box appears around them
as the mouse passes over them, and pressing one mouse button copies the old command line into the input area and
makes it available for editing. Other button combinations immediately re-execute previous commands, copy arbitrary
command words, show context-sensitive documentation, and so on. Alternatively, part or all of the mouse-sensitive
event list can be displayed within the Lisp Listener window. Keyboard-based retrieval is also available within zmacs.
Using the standard editing commands within the one-line input area, a user can search, cycle through and recall

1The ability to scroll over a session’s transcript and select text for re-execution goes by a variety of names: spatial
browsing (Kurlander and Feiner 1990), history through command typescripts by direct manipulation (Lee 1990, and
history by editing transcripts (this paper).

2V ersaterm 4.0 software is produced by Abelbeck Software.
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following the name shows the item’s probability of selection). Popular names appear immediately on the first-level
menu. Less popular ones are accessed on the second-level menu, while the remainder are relegated to the third level.
For this particular case, the average number of menus traversed is smaller with probability subdivision than it is
with uniform subdivision, although this improvement is not as much as is possible theoretically (Figure 8c).

—Figure 8 around here—

Because probabilities are made to decay over time, once-popular (or erroneously-chosen) names eventually drop to a
low value. This also builds in a way of balancing frequency and recency. While low decay will see frequently-chosen
items migrate up the tree, a high decay rate gives more room to recently-chosen items.

Given a frequency distribution, it is not easy to construct a menu hierarchy that minimizes the average number of
sclections required to find a name. Exhaustive search over all menu trees is infeasible for all but the smallest
problems. However, simple splitting algorithms achieve good performance in practice (Witten, Cleary et al 1984).

With ADAPTIVE MENUS, previous actions—both recent ones and those submitted long ago—are almost always
easier to resubmit (guidelines 1a,b,e.f,g). Also, since no extra detail is added to the interface presentation, screen
usage and cognitive interruption is minimized. However, users must now scan the menus for their entries all the
time, even for those accessed frequently. Since paths change dynamically, memory cannot be used to bypass the
search process. Experimental evidence suggests that this is not a problem in practice, so guideline 1c is preserved.
As long as the database of entries is large, the benefits will usually outweigh the deficiencies (Greenberg and Witten
1985a). It is also possible to have the system monitor the average depth of the menu selection process over time, If
for some reason the average depth increased beyond what would be normally expected, a static menu system could be
substituted for the adaptive one (Totterdell, Rautenbach, Wilkinson and Anderson 1990; Trevellyan and Browne
1987).

4.2 Reuse through text prediction

History facilities assume that the last submissions entered are likely candidates for re-execution. They are the ones
visible on the screen in graphical and editing systems, the ones most easily remembered by the user in glass
teletypes, and the ones weighted into the probability distribution in ADAPTIVE MENUS (although the latter depends
on the decay factor).

Two systems provide an alternative strategy for textual input—the REACTIVE KEYBOARD (Darragh, Witten and
James 1990; Darragh and Witten 1992; Witten, Cleary and Darragh 1983) and its precursor PREDICT (Witten 1982).
Although implementation details differ, both use a dynamic adaptive model of the text entered so far to predict further
submissions. At each point during text entry, the system estimates for each character the probability that it will be
the next one typed. This is based upon a Markov model that conditions the probability that a particular symbo! is
seen on the fixed-length sequence of characters that precede it. The order of the model is the number of characters in
the context used for prediction. For example, suppose an order-3 model is selected, and the user’s last two characters
are denoted by ‘xy’. The next character, denoted by @, is predicted based upon occurrences of ‘xy®’ in previous text
(Witten, Cleary et al 1983).

PREDICT filters any glass-teletype package, although limited character-graphics capabilities are required for its own
interface. It selects a single prediction (or none at all) as the most likely and displays it in reverse video in front of
the current cursor position. Users have the option of accepting correct predictions as though they had typed them
themselves, or rejecting them by simply continuing to type. Because only a single prediction is displayed, much of
the power of the predictive method is lost; at any point the model will have a range of predictions with associated
probabilities, and it is hard to choose a single “best” one (Witten 1982).

The REACTIVE KEYBOARD, on the other hand, has two versions of a more sophisticated interface that allows one to
choose from multiple predictions. The first, called RK-BUTTON, has a similar interface to PREDICT except that users
now have the ability to cycle through a probability-ordered list of predictions. An interaction with UNIX using RK-
BUTTON is shown in Figure 9. The predicted characters are written in reverse video on the screen, and represented in
the figure with enclosing rectangles. Control characters are preceded by “~”, and “~J” is the end-of-line character.
The column on the right shows the keys actually struck by the user. Figure 9b gives the meaning of a few of the
control keys; in fact, many more line-editing features are provided. Although not illustrated in the Figure, the system
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is set up so that typing non-control characters simply overwrites the predictions; thus one may use the keyboard in
the ordinary way without even looking at the screen.

—Figure 9 around here—

The second version of the REACTIVE KEYBOARD, called RK-POINTER, displays a menu containing the best p
predictions, which changes dynamically with the immediate context of the text being entered (Darragh, Witten et al
1990). Figure 10 shows RK-POINTER in action by displaying five sequences of the user composing some free text
in the window on the left, with a window of predictions on the right. In the “Predictions Window,” the left region
contains the context string upon which predictions are made (its length is adjustable by the user). On its right are
rank-ordered predictions, presented as alternative pieces of text from which the user can choose the next characters.
Interaction is through a pointing device, such as a mouse. Selection is two-dimensional, in that the user can point
anywhere within a prediction to accept only the previous characters (Figure 10). Less likely predictions are available
through page-turning.

—Figure 10 around here—

In the REACTIVE KEYBOARD, the next prediction is based on the previous context. If the user is following the steps
of a procedure they had invoked previously, the system is likely to recreate the entire sequence (guideline 2a).

5 Reuse through Programming By Example

The schemes discussed so far attempt to facilitate the reuse of individual items of activity, be they commands,
command lines, menu selections, or characters predicted in context. This is sufficient if incremental activities have a
one-to-one correspondence with tasks the user may wish to repeat later. These are the items supported by the points
under guideline 1. Often, however, tasks are accomplished by sequences of several primitive activities.

“Closure” is defined as the user’s subjective sense of reaching a goal, of completion or of understanding (Thimbleby
1980). Previous sections have assumed that closure is associated with each individual user action (the entry of a
command or command line, the selection of a document, etc.). If the task to be redone involves a sequence of such
activities, even though they are all independently available through a reuse facility, the user would have to mentally
decompose his task into its primitives and choose each of them from the event list. For example, viewing a specific
file can comprise two activities—navigating to the correct directory; and printing the desired file to the screen. In
some cases, it will be easier for the user to think about and recall these items as a single chunk rather than as two
separate activities.

When tasks are a sequence of activities, they constitute a procedure that can be specified by the user giving one or
more examples of the instance of the sequence. The goal of “programming by example” is to allow sequences and
more complex constructs to be communicated concretely, without the user resorting to abstract specifications of
control and data structure (in a programming language, for example) (Myers 1986). This directly supports guideline
2a.

The simplest kind of programming by example is verbatim playback of a sequence. The user performs an example of
the required procedure and the system remembers it for later repetition. For example, the use of “start-remembering,”
“stop-remembering,” and “do-it” commands enable a text editor to store and play back macros of editing sequences
(Stallman 1987; Unipress 1986). Except for these special commands, the macro sequence is completely specified by
normal editing operations. With a little more effort, such sequences can be named, filed for later use, and even edited
(if presented in a human-readable form). A practical difficulty with having a special mode—remembering mode—for
recording a sequence is that one has frequently already started the sequence before deciding to record it, and so must
retrace one’s steps and begin again.

The ability to generalize these simple macros could extend their power enormously. Some programming by example
strategies allow inclusion of standard programming concepts—variables, conditionals, iteration, and so on—either by
inference from a number of sample sequences, or through explicit elaboration of an example by the user. To
illustrate the latter, an experimental system called SmallStar was constructed for the Xerox Star office workstation
that operates according to the direct manipulation paradigm (Halbert 1981, 1984). In the first version of SmallStar, a
pop-up menu allowed one to indicate explicitly the generalization required. For example, icons selected at
specification time are disambiguated by name, position, or by asking for a similar object. But because people found
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it hard to elaborate programming constructs when tracing through an example, a later version had users employ an
editor to specify constructs after macro composition (Halbert 1984).

Reminiscent of the editing capabilities of SMALLSTAR is CE Software Inc’s QUICKEYS, a macro facility for the
APPLE MACINTOSH. Through a pull-down menu (left side of Figure 11), the user can start, stop and pause recording
sequences, choose selected macros for playback (two are shown at the bottom of the menu), and display a reference
card containing all macros that have been recorded previously. Once a macro has been defined, it may be edited. The
right side of Figure 11 shows a user editing a macro sequence she has named “Open Database” (background window).
A mouse “Click” primitive, which was used to open a window, has been chosen (middle window), and the user now
has the option of having QUICKEYS find the window by its name on playback, rather than by its position on the
window stack.

—Figure 11 around here—

Other research on programming by example has concentrated on inferring control constructs from traces of execution
given by the user (Witten, MacDonald et al 1987) and some systems use domain knowledge, teaching metaphors,
and highly interactive interfaces to maximize the speed of transfer of procedures (e.g. Maulsby and Witten 1989;
Maulsby, Witten and Kittlitz 1989). However, there has been little research on ways of naming, filing and accessing
procedures taught by example, and particularly on knowledge- and history-based methods of splitting up a stream of
activities into user-oriented “tasks.” This limits the practical use of programming by example in reuse systems.

The appeal of programming by example is the belief that a user’s activity follows a preconceived plan that can be
encapsulated as a procedure. Intentions are realized as plans-for-actions that directly guide behavior, and plans are
actually prescriptions or instructions for actions. These plans reduce to a detailed set of instructions (which may also
be sub-plans) that actually serve as the program that controls the action. Suchman disputes this notion by claiming
that plans are derived from situated action—the necessarily ad hoc responses to the contingencies of particular
situations (Suchman 1987). Initial plans must be inherently vague if they are to accommodate the unforesecable
contingencies of actual situations of action. It is only the post hoc analysis of situated action that makes it appear as
if a rational plan were followed. Assuming that user activity on computers does follow situated action, then a
programming by example system would not suffice by itself as a complete user support tool, for it would not
respond well to the changing circumstances of situations. When previous actions are collected as fixed goal-related
scripts of events, flexibility is lost. It should be augmented by a reuse facility that collects the actual responses to
given situations, allowing one to select, possibly modify, and redo the individual activities.

6 Reuse through Explicit Customization

Almost all methods described above take a system-oriented view in which the system tries to predict what will be
done next and makes appropriate offerings available to the user. A different approach puts users in charge by
allowing them to customize their environment explicitly to give particular items special status for selection, and
thus reuse. At its simplest, the system merely makes a place available for users to cache the items they choose, and
provides an interface that allows them to recall the items at any time.

6.1 Customizable buttons and menus

A simple customization scheme is to allow a person to associate an activity of choice with a button or menu item
(guideline 3c). For example, many window managers include a user-modifiable file that describes the behavior of
mouse button presses and pop-up menus (as well as other things). Consider this commented entry in a user’s Motif
window manager resource file.

Menu ApplicationsMenu

{ “Applications” f.title #The menu title
no-label f.separator #Draw a separating line
“Emacs” !"emacs” #Invoke the emacs editor
“Xdvi” t"ydvi -expert” #Invoke the TeX previewer
“Xterm” 1”xterm -name “X-Terminal” #Invoke an X terminal window

}

Buttons DefaultButtonBindings #Left mouse button press in the

{ <BtnlDown> root f.menu ApplicationsMenu # root screen pops up the menu
Shift<BtnlDown> root !”xterm” #shift left button invokes

} # an X terminal window
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Whenever the window manager is invoked, it reads the resource file. From these instructions it constructs a menu
titled “Applications” which contains items representing three different application programs. When the user presses
the left mouse button in the root screen, the menu appears and items may be selected. If the shift key is held down at
the same time, the X-Terminal application is invoked directly. Notice that users see the activity as a symbolic label
(the menu item), rather than the literal command that will be executed (guideline 1h). While the comments within
the script are useful annotations, they are not accessible from the menu and guideline 1i is not supported. Of course,
creating, modifying, and debugging these scripts are difficult activities, and guideline 3d is violated.

The VERSATERM terminal emulator (see Section 3.3) allows a user to customize a “Commands” menu (this is
invoked by the “Edit Commands” option in Figure 4). Users can invoke a form and fill in the “User Commands” and
“Command Label” fields. The latter label items appearing on the command menu, while the former represent text
inserted into the terminal window when an item is selected. The text is then executed by the running process as if the
user had typed it directly. This has several advantages over the Motif scheme above. First, users can change the
Commands menu at any time, and changes take effect immediately. Second, users can fill in the form by several
methods. They can create items by typing them in, by cutting and pasting text from the transcript window, or by
recording a verbatim macro (guideline 2a; see Section 5).

Another approach allows users to modify menus supplied by an application. Microsoft Word 5, for example, comes
with only a fraction of its many available commands installed on its pull-down menus. Users have the ability to
remove commands from these menus (for example, those that are rarely or never used), or add hidden commands to
them. By default, commands are associated with a particular pull-down menu and position, but these can be
overridden by the user.

Finally, buttons may be established by “situated creation,” where a user can ask the system to capture a particular
state (e.g. a window opened to a particular spot in a file, or a repeated phrase in a text document) and attach that to a
button (MacLean, Carter et al 1990) (this is related to guideline 3e). EuroPARC’s BUTTONS interface is not
programming by example, for all a button does is encapsulate the relevant parts of a task instance—no attempt is
made to create a sequence. Users can then tinker with: the button’s appearance (for example, by changing its text
label), its location on the screen, the key parameters of the action it denotes, and the fragments of lisp code that
actually execute the action (guideline 3c,d). Users can share buttons with others by mailing them (guideline 3f).

6.2 Customizable sets of activities

As mentioned in Section 2.2, users may partition their work into goal-related tasks. These are usually interleaved
with each other as the user switches, suspends, and resumes goals. The consequence is that people should have the
power to customize their workspace not only by giving special status to favored activities, but to organize these
activities as well.

One system that permits this is the WORKBENCH CREATION SYSTEM (Greenberg and Witten 1985b). This
experimental interface allows users to create a hierarchy of pop-up menus (with user-definable items and annotations)
and attach them to windows. Each window would generally be associated with a task or function (guidelines 1h,i; 2b-
f; 3a-c). Figure 12 illustrates one such configuration. The upper window is a “Bibliography” window that handles a
variety of functions associated with one user’s personal bibliographic reference library. The pop-up menu shows
some of the activities this window handles: editing the bibliography, installing a new version of it, and printing it
into the window. The menu also gives access to a help system; either displaying a specific help document related to
bibliographies (the “Quick help” item) or calling up a new window (another workbench) that gives general access to
the on-line manual. The user can further customize the bibliographic workbench by selecting “Edit WCS”, which
invokes the workbench editor (lower window in Figure 12). Here, item labels are entered by direct manipulation, and
the user-supplied UNIX command (executed when an item is selected) is typed to its right. If an argument to the
command line is needed that can only be supplied at run time, the user can specify a prompt message and how the
answer should be substituted into the command line (not shown in the Figure). Also out of view is a help field that
can be filled in to annotate workbenches, menus, and items. The highlit boxes specify whether the command is
interactive (the ‘I’ box), displays output only (‘the ‘O’ box), or activates a new workbench (the ‘B’ box). The latter
allows a web of related workbenches to be linked together. A system somewhat similar to the Workbench Creation
System was developed later by Dzida, Hoffmann and Valder (1987).

—Figure 12 around here—
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While the WORKBENCH CREATION SYSTEM lets users organize low-level commands into linked sets, another
approach allows customization at the application level, where applications are grouped into a task-related “virtual
workspace.” ROOMS, for example, divides groups of window-based applications into collections of windows with
transitions between them (Henderson Jr and Card 1986). Each screenful is a virtual workspace (a screen) containing
windows running specific applications. Many virtual workspaces exist, and a user can switch tasks by supplanting
the current workspace with the desired one. Although designed mainly to reduce “thrashing” effects that occur when
one tries to keep desired windows visible on a small screen, it effectively allows a person to organize collections of
applications and move rapidly between them. People customize their rooms by establishing their applications of
choice within them, and by linking rooms via “doors.” There is even an overview screen showing active icons of all
rooms, where a user can manipulate the applications they contain by moving windows and sharing them between
rooms. Example rooms may include a mail room, a paper-editing room, a particular programming project room, and
so on. ROOMS is perhaps the best system around for supporting all the parts of guideline 2 (except 2a), and the first
four points of guideline 3.

7 Workbench: A Reuse Facility Based on Design Guidelines

The systems presented above aim either to support reuse of low-level activities (e.g. command line, menu
selections), or to allow activities to be grouped into task sets: none allow a user to do both. Here we describe a
system called WORKBENCH, which evolved from the earlier WORKBENCH CREATION SYSTEM and was designed
around the guidelines listed in Table 1, that addresses both aims.

WORKBENCH is a graphical window-based front end to the UNIX command line interpreter (Greenberg 1988, 1989,
1993). Using the metaphor of a handyman’s workbench, it provides a history list that predicts future submissions
from old ones, as well as an explicit way for users to structure and store submissions for later reuse. Its major visual
components are detailed below and illustrated in Figure 13, which shows one paned window and two pop-up
windows.

—Figure 13 around here—

The work surface is the familiar glass teletype running the standard UNIX csh command line interpreter (the bottom
pane in Figure 13). This is the main working area, and users can submit command lines by typing them directly.
The standard UNIX history system is available as well.

The reuse facility uses history through graphical selection to make available 11 items for reuse, each an old
command line submission (left side of middle pane in Figure 13). User can select, edit, and insert these items into
the work surface. The policy of temporal recency is adopted, and duplicate items are shown only in their most recent
position on the list. If an item is selected from the history list, it is removed from its old position and brought to
the front (guideline 1g). Items are also presented in a fish-eye view where the font size of the text is matched to its
probability of selection. Furthermore, every history item has a pop-up menu attached to it which is itself a history
list of all the arguments previously used with the command (the Figure shows the pop-up menu for the cd
command). This scheme was derived from an empirical study that contrasted several methods of displaying
predictions (Greenberg and Witten 1993). The method chosen performed the best, where a modest list of menu items
would contain about 75% of all user activities that are about to be repeated.

Through the tool cache (mid-right pane), a user can type items or copy them from the reuse area to any one of the
six editable fields. These entries on the customizable tool cache remain available for reuse until they are changed by
the user. Apart from this, the tool cache is the same as the reuse facility. Selecting an item inserts it into the work
surface for execution, and pop-up menus of previous arguments are associated with each item.

Finally, the tool cabinet allows users to organize their environment by placing their “tools” (UNIX command lines)
into “drawers” (collections of tools). Tools and drawers are presented as buttons labeled with distinctive text fonts
(top pane in Figure 13). A tool has three components:

» a UNIX command that will be executed when the button is pressed,

 an optional text label for the button, and

« an optional help string that appears when the pop-up menu is raised.
Choosing a drawer opens it and makes its tools available in the tool-cabinet pane. Selecting the cabinet icon on the
top right of this pane allows the user to access a history list of drawers visited. What distinguishes the tool cabinet
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Appendix A: Case Study: Actual Use of UNIX History

In previous work, we studied the ways people submit commands and command lines to csh, the UNIX command line
interpreter (Greenberg and Witten 1993). We noted that user dialogs are highly repetitive by measuring the recurrence
rate R—the probability that any activity is a repeat of a previous one—and found that an average of R=75% of all
command lines entered had been submitted previousty. We observed that the last few command lines have a high
chance of recurring—the premise behind most history systems. For example, a standard sequential history list
containing the 10 previous command lines would predict the next submission around 45% of the time. Other display
strategies could improve the prediction rate to a high of 55% (cf. 75%, the best possible). In short, there are certainly
plenty of opportunities for reuse.

It is interesting to consider how well current history mechanisms are used in practice. This Appendix investigates
how people use the reuse facilities supplied by the UNIX csh. Although csh is not a particularly good history
system—its syntax is baroque and it relies on human memory—it does give an idea of how history is used.

We collected real-life usage data from 168 UNIX users over a four month period (see Greenberg 1993; Greenberg and
Witten 1993 for a complete description of the data collection methodology). Users were from one of four groups:
novice programmers (first year computer science students), experienced programmers (senior computer science
undergraduates), computer scientists (computer science faculty, graduates and researchers), and non-programmers
(people from another faculty doing mostly non-programming tasks). During command line data collection, all csh
history uses were noted, although the actual form of use was not. Of course, results must be interpreted carefully, for
they may be artifacts arising from idiosyncrasies of the csh facilities rather than fundamental characteristics of reuse.

The recurrence rate R and its probability distribution, studied in Greenberg (1993) and Greenberg and Witten (1993),
give a theoretical value against which to assess how effectively history mechanisms are used in practice. The average
rate of re-selecting items through a true sequential history list (as used by csh) cannot exceed the average value of R.
By comparing the user’s actual re-selection rate with this maximum, the practical effectiveness of a particular history
mechanism can be judged.

A.1 Results

Table 2 shows how many users of UNIX csh in each sample group actually used history. Although 54% of all users
(90 of the 168 users) recalled at least one previous action, this figure is dominated by the computer sophisticates.
Only 20% of Novice Programmers and 36% of Non-Programmers used history, compared to 71% for Computer
Scientists and 92% for Experienced Programmers.

—Table 2 around here—

The 90 people who made use of history did so rarely. On average, only 3.9% of a history user’s command lines
referred to an item through history, although there was great variation (standard deviation = 3.8; range = 0.05% to
17.5%). This average rate varied slightly across groups, as illustrated in Table 2, but an analysis of variance indicated
that differences are not statistically significant (F(3,86) = 1.02).

In practice, users did not normally refer very far back into history. With the exception of novices, an average of 79—
86% of all history uses referred to the last five command lines. Novice Programmers achieved this range within the
last two submissions. Figure 14a illustrates the nearsighted view into the past. Each line is the running sum of the
percentage of history use accounted for (the vertical axis) when matched against the distance back in the command
line sequence (the horizontal axis). The differences between groups for the last few actions (left-hand side of the
graph) reflect how far back each prefers to see.!

—Figure 14 around here—

1Actual figures are probably slightly higher than those indicated here, due to inaccuracies in distance estimates. As the csh
data collection only noted that history was used and not how it was used, the actual event retrieved was determined by
searching backwards for the first event exactly matching the current submission. If the submission was a modified form of
the actual recalled event, the search would terminate on the wrong entry. These are assumed to be a small percent of the
total.
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Since most activities revolve around the last few submissions, the distribution bears closer examination. The data
points in Figure 14b now represent the percent of history use accounted for by each reference back. High variation
between groups is evident. Although most uses of history recall the last or second last entry, it is unclear which is
referred to more often.

We also noticed that history was generally used to access or slightly modify the same small set of command lines
repeatedly within a login session. If history was used to recall a command line, it was highly probable that
subsequent history recalls would be to the same command line.

A few csh users were queried about history use. They indicated that they were discouraged from using csh history by
its difficult syntax and the fact that previous events are not normally kept on display. (The latter point is important,
for it reinforces the belief that candidates for reuse should be kept visible.) Users also stated that most of their
knowledge of UNIX history was initially learnt from other people—the manual was incomprehensible. Also, the
typing overhead necessary to specify all but the simplest retrievals made them feel that history use not worth the
bother.

A.2 Corroboration and extensions

Lee (1992) also examined history usage within various command interpreters available to the UNIX environment.

Some of her findings corroborate and augment our observations.

1. There were very few uses of csh history.

2. Those uses made were of the simpler features, the most popular being “!!” (retrieve the last event) and “!pattern”
(retrieve the most recent event beginning with the given pattern).

3. People rarely retrieved items by absolute or relative event number.

4. Although the history list is available for viewing by special request, users rarely asked to see it.

5. Modifiers for editing were rarely used. When used, they tended to be of the form Apatternl/pattern2”, which does
simple substring replacement on the previous submission.

6. Other observed ways of modifying events were by using recalled events as prefixes or suffixes. This technique
allows one to add more parameters to previous events or to add a new command sequence in a pipeline.

7. Occasional instances were noted of recalling the last word in the previous event (i.e. !$) and of printing events
without executing them.

Lee also examined tcsh, another history mechanism available to UNIX users that uses a simple and familiar emacs-
like editing paradigm to retrieve, review and edit previous events (see Section 3.3). Although better use of history is
expected due to the improved editing power and visualization of the history list, only a marginal increase was noted
(although the still-available csh history was used less). Even though the usual csh directives were available, people
preferred the visual scrolling and editing capabilities available in tcsh to retrieve events. Unlike csh, tcsh users were
more likely to modify the recalled events, usually by making simple changes to a few characters at the end of a
command line or a word within it.

A.3 Discussion

Many people never use UNIX csh history. Those who do tend to be sophisticated UNIX users. Yet even they do not
use it much. On average, less than 4% of all submissions were retrieved through history out of the R=75% possible!
The history facility supplied by csh is obviously poor.

Some reasons for the failure of csh history follow.

1. The complex and arcane syntax discourages its use. Those who did use history indicated that only the simplest
features of UNIX history were selected. As one subject noted, “it takes more time to think up the complex
syntactic form than it does to simply retype the command.”

2. It is hard to find out about csh. Csh history details are buried in a single on-line manual entry that runs to thirty-
one pages(!). The text is quite technical, and examples are sparse. It is beyond the grasp of many users,
particularly novices and non-programmers.

3. The event list is usually invisible. As previous events are not normally kept on display, frailty of human
memory usually limits recall to the last few items. This could explain why most recalled events were to the last
five command lines. However, Greenberg and Witten (1993) noticed that the last five entries could predict 34% of
all submissions. In spite of memory limitations, users should have been capable of retrieving many more entries
than they did.
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4. It takes at least two characters to recall an event in csh, and often several more. Additionally, a cognitive effort is
associated with deciding to use history and composing the history request. As most simple UNIX recurrences are
short (6 characters on average) (Greenberg and Witten 1993), users may feel that it is not worth the bother.

Some of these problems are characteristics of csh itself; the poor syntax, the terrible documentation, the invisible
history list. These deficiencies hit Novice Programmers especially hard. Even though they have the highest
recurrence rate of all groups and could benefit the most from history, they are effectively excluded from using it.
Other problems could be general to any reuse facility, especially the tradeoff in work between recalling a submission
and recomposing it.

It is premature to condemn the ideas implemented by csh. As mentioned above, some of the observations are likely
artifacts of using a poorly designed facility, rather than a human difficulty with the idea itself. Still, it is worthwhile
commenting on some of the common retrieval methods it provides.

Retrieval through absolute or relative position. It is difficult to associate and remember the number of a previous
event, as this involves an indirect reference. Visibly tagging events with numbers offers benefit only for those
interfaces without direct selection and only when no better strategy is available. Perhaps its only viable use is
as aredundant way of retrieving events when other selection methods are available.

Scrolling and hidden views. If events are not on display, they will not be asked for. Hidden history lists were rarely
recalled. Even the preferred use of scrolling through command lines one at a time in tcsh only increased usage
slightly (Lee 1992). Events should be constantly visible on the display (e.g. as a menu).

Pattern matching. Simple pattern matching, especially by prefix specification, seems promising as a textual way
of retrieving events. Other more complex pattern matching methods would likely have too much cognitive
overhead to make them worthwhile. Also, matching is potentially dangerous as users may accidentally retrieve
and execute an interposed but undesired event that fits the specification. Again, if the last few events are
visible on the display, most items could be retrieved directly rather than by indirect pattern matching.

Simple methods for recalllselection of very recent events. The syntactically simplest methods are used most to
recall very recent events. For example, the “!!” directive was heavily used, even though it does not recall the
most probable event. This likely reflects limitations of short-term memory—users restrict themselves to “!!”
because the last item is the only thing they can both remember reliably and retrieve quickly. Overloading a
reuse facility with complex functionality would not make it better.

Editing events. Although people do edit command lines as they compose them, they are less willing to modify
recalled events. Often the cognitive and physical overhead of recall and editing previous events makes simple
re-entry more effective. Still, some simple editing does occur (especially with tcsh) and probably has some
value. Users should be able to edit prior events.
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1.

A user’s previously submitted activities should be available for recall (see Greenberg 1993;

Greenberg and Witten 1993).

a) Maintain records of activities.

b) Users should be able to recall previous activities from these records.

¢) Itshould be cheaper, in terms of mechanical and cognitive activity, for users to recall items than to re-enter
them.

d A sclectable list of the previous five to ten submissions provides a reasonable working set of candidates for
reuse.

¢€) Other strategies for presenting the history list, particularly pruning duplicates and further hierarchical
structuring, increases the probability of it containing the next submission.

f) History is not effective for all possible recalls because it lists only a few previous events. Alternative
strategies must be supported. .

g) Events already recalled through history by the user should be easily reselectable (see Appendix 1).

h) Allow activities to be represented by meaningful symbols (such as labels or icons).

i) Allow activities to be annotated with extra information (e.g. help descriptions).

Support grouping of activities into high-level tasks, and switching between tasks (see
Bannon, Cypher, Greenspan and Monty 1983; Card and Henderson Jr 1987; Cypher 1986; Greenberg 1993)
a) Allow linear sequences of activities to be grouped into a procedure.
b) Allow functional groupings of related activities.
¢) Support suspension and resumption of activities.
d Reduce a user’s mental load when switching tasks:
« it should be easy to reacquire one’s mental task context;
« task switching should be fast;
« task resumption should be fast.
¢) Allow interdependencies between task sets and between items in different task sets.
f) Provide multiple perspectives on the work environment.

Allow end-user customization of workspaces (see Greenberg 1993; MacLean, Carter, Lovstrand and

Moran 1990)

a) Allow new workspaces to be created and old ones deleted

b) Allow existing workspaces to be modified.

¢) Allow elements within a workspace to be added, modified, or deleted.

d Keep the mechanical and cognitive overhead of managing workspaces to a minimum.

e) Allow previously executed activities to be moved from a reuse facility to the task sets contained by the
workspace.

f) Workspaces, task sets, and activities should be shareable by the community at large.

Table 1. Summary of guidelines for reuse facilities




Sample name Users of history Mean rate of
actual (%) history uses (%)

Novice programmers 11/55 20% 2.03

Experienced programmers 33/36 RN% 423

Computer scientists 37/52 1% 4.04

Non programmers 9/25 36% 4.35

Total 90/168 54% 3.89

Table 2. Statistics of use of UNIX csh history




Example Event List

9 mail ian

10 emacs figl fig2 fig3

11 cat figl
12 diff fig*

Examples and Results of History Uses

User Input Action Description
1 diff fig* Redo the last event
111 cat figl Redo event 11
1-2 cat figl Redo the second event from last
!mai mail ian Redo most recent event containing the prefix “mail”
!Man? mail ian Redo most recent event containing the string “ian”
I fig3 diff fig* fig3 | Append “fig3” to the last event and redo
~diff"page page fig* Substitute “page” for “diff” in the last event and redo
tp diff fig* Print without executing the last event
page !10:1-2 page figl fig2 | Include the 1st and 2nd argument of event 10 in experession

Figure 1. Examples of the UNIX csh history mechanism in use




: ::. Prompt Window -- Lisp: 7-Feb-86 Loops:

Window
8 82« (SETQ A 15) A
] 15
“|(sETQ A 5)
83« (SETQ B 30)
: “|(SETQ C 5)
| (B Tesen) |{(PLUs 20 B)
84« (PLUS A B) =1 (PLUS A B)
45 “}(SETQ B 30)
85«<use 20 for A | (SETQA 15)
10 J+AA)
| oemsETe e ) | DIRECTORY
& -} (HistoryMenu 15)
e e € | (cLoSEW (wHICHW))
5 (D|RECTORY)
] 88a ~|(SYSOUT(QUOTE {FileSer|

Figure 2. A portion of the INTERLISP-D environment, s

howing HISTMENU in use




deleting  insert typing
for scrolling ;zl:l’:vtory Z:e th.lhm.ltt ;qve/cle;zr
the history list ¢ ceutng t istory list
history # x /
management 3> [ yoT"down [ del [ins | save[clear
menu -
cd Figures; If
cpto notes/sc300eagle -i B -r
Iif execute history item
mkdir Figures in a new window
mv *.pad *.cmp Figures #/ S
padtocmp execénew wind execute hzstory itemin
A foreground window
-preview:mer
tcp 96 edit history item in
history 3y que.ue the typing line
list edit
the typing —» $0 |
line

Figure 3: MINIT’s window management window, redrawn from (Barnes and Bovey 1986)




6 FlleI:ﬂIBaud Settings Phnne Emulatmn Commands

ings

fut

Copy &,
Paste *

Clear Buffer

PersaTerm - DEC UT100

é grep: *.h: No such file or directory
‘| Yes Sweetie? cd src/history

é Yes Sweetie? =t cIEE Ty K]
‘| Yes Sweetie? cd sre/sound/SOUND

Copy-Paste %/

Copy Table

‘| ~/src/sound /SOUND

‘| Yes Sweetie? grep HOSTNAME *.c * h | more

‘| Yes Sweetie? ed sre/GroupSketch/GroupSketch
‘| ~ /src /GroupSke teh /GroupSketeh

Edit Phone...
Edit Commands...

é Yes Sweetie? pud :
‘| /fse.userb/profs/saul /sre /GroupSke teh /GroupSketch I::{
‘| Yes Sweetie? _

Find...

~isrefhistory

* k| more

~/srofsound /SOUND

~ /sre/GroupSke tch /GroupSketch

Show Clipboard

Figure 4: The VERSATERM terminal emulator for the APPLE MACINTOSH




& File Edit ¢

whaolo

Figure 5: The HYPERCARD RECENT screen




r 7] File Manager: /tmp_mnt/fsc/fsc.userb/profs/saul/src

(File v) (View v) (Edit v) (Props v) -) (Goto: v ),
/home/profs/saul
/tmp_mnt/fsc/fsc.userb/profs/saul/src

sop_mntEsors o userb o prots Ssauliboskhonews S ohiE
/tmp_mnt/fsc/fscuserb/profs/saul/book.new/ch9
/tmp_mnt/fsc/fsc.userb/profs/saul/book.new
/tmp_mnt/fsc/fsc.userb/profs/saul
/home/profs/saul/ wastebasket

[ sa7 (| S Netphone
O NewMouse ] ShareS0 ] stat O x-stuff 3 Xgroupsketch
D xview ] history D pty_demo [ share 3 sound

) stat C) xdu ) netphone.tar.z

f————CI 20 (—GI 12—

Figure 6: A sample FILE MANAGER window, showing a history list of the last few files visited




& QIEM Edit Format Font Document Utilities Window

Select a Document:
|3 U of C technical report]

O Groupsketch.galley.fi...
0 Groupsketch.galley.ref

Folder )

Groupsketch.galley.ref |:
Disk P Groupsketch.galley.final |:

= File
30580K o OPtion B Ba Lupdrawing
injuersal 1% :

T T wten
[Cancel] [ §§z'§i=iq { :::nzl:;u
(] Read Only

Project marking sheet
Flgingline

Tiner

Tiner Projo sre
Timer.c

Figure 7. The APPLE MACINTOSH Open Dialogue Box, showing the BOOMERANG History Menu




Arbor (2
Barney (2)
Dacker (2)

Danby 3)
Eagan 3)
Jacobs 3)
Kruger (3)
Kwant (2)
é Levin (2)
™ Martin (2)
\<Moreen 3)
Obrien 3)
Perry (2
Ridder (2)
Sagin (2
Unger 3
Zlotky 3)

a: Menu tree generated by uniform subdivision

(1) Arbor — Eagan
(2) Farel — Kruger
(3) Kwant — Obrien
(4) Perry — Zlotky

The top level menu

/ Arbor (2, .09)

Barney (3, 02) = (2F1%25) + (2*2%.09) + (16*3+.02)
Dacker (3, .02) = 1.82 menus traversed / item
ganby 8’ 83; C) Theoretical optimum menus traversed with the
agan 2 - given probabilities (4-choice entropy)
Farel (2,.09) i .l
) = -4 PiTlogypi
, .25
Graham (1, .25) Issac  (3,.02) = - ((12%.02510g4.02) + (2*.09%log4.09)
Jacobs (3,.02) + (2*25*logy.25))
Kruger (3, .02) _ .
Kwani (3,.02) = 1.49 menus / item
Levin (3,.02)
Martin (3, .02)
Moreen(3, -02) ¢: Calculating the average menus
Obrien (3, .02) traversed for various conditions )
Perry (3,.02)
Ridder (3,.02) ~
Sagin (3, .02) (1) Arbor — Farel
Unger (3,.02) (2) Graham
Zlotky (1,.25) (3) Issac—Unger
(4) Zlotky
b: Menu tree reflecting popularity of items The top level menu
J

I

Let n
mj
Pi

number of items
menus traversed to reach item(
probability that item i is selected

A) Average menus traversed by uniform
subdivision

mij (12*2)+(8*3)

n - 20
= 2.4 menus traversed / item

B) Average menus traversed by probability
subdivision

mipi

Figure 8: Menu trees generated by uniform and probability subdivision




a: s i

cd news”J

cd [news"J]

cd I rk/papers/ieee. computerAJJ

cd rk/papers/ieee.computer

$ |emacs paper.tex"d

emacs paper.tex

$ @ paper.tex.CKP paper.tex.BAK"J
rm paper.tex.CKP paper.tex.BAK

$ |wc -w paper.tex"J

wCc -w paper.tex

$ |readnews -n comp.sources.unix"J
mail”J
maiild]

mail Ibdarragh%uncamult .bitnet@ucnet.ucalgary.ca"Jd

mail bdarragh%uncamult.bitnet@ucnet.ucalgary.ca

>

>

>

>
B =2 = =

>

>

>
H =2 =2 =2

b: Key Description
e Accept the next predicted character
W Accept the next predicted word
"L Accept the whole predicted line
"N Show the next alternative prediction
“P Show the previous alternative prediction

C! | $ cd rk/papers/ieee.computer

$ emacs paper.tex

$ rm paper.tex.CKP paper.tex.BAK
$§ wc -w paper.tex

$ mail bdarragh%uncamult.bitnet@ucnet.ucalgary.ca

Figure 9. Using RK-BUTTON, the UNIX version of the REACTIVE KEYBOARD.
a) an RK-BUTTON dialog with UNIX
b) a key to several commands dealing with predictions
c) screen contents at end of the dialog




& File Edit Options

Untitled

|== Predictions Window =ME

This text has been generated with the

Lwithothes

Shannon..shannon

earch.and.upda
J.6.-Cleary-and-l
Likely-continuati

This text has been generated with the
et iveoleyboard.

lithotheeRe

searchoand-updat i
act iveokeyboard.
turn''ccan<be.co
habilitations.are

This text has been generated with the
Reactive Keyboard [JiT:MIEREW

LKeyboard-

Thisutext-haswbeg
he-

communication.aid

towgeneratedowit

This text has been generated with the
Reactive Keyboard primed with

me¢§ﬂl!ﬂ!

thes
a-standardocommury_J
bothothewpredicti
your~program,-th

This text has been generated with the
Reactive Keyboard primed [Ram

hdeprimed.

4
m:uuergu I ur*gp"/}
withothes —
correctoand-dest i

tootheemodel.isa

Figure 10. Using RK-POINTER, the Macintosh version of the REACTIVE KEYBOARD




File Edit Diew

Special

About the finder...

QuicKeys 2...

Sequence

Cailculator+
Chooser
Contrel Panei

About Muitifinder...

QuickReference Card...

Record Sequence
Record Real Time
Stop Beoerding ..
Canoet
Pause

Record one QuicKey

open cpsc44l
open cpsc481

Name: [I]penk]atabase{

iic Edit Define 1 T
o = ( Record More
$ Kk Chek [ import ]
Click
Name: |(
l— Window
find by
Ofny
Til [: (O Name: EndNote
[ Cdq @ Position: @ from front

Hold

o

o)

Figure 11: The QUICKEYS menu and several sequence-editing windows




Bibliography
Edit bib
Install bib
Greenberg, S. "The useS{ITTUR Iy
Cambridge Univers

Bibliography: Show bib

Quick help

Witten, 1.H., Greenberd M2nual

modelling.” In Grapl gdit wcs

Bibliography
Menu B 0O I Command Prompt

Bibliography

Edit bib COJC B [cd ~/refs: emacs bib.file |

Install bib |[ ]l ] [cd ~/refs: make all |

Show bib |[] |l (] [cat ~/refs/bib.file[my.print]

Quick help |[ ]Il ] [manrefer |

Manual Bl
| Edit WWCS
e m=f

Figure 12: The Workbench Creation System. The top window show a workbench and menu for
managing bibliographies, while the bottom one shows the editor associated with that workbench.




Tool Cabinet
Workbench --- Tool Drawer: BookChapterl
(List Tex files] [Format galley])

View galley] (Print)

jatex gaﬂegj T1 3 /susr/on [ Tatex galley
4 dviview galley 3 mkair chapter | dviview galley
3 Tpr galley.dvi 3 cd Chantar s ; ;Srcgzglzgidw Tool
2 o refed cLAALE I Cache
L SEED) g ~refs/HCT.refs E@) \ !
E——— 4
Nes SueqCd Chapter Reuse
cd /usr/bin 1
Facility
cd /profs/saul
cd ~/Papers/CSCW
cd ~/src/history
cd Papers
Work Surface
Tool Drawer Name: BookChapterl
T Label Action Help
:700‘5 Go There cd book1/chl Yhere paper is located
XTOOh List TeX files ls -las *.tex *.dvi
:700]5 Format galley latex galley.tex Format the paper
=ﬂZT°°“ View galley dviview galley.dvi See the paper on the screen
:_:TOO]Z Print lpr galley.dvi Print the paper
o Drawer
C Tool: Editor
C draver: References * Contains the paper references

Figure 13: WORKBENCH in use, showing the main tiledWORKBENCH window,
the pop-up WORKBENCH editor, and a pop-up menu
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Figure 14. a)cumulative distribution of history use over distance; and b) distribution of history

use as a measure of distance






