Greenberg, S. and Witten, 1. H. (1993).

Supporting command reuse: Empirical foundations and principles. Report
1993-496-1, Dept Computer Science, University of Calgary, Calgary, Alberta,
Canada T2N 1N4

Supporting Command Reuse:
Empirical Foundations and Principles

Saul Greenberg
Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N 1N4
email: saul@cpsc.ucalgary.ca

Ian H. Witten
Department of Computer Science
University of Waikato
Private Bag 3105
Hamilton, New Zealand
ihw@waikato.ac.nz

Abstract: Current user interfaces fail to support some work habits that people naturally adopt when
interacting with general-purpose computer environments. In particular, users frequently and persistently repeat
their activities (e.g. command line entries, menu selections, navigating paths), but computers do little to help
them to review and re-execute earlier ones. At most, systems provide ad hoc history mechanisms founded on
the premise that the last few inputs form a reasonable selection of candidates for re-use.

This paper provides theoretical and empirical foundations for the design of a reuse facility that helps people to
recall, modify and re-submit their previous activities to computers. It abstracts several striking characteristics
of repetitious behaviour by studying traces of user activities. It presents a general model of interaction called
“recurrent systems.” Particular attention is paid to the repetition of command lines given a sequential history
list of previous ones, and this distribution can be conditioned in several ways to enhance predictive power.
Reformulated as empirically-based general principles, the model provides design guidelines for history systems
specifically and modern user interfaces generally.

Keywords: reuse facilities, history systems, command-based systems, design principles, human-computer
interaction.

1 Introduction

There is much repetition in computer use. Yet most interfaces offer little help for reviewing and reusing previous
submissions. As a result, users often find themselves retyping command lines or reselecting menu items that
they had entered previously. To relieve the tedium, some systems incorporate a history mechanism that allows a
user to recall old submissions. These are invariably based on the premise that recently entered submissions are a
reasonable working set of candidates to keep available to the user for reselection. But is this premise correct?
Might other strategies work better? Indeed, is the user~computer dialog sufficiently repetitive to warrant some
type of reuse facility in the first place? As existing history mechanisms were designed by intuition rather than
from empirical knowledge of human-computer interactions, it is difficult to judge how effective they really are
and what scope there is for improvement.

This paper assesses the extent to which people reuse their previous activities. Although the idea of reuse is
simple—anything used before may be used again—it is only effective when recalling old activities is less work
for the user (cognitively and physically) than submitting new ones. Consider a user who has submitted »
activities to the system over time (say n > 100) and whose next activity is identical to some previous one. An
optimal reuse facility would be an oracle that correctly predicted when an old action would be reused, and then
selected the correct one and submitted it to the system in the user’s stead. In contrast, a non-predictive system
that merely presents the user with all previous n submissions would be less effective, for the user’s overhead now
includes scanning (or remembering) the complete interaction history and selecting the desired action. Real
systems are situated between these extremes. A small set of reasonable predictions p is offered to the user

(p << n), sometimes ranked by probability. The intention is to make the act of selecting a prediction less work
than entering it anew; the metric for “work™ is, of course, ill-defined.

Supporting command reuse: Empirical foundations and principles 1 Greenberg and Witten, 1993

saul
Text Box
Greenberg, S. and Witten, I. H. (1993).
Supporting command reuse: Empirical foundations and principles. Report 1993-496-1, Dept Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Schemes for activity reuse are based upon the assumption that the human-computer dialog contains repetition.
Yet very little critical attention has been given to this assumption. Section 2 introduces a model of human-
computer dialog called recurrent systems, where most users predominantly repeat their previous activities. Such
systems suggest potential for activity reuse because there is opportunity to give preferential treatment to the large
number of repeated actions. A few suspected recurrent systems from non-computer domains are summarized in
this context to help pinpoint salient features.

The remainder of this paper investigates recurrences exhibited by 168 subjects using the UNIX command
interpreter csh. Section 3 describes the method of data collection and introduces some terminology, while Section
4 reviews previous studies on how people enter UNIX commands (as opposed to complete command lines).
However, we believe that studies of commands only have limited utility. As commands often act on objects and
are qualified with options, it is important to look at the command line as a whole.

Next, three questions particularly relevant to reuse facilities are addressed, all concerning the statistics of complete
command lines entered by the user to UNIX. First, how often do users repeat themselves? Section 5 details how
often a UNIX user actually repeats command lines over the course of a dialog. Particular attention is paid to the
variation in this rate between groups and between individuals, and its stability over the number of command lines
entered. Second, how well does recency behave as a predictor of future events? Section 6 gives the probability
distribution that the next command line will match a previous input, measured as a function of the number of
entries that have elapsed from the matched input to the current one. Third, given that people repeat themselves,
what is the best way to predict (and offer for reuse) what will be done next? Section 7 examines several predictive
schemes for reuse through an empirical study that derives the probability distribution of the next activity given a
list of previous ones.

The paper closes by reformulating the study’s findings as empirically-based general principles that govern how
users repeat their activities on computers. These provide a basis for design guidelines for history mechanisms
specifically and modern user interfaces generally.

2 Recurrent Systems

Reuse facilities presuppose that people repeat their activities. But do they do so enough to repay the overhead of
learning and using a reuse facility? And how are these activities repeated? Are patterns of repetitions arbitrary or
system-specific, implying that reuse facilities must be customized to be worthwhile? Or can general patterns be
found in most dialogs, implying the possibility of generic reuse facilities? This section provides evidence for the
latter view by defining a model of human-computer dialog called “recurrent systems.”

An activity is defined as the command formulated by the user and submitted to the system. Its execution is
expected to gratify the user’s immediate intention. Activites are the unit entered to incremental interaction, a
human-computer dialog characterized by successive requests that are submitted to the computer and responded to
in turn (Thimbleby 1990). Entering command lines, querying databases, choosing items from a pallete, and
locating and selecting items in a menu hierarchy are some examples. Copy typing is not, as it is continuous
rather than incremental, and is not a cognitive activity (at least, not for the skilled typist).

A recurrent system is defined as an open-ended system where users predominantly repeat activities they have
previously submitted to the computer. In other words, although many activities are possible, most (but not all)
of a user’s entries are repetitions of their previous ones.

The frequency of repeats, called the recurrence rate, is the probability that any activity is a repeat of a previous
one. Let total activities be the number of all submissions a user has entered, and the vocabulary size be the count
of different submissions in the set. The recurrence rate R over a set of user activities is calculated as:

_ total activities - vocabulary size
total activities

R x100%.

Although many old activities are repeated, new ones are constantly added to the repertoire. The rate at which new
activities are composed and introduced to the dialog is the composition rate C, simply expressed as C = 100 - R.
As there are a very large number of possible activities available, new activity formation within recurrent systems
is open-ended. Even when new activities are continually generated, it is expected that these will remain a small
subset of the activities that could be formed by any one user.

We have performed several empirical studies of recurrent systems. These included information retrieval from
manuals, telephone dialing patterns, UNIX command and command line use (reported in this paper), and the way

Supporting command reuse: Empirical foundations and principles 2 Greenberg and Witten, 1993

people use a functional programming language (Greenberg 1993). From these, we abstract typical characteristics
of how individuals interact with such systems.

1. Many activities are repeated, with the recurrence rate R ranging between 40-85%; the exact value depends
on the application domain and the individual's usage patterns. That is, there is a probability of 40-85%
that the next activity the user submits to the §ystem is an exact duplicate of a previous submission.

2. Recurrent systems incorporate new activities regularly, where the composition rate C falls between 15—

60%. That is, there is a probability of 15-60% that the next activity submitted by the user is novel.

. The set of activities invoked by any particular user is typically a small subset of the total activities

usually available.

4, Although the overall recurrence rate remains fnore or less constant over time, the frequency at which

particular items are repeated over the course of the interaction waxes and wanes.

. The probability of an activity recurring in s (although not linearly) with its recency of selection. That

is, recently-submitted items are more likely to be repeated than those last submitted a long time ago.

6. While there is some overlap, the sets of activities invoked by different users of the system are mostly
disjoint.

7. Different people may repeat the few activities in common at quite different rates.

w

W

This definition and list of properties is not a strong one, for the boundary between recurrent and non-recurrent
systems is not well-defined. Such a boundary specification, even a “fuzzy” one, would be subjective and would
also depend upon other aspects of the system being investigated. For example, time between recurrences might be
a consideration, where short-term recurrences are cov(.inted but those repeated only after long intervals are discarded.
Still, the properties provide a reasonable checklist far judging whether particular systems have potential for reuse.

It may seem that, at least on the surface, recurrent systems are just another way of denoting patterns of behaviour
already well described by Zipf’s law (Zipf 1949). However, major differences exist.

+ Many human-oriented observations characterised by Zipf’s law are based upon data pooled over the entire
population. One study, for example, examined the statistics of all terms used to retrieve items over all
users of two separate bibliographic data bases, and describes how they conform to Zipf’s law (Bennett
1975). Similar large-scale statistics have been applied to many facets of library science; a list is provided
by (Peachey, Bunt and Colbourn 1982). Yet there is no evidence that the same distribution applies to
individuals. Recurrent systems, on the other hHand, are centered around the statistics of activities of
individuals, rather than the pooled statistics of large groups.

« Zipf’s law typically deals with very large numbers, and tends to break down with few observations (see
Bennett 1975 for one example). Recurrent syftems do not break down, and the analysis below shows that
patterns within recurrent system are apparent/within small slices of sequential activities entered by a single
individual.

As Zipf’s law describes a frequency distribution, it does not account well for items that are heavily used in
a short-term interaction but rarely used afterwards, or ones whose frequencies fluctuate over time (point 4
above). Recurrent systems handle this well sijice they emphasise recency as well as frequency of use (point
5).

3 Data Collection Methodology
The remainder of this paper presents our empirical study and discussion of UNIX as a recurrent system, This
section introduces some terminology and describes the way data was collected in our UNIX study.

3.1 Definitions

A command line is a single complete line (up to a terminating carriage return) entered by the user. This is a
natural unit to consider as an “activity” because commands are only interpreted by UNIX csh when the return key
is typed, and the complete line is a more detailed reflection of one’s intentions than just the command itself.
Command lines typically comprise an action (the command), an object (e.g. files, strings) and modifiers (options
that modify the behaviour of the command). The coinmand is the verb of the command line.

A history list is a sequential record of command lines entered by a user over time, ignoring boundaries between
login sessions. Unless stated otherwise, the history list is a true sequential record of every single syntactically
correct command line typed (erroneous submissions noticed by csh are not included). Duplicate activities, for
example, are included.

The distance between two command lines is the difierence between their positions on the history list. A working
set is a small subset of items on the history list. The number of different entries in the history list is the
command line vocabulary. All white space separaung words in a command line are considered equal, so two lines

Supporting command reuse: Empirical foundations and|principles 3 Greenberg and Witten, 1993

that differ only in their use of white space are equivalent. However, syntactically different but semantically
identical command lines are considered distinct.

3.2 Data Collection
Command-line data was collected from users of the csh command interpreter (Joy 1980). The selection and
grouping of subjects, and the method of data collectjon, are as follows.

Subjects. The subjects were 168 unpaid volunteers, all university students or employees.

Subject use. Four target groups were identified, representing a total of 168 male and female users with a wide
cross-section of computer experience and needs. Salient features of each group are described below, while the
sample sizes are indicated in Table 1.

—Table 1 around here—

Novice Programmers. Conscripted from an introductory Pascal course, these had little or no previous
exposure to programming, operating systems, or UNIX-like command-based interfaces. They spent most of
their computer time learning how to program) and to use the basic system facilities.

Experienced Programmers. Members were senior computer science undergraduates, expected to have a fair
knowledge of programming languages and thf UNIX environment. As well as coding, word processing, and
employing more advanced UNIX facilities to fulfill course requirements, these subjects also used the
system for social and exploratory purposes.

Computer Scientists. This group, comprised of faculty, graduates and researchers from the Department of
Computer Science, had varying experience wglh UNIX, although all were experts with computers in
general. Tasks performed were less predictable and more varied than other groups, spanning advanced
program development, research investigation$, social communication, maintaining databases, word-
processing, satisfying personal requirements, and so on.

Non-programmers. Word-processing and document preparation was the dominant activity of this group, made
up of office staff and members of the Faculty\ of Environmental Design. Little program development
occurred—tasks were usually performed with|existing application packages. Their knowledge of UNIX was
usually the minimum necessary to get the job done.

Since users were assigned to subject groups only through their membership in identifiable user groups (e.g.
Computer Science graduate students), their placement in the categories above cannot be considered strictly
rigorous. Although it is assumed that they generally follow their group stereotype, uniform behaviour is not
expected.

Instructions to subjects. As part of the solicitation process, subjects were informed verbally or by letter
that:

data on their normal UNIX use would be monitored and collected at the command line level only;

the data collected would be kept confidential through use of anonymous reference;

at any time during the study period the subject could request that data collection stop immediately;
there would be no noticeable degrading of system performance;

if requested, data collected from a subject would be made available to him or her.

Subjects did not require nor did they receive any additional instructions during the actual study period. No subject
asked to be withdrawn from the experiment, and no-one asked to see their personal data.

Apparatus. A modified version of the Berkeley 4.2[UNIX csh command line interpreter was installed on three
VAX 11/780’s located in the Department of Computer Science and one VAX 11/750 in the Faculty of
Environmental Design, both within the University of Calgary. Many different terminals were available to
participants, most of which were traditional character-based VDU’s. In addition, Corvus Concept workstations
running the Jade Window Manager were available to members of the Experienced and Computer Scientist groups.

1For example, the command lines Is -las and Is -Isa are|treated as different vocabulary items, even though they mean the
same thing. Although this strategy overestimates the vocabulary size, a semantic analysis was deemed too expensive
for the large data set covered.

Supporting command reuse: Empirical foundations and principles 4 Greenberg and Witten, 1993

As with most window systems, these allowed users to create many terminal windows on their display, each
running csh (Greenberg, Peterson and Witten 1986).

Method. Command-line data was collected continuously for four months from users of the modified csh
command line interpreter mentioned above. From the user’s point of view, monitoring was unobtrusive—the
modified interpreter was identical in all visible respects to the standard version. The total number of command
lines recorded per group are listed in Table 1.

Data was collected by recording lines expanded by csh. Instead of catching keystrokes as they are entered, the
complete line submitted was captured as a chunk after it had been entered and processed by csh. Editing operations
that helped form the line were ignored (e.g. backspace and corrected keystrokes). Extra information known to csh
was trapped and recorded as well by placing “hooks” within csh. History and alias use (both features of csh) are
noted, as well as the current working directory of the user and the error status after execution is attempted. More
specifically, login sessions are distinguished by a record that notes the start and end time of each session. Records
associated with each user input are then listed subsequently, each annotated with the command line, the current
working directory, alias substitution (if any), history use and error status. The total number of command lines
collected over the group (excluding errors), and the mean number collected per individual are listed in Table 1.

Data Selection. If subjects did not log in at least ten times and execute at least 100 commands during the
study period, their data was not considered. By these criteria, 12 of the 180 original participants were rejected.

Motivation, Participants used UNIX as usual. Users were neither encouraged nor expected to alter their
everyday use of the system. As subjects had few reminders that their command-line interactions were being traced,
they were largely oblivious to the monitoring process.

Availability and confidentiality of data. All data collected is available to other researchers. A research
report describes its format, and includes a tape of the data (Greenberg 1988). As all subjects were promised
confidentiality, data has been massaged to remove the identity of subjects.

Limitations. Tracing lines expanded by csh is a tradeoff between recording too much and too little
information. Several limitations of our data collection method are noted below.

First, due to implementation difficulties, the details of csh’s history invocations were not recorded. The altered
csh indicates only that history has been used, and notes the command line retrieved through history. It does not
record the actual history instructions used to produce the modification.

Second, user activity outside of cs is not captured. Although recording csh lines works well for batch-style
programs that execute and return without user intervention (i.e. incremental interaction), it does not capture
activity within the interactive applications used (e.g. editors). Interactive information is lost since collected data
captures the csh command line only.

Third, the actual processes spawned by the command line are not noted. There are many ways to execute
programs in UNIX; directly by name, indirectly through an alias or csh variable, or as a suite of programs
through a script. Because of this diversity, users can invoke the same program by many different names. For
example, e, emacs and ed may all invoke the same editor. As only the text typed to csh is collected, the actual
processes executed are left as an educated guess. Still, the method employed here seems a reasonable approach,
especially when contrasted to other methods employed by researchers to collect data on UNIX use (see Chapter 2
in Greenberg 1993 for a comparison of data collection methods).

4. Related Work: Recurrence of UNIX Commands

Several independent researchers have studied how individual commands in UNIX—the verbs of the command
lines—are selected. Statistics have been presented in a variety of ways: as single results pooled over the
population; as comparisons between groups within a population, and as individual pattemns of use. Variables
investigated have been the frequency distribution of commands; the overlap of command sets between groups and
individuals; the growth of command vocabulary over time; and the interactions between sequences of commands.
The significant results of each approach are summarized here. We will argue that the statistics tell us more of
differences between people than their similarities.

Frequency distribution of commands for large groups. Many investigators have examined the
frequency of command usage by a user population, where all individuals are pooled into a single population
statistic (Ellis and Hitchcock 1986; Greenberg and Witten 1988a; Hanson, Kraut and Farber 1984; Peachey, Bunt

Supporting command reuse: Empirical foundations and principles 5 Greenberg and Witten, 1993

et al 1982). All studies report results approximated by a Zipf distribution, which has the property that a relatively
small number of items have high usage frequencies, and a very large number of items have low usage frequencies
(Witten, Cleary and Greenberg 1984; Zipf 1949). A looser characteristic of this kind of rank distribution is the
well-known 80-20 rule of thumb that has been commonly observed in commercial transaction systems—20% of
the items in question are used 80% of the time (Knuth 1973; Peachey, Bunt et al 1982). Hanson, Kraut et al
(1984), for example, state that 10% of the 400-500 commands available account for 90% of the usage. Greenberg
and Witten (1988a) report a similar finding of 10% of the commands accounting for 84-91% of all activity.

Usage frequency of particular commands between groups. The Zipf distribution of pooled command
use over the complete sample can be misleading. Gréenberg and Witten (1988a) contrasted command use between
the four groups identified in Section 3, and data from Hanson’s similar study (Hanson, Kraut et al 1984). They
found that commands do not necessarily retain their same rank order between different user groups. That is,
although the shape of each group’s distributions are similar, particular commands may appear at quite different
locations between them (if at all). Although there ar¢ several frequently used commands in common for all
groups,? the comparison emphasised the group’s differences in their choice of system utilities, such as compilers,
editors, and task-specific items.

Frequency distribution and command overlap between individuals. These differences between
groups are a reflection of the tremendous differences between individuals within a group. Draper (1984) found that
very few of each individual’s command vocabulary were used by all the population, a few more shared to some
degree by other users, and the rest used by the individual user alone.? Greenberg and Witten (1988a) pursued this
matter further. They found that only 0.2% (i.e. 3) of ithe 1307 different commands entered to the system were
shared by more than 90% of the users. More surprisingly, fully 92% of all shared commands invoked were used
by fewer than 10% of the users, and 68.8% of all commands were not shared at all. Even users with apparently
similar task requirements and expertise had astonishingly little vocabulary overlap.

Size and growth of an individual’s command vocabulary. **(Sutcliffe and Old 1987) suggested that
the size of a user’s command set (the command vocabulary) grows with their usage of the system. They found a
significant correlation between the overall command use by the user and the number of unique commands
employed. Greenberg and Witten (1988a) actually observed vocabulary acquisition by particular users, and noted
that the vocabulary growth rate was quite slow: C=1% or less (R=99%). Vocabulary growth was by no means
regular—Ilong periods of quiescence were followed by flurrries of activity. Although a total of 1307 different
commands were invoked on the system over the period of study, each person used, on average, only 50 different
commands (but the standard deviation was 32.5).

Relations in command sequences. The previous discussion says nothing about possible relations and
dependencies between commands. Through a multivariate analysis of UNIX commands invoked by the site
population, Hanson, Kraut et al (1984) examined the interaction effects between commands. They noted that
some commands follow or congregate around others|in quite regular ways. But the dependencies and clusiering
observed may be an artifact of pooled statistics resulting from, say, a small handful of people using a set of
related commands frequently. Sutcliffe and Old (1987) replicated and extended Hanson’s work by eliminating all
dependencies but those that were significant for at least five or more individual users. The resulting network was
a fragmented subset of the population network. They concluded that only a small number of command chains
were used in common tasks.

Discussion. In spite of the high value of R, command use is not, strictly speaking, a recurrent system, for
new activities are not incorporated regularly (C is only 1%). This summary of the command analyses tells us
more about individual differences between users than their similarities, and the results do not suggest any general
new directions in interface design.

Perhaps undue attention has been paid to command usage. Commands, after all, are only the verbs of the
command line. They also act on objects, are qualified with options, and may redirect input and output to other
commands. These other facets are surely important and should not be ignored. For example, UNIX lines sharing
the same initial command may have completely different meanings. Consider the two command lines below. The
first just sorts a file, while the second produces a frequency count of the identical lines in the file.

sort file

sort file [uniq —c | sort —r.

2The shared commands mostly concerned the basic UNIX commands for navigating, manipulating and finding
information about the file store.

3Commands in his study were the processes actually executed.

Supporting command reuse: Empirical foundations and principles 6 Greenberg and Witten, 1993

Another problem is that the same command line maly satisfy rather different intentions. One person might invoke
the UNIX command line Is - to distinguish between ordinary files and directories, whereas another could use the
same sequence to discover file creation dates and sizes (Ross, Jones and Millington 1985). Still, a reasonable
approach to meaningful analysis of UNIX as a recurrent system is to consider the complete command line entered.
Accordingly the UNIX usage data, analyzed here in terms of commands, is re-analyzed in the following sections in
terms of command lines.

5. Recurrences of Command Lines

As mentioned above, command use is not really a récurrent system since C is so low. A different question is
whether complete command lines submitted to command-based environments follow the properties of recurrent
systems. If they do, what patterns do these recurrendes exhibit?

Although only a few commands account for all actions of a particular user, it is not known how often new
command lines are formed and old ones recur. This s important, as it is the recurrence rate—the probability that
the next item has been entered previously—that existing history systems exploit best. One might expect
command lines to recur infrequently, given the limitless possibilities and combinations of commands, modifiers,
and arguments. Surprisingly, this is not the case.

We investigated how often lines are repeated by counting the command line vocabulary size. Let #¢nq fines be the
total number of command lines (activities) entered by the user (i.e. the size of the history list), and Vg fines be
the vocabulary size, or number of distinct items in that set. The overall recurrence rate and composition rate can
then be calculated as described in Section 2. But first, we have to see how “stable” R is over a lengthy transaction
record.

Do users extend their vocabularies continuously and uniformly over the duration of an interaction? If not, then
the recurrence rate, measured locally, will change over time as the user’s history list grows. Furthermore,
calculating group means for R could be confounded by the large variation between the number of command lines
each user enters, which was noted in Table 1. As Ris a function of Vemg ines and Zong Jiness it is necessary to
investigate how the vocabulary size depends upon the actual number of commands entered. If users never extend
their vocabulary after some short initialization periad, little correlation with #epg jines is €xpected. On the other
hand, a strong correlation is likely if new command lines are composed regularly by a user.

A simple regression analysis was performed by contrasting femg jines a0 Vemd lines for each subject. The
regression line is plotted in Figure 1, where each point in the scattergram represents the value observed for each
subject at the end of the study period. A statistically significant and strong correlation was found (r = .918, df =
167, p < .01). The moderate slope (C = 23%) of the regression line makes the correlation practically significant
as well.

—Figure 1 around here—

It seems reasonable from the scattergram of Figure | that v g jins increases linearly with ¢4 fines, indicating
that the recurrence rate is independent of the actual number of lines entered. This was checked in two ways. The
first was a simple regression analysis of g jines With R, where each point represents the recurrence rate observed
for each subject at the end of the study. A statistically significant correlation was found (r = .253, df = 167, p <
.01), indicating that the recurrence rate increases with the number of commands entered. However, the high
variance of data points around the line (+2=.064), and its low slope (0.002), makes this finding insignificant for
practical purposes. Consequently, R is considered independent of #.,4 jines-

The second and perhaps more convincing way of observing the independence of the recurrence rate is by
examining in detail the vocabulary growth of particular individuals as opposed to the group statistics. The
formation of new command lines is surprisingly lin¢ar and regular, as illustrated by Figure 2, which shows the
command line vocabulary growth for four typical users, one from each group. The horizontal axis represents the
number of lines entered so far, while the vertical axis indicates the size of the command line vocabulary. For
example, the scientist subject has composed close ta 1400 new command lines after 6000 lines were entered.

—Figure 2 around here—
Table 2 lists the mean recurrence rate, standard deviation, and ranges of R for each subject group. An analysis of

variance of raw scores rejects the null hypothesis that these means are equal (F(3,164)=21.42, p<.01). The Fisher
PLSD multiple comparison tests suggests that all differences between group means are significant (p<.01),

Supporting command reuse: Empirical foundations and| principles 7 Greenberg and Witten, 1993

excepting the Non-programmers versus Scientists. As the Table indicates, the mean recurrence rate for groups
ranges between 68% and 80%, with Novice Programmers exhibiting the highest scores.

—Table 2 around here—

Although recurrence rate depends upon user category, and very slightly on the number of command lines entered,
it is reasonable to simplify this descriptive statistic by assuming the mean R over all users to be 75% and C of
25%, independent of £cu4 jines- In Other words, an average of three out of every four command lines entered by the
user already exist on the history list. Conversely, an average of one out of every four command lines appears for
the first time,

6. Command Line Frequency as a Function of Distance

For any command line entered by a user, the probability that it has been entered previously is quite high. But
how do previous items contribute to this probability? Do all items on the history list have a uniform probability
of recurring, or do the most recently entered submissions skew the distribution? If a graphical history mechanism
displayed the previous p entries as a list (e.g. HISTMENU, Bobrow 1986), what is the probability that this list
includes the next entry?

The recurrence distribution as a measure of distance was calculated for each user. First, let R, 4 be the recurrence
rate at a given distance for a single person, obtained by processing each subject’s data. Figure 3 shows the
algorithm used to obtain all values of R; 4 from a subject’s trace. The mean recurrence rate for a given distance d
over all § subjects in a particular group is then calculated as:

y
Rg= szRs,d
s=1

These group means are plotted in Figure 4a. The vertical axis represents Ry, the rate of command line
recurrences, while the horizontal axis shows the position of the repeated command line on the history list relative
to the current one. Taking Novice Programmers, for example, there is a R4y = 11% probability that the current
command line is a repeat of the previous entry (distance = 1), R4,=28% for a distance of two, Rg;=9% for three,
and so on. The most striking feature of the Figure is the extreme recency of the distribution.

~Figure 3 around here—
—Figure 4 around here—

The previous seven or so inputs contribute the majority of recurrences. Surprisingly, it is not the last but the
second to last command line that dominates the distribution. The first and third are roughly the same, while the
fourth through seventh give small but significant contributions. Although the probability values of R4
continually decrease after the second item, the rate of decrease and the low values make all distances beyond the
previous ten items equivalent for practical purposes. This is illustrated further in Figure 4b, which plots the same
data for the grouped total as a running sum of the probability over a wider range of distances. The running sum of
the recurrence rate up to a given distance D for a single person is called Rp. Its mean value over a group of
subjects is calculated as

82
RD=§ZZR d
s=1d=1

As Figure 4b shows, the most recently entered command lines on the history list are responsible for most of the
cumulative probabilities. For example, there is a Rp, ;=47% chance that the next submission will match a

member of a working set containing the ten previous submissions (Rp, is an abbreviation of Rp with D=10).

In comparison, all further contributions are slight (although their sum total is not). The horizontal line at the top
represents a ceiling to the recurrence rate, as C = 26% of all command lines entered are first occurrences.

Figure 4a also shows that the differing recurrence rate between user groups, noted previously in Table 2, are
mostly attributed to the three previous command lines. Recurrence rates are practically identical elsewhere in the

Supporting command reuse: Empirical foundations and principles 8 Greenberg and Witten, 1993

distribution. This difference is strongest on the second to last input, the probability ranging from a low of 10%
for Scientists to a high of 28% for Novice Programmers.

The statistics of UNIX csh use, as with the other recurrent systems mentioned in Section 2, indicate that the most
recently submitted activities are the most likely to be repeated. These statistics confirm the potential of reuse
facilities in general, and verify the assumptions of using recency made by many existing history mechanisms.

7. Increasing the Opportunities for Reuse in UNIX csh

In the last section, particular attention was paid to the recurrence of command lines during csh use, and to the
probability distribution of the next line given a sequential history list of previous ones. We saw that the most
striking feature of the collected statistics is the tremendous potential for a historical reuse facility: the recurrence
rate is high and the last few submissions are the likeliest to be repeated. One may predict with a reasonable degree
of success what the user will do next by looking at those recent submissions.

Yet there is still room for improvement, since a significant portion of recurrences are not recent submissions.
For example, consider a working set of the ten previous items on the csh history list that is displayed to a user
for selection. Although there is a Rp,, = 47% chance that the next command line can be successfuly predicted by

this display (Figure 4b), there is still a 27% chance that it last appeared further back. When combined with the C
=26% chance that the next submission has not appeared before, then the history list will fail to be of any benefit
53% of the time. Can predictions of the user’s next step be offered that betters these figures?

This section proposes alternative strategies of arranging a user’s command line history to condition the
distribution in different ways, firstly to increase the recurrence probabilities over a working set of a given size,
and secondly to improve the overall “quality” of predictions offered. Each method is applied to the UNIX traces,
and their predictive quality is measured and contrasted against each other. The following subsections: explain how
quality is assessed; describe a variety of conditioning techniques; and apply these conditions to the traces that
have been collected.

7.1 The quality of predictions

Predictions of activities for reuse are only effective when the search for and selection of an offering is less work
for the user than submitting it afresh. Work is therefore used to measure prediction quality. The smaller the
amount of work required for reuse as opposed to resubmission, the higher the quality of the set of predictions
offered. The selection of a high-quality prediction either reduces the cognitive effort of reconstructing the original
activity or minimizes the physical work required to enter that activity to the system.

There are several ways to calculate the “work” involved between reuse versus resubmission. First, we can observe
users interacting with a particular reuse facility; the catch is that the results may be heavily dependant on a
particular implementation. Second, we can model the task by cognitive modelling methods such as GOMS (Card,
Moran and Newell 1983), which takes into account mental and physical operations. While the results may be
more general than those supplied by a usability study, the operations are still tied to a particular style of
interaction. Lee (1992) used GOMS to generate predictions about the mental and physical effort involved with
several different styles of reuse facilities, and concluded that:

« reuse is indeed a tradeoff of more cognitive effort for sclection versus less physical effort for typing;

« increased mental effort may be alleviated by designing history tools favouring simple mental operations;

» non-expert typist using history tools expend less overall effort.
Because physical work is an essential parameter within this model, reuse facilities that are good predictors will
lessen the overall amount of work required of the user. This leads to the third method that we use in this paper.
We calculate a metric for work that accounts for both how well a reuse method predicts the next submission, and
how many characters will be predicted per submission. This relates directly to the sizes of lists a user must scan,
and the amount of typing that may be saved. While the metric does not indicate if the tradeoff of reuse versus
resubmission is worthwhile, it does allow as to contrast a variety of prediction methods.

The metric for work introduced here is called Mp, and comprises two components that estimate a prediction’s
quality. The first is Rp, the probability that the desired item appears on a displayed list of length p = D. Its

calculation was given in Section 4. The second, called ¢4, is the average number of characters saved by reusing
the matching activities at exactly a particular distance d. Incorporating string length as a partial indicator of work
assumes, of course, that longer strings are harder to recall and re-enter than short ones. Mp indicates the average
number of characters saved over all submissions when repeated activities are selected from a list of candidates of
length D. By using Mp, predictive methods can be numerically compared and ranked accordingly.

Supporting command reuse: Empirical foundations and principles 9 Greenberg and Witten, 1993

The calculation of Mp and its components proceeds as follows. First, let Es,d be the average number of
characters saved by a subject s per recurrence at distance d, calculated as:

Tsd
The term ¢, 4 is the total number of characters saved by the subject reusing all matching recurrences at a particular

distance, and 75 4 is the number of matching recurrences at that distance. When Z‘s,d is averaged over all subjects
S, we get C{, calculated as:

S
Cq+ % Z Csd
_ s=1
But ¢4 just gives the average characters saved by using a correct prediction at a particular distance. An altemnative
approach is to include the probability that the predi¢tion is correct. Specifically, My is the mean number of
characters saved at a particular distance over all subjects:

S
My= Jg D.CsdRa
s=1
where R, 4 is 2 particular subject’s probability of a recurrence at the given distance, as defined in Section 6. Note
that M differs from ¢4 because it is the average savings per submission rather than per recurrence. The final
step in calculating Mp shows the cumulative average savings in characters per submission when one through D
predictions are available for selection:

D
-1 =
Mp= S ZMd = Mdl +Md2 +...+MdD
d=1
Both Rp and Mp will be reported in this paper as metrics for evaluating working sets of particular sizes. Values

of Ry (defined in Section 5) and Ed may be found in Greenberg (1993).

7.2 Different conditioning methods

A variety of conditioning methods are described her¢. As well as conditions that are expected to perform quite
well, poorer ones that have been implemented in existing reuse facilities are also included. For each method we
indicate how the recorded data will be analyzed to assess its effectiveness. The algorithms used to find R, 4 for
each case are not elaborated (they are minor variations of the one shown in Figure 3). Results will be presented in
Section 7.3, and will show how effective—or ineffective—these conditioning methods really are.

Sequential ordering by recency. This conditioning method was described in Section 6, and is simply a
time-ordered list of all submissions entered by the user. The first column of Table 3 illustrates the sequentially-
ordered history list of 14 UNIX command lines numbered by order of entry. The most recent submission appears
on the top, and the history list—as with all other examples in the Table—is intended to be reviewed top-down.

—Table 3 around here-

There are two virtues of using a simple recency strategy in a reuse facility. First, the items presented would be
the ones a user has just entered and still remembers, He knows they are on the list without having to scan
through it. Second, unlike some other methods suchias frequency-ordered lists, there is no initial startup
instability of deciding what to present to the user when only a few items are available.

Pruning duplicates from the history list. The sequentially-ordered history lists mentioned so far
maintain a record of every single command line typ¢d. Duplicate lines are not pruned off the list. On a displayed
history list of limited length, duplicates occupy space that could be used more fruitfully by other command lines.

There are two obvious strategies for pruning redundancies, as described by Bames and Bovey (1986). The first
saves the activity in its original location on the history list, a method employed by RECENT, the history
system built into the Macintosh HYPERCARD (Goodman 1987). The second saves it in its latest position, the
method chosen by the MINIT history system that combines command processing and history into its single
“window management window” (Barnes and Bovey 1986). It is expected that the latter approach would give better

Supporting command reuse: Empirical foundations and principles 10 Greenberg and Witten, 1993

performance, as not only is local context maintained, but unique and low-probability command line entries will
migrate to the back of the list over time 4

Consider, for example, the two pruned event lists in the second major column of Table 3. Both are the same
length, which is considerably shorter than the plain sequential one in the first column. But the order of entries are
quite different. Even in this short list, the disadvantage of saving items in their original position is evident. Local
context is weak (indicated by the scattered event numbers), and the regularly repeated Is command line is poorly
positioned at the bottom of the list.

Data sets are re-analyzed using both strategies of pruning duplicates off sequential history lists, where recurring
items are either kept in their original position or moved to their latest position.

Frequency ordering. Perhaps the most obvious way of ranking activities is by frequency, where the most
often-used command line appears at the front of the history list and the rarest one at the end. This approach is
conservative. Old and frequently used items tend to stay around—unless there is a built-in decay factor—while
newer submissions will not appear near the head of the list until they are repeated as often as the old ones. Still,
it may do as well as or perhaps even better than recency.

When ordering items by frequency, it is necessary to consider a tie-breaking strategy for items of identical
frequencies. One possibility uses recency as the secondary sorting key. For example, if the current submission is
arecurrence, its frequency count is increased by 1 and it is relocated before all other recurrences with the same
count. Another approach uses a secondary sort by reverse-recency, where the recurring item is placed at the tail of
the list of items with identical frequencies. Contrasting these two methods gives a bound to the range of recency
effects. Examples are shown in the top right column of Table 3, where the number to each item’s right counts
how often that line has been submitted.

It is expected that frequency ordering may do quite well, given that UNIX command lines often consist of a
frequently-executed command without arguments, But probably fewer characters are predicted, since short lines
would tend to dominate the higher frequencies. Another disadvantage of frequency order is that counts must now
be associated with every submission. At best, this just takes up some space and a little cpu time, which matters
little in these days of cheap memory and fast machines. At worst, the derived probabilities associated with a
young history list are quite unstable and may lead to very poor initial predictions, which could discourage a new
user from placing faith in it (¢f recency).

The data sets are analyzed by ordering history lists by frequency and using two cases of secondary sorting: recency
and reverse-recency. Since there is no advantage in keeping multiple copies of command lines, they are pruned
from the list.

Alphabetic ordering. Sorting activities alphabetically is another possibility. Although items on alphabetic
ordered lists are best found by binary search or pattern matching, surprisingly many systems use only scrolling
for sequential searching. Most direct manipulation systems, for example, present lists of items (such as files) in
scrollable alphabetic lists. A history system example is MINIT’s window management window, which provides
it as a display option (Barnes and Bovey 1986). We would expect poor performance of a distribution derived from
alphabetic ordering. Letter frequencies aside, it should do no better than a random ordering of events. Performance
is easily evaluated by seeing how many pages of previous activities would have to be scrolled on average before
the desired item is found.

User’s traces were re-analyzed by placing their command lines on a history list in ASCII order. If a new
submission is identical to one already on the list, it is ignored. An example of an ASCII-ordered list is included
on the bottom left of Table 3.

Context-sensitive history lists by directory. Users of computer systems perform much task switching
(Bannon, Cypher, Greenspan and Monty 1983), where each task represents an independent or interacting context.
Since many command line submissions are specific to the task at hand, it is reasonable to hypothesise that
context-sensitive history lists will give better local predictions.

4Saving recurrencing activities in their latest position only is equivalent to “self-organized files,” where successfully
located records are moved to the beginning of the sequentially accessed file. As briefly discussed by Knuth (1973), oft-
used items tend to be located near the beginning of the file, and the average number of comparisons is always less than
twice the optimal value possible.

Supporting command reuse: Empirical foundations and principles 11 Greenberg and Witten, 1993

Ideally, the reuse facility would infer the context of ¢very submission entered and place it on an appropriate
history list, creating a new one if needed. Events common to multiple contexts could perhaps be shared between
lists. The system would then infer the likely context of the next submission and offer its predictions for reuse
only from the appropriate list.

Associating a user’s activities with their tasks or goals is not easy, and such inferences cannot be made reliably.
Instead, a simple heuristic provides a reasonable guess of one’s true context. UNIX furnishes a hierarchical
directory system for maintaining files. As many user actions reference these files, we hypothesize that the current
working directory defines a context for command lines. This grouping of command lines by the current directory
(or perhaps by the obvious alternative of windows) is just an approximation—possibly a poor one—to actual
task contexts.

When data was collected, each user submission was annotated with the directory it was run in. The traces are re-
analysed by creating a new history list for each new directory visited and placing the command line on that list.
The recurrence distance for each submission is then calculated by retrieving the history list for the current
directory of the next submission and searching it for the most recent match.

The second main column in the lower half of Table 3 illustrates the directory-sensitive condition applied to the
sequential input, where each sub-column is sensitive to a particular directory. No pruning of duplicates is done.
Most command lines refer to files in that directory, and would rarely be used in other directories. However some
command lines, for example /s for listing files, are common to more than one directory.

Ordering commands by recency. Section 4 showed that most individuals use only a handful of the
available commands, and that the frequency distribution of command selection is very uneven. It would be
interesting to see how a history list comprised of receéncy-ordered commands (not command lines) would perform.
Although we expect the probability of a matching prediction Rpy to be quite high, the characters predicted per
recurrence would be lower, since the rest of the command line is ignored (see the example in Table 3, bottom
right column).

User traces are re-analyzed over history lists of commands. Duplicate commands are pruned, with a single copy of
the command kept in its position of latest occurrence.

Partial matches. Instead of the next command line matching a previous one exactly, partial matching may be
allowed. This is helpful when: people make simple spelling mistakes; the same command and options are
invoked on different arguments; command lines are extended with additional arguments; and so on.

However, the potential benefit is highly user and situation dependent, for the user must alter the selected sequence
before it is invoked. Consider the next submission s and its partial match to a previous event e on the history
list. If selecting and modifying e is easier and more reliable than entering s, then it is an attractive strategy. If s is
long, for example, and differs from e by a single character, selecting and fixing e is probably faster. If s is short,
it is unlikely that the user would bother.

Partial matches by prefix were investigated. A command line is matched whenever it is a prefix of the next
submission. If s= “edit fig2”, for example, some partial matches on prefix for e could be “ed”, “edit”, “edit fig”,
and “edit fig2”.

In partial matching, history lists are not altered. Rather, it is the definition of recurrence that has changed. Any
increase in predictive probability comes at the expense of fewer useful characters predicted. Effects of partial
matching are shown for a recency ordered history list both with duplicates retained and with duplicates pruned.

A hierarchy of command lines and command-sensitive sublists. One way of increasing the
effectiveness of a history list is by using existing displayed items as a hierarchical entry point to related items,
More specifically, consider a history list of command lines where each item can further raise a secondary list of
all lines that share the same initial command (which we call a command-sensitive sublist). One first scans down
i entries in the normal list for either an exact match which terminates the search, or for a line that starts with the
desired command. In the latter case, the command-sensitive list is displayed (perhaps as a pop-up menu) and the
search continues until an exact match is found j entries later. The distance of a matching recurrence is simply i+j.
Given the sequential list in Table 3, for example, the command sensitive sublist on item 11 (edit fig]) would
contain edit fig2 and edit draft.

Supporting command reuse: Empirical foundations and principles 12 Greenberg and Witten, 1993

Such a scheme could do no worse than the original method of displaying the history list, and has potential to do
much better. This method was tested by using recency-ordering of both the primary and command-sensitive
history lists with duplicates saved in their latest position only.

Combinations. The strategies above are not mutually exclusive, and can be combined in a variety of ways.
The bottom half of column 2 of Table 3 shows one such possibility, where the event list is conditioned by
directory sensitivity and pruning. Data sets were re-analyzed using combinations of a few conditions mentioned
above.

7.3 Evaluating the conditioning methods

Data Selection. Conditioning by directory context is no different from standard sequential history if subjects
only work within a single directory. As not all subjects used multiple directories, this portion of the analysis was
restricted to the experienced programmers, each of whom used several directories.® All other groups had subjects
who used one directory exclusively (17 of the 55 novice programmers, 6 of the 25 non-programmers, and 2 of the
52 computer scientists). Each subject from the experienced programmer group is re-analyzed using the various
conditioning methods and some of their combinations for redefining both the history list and the method of
determining recurrences.

Length of command lines and Mp. Before delving into details of how each method performs according to
the quality metric, we need to determine the best performance possible. To start, the average length of command
lines is 7.58 characters, where terminating line feeds are not counted and duplicate lines are included. This was
calculated by finding the average line length for each subject, and averaging those results over all subjects. These
numbers will under-estimate the actual characters typed, for editing sequences (such as backspaces and correction
keystrokes) are not included.

Since reuse facilities can only predict lines that have been entered previously, it is important to know if recurring
lines have a different average length than those appearing only once. Further analysis shows that the average
length of submissions that already exist on the history list is 5.97 characters, while those that appear for the first
time are 12.29 characters long. This is not as surprising as it might seem at first, for short lines with few
arguments are usually more general-purpose (and therefore reusable) than complex lines. We would expect
frequently-appearing lines to be shorter than lines that are rarely or never repeated.

The maximum possible value for M, is therefore 5.97R / 100, for M is calculated over all submissions. As R
is 74.4% for experienced programmers, Mp for an optimal conditioning method is 4.43 characters predicted per
submission.

7.4 Results

Results for all conditions are summarized in two tables, each presenting various distributions over the last fifty
items of the history list, Table 4 presents the percent frequency of submissions recurring as a running sum over
distance (Rp). This includes the total recurrence rate over the complete history list, which differs with certain
conditions.S Figure S graphs the results of Table 4. As with Figure 4b, the horizontal axis shows the position of
the repeated command line on the history list relative to the current one, while the vertical axis represents Rp,
the rate of accumulated command line recurrences, as a percentage.

The next table involve the length in characters of recurrences. Table 5 displays the metric Mp, which shows how
many characters are saved for an average submission. This value accounts for recurring and non-recurring
submissions, and assumes that the user can select from D predictions. Figure 6 graphs the performance of each

conditioning method over distance using this metric. Tables of values of R (defined in Section 5) and c{ are
found in Greenberg (1993).

—Table 4 around here—
—Figure 5 around here—
—Table 5 around here—
—7Figure 6 around here—

5 Another reason for limiting the number of subjects analysed is more pragmatic—about 4 to 8 hours of machine time
were required to process a single condition for each group.

6The recurrence rate differs when the way of determining matching submissions changes (partial matching, commands
only) and when the history list is split into multiple lists (directory sensitivity).

Supporting command reuse: Empirical foundations and principles 13 Greenberg and Witten, 1993

Standard sequential. Rp, , is 44.4% for the experienced programmer group (Table 4), which is around 60%
of the maximum value it could have (R = 74.4%). The metric Mp , for the same group is 2.48 characters per

submission (Table 5), which is 55% of its maximum value of 4.43 characters. These figures will be used as a
benchmark for comparing other conditioning methods.

Pruning duplicates. Although pruning duplicates off the history list does not alter the recurrence rate, it does
shorten the total distance covered by the distribution (i.e. the history list is smaller).

First, how does saving single copies of recurring activities in their original position on the history list compare
with saving items in their latest position? A quick glance at the tables and graphs shows that the former gives
exceedingly poor predictive performance. Curiously, saving activities in their original position gives a much
higher average length of predicted strings than any other conditioning method for lines recurring over small
distances (see Greenberg 1993). But it is the low-frequency lines that must contribute most to this average, as
high-frequency ones do not remain near the front of the list. This larger than expected line length supports the
hypothesis that oft-repeated lines are shorter on average than rarely repeated ones. However, the low probability
values associated with those recurrences reduce any benefit accrued by predicting longer lines.

Second, how good is the strategy of saving duplicates in their latest position? Consider a 10-item working set.
The probabilities Rp,, of a recurrence falling in that set are 11% and 49% for the original and the latest position

respectively, and the corresponding values of Mp,, are 1.10 and 2.78 characters per submission. Saving activities

in their original position is clearly ineffective. Unless stated otherwise, the remainder of this paper assumes that
history lists with duplicates pruned will always save the single copy in its position of latest occurrence.

As the working set size increases, so does the value of Rp associated with a duplicates-pruned list when compared
to the standard sequential list (Table 4 and Figure 5). Pruning duplicates increases the overall probability of a ten-
item working st by 4.8% (Rp,,=49.1% vs 44.4%), and Mp , is increased by 0.3 characters per submission to

2.78.

Frequency order. Using recency as a secondary sort in a frequency-ordered list is marginally better than sorting
by reverse-recency. The overall probability that a ten-item working set will contain the next submission is 1.1%
higher, and 0.1 character more is predicted per submission. Since these reflect the bounds of these two conditions,
it is hardly worth worrying about how to do the secondary sort. Still, whenever frequency-ordered lists are
discussed in this paper, the better secondary sort of recency is assumed unless stated otherwise.

Frequency-ordered history lists do not do as well as strict sequential ones, even though duplicates are not included
in the former. Although the probability of a hit in a ten-item working set is about the same (Rp, , = 44.4%),

lines predicted are shorter (as expected). The metric Mp,, is 0.6 characters less per submission.

Alphabetic order. As anticipated, alphabetic ordering of history lists gives the poorest performance of any
conditioning technique (this assumes sequential searching through the list). With a ten-item display,
Rp,,=10.1%, and only 0.65 characters are predicted per submission. If a user were scrolling through this display,
fully 100 items (or ten pages) must be reviewed on average to match Mp, , for the strict sequential list!

Context-sensitive history lists by directory. Creating context-sensitive directory lists with duplicates
retained decreases the overall recurrence rate for experienced programmers from 74.4% in the strict sequential case
10 65.5%, because command lines entered in one directory are no longer available in others. Although this
reduction means that plain sequential lists out perform directory-sensitive ones over all previous entries, benefits
were observed over small working sets. The first three directory-sensitive items are more probable than their
sequential counterparts, approximately equal for the fourth, and slightly less likely thereafter. The accumulated
probabilities Rp cross over with a working set of twenty-seven items (Figure 5). With a working set of ten
items, directory-sensitivity increases the overall probability that the next item will be in that set by 2.5% (Rp,,

= 46.9%). The length of lines predicted in the directory sensitive condition are also longer than those predicted by
a strict sequential list, and Mp,, is 0.35 characters per submission higher.

Ordering commands by recency. When all aspects of a command line are ignored except for the initial
command word, the recurrence rate jumps to 95.2%. The accumulated probabilities of recurrences are also very

Supporting command reuse: Empirical foundations and principles 14 Greenberg and Witten, 1993

high when compared to the strict sequential list: Rp,;=72.7% vs. 44.4%. But the high predictability is offset by
the low number of characters predicted. Mp,, actually drops 0.3 characters per prediction.

Partial matches. Pattern matching by prefix increases the recurrence rate to 84.4%, where the recurrence rate
is now defined as the probability that any previous event is a prefix of the current one. As partial matches are
found before more distant (and perhaps non-existent) exact matches, an increase is expected in the rate of growth
of the cumulative probability distribution. This increase is illustrated in Table 4 and Figure 5. Conditioning by
partial matching increases Rp,, of a ten-item working set by 6.4% when compared to a strict sequential list

(Table 4), although lines predicted are shorter. Still, Mp,, is increased slightly by 0.16 characters per
submission.

A hierarchy of command lines and command-sensitive sublists. The history list comprised of
recency-ordered non-duplicated lines and command-sensitive sublists shows the best performance of all conditions
evaluated. The accumulated probability of a ten-item display is Rp,, = 55.5% out of the 74.4% possible. Mp, ,

is 3.3 characters per submission, compared to the 4.4 character maximum for an optimal system.

Combinations. When conditioning methods are combined, the effects are slightly less than additive. A few
possible combinations are included by removing duplicates from both the directory-sensitive and partial matching
conditions. Each improves as expected, as illustrated by Tables 4 and S, and Figures 5 and 6. Where feasible,
conditioning methods can be combined even further. For example, a partially-matched, pruned and directory
sensitive history mechanism increases Rp,, over a strict sequential one by 12.7% with a working set of ten

items (reported in Greenberg and Witten 1988b).

7.5 Discussion

The recurrence rate R provides a theoretical ceiling on the performance of a reuse facility using literal matches. It
is reached only if one reuses old submissions at every opportunity. However, finding and selecting items for
reuse could well be more work than entering them afresh, especially if it is necessary to search the complete
history list. Pragmatic considerations mean that most reuse facilities choose a small set of previous submissions
as predictions, and offer only those for reuse. While the last section demonstrated that temporal recency is a
reasonable predictor, the conditioning methods described and evaluated here illustrate that simple strategies can
increase predictive power even further.

We saw that up to 55% of all user activity in csh can be successfully predicted with working sets of ten
predictions for literal matches, depending upon the conditioning method chosen. But the best a perfect literal
reuse facility could do is, on average, R = 75%. The best predictive method described here is therefore 55/75
effective, or around 75% of the optimum possible.

When the quality metric is incorporated, we observe that the best method correctly predicts 3.3 characters per
submission (with a working set of 10 items), compared to the 4.4 optimum calculated previously. Again, the
method is about 75% as effective as the optimum.

In marked contrast, a few conditioning methods perform poorly. Saving duplicates in their original position has
no benefit, and alphabetic ordering of the history list is questionable. Although frequency ordering does not fare
badly, other methods give better results.

The number of characters saved per submission may seem quite small. The skeptic would conclude that reuse
facilities are perhaps not worth the fuss. But a few points should be considered. First, the number of characters
saved in practice would be considerably higher, for the string is already formed and editing is not necessary.
Actual savings are likely double the theoretical ones, due to the extra editing and correction keystrokes e.g.
backspaces, erroneous characters, and so on (Whiteside, Archer, Wixon and Good 1982). That is, selecting an
item through history will, in practice, replace around 6.6 keystrokes on average. Second, recognizing and
selecting an activity is generally considered easier than recalling or regenerating it. Third, it may all depend upon
the user’s focus of attention. If he is selecting items from a history list with (say) a mouse, he may continue to
do so rather than switch to the keyboard. The reverse is also true.

There is no guarantee that any of the conditioning methods describe here will be effective in practice, for the
cognitive and mechanical work required for finding and selecting items for reuse from even a small list may still
be too costly. Research is required in three areas. First, other conditioning methods should be explored that
further increase the probability of a set of predictions (up to the value of R). One candidate could use the model

Supporting command reuse: Empirical foundations and principles 15 Greenberg and Witten, 1993

similar to that employed by the REACTIVE KEYBOARD (Darragh and Witten 1992), an adaptive system that
bases its prediction on a frequency-based Markov model. Another candidate, explored by Lee (1992), uses locality
of command recurrences to account for history use. While promising in principle, her study showed that
command line recurrences exhibit poor locality (31%). Also, a predictive method based on locality remains to be
constructed. Second, the size of the working set should be reduced. Ideally, only one correct prediction will be
suggested. Third, the cognitive effort required for reviewing a particular conditioned set of predictions must be
evaluated (see the GOMS modeling of reuse of Lee 1992). One factor is whether the user knows beforehand if the
item being sought appears in the set, otherwise she may face an exhaustive and ultimately fruitless search.
Another factor is whether the item can be found rapidly. Given these factors, it is possible that one conditioning
technique may give better practical performance than another theoretically superior one.

8. Principles: How Users Repeat Their Activities

The preceding sections analyzed command line recurrence in dialogs with the UNIX csh. Based on the empirical
results, the first part of this section formulates general principles that characterize how users repeat their activities
on computers. Some guidelines are also tabulated for the design of a reuse facility that allows users to take
advantage of their previous transaction history. The second part steps back from the empirical findings and
presents a broader view of reuse.

We abstract empirical principles governing how people repeat their activities from the UNIX study described
carlier, They are summarized in Table 6 as empirically-based general guidelines for the design of reuse facilities.
Although there is no guarantee that these guidelines generalize to all recurrent systems, they do provide a more
principled design approach than uninformed intuition.

—Table 6 around here—

8.1 Principles

A substantial portion of each user’s previous activities are repeated. In spite of the large number
of options and arguments that could qualify a command, command lines in UNIX csh are repeated surprisingly
often by all classes of users. On average, three out of every four command lines entered by the user have already
appeared previously, UNIX is classified as a recurrent system by the definition in Section 2.

This high degree of repetition justifies the intent of reuse facilities. Users should be re-entered their recurring
inputs more easily than their original entries. The aim is to reduce both physical tedium and the cognitive
overhead of remembering past inputs. Reuse facilities should not be targetted only to experts—they can help
everyone.

New activities are composed regularly. Although many activites are repeated, a substantial proportion
are new. One out of every four command lines entered to UNIX csh are new submissions. Composing command
lines is an open-ended activity.

Many modern interfaces provide popup menus as a way of structuring and packaging common activities. Though
useful for well-understood domain-specific systems that collect specialized tools together, a package of tailored
activities will not suffice as a front end to the open-ended recurrent systems addressed by this paper. Although the
few facilities shared by users should be somehow enhanced, user composition of new activities must be supported
as well.

Users exhibit considerable temporal recency in activity reuse. The major contributions to the
recurrence distribution are provided by the last few command lines entered.

Most reuse facilities are history mechanisms designed to facilitate re-entry of the last few inputs (Greenberg and
Witten 1993). Systems that do not have explicit and seperate displays of the event list rely on a user
remembering his own recent submissions, or on the visibility of the dialog transcript on the (usually small)
screen. Given the high recency effect, we expect limited success by memory alone.

Yet the principle does pinpoint design weaknesses of existing systems. First, the second to last command line
recurs more often than any other single input. But many reuse facilities favour access to the last entry instead.
For example, typing the shortcuts “redo” and “1!” in the INTERLISP Programmer’s Assistant (Xerox 1985) and
UNIX csh respectively defaults to the previous submission, and it is slightly harder to retrieve other items. In
history through editing, where one sees the interaction record as a scroll of intermixed input and output, a user

Supporting command reuse: Empirical foundations and principles 16 Greenberg and Witten, 1993

would have to search through two previous input and output sequences before finding the second to last entry
(Greenberg and Witten 1993).

Second, the major contributions to the recurrence distribution are provided by the previous 7 + 3 inputs. Yet
most graphical history mechanisms display considerably more than ten events. HISTMENU’s graphical menu of
history items for example, defaults to 51 items (Bobrow 1986), and MINIT’s window management window is
illustrated with 18 slots in the original paper (Barnes and Bovey 1986). Considering the high cost of real estate
on even large screens, and the user’s cognitive overhead of scanning the possibilities, a lengthy list is unlikely to
be worthwhile, For example, a menu of the previous ten UNIX events covers, on average, 45% of all inputs.
Doubling this to twenty items increases the probability by only 5%.

The cost/benefit tradeoff of encompassing more distant submissions could also be used to tune other predictive
systems that build more complex models of all inputs (see Greenberg and Witten 1993, and Greenberg, Darragh,
Maulsby and Witten 1994 for a description of several predictive systems oriented towards reuse). The high
recency effect associated with recurrences suggests that a reasonable number of successful predictions can be
formed on the basis of a short memory. Perhaps a recency-based short-term memory combined with a frequency-
based long-term memory could generate better predictions.

Some user activities remain outside a small local working set of recent submissions. A
significant number of recurrences are not covered by the last few items (about 40% of the recurring total with a
working set of ten events, using strict sequential ordering). Doubling or even tripling the size of the set does not
increase this coverage much, as all but the few recent items are, for practical purposes, equiprobable.

Unfortunately it is just these items that could help the user most. Since their previous invocation occurred long
ago, they are probably more difficult to remember and reconstruct than more recent activities. If the command
line is complex, file names would be reviewed, details of command options looked up in a manual, and so on.
Excepting systems with pattern-matching capabilities and scrolling—both questionable methods of recall—no
implemented reuse facility provides reasonable ways of accessing distant events. Although altemative strategies
are not investigated here, some possibilities are described in Greenberg and Witten (1993) .

Working sets can be improved by suitable conditioning. A perfect “history oracle” would always
predict the next command line correctly, if it was a repeat of a previous one. As no such oracle exists, we can
only contemplate and evaluate methods that offer the user reasonable candidates for re-selection. Although simply
looking at the last few activities is reasonably effective—60% of all recurrences are covered by the previous ten
activities—pruning duplicates, context sensitivity, partial matches, and hierarchies of command-sensitive sublists
all increase coverage to some degree. Combining these methods is also fruitful. But they have drawbacks too.

Pruning duplicates increases the coverage of a fixed-size list. However, if sequences of several events can be
selected (as in INTERLISP’s Programmers Assistant, Xerox 1985), pruning may destroy useful sequences. As
well, events no longer follow the true execution order, which may confound a user’s attempt to recall them by
position. Pruning problems also arise when the history list serves other purposes. Consider, for example, the
undo facility in the Programmer’s Assistant. As side effects of activities are stored along with the text of the
activity, undoing two textually equivalent items may have different results. In this case, items cannot be pruned
without compromising the integrity of the undo operation (Thimbleby 1990).

Conditioning the working set on the current working directory may eliminate useful context-independent items
from the history list with only a slight gain in predictive power. But the usefulness of references may improve,
since viewing the history list may help remind the user of the specialized and perhaps more complex directives
submitted in that context.

Retrieval by partial matching allows a user to select any event and edit it for spelling corrections or minor
changes. There is no guarantee that the editing overhead will be less than simple re-entry. The possibility of
erroneously retrieving an undesired event must be considered as well.

When command-sensitive sublists are included but ignored, the potential for reuse is still as least as high as the
primary list. Using the attached sublists can only increase the chance of finding a correct match. Still, these
sublists involve more mechanical overhead for reuse unless they are on permanent display, and even then there is
a cognitive overhead associated with hierarchical searches.

Some “obvious” or previously implemented ways of presenting predictions do poorly.
Scrolling through alphabetically-sorted submissions is ill-suited to activity reuse. Yet this scheme pervades many
modem, popular systems. The Apple Macintosh, for example, presents a scrollable alphabetic display of files for

Supporting command reuse: Empirical foundations and principles 17 Greenberg and Witten, 1993

selection within its applications. If file access is a recurrent system (which it probably is), then structuring file
lists by temporal recency could give quicker selection, especially with the large file stores available on today’s
computers.

The previous section has shown that saving duplicates in their original position is an extremely poor predictive
strategy for maintaining lists. Yet it is used by several history systems. It is the only method of reviewing cards
visited in HYPERCARD (through the RECENT facility, Goodman 1987), and is a presentation option in
MINIT’s window management window (Barnes and Bovey 1986). Alternative strategies should be encouraged.

Ordering lists by frequency of use may or may not give any benefit over recency. Although used fruitfully by the
dynamic menu system (Greenberg and Witten 1985), the usability and predictive power of that system could
increase if recent selections were treated preferentially, perhaps by giving them their own display space on the
top-level menu screen.

Predicting commands without their arguments has little value. Although predictability is increased, the overall
quality of prediction drops because mostly short sequences are offered. Perhaps inclusion of
command-sensitive sublists could improve this fault.

When using history, users continually recall the same activities. UNIX csh users generally
employ history for recalling the same events within a login session (this result is based on the same study, and is
described in the Appendix in Greenberg and Witten 1993). Once an event has been recalled, it should somehow be

given precedence.

Functionally powerful history mechanisms in glass teletypes do poorly. UNIX csh history fails
on two points, even though it is functionally powerful (Greenberg and Witten 1993) . First, most people
(especially novices and non-programmers) never use it. Second, those who do, use it seldom. Only a fraction of
all recurrences are recalled through history.

8.2 Recurrences: natural fact or artifact?

Where do recurrences come from? Are they naturally part of a human-computer dialog or are they artifacts
imposed by poorly-designed interfaces? If the former, then reuse facilities are an essential component of a good
interface. If the latter, they are merely add-on patches; the interface itself should be reconsidered. We will see that,
depending upon the situation, recurrences can be either.

The recency effect seen in recurrent systems is probably due to repetitive actions responding to the interaction
particulars of a situation that is changing only slightly. In a development task, for example, the situation may be
debugging, where the usual responses to particular circumstances comprise a debug cycle. When the development
is complete, the cycle terminates. Debug cycles are seen throughout the UNIX traces, and seem responsible for
the recurrence probability peaking on the second to last submission. Consider this typical trace excerpt from a
non-programmer developing a document.

nroff Heading2 Chapterl | more
emacs Chapter 1 cycle repeats 4 times

nroff Heading2 Chapterl | lpr -Plg Ioccursonce

The sequence shows the user developing a document by iteratively editing the source text and evaluating the
formatted result on the screen, using the emacs editor and the nroff typesetter. The user’s evaluation of the
situation determines how often the cycle is repeated. When she was satisfied with the document, she terminated
the cycle by producing a final hardcopy.

Another extracted and slightly simplified sequence from a different user illustrates program development using the
fred editor and the ADA compiler.

fred

ada -M concur -o g5.0 g5.a cycle repeats 11 times
g5.0 | cycle repeats 3 times
fred

ada -M concur -0 g5.0 g5.a cycle repeats 6 times
g5.0

Supporting command reuse: Empirical foundations and principles 18 Greenberg and Witten, 1993

This shows three debug cycles all related to the same development process. In the first, the user edits some source
code until it compiles successfully (11 cycles), and then evaluates the executable program. Final tuning of the
program is done by expanding the initial debug cycle to include editing, compilation, and execution.

These observations relate to Suchman’s thesis that plans are derived from situated action—the necessarily ad hoc
responses to the contingencies of particular situations (Suchman 1987). We saw that the user’s plan for the
development process is necessarily vague, since bugs and difficulties cannot be predicted beforehand. The
developer must, of necessity, respond to the particulars of each individual situation. These responses appear
repetitious because the situation is altered only slightly after each action.”

In the case of debug cycles, it is certain that some recurrences are artifacts that can be eliminated by different
interfaces. Interpreted or incrementally compiled programming environments, for example, remove the necessity
for repeated recompilation of the source (see Reiss 1984, for an example). In other domains, what-you-see-is-
what-you-get text processors and spreadsheets not only remove the “compile” step from the cycle, but also show
the current state of execution. No distinction is made between the source and developing product, and any changes
update the display immediately.

But other recurrences are not so easily eliminated. Repetitions are often a natural part of the task being pursued.
Design work, for example, is fundamentally an iterative process. A second example is telephone dialing. The
caller may dial the same number repeatedly when a connection is not made, or he may be a middleman arbitrating
information between two or more other people. Retrieval of information in manuals is another example of
recurrences that arise from repetition of our intentions rather than from interface artifacts. Or consider navigation
on computers where people must locate and traverse the many structures necessary for their current context (e.g.
navigating file hierarchies and menu-based command sets, and manipulating windows to find pertinent views).
Since context switching is common, these traversals would recur regularly.

Other recurrences come from long-term context switching. In the UNIX traces, it is usual to se¢ work on a
particular task (say document development) occurring in bursts. In a single login session, these bursts may be
just a single task interrupted by other dependent or independent diversions. Over multiple login sessions, tasks
are constantly released and resumed.

In summary, some recurrences are artifacts arising from particular aspects of system design and implementation.
Others are not, for they arise directly from the user’s intention, independent of the computer system. Perhaps
future systems will minimize the need for reuse facilities by eliminating the artifacts. For the present, reuse
facilities remain a potentially viable and very general way of handling repetition.

9. Summary

We have investigated the empirical basis behind an interactive support facility that allows people to reuse their
on-line activities. The chief difficulty with this enterprise is the dearth of knowledge of how users behave when
giving orders in open-ended computer dialogs. As a consequence, existing reuse facilities—as surveyed in
Greenberg and Witten (1993)—are based on ad hoc designs that may not adequately support a person’s natural and
intuitive way of working.

We began by exploring the notion of recurrent systems, where most users predominantly repeat their previous
activities. A few observations of recurrent systems from both non-computer and computer domains were
summarized in this context to help pinpoint salient features. Although people were seen to generate many new
activities, old ones were repeated to a surprising degree. In UNIX, for example, the average recurrence rate for
command lines was 75%. Further study showed that the probability distribution of the next submission repeating
a previous one shows recency—the premise behind history mechanisms—to be a reasonable predictor of what the
person will do next.

The potential opportunities for reuse were investigated further by describing and evaluating a variety of
conditioning methods. Each method used differing strategies for choosing a small set of previous submissions as
predictions of the next one. In particular, we saw that up to 55% of all user activity and 3.3 characters per csh
submission can be predicted successfully with working sets of just ten predictions. Since the best any literal
predictive method could do is R = 75% on average, or 4.4 characters per submission, the conditioning methods
are about 75% effective. There is still room for improvement.

7Allhough repetitions in the UNIX csh dialog shown are identical with the original, the interactions occurring within
the editor between its different invocations are probably non-repetitious.

Supporting command reuse: Empirical foundations and principles 19 Greenberg and Witten, 1993

In marked contrast to the theoretic potential of reuse facilities, the “popular” csh history is used poorly in practice
(reported in Greenberg and Witten 1993). Most people, particularly those who are not computer sophisticates, do
not use it. Those who do, use it rarely. Only 4% of all activity was reused, compared to the 75% possible! And
in spite of the esoteric features available in csh history, only the simpler features were used with any regularity.
It was suggested that the results observed are likely artifacts of using a poorly designed facility, rather than a
human difficulty with the idea of reuse.

We then derived a set of principles that characterize how people repeat their activities on computers, These
principles were reformulated as general guidelines for the design of reuse facilities (Table 6). Although there is no
guarantee that they apply to all recurrent systems and applications, they do seem a reasonable starting point in
the absence of more system-specific data.

There is plenty of scope for future research into reuse facilities. We have already built a reuse facility based upon
the principles presented here, and have extended the idea further by integrating reuse with a tool that lets one
organize activities as well (Greenberg 1993; Greenberg and Witten 1993). Following the metaphor of a
handyman’s workbench, this user support facility, through direct manipulation editing, allows the user to pick
items off the reuse facility and stash them temporarily on a visible tool shelf or place them semi-permanently
within a drawer hierarchy of a tool cabinet. If desired, items can be annotated with a help message and a label.
The drawer, which may be displayed and modified at any time, becomes a task-specific toolkit for the user’s
activities. By using the history list as a primary source of tried and tested candidates for storage within the
workbench organization, a person can rapidly create, annotate, and modify his personal workspace so that it
responds to his situated needs.

References _

Bannon, L., Cypher, A., Greenspan, S. and Monty, M. (1983) “Evaluation and analysis of users' activity
organization.” In Proceedings of the ACM SIGCHI Human Factors in Computing Systems, pp. 54-57,
Boston, ACM Press. December 12-15.

Barnes, D. J. and Bovey, J. D. (1986) “Managing command submission in a multiple-window environment.”
Software Engineering Journal, 1(5), pp. 177-183. September.

Bennett, J. (1975) “Storage design for information retrieval: Scarrott's conjecture and Zipf's law.” In International
Computing Symposium ‘75, pp. 233-237, Amsterdam, June 2-4, Gelenbe and Potier (ed), North-Holland.

Bobrow, D. (1986) “HistMenu.” In Lisp User Library Packages Manual, Koto Release. Xerox Artificial
Intelligence Systems. April.

Card, S. K., Moran, T. P. and Newell, A. (1983) The psychology of human-computer interacton, Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

Darragh, J. J. and Witten, 1. H. (1992) The Reactive Keyboard. Cambridge Series in Human-Computer
Interaction, Cambridge University Press, Cambridge.

Draper, S. W. (1984) “The nature of expertise in Unix.” Interact ‘84 - First IFIP Conference on Human-
Computer Interaction, 2, pp. 182-186. Sept 4-7.

Ellis, S. R. and Hitchcock, R. J. (1986) “The emergence of Zipf's law: spontaneous encoding optimization by
users of a command language.” IEEE Transactions On Systems, Man, And Cybernetics, SMC-16(3), pp.
423-427. May/June.

Goodman, D. (1987) The Complete HyperCard Handbook. The Macintosh Performance Library, Bantam Books.,
New York.

Greenberg, S. (1988) “Using Unix: Collected traces of 168 users.” Research Report 88/333/45, Dept of
Computer Science, University of Calgary, Calgary, Alberta. Magnetic tape of user data included with report.

Greenberg, S. (1993) The user as toolsmith: The use, reuse, and organization of command-based interfaces.
Cambridge Series on Human-Computer Interaction, Cambridge University Press, Cambridge, UK.

Greenberg, S., Darragh, J., Maulsby, D. and Witten, I. H. (1994) “Predictive interfaces: What will they think of
next?” In Extra-Ordinary Human Computer Interaction, A. Edwards ed., Cambridge, Cambridge University
Press. Forthcoming.

Greenberg, S., Peterson, M. and Witten, L. (1986) “Issues and experiences in the design of a window management
system.” In Proceedings of the Canadian Information Processing Society National Conference, October 21-
24,

Greenberg, S. and Witten, I. H. (1985) “Adaptive personalized interfaces -- a question of viability.” Behaviour and
Information Technology, 4(1), pp. 31-45.

Supporting command reuse: Empirical foundations and principles 20 Greenberg and Witten, 1993

Greenberg, S. and Witten, I. H. (1988a) “Directing the user interface: How people use command-based systems.”
In Proceedings of the IFAC 3rd Man Machine Systems Conference, Oulou, Finland, June 14-16.

Greenberg, S. and Witten, 1. H. (1988b) “How users repeat their actions on computers: Principles for design of
history mechanisms.” In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems, pp. 171-178, Washington, May 15-19, ACM Press.

Greenberg, S. and Witten, I. H. (1993) “Supporting command reuse; Mechanisms for reuse.” Int J Man Machine
Studies. To appear.

Hanson, S. J., Kraut, R. E. and Farber, J. M. (1984) “Interface design and multivariate analysis of UNIX
command use.” ACM Trans Office Information Systems, 2(1). March.

Joy, W. (1980) “An introduction to the C shell.” University of California, Berkeley, California. November.

Knuth, D. (1973) The art of computer programming: Searching and sorting, Addison-Wesley, .

Lee, A. (1992) “Investigation into history tools for user support.” PhD Thesis, University of Toronto,
Department of Computer Science.

Peachey, J. B., Bunt, R. B. and Colbourn, C. J. (1982) “Bradford-Zipf phenomena in computer systems".” In
Proceedings of the Canadian Information Processing Society National Conference, pp. 155-161, Saskatoon,
Saskatchewan. May.

Reiss, S. P. (1984) “Graphical program development with PECAN program development systems.” In
Proceedings of the ACM SIGSOFTISIGPLAN software engineering symposium, Pittsburgh, Pennsylvania,
April 23-25.

Ross, P., Jones, J. and Millington, M. (1985) “User modelling in command-driven systems.” Research paper
264, Department of Artificial Intelligence, University of Edinburgh.

Suchman, L. A. (1987) Plans and situated actions: The problem of human-machine communication, Cambridge
University Press, Cambridge.

Sutcliffe, A. and Old, A. (1987) “Do users know they have user models? Some experiences in the practice of user
modelling.” In Human-computer interaction—Interact ‘87, pp. 35-41, H. Bullinger and B. Shackel
ed.Elsevier Science Publishers B.B. North Holland.

Thimbleby, H. (1990) User interface design. Frontier Series, ACM Press, Addison-Wesley Publishing Company,
New York.

Whiteside, J., Archer, N., Wixon, D. and Good, M. (1982) “How do people really use text editors?” In
Proceedings of the ACM SIGOA Conference on Office Information Systems, pp. 29-40, June, ACM Press.

Witten, I. H., Cleary, J. and Greenberg, S. (1984) “On frequency-based menu-splitting algorithms.” Int J Man
Machine Studies, 21(2), pp. 135-148, August.

Xerox (1985) “The Interlisp-D reference manual, Volume 2.” Xerox Artificial Intelligence Systems. April.

Zipf, G. K. (1949) Human behaviour and the principle of least effort, Addison-Wesley, Ontario.

Supporting command reuse: Empirical foundations and principles 2] Greenberg and Witten, 1993

16001
14001
Command
line 1200
vocabulary
size 10001
8001
600
4001
2001

18001

% 1000 2000 3000 4000 5000 6000

Total number of comand lines entered

Figure 1. Regression: Command line vocabulary size versus the total command lines
entered by each subject

1500 Scientist

o Experience
N

wn

Non

%*1 000 Programmer
=]

Qo

©

(@]

~

o Novice

£ 500

©

o

©

-

E

@)

O

O T T T
0 2000 4000 6000

Number of command lines entered

Figure 2. Command line vocabulary size versus the number of commands entered for
four typical individuals

Given:

e a trace numbered from 1 through n, where n is the last line entered;
e an array of counters used to accumulate the number of recurrences
at a particular distance.

Algorithm:

/* For each item, find its nearest match on the history Lst */
/* and record it */
for (i:=1 ton)
for (j := i-1 downto 1)
if (submission; = submission;) then begin
distance := i-j;
counter[distance] := counter[distance] + 1;
break; /* jump out of inner loop */
end
/* The averaged value found in each counter is Ryq */
for (distance := 1 to n)
counter[distance] := (counter[distance]/n) * 100;

Figure 3. Processing a subject’s trace for all values of Rs g4

(@)
251
Command -
line ol ® Novice Programmers
recurrence W Experienced Programmers
rate A Computer Scientists
(%) 153 © Non Programmers
+ All Subjects
101
5.
0 2 4 6 8 10 12 14 16 18 20
Distance of command line from the current one
(b)
maximum possible
701
Cumulative
command 601 all subjects
line
recurrence 901
rate
(o/o) 40'
304
20
10
0 -

0O 5 10 15 20 25 30 35 40 45 50
Distance of command line from the current one

Figure 4. a) Recurrence distribution; and b) cumulative recurrence distribution as a
measure of distance

1004

90+

commands only =

80 partial match {”0 duplicates

duplicates

recency, duplicate
in latest position

\,
Q@

recency —

1o}
2

direc_tgry no duplicates
sensitive | duplicates

0
<

reverse recency

frequency{ recency

IS
<

)
Q@
—

-
alphabetic

/

recency, duplicate
In original position

RD,' Cumulative command line recurrence rate (%)

no
'

104

0O 5 10 15 20 25 30 35 40 45 50
Distance of command line from the current one

Figure 5. Cumulative probabilities of a recurrence (RD) over distance for various
conditioning methods

4.5,

command hierarchy —

no duplicates
duplicates

directory [no duplicates

sensitive | duplicates ‘ /

recency, duplicate ‘ ‘

3.5{ in latest position / /

reverse recency
recency

partial match {

@

MD: Cumulative number of characters saved per submission
@ no

} frequency

mma————
commands only

n
¢

recency, duplicate
in original position

alphabetic

&

0 5 10 15 20 25 30 35 40 45 50
Distance of command line from the current one

Figure 6. Cumulative avera

. ge number of characters saved per submission (Mp) over
distance

Name Sample | Total number | Number of command
size of command lines excluding errors
lines total | mean | std Jev
Novice Programmers 55 77423 | 73288 1333 819.8
Experienced Programmers 36 74906 | 70234 1950 1276.0
Computer Scientists 52 125691 | 119557 | 2299 2022.9
Non-Programmers 25 25608 | 24657 986 1155.6
Total 168 303628 | 287736 [1712 1408.8

Table 1. Sample group sizes and statistics of the command lines recorded

Sample Name Recurrence Rate Range
mean | std dev || minimum | maximum
Novice Programmers 80.4% 7.2 64.7% 91.7%
Experienced Programmers || 74.4% 9.7 51.4% 90.0%
Computer Scientists 67.7% 8.2 46.4% 82.0%
Non-Programmers 69.4% 8.1 50% 81.3%
[l Total I 73.8% | 9.6 | 46.4% | 91.7%]

Table 2. The average recurrence rate of the four sample Unix user groups

Sequential Duplicates Removed Frequency Order
starting in original latest secondary key secondary key
~/{text position position is recency is reverse-recency
14 cd ~/figs || 12 cd ~/text 14 cd ~/figs 10 Is 3110 1s 3
13 printdraft | 9 graphfigl |13 printdraft 14 cd~/figs 2| 4 editdraft 2
12 cd ~/text 8 editfig2 12 cd ~/text 13 printdraft 2|11 editfigl 2
11 editfigl 7 edit figl 11 editfigl 11 editfigl 2|13 printdraft 2
10 Is 5 cd ~/figs 10 Is 4 editdraft 2|14 cd~/figs 2
9 graphfigl | 3 printdraft 9 graph figl 12 cd~ftext 1| 8 editfig2 1
8 editfig2 2 edit draft 8 editfig2 9 graphfigl 1| 9 graphfigl 1
7 editfigl 1 Is 4 edit draft 8 editfig2 1[12 cd~ftext 1
6 Is
5 cd~/figs
4 edit draft
3 print draft
2 editdraft
1 Is
Alphabetic Directory Sensitive Commands
duplicates directory context | directory context recency,
removed is ~/text is ~Ifigs no duplicates
14 cd ~/figs || 14 cd ~/figs 12 cd ~/text 14 cd
12 cd ~/text 3 print draft 8 editfigl 13 print
4 edit draft 5 cd ~/figs 10 Is 11 edit
11 editfigl 4 edit draft 9 graph figl 10 Is
8 editfig2 | 13 printdraft |11 editfig2 9 graph
9 graphfigl | 2 editdraft 7 editfigl
10 Is ’ 1 Is 6 Is
13 print draft
with duplicates removed,
events saved in latest position
1 Is 8 edit fig2
4 edit draft 9 graph figl
13 printdraft | 10 s
14 cd ~/figs 11 editfigl
12 cd ~/text

In Unix, users change directories through the cd command. The

@ n

~" s

shorthand for the home directory. Following “I”’s indicate sub-directories.

Table 3.

Examples of history lists conditioned by different methods

snowureA 10§ (dy) 9OUBISIP JOAO DUILINIII B JO saniiqeqold sanenmn)

spoytowi Suruonipuod

¥ 2lqeL
ZrvL 11l | LroL | 8e89 | 189 | vs'ss [1U€s | vris [vrsw | 9ssy | ety | 965€ | 9c6 [100T [219 | pasowas sareanidnp “Kouasol
(Y2421 pUDWUO))
6€'v8 = 88'9L _ v6vL | YOTL | 0699 | TO'9S _ or'vs | v8'1S _cm.aq _ Yoy _ STty | 069€ | €8°0€ _ €T , LV'S poroutas sateoridnp
ccv8 || €669 | 819 | w9 | 9109 | 8L0s | 616y | vELY | LISy | LSTY | TT6E | ILVE | 9T6T | STIT | LI'B popnpout sareoidnp
. :Kou2224 £q Suyo1pw [pN4DJ
256 || 6706 | S068 | €898 | 1978 | 0L°TL | 68°0L | 8989 [zr9o | 10€9 | z68S | LI'€S [29w | €TSE [oest | poaousos sareondnp
:£ouaoa4 £q KJuo spupwwo))
€5°S9 __ YLE9 _ €679 _ on.s_ow.wm _ 1615 | €£1°0S | 09°'8% | ¥S'9v | 81UV | 90'IY | £69€ | SUIE V SL1T _ 9L paaowas sateoridnp
ccco || 69°6s | svss | zoos | zes | s89v | €9y | zuvy | vwzy | 6€°0v | 99°LE | 9UVE | LT6T | LOTIT | VL papnpout sareordnp
:£ou2224 £q aanisuas Lio12.00Qq
ZrvL | 91°0¢ | ¥8'Sz | 9L1T | €591 [60°01 | 256 | 89'8 TigL |soL Joss |8y [sye | LzT |zt paaows sareoridnp
:43p40 o112qoydiy
ZrwL || €669 | 2029 | S88S | €9°€S | LEEY | ¥81v | TIOP | IT8E | €8°SE | 60°EE | 06'6T | SO'OT | 68°0C | OL'EI K5ua001 0510431 £ PUODIS
v || 899 | 1699 | 8609 | se'ss | 1wvw | 8Ty | 901v | s6'8€ | 8v°9E | 99°€€ | 6°0€ | TE'IT | BOTIT | ETE £oua0o1 KoY puooas
242pa0 Kouanbatg
ZopL 1 LOLO | 0099 | 1S€9 | 868S | LU'6¥ | LvLy | 8¥'Sy | TU'EY | 8T0v | 08'9€ | L8'IE | TS'OT | V681 | T19 Ajuo uonisod 1sa7e] Ul
oL || 679t | 787z | 8561 | 261 | 6211 | 8901 | €66 | LT6 |88 | 99L | S99 | LSS | 8LV €57 Auo uontsod reur3uo ur
oL || 1o | sses | z8°9s | LoTs | 66t | 66Tr | €61 | 9E6E | 00'LE | 90VE | ¥6'6T | TI'ST | 17781 9 skeme
:paaps sa1po1ydnp ‘Kouad3y
3_3_8_°~_=__a_n_h_e_m_v € | ¢ | 1 poyw
p:A aduesiq Sutuoipuo)

(G7¢) yua212d Uy p RIUB)SIP UIAIS B 0) dn 20ua11n31 8 Jo sanifiqeqod aanenuiny

SOUBISIP 1940 uoIssTqns 12d poaes S1a10BIRYD Jo Ioquuinu oFeIoAe sAnE[NWIN))

(Tmw)
§9IqelL

6ty | ey | civ]o6e [oce|8ie | voe | 88|89z | ez 60| 891|111 [Le0]| Porowsassaesndnp Kousso
:&Yo4p431y puvwwio?)

96'E _ 98°¢ ‘ we _ e [ez | e8¢ _ LT 7 LS'T _ wz|1ze |61 [091 | pIl _ SY0 parowas sareoridnp
79°€ | 1S€ | SE€ | TUE | ¥9T | 95T | LvT | 9€T | 12T | #0T | ol'1 | OST | 11T | S¥O papnjout satestdnp
:£0u2224 Lq Suryopwt jp1IDY

welwelesclovz]stz]orz]|eoc]ser]osgt]ect|sst|ver]eor[oso] paaowas sajedridnp
:£ou2224 £q Quo spuvunuo)

€6'€ 7 L8E 7 LLE ‘ 65°€ v €re | voe _ $6'C _ £€8°C _ 89°C | S¥T ‘ YT | 881 _ €1 | 850 ; poaowal sajeordnp
S9'C | LSE | S¥E | sTe | €8T |9LT | L9T | LST | ¥vT | LTT | S0T | 9L | 8T | 8Y0 papnout sajeoridnp
:6ou232.4 £q 2am15UaSs £10102.017

161|691 sy]z [soo| 190 vso|svo]ero]1c0] vzo]s10]800] €00 | poAowal satedi[dnp
242p40 Jnaqoydyy

eve |oze [66T|0sT| 681 |6L1 691 [LsT|svi|oct|[vi1]160]€90]€c0]| Adouaoa asianas Koy puooos
89'¢ | 6v°€ | 61°€ | ¥LT | 961 | 981 | SL'T | 291 | 6¥°1 | #€1 | 911 | €60 | $9°0 | Z€0 Kouaoax Koy puooss
249p40 Kouanbai .y

86'¢ | 98¢ | 69€ |ove | 8LT 89T |9st | v |sze|soz|oLt|wwi]zot |LED Aquo uonisod 1s3%e] Ut
0TT | 861 | SLT |81 |0l |SOT |660]| 60 |980|8L0|690]|650]|9%0|LT0 Afuo uomsod reurduo ug
SSE | EVE | STE | 66T | 8Y°T | OFT | 1€T | 61°T | ¥OT | L81 | €91 | SE'T | 660 | LEO skemre
:paaps sapondnp ‘Kouz02y

osJov Joc oz ot]| 6 | 8] c]o]s | v]elz] poyjaur
ue)siq Suguonipuo))

(dpy) suoissnuqns [fe J3A0 suondipasd (7 Jo s1apoeaeyd ui sduises adeidAe aanenun))

e 66 O 06006

©

Design Guidelines

Users should be able to recall previous entries.

It should be cheaper, in terms of mechanical and cognitive activity, to recall items than to
re-enter them.

Simple reselection of the previous five to ten submissions provides a reasonable working set
of possibilities.

Conditioning of the history list, particularly by pruning duplicates and by further hierar-
chical structuring, could increase its effectiveness.

History is not effective for all possible recalls, since it only lists a few previous events.
Alternative strategies must be supported.

Events already recalled through history by the user should be easily reselected.

Table 6. Design guidelines for reuse facilities

