
Building Flexible Groupware Through
Open Protocols

Mark Roseman
Saul Greenberg

1993

Cite as:
Roseman, M. and Greenberg, S. (1993) “Building flexible groupware through open protocols.” In ACM

Conference on Organizational Computing Systems, California, October, ACM Press.

BUILDING FLEXIBLE GROUPWARE THROUGH OPEN PROTOCOLS

Mark Roseman
Saul Greenberg

Department of Computer Science
University of Calgary
Calgary, Alberta, Canada T2N 1N4
(403) 220-6015 roseman,saul@cpsc.ucalgary.ca

ABSTRACT
This paper presents a technical approach to building flexible
groupware applications. Flexibility provides the promise of
personalizable groupware, allowing different groups to work
with the system in diverse ways which best suit the group’s
own needs. An implementation technique called open
protocols is described, which is a variation of client/server
architectures. Open protocols facilitate the addition of
group-specific modules long after the system has been
created. Three examples illustrating the use of open
protocols are presented: floor control, conference
registration, and brainstorming. Finally, a number of issues
facing the groupware developer using open protocols are
addressed, along with strategies that can help in dealing
with these issues.

KEYWORDS
Personalizable groupware, expandability, open protocols,
implementation technique.

INTRODUCTION
Conventional single-user applications are designed to
capture a profitable market share. While the product may
not be to everyone’s tastes, the vendor’s goal is to have it
acceptable to enough customers to make its production an
economically worthwhile venture. Those customers with
different requirements or preferences simply go to another
product, or do without. Since one person’s choice of
product rarely affects anothers, the resulting heterogeneous
application environments are quite tolerable.

Designers of groupware face more rigid criteria. Of course,
the product must satisfy enough groups to be commercially
viable. But unlike single user software, the product chosen
by the group should be acceptable and usable by nearly all
its members, for groupware acts as a common medium
through which people communicate, coordinate, and pursue
their common goals.

If the groupware cannot accommodate its potential users,
then conditions can occur that contribute to its failure [7].

• A critical mass of system adopters may not be reached if
too many people opt out of using the groupware product,
e.g. see Markus and Connolly’s [15] discussion of payoff
criteria for adopting technology.

• Participants who cannot or will not use the technology
face the danger of becoming second class citizens within
their own group [1].

• New people joining an established but evolving group
must quickly become proficient at using the system,
otherwise cliques of expertise may evolve.

• Participants in a group may have quite different roles that
are not recognized by the groupware product, e.g. see
Austin, Liker et al [1].

• The disparity between who does the work and who gets
the benefit of groupware leads to varying degrees of its
acceptance [3,8].

• Group needs evolve rapidly, not only from meeting to
meeting but within the course of a meeting. The
groupware must keep pace, e.g. see Stefik, Bobrow,
Foster et al’s [23] discussion of the rapid formation and
dissolution of subgroups within a meeting.

• Forcing groups to use a single groupware system may
trigger both individual and organizational resistance, and
may cause users to do things in undesirable and
unproductive ways [9]. At its worst, users will perceive
such systems as “fascist software,” e.g. see Bair and
Gale’s [2] report on the COORDINATOR.

Some of these conditions could be partially avoided if the
environment was homogeneous, that is, if all people were
content with a single groupware product. This can occur
when groupware is so transparent that almost anyone can
use it (such as teleconferencing), or when the service
provided is so valuable or so entrenched in an organization
that all users are effectively forced to use it.

In reality, homogeneity is almost impossible to achieve.
The differences present between group members—their
varying and evolving roles, needs, skills—and the
differences between groups as a whole are serious obstacles
to achieving uniform acceptance of a single groupware
product or style, especially if the product treats all users and
groups identically.

This paper presents a compromise solution by arguing that
homogeneous use of a groupware product is possible in a
heterogeneous environment by making the groupware

flexible enough to accommodate individual roles and group
differences.

Personalizable and Flexible Groupware
Personalizable groupware is defined as groupware that users
can tailor to match their individual needs (each member of
the group may observe a different behavior), and that groups
as a whole can change to match their overall needs (each
group may observe a different collective behavior) [7]. We
see personalizable groupware offering its users a range of
behaviors that reflect a corresponding range of the groups’
requirements.

The catch with personalizable groupware is that it is
difficult, if not impossible, for a designer to predict ahead of
time the complete range of behaviors the system should
exhibit. One solution is to make the groupware flexible as
well, so that new behaviors can be created and old ones
modified in ways that the original designer had not
anticipated. This is not advocating the chaos of a
completely customizable or unstructured system. We
minimally expect that the groupware designer would
determine what parts of the groupware system should
remain immutable, what parts should be flexible, and would
then set reasonable constraints on the personalization
allowed.

After briefly describing some related work, this paper
presents what we believe to be a fairly general approach to
building flexible and personalizable groupware called open
protocols. Because it is more of a concept or architecture
than a specific algorithm, we ground the idea by illustrating
how three different groupware components—floor control,
conference registration, and brainstorming—can all be built
in a flexible manner. However, flexibility comes at a cost,
and we raise issues such as synchronization and conflict
control, how open protocols can be designed when there is
uncertainty on how a system will be used, who constructs
the new components, and security.

RELATED WORK
A handful of groupware systems are personalizable, and a
few are described here. By personalizable we mean that users
of each system can select from a set of different behaviors.
QUILT, a multi-user asynchronous document editor, allows
its users to assume software-defined roles such as reader,
commentor, and co-author [11]. Each role gives the user
greater powers of annotation and revision. CRUISER is a
media space that lets its users set privacy permissions that
limit how others can observe and/or interact with them
[18]. The VIRTUAL LEARNING COMMUNITY is an
asynchronous conferencing system that lets a conference
facilitator tailor the groupware to support the purpose and
the variety of the group’s activities [9]. For example, the
boundaries that define group membership can be adjusted to
either enforce equal participation of all group members, or
to allow “lurkers”—people who follow the group’s
discussion but who never express themselves.

There are also several examples of flexible groupware. By
flexible we imply some degree of constrained open-ended
tailorability, where the system can be changed in ways not

foreshadowed by the original developer. INFORMATION
LENS is an information manager for mail and news. It is
flexible because end users can construct their own semi-
structured templates representing different types of mail, and
can create their own rules to filter and view incoming
information in quite sophisticated ways [13]. Next, there are
a variety of “conversation-based” systems that provide
flexibility in how different speech act units and the
protocols between them are defined; the idea is that
conversation and the rules that define it are tailored to the
group needs. Examples are STRUDEL [22], CHAOS [4],
OVAL [14], and CONVERSATION BUILDER [10]. Another
approach gives a programmer the ability to configure low-
level system constructs, such as the degree of “sharing” or
coupling exhibited by interface components [5], or the
degree of access control [21].

Our own approach of open protocols differs from the above
work because it is a general implementation technique that
can be applied to a variety of domains and situations. Its
only requirement is that the system behavior can be
configured by altering state information, and that
personalization is achieved by constructing different
modules to control state changes through a client/server
architecture. The following sections describe the technique
in detail.

OPEN PROTOCOLS
Open protocols are an implementation technique that can be
used to build flexible groupware systems that accommodate
the diverse needs of different groups. The technique allows a
designer to add new modules into systems long after the
original system has been implemented. Modules are tailored
to fit user and group needs, altering the way the system
behaves, and presenting an interface to the user appropriate
to the behavior.

The general idea is that the core system acts as a server
maintaining state information and obeying a primitive, pre-
defined protocol for determining how its state is changed.
Modules are external client processes that encapsulate high-
level concepts as permutations of these primitive protocols;
each module can then control the behavior of the core
system by transmitting directives for changing the system
state. Modules can also present an interface to the user that
is specific to that behavior. Because open protocols are a
variant of a client/server architecture, they can be
implemented on any machine and software architecture
supporting multiple processes or objects—potentially on
different machines—that can communicate with each other,
for example through TCP/IP stream sockets.

More specifically, open protocols have three components: a
controlled object (server) that maintains state, a controller
object (client), and a protocol describing how the two
communicate. Figure 1 shows the relationship between
these three components. The controlled object does not
maintain any policy regulating how its state can be
manipulated. Instead, a protocol for changing the state—
typically allowing extreme changes—is defined. The
controlled object obeys any external requests made using the
protocol to change its state. The controller, external to the

Controlled
Object

(Server)

Controller
Object
(Client)

Controller
Object
(Client)

.

Protocol
Primitives

Figure 1. Relation of controlled object (server), controller
objects (clients) and protocol in open protocols.

controlled object, implements a particular interface and
groupware behavior by the requests it sends to the
controlled object.

This model is in sharp contrast to most client/server
architectures, where policy traditionally resides in the
server, not the client. Using open protocols, the
responsibility is for the client (controller), not the server
(controlled) to implement policies; the server merely obeys
a set of generic commands from clients according to its
protocol.

The designer of an open protocol system must decide what
state changes are reasonable to embed within the controlled
object, and what protocol it should obey. This both
standardizes the system’s behavior and sets the constraints
on its flexibility. A variety of clients can be created at any
time afterwards and transparently integrated into the system.
Adding a new client is as simple as opening up a
connection (e.g. TCP socket) to the controlled object and
transmitting the appropriate protocol. Provided the client
uses the defined protocol, the controlled object needs no
other information about the client.

As a result, new and diverse clients, each with their own
unique interface and behavior, can be created at any time and
added on to the main system, without the need to make any
changes to the controlled object, not even recompilation. It
is possible—within bounds—to create clients with
behaviors that were never thought of when the protocol and
controlled object were initially designed and implemented.
This results in clients designed to suit the needs of
particular users groups, accommodating their preferred
working styles.

Because open protocols is a fairly abstract idea, the next
three sections ground the concept in a variety of examples.
We begin by showing how a variety of floor control
policies can be integrated with a simple shared screen
system. A second, more sophisticated example illustrates
conference registration and the various ways people can
create, join and leave a conference. The final example
illustrates how a generic brainstorming tool can be
constructed that facilitates a variety of uses in different

social situations. All show the diversity of the clients that
can be created from simple open protocols.

FLOOR CONTROL
Open protocols are a generalization of work on floor control
in the SHARE system [6,7]. Under that system, floor
control is used to mediate access to a shared terminal.
“Floor holders” can type to the shared screen, while those
not holding the floor can only observe.

Rather than implementing a single floor control policy or
even a small, fixed set of policies into the system (as done
in most shared view systems [7]), a protocol is defined in
SHARE whereby independent modules can be attached to the
system to manage floor control. The shared terminal itself
maintains a two-state flag for each user in the conference. If
the flag is set to “write,” the user can type to the shared
terminal, while if the flag is reset to “observe,” the user's
input is ignored. External floor control modules can attach
to the shared terminal and set or reset the flag for any user.
State changes are sent from the shared terminal back to all
attached floor control modules.

This scheme allows a wide variety of floor control policies
to be built, such as round-robin, free floor, preemptive,
explicit release, and central moderator (see [7] for full
details). The floor control modules are developed
independently from the main shared terminal, and others can
be added dynamically.

Under this scheme, the shared terminal acts as the controlled
object, maintaining state information in the form of an
observe/write flag for each user. The floor control modules
act as the controller objects or clients, specifying the
pattern of state changes of the flags in the shared terminal.
Finally, the protocol between the shared terminal and the
floor control modules is open in the sense that it supports a
wide variety of different policies, as defined by the floor
control modules and not the shared terminal. A subset of
the scheme implemented in SHARE is illustrated in
Figure 3. Set_write and set_observe both direct the shared
terminal to change the status of the indicated user, while
state (user) returns a particular user’s current status.

Figure 2 suggests how a number of different floor control
policies could be implemented. Each policy is controlled by
the user through an interface, such as the one shown in
Figure 4. Pre-emptive, round robin and moderator controlled
policies are all quite straightforward. However, the explicit
release policy brings up the problem of conflicts. Assume
the current floor holder releases the floor and two other
users attempt to grab the floor simultaneously. Both first
check that the floor is empty (it is). They both set their
own flag to allow writing. The end result will be both users
allowed to write at once. This problem is considered later.

CONFERENCE REGISTRATION
Open protocols are the basis for conference registration—
the process of creating, deleting, joining and leaving
groupware applications—in our groupware toolkit,
GROUPKIT [20]. GROUPKIT provides a registration system
decoupled from the main groupware application. The goal

Shared
Terminal

Floor
Control
Module

Floor
Control
Module

.

set_write(user)
set_observe(user)
state(user)

status(user)

Figure 3. Open protocols for floor control in a shared
terminal.

Pre-emptive Round Robin Explicit Release Moderator Controlled

Description:
Any user may at any time
grab control from any
other floor holders.

Description:
When done with the floor,
it is passed along to the
“next” user, assuming a
known, circular list of
users.

Description:
The floor is released
explicitly by the floor
holder. When empty it can
be grabbed by any user.

Description:
A moderator controls
which users can hold the
floor (none, one, several or
all).

on grab_floor:
 foreach user
 if (user=me)
 set_write(user)
 else
 set_observe(user)

on release_floor:
 foreach user
 if (user=next)
 set_write(user)
 else
 set_observe(user)

on release_floor:
 foreach user
 set_observe(user)

on grab_floor:
 foreach user
 if (state(user)=write)
 return
 set_write(me)

on allow_write(user):
 set_write(user)

on disallow_write(user):
 set_observe (user)

Figure 2. Four different floor control policies implemented using open protocols.

Figure 4. One possible interface for a floor control module.

here is to accommodate different styles of registration, to
best fit the needs of different groups. GR O U P K I T
registration schemes could be constructed to support
structured meetings, informal contact, meetings in the same
room or at a distance.

In the system, a central Registrar server maintains lists of
conferences and their users, while different Registrar Clients
can connect to the Registrar to alter these lists. Here, the
Registrar is the controlled object, and the Registrar Client
is the controlling object. The two objects, and the protocol
by which they communicate, are shown in Figure 5.

The Registrar responds to any request from its clients,
broadcasting the result to all attached Registrar Clients.
This allows any client to ask the Registrar to add a new
conference, or conceivably even to delete any user from any
existing conference. While this does make it possible to
create a “super-user” version of the Registrar Client, it also
provides the flexibility to create any number of other
Registrar Clients interfacing to the Registrar, without
making any changes to the Registrar itself.

As an example, consider the implementation of an open
door registration policy, where any user may create a
conference, and users can join any existing conference. Its
interface is shown in Figure 6. The underlying
implementation is straightforward. To join an existing
conference, the Registrar Client sends an “add-user” message
to the Registrar. This is broadcast to the other Registrar
Clients in the selected conference which update their own
users lists (right top window, Figure 6). The Registrar
Client also creates a new application Conference, because
under the policy, the user is guaranteed entry to the
conference. The Conference makes connections with the
other users, the application appears on the display, and
interaction proceeds normally.

In contrast, a closed door registration policy (not illustrated)
does not permit new users to join an existing conference
unless “sponsored” by an existing conference participant.
Here the Registrar Client again sends an “add-user”
message, which is broadcast to the other users. At this
point, the local Registrar Client does not create a new
Conference. The remote users are asked by their Registrar
Clients if the new user should be accepted. If a remote user
sponsors the new user, their client sends a message directly

Registrar

Registrar
Client

Registrar
Client

.

send-conference-list
send-user-list

display-conferences
delete-conference
new-conference

display-users
delete-user

add-user

Figure 5. Open protocols for registration in GROUPKIT.

Figure 6. Interface for an open door registration policy. The
top window shows the list of conferences and users in the
selected conference, while the bottom window allows users
to create new conferences, selecting from the available list
of groupware applications.

Figure 7. Interface for a facilitated registration policy.
Facilitators can create new conferences (under the “New”
menu), add or delete users from these conferences (using
the check boxes) or remove users from the facilitated
meeting (using the boot icon beside each user).

Facilitator Controlled User in Facilitated Meeting

on initiate-new-conf:
 send new-conference

on new-conference:
 do nothing

on new-conference:
 if (initator=me)
 create_conference(conf)
 add-user(conf, me)
 join_conference(conf)

on delete-conference:
 delete_conf(conf)

on initiate-add-user:
 add-user(conf, user)

on new-user:
 if (user=me)
 create_conference(conf)
 join_conference(conf)

on initiate-delete-user:
 delete-user(conf, user)

on delete-user:
 delete_user(conf,user)
 if (user=me)
 delete_conf(conf)

Figure 8. Open protocols for conference registration. These
cooperating clients are used within the same meeting, the
first by the meeting’s facilitator, and the other by the
remaining meeting participants. This figure shows only a
subset of the possible actions and messages that occur
with these clients.

to the new user's client, prompting them to create the
conference as before. If rejected (either explicitly or by
timeout), the rejecting client sends a “delete-user” message
to the Registrar.

Cooperating Clients
It is also possible to build different clients that cooperate
with each other. Some groupware users would work with
one type of client, while other users work with a different
client.

For example, a facilitated Registrar Client can be created,
emulating the mediated registration policies often found in
group support systems meetings [16]. A central facilitator
running one client can create several conferences
(applications) for the group, such as brainstorming sessions

or voting. The client interface is shown in Figure 7. Users
in the facilitated meeting use a different client, which
merely obeys the requests from the facilitator’s client. This
client presents no interface other than an initial dialog box
prompting the user to join a facilitated conference. The two
clients are designed to cooperate with each other, as shown
by their protocols in Figure 8.

The facilitator could cause a user to join a brainstorming
session by sending an “add-user” message for the user and
conference to the Registrar. The user’s client, receiving the
message via the Registrar, would obey the request, creating

Idea
Server

Brainstorm
Client

Brainstorm
Client

.

write idea
read idea
delete idea

update idea

Figure 10. Open protocols for brainstorming. Ideas in the
server consist of a unique ID number assigned by the
Idea Server, an owner ID, the position in the idea list,
and the actual text of the idea itself.

Anonymous Public
Selective Delete
(Own ideas identified)

Full Delete
(All ideas identified)

on user_idea:
 write_idea(new_idea_id,
 owner_id, posn_last,
 the_idea)

on user_idea:
 write_idea(new_idea_id,
 owner_id, posn_last,
 the_idea)

on user_idea:
 write_idea(new_idea_id,
 owner_id, posn_last,
 the_idea)

on user_idea:
 write_idea(new_idea_id,
 owner_id, posn_last,
 the_idea)

on update_idea:
 update_display(
 the_id, the_posn,
 the_contents)

on update_idea:
 update_display(
 the_id, the_posn,
 Lookup(the_owner)::
 the_contents)

on update_idea:
 if (the_owner=MY_ID)
 owner =
 Lookup(the_owner)
 else
 owner = “”
 update_display(
 the_id, the_posn,
 owner::the_contents)

on update_idea:
 update_display(
 the_id, the_posn,
 Lookup(the_owner)::
 the_contents)

on user_delete:
 do_nothing

on user_delete:
 do_nothing

on user_delete:
 if (the_owner=MY_ID)
 delete_idea(the_id)

on user_delete:
 delete_idea(the_id)

Figure 9. Open protocols for brainstorming. Four different clients respond to several events: (a) an idea is entered by the user,
(b) an idea (new or changed) is returned from the central idea server, and (c) the user elects to delete an idea. Note this last
option is not available in two of the clients.

Figure 11. Anonymous brainstorming client. Ideas can be
entered by any user, and are displayed without attribution for
all users to see. No deletion of ideas is possible with this
particular client.

the application and connecting to other users. The facilitator
could then remove the brainstorming session by sending a
“delete-user” message for the user and conference. The user’s
client would again receive this message and obey it,
deleting the brainstorming conference.

To reiterate, the point is not that GROUPKIT provides
several registration policies, but that its use of open
protocols permits a wide variety of registration schemes to
be implemented.

BRAINSTORMING
As a final example of the use of open protocols, Figure 10
suggests a possible architecture for a brainstorming system,
where ideas are stored on a central “idea server” connected to
a number of brainstorming client programs. A variety of
different clients are possible here, suitable for different users

in a group or for different group dynamics.

Figure 9 shows the open protocol implementation of four
such clients. One client is a standard anonymous
brainstorming client, where the identity of the idea’s owner
is hidden (illustrated in Figure 11). Alternatively, the owner
of ideas may be displayed publicly. If ideas are to be deleted,
as might occur in later stages of a brainstorming meeting,
the group may decide that any user can delete only their
own ideas, or on the other hand, that anyone’s idea can be
deleted by a user. Note that a facilitator, using the
registration interface described previously, might control the
use of different interfaces during the course of the meeting.

Possibilities for Future Clients
To illustrate the variety of possibilities that the open
protocols strategy can provide, consider the following
“brainstorming clients” which could be easily integrated
into the brainstorming architecture described.

Idea organizers. Because the idea server maintains a
“position” in the list for each idea, idea organizing
applications can be built. Users can rearrange ideas in the
list to group related ideas. As with deleting ideas, users may
be restricted to moving their own ideas or they may be
allowed to move any other user’s ideas.

Group membership. A number of the interfaces differentiate
between ideas generated by the “local” user and those of
other conference users (for displaying names, deleting or
moving). This idea could be extended to support subgroups
within a larger meeting. Ideas generated by a subgroup
member could be moved and perhaps deleted by any
subgroup member, not just the original creator. Subgroup
maintenance would need to be handled by the clients
themselves, perhaps even using an additional “subgroup”
open protocol server.

User monitors. A client could be built that simply
monitors the generation of ideas, noting the number of
ideas generated by different group members or the group as
a whole and displaying this as a bar graph. A facilitator
could use such a client to monitor individual or group
progress through a task and then react accordingly.

Different interfaces. Because the protocol does not depend
on the user interface of the clients but rather the operations
the interfaces invokes, a variety of interfaces are possible.
Textual or graphical interfaces, monochrome or color, or
interfaces built with different toolkits or languages are
trivially incorporated into the architecture.

Portability. Similarly, interfaces running on different
platforms are possible. The main requirement is that the
underlying communications mechanisms (i.e. low level
sockets) are the same. If the communications is based on
widely available protocols such as TCP/IP, clients could be
written for Unix machines, Macintoshes, PCs, or other
systems.

ISSUES
The previous sections have described several examples of
using open protocols to build flexible, open-ended
groupware applications. This section now turns to the
issues that can arise when new applications are designed
with open protocols.

It should be noted that what is being presented in this
section is a set of fairly simple and straightforward
implementation guidelines. The techniques described here
are appropriate for a large majority of problems which can
be addressed with open protocols. However, as larger and
more complex systems are tackled with open protocols,
these techniques are not a substitute for the more formal and
rigorous techniques which can be found in the distributed
systems literature.

Synchronization and Conflict
Recall the problem of conflict that can arise with the
“explicit release” floor control protocol. Under this
protocol, the floor may be grabbed by any user only when
it has been explicitly released by the previous floor holder.
Problems can arise if two users attempt to grab the floor
simultaneously.

This can be illustrated by looking at the following
implementation of the grab floor method:

foreach user
 if (state(user) = write)
 return
set_write(me)

This method first checks whether any user is currently
holding the floor, and if not, the floor is grabbed. Yet this
can result in two users holding the floor. There will be a
delay between the time the floor is identified as empty and
the “set_write(me)” is propagated to all users. During that
time, the floor appears empty so another user can call
“set_write(me)” resulting in both users gaining the floor.

A more sophisticated solution would not only set the local
user’s flag, but also reset other users’ flags:

foreach user
 if (state(user) = write)
 return
foreach user
 if (user=me)
 set_write(user)
 else
 set_observe(user)

Yet again there can be synchronization problems. This
method works fine assuming that all “set” requests from a
particular user are processed sequentially. However, if
requests from two users are intermixed—some requests from
the first user are processed, then some from the second, the
remainder from the first, etc.—problems can still arise.
While this can result in a single floor holder (the desired
result), it is also possible to have two floor holders (if the
“set_write” of each user comes after the corresponding
“set_observe” of others) or no floor holders (if the
“set_observe” requests override the “set_write” requests).

This problem can be solved by treating the entire set of
“set” requests sent by a single user as a complete
transaction. All the requests in the transaction must be
processed together. A very simple way of achieving this is
by batching the requests together into one larger request.
Rather than sending several smaller messages—which may
be interspersed with messages from other clients when they
reach the server—a larger message is sent and processed
together.

To illustrate, let us say that the low level floor control
protocol communicated to the server maps “set_write(user)”
to the command “Wuser” and “set_observe(user)” to “Ouser”
where “user” is a unique integer identifying each user.
Assuming the floor requestor is user number 3 and other

users in the conference have user numbers 1,2, and 4, rather
than sending the protocol:

O1
O2
W3
O4

where each line is a separate message, a composite message
batching all the requests can be sent:

O1|O2|W3|O4

Batching messages together into a single transaction is
easily handled by the client/server model, and can solve
many of the synchronization and conflict problems that can
arise when using open protocols. The only assumption is
that the server will process an entire message at once.

If even more sophisticated synchronization schemes are
necessary, it is also possible to build them directly into the
protocol. For example, a locking scheme is easily built.
Again, the distributed systems literature addresses such
problems in detail.

Predicting the Future
One of the inherent difficulties in effectively using open
protocols is that the benefit gained (in terms of the number
of different clients that can be accommodated) directly
depends on the original designer’s ability to predict the
future—not a particularly exact science! While the designer
does not have to foretell exactly what modules will be
created, the protocol primitives that are defined do constrain
the system’s flexibility.

Though difficult to predict all the different uses that users
may have for the data maintained by the server, some
general guidelines can help a designer create a widely usable
protocol.

Think generally of the data’s uses. While it is easy to think
in terms of particular clients, try to think in terms of all the
uses the server’s data could be put to. In the brainstorming
example discussed previously, the natural tendency would
be to think of the data as usable just for brainstorming. Yet
if the data is considered as “ideas” more generally, other
possibilities begin to suggest themselves. Clients for
organizing, grouping or ranking the ideas can be seen as
possible options.

Design primitive operations. Another advantage of thinking
in terms of the data rather than particular clients is that
primitive operations become more apparent. Using floor
control as an example, an alternative but poorer approach to
the “flags” for each individual user would be a single “floor
control token” which could be passed between users.
Whoever “holds” the token holds the floor.

While this scheme works reasonably well, it is more
restrictive than the flag per user scheme. In particular, the
token passing scheme does not allow more than one user
(but not all) to hold the floor at one time. The token
passing scheme, by assuming some of the semantics of
typical clients, results in a less general scheme than the flag

per user scheme. The latter, being more primitive, is
actually more powerful and expressive.

Be liberal with access permissions. As was seen in the
examples, open protocols work because clients can make
sometimes radical changes to the server’s state. The more
access to server state is restricted, the less flexibility can be
gained with open protocols. This liberal access to data
characterizes the difference between our description of open
protocols and systems that merely allow external access,
usually in very tightly controlled and restricted ways.

Provide back doors. No matter how thoughtfully designed a
protocol is, there will always be someone who wants to do
something that cannot be accommodated within the
protocol. The solution here is to design “back doors” into
the system so that clients can bypass the server when there
is a need.

In both SHARE’s floor control and GROUPKIT’s registration
mechanisms, all clients know about each other (i.e. host
and port number), and can establish direct connections.
While communications between different clients are
normally mediated by the server through the open
protocols, clients may communicate directly to each other
for extraordinary needs. While it is of course better if the
protocol can cover the necessary cases, back doors are a
practical solution to push beyond the constraints inherent in
the protocol.

Enhance the protocol when needed. The protocols defined in
the server should not change often, otherwise existing
clients will break. Yet there will probably come a time for
change. If numerous clients all use the same “back doors”
to implement the same features, those features are probably
best incorporated into the protocol. Preferably they can be
added without disturbing the existing protocol, and servers
will remain “backwards compatible.” For example, a time-
out mechanism was added to SHARE’s floor control
protocol because several clients had the need for pause
detection, i.e. they took some action after the floor holder
was idle for a given period of time.

Ease of Building New Clients
Open protocols provide—at least in theory—the
opportunity for end users to actually design their own
clients for their particular needs. While system designers
may provide a library of “common” client interfaces for end
users to select from, it would be nice if end users could
design their own clients for their own unique needs. How
feasible is this?

While this question depends somewhat on the actual
protocol—if it is very complex it is unlikely users will be
able to express their needs in terms of the protocol—this
difficulty is probably secondary compared to the problems
of actually making the software tailorable by the non-
programmer.

To take GROUPKIT’s registration system as an example, it
would be quite unreasonable to expect typical end users to
design a new registration client interface. End users would
need access to a C++ compiler, a reasonable knowledge of

the C++ language, and familiarity with a sophisticated user
interface toolkit (INTERVIEWS [12]).

We have begun experimenting with alternative ways of
developing such interfaces. One promising approach utilizes
the TCL language, which provides an embeddable
interpreter similar to many shell programming languages
[17,19]. Because the syntax is relatively straightforward and
the need for compiling is removed, the level of
sophistication needed to write code is dramatically reduced.
To aid in the coding, generic procedures implementing the
protocol primitives can be provided. For example in the
floor control example, procedures for “set_write(user)” and
“set_observe(user)” can be provided as TCL primitives.

The user interface portion of the program might be best
specified using an interface builder, or at least a very simple
interface library, and several exist for TCL. A tool such as
HYPERCARD is another possibility, providing an easy way
to build interfaces, and using XCMDs to provide generic
procedures supporting the particular protocol.

Will such schemes be sufficient to allow end users to
develop their own groupware interfaces? Although it is too
early to tell, it would in principle considerably simplify the
development of personalizable groupware interfaces. While
this may not allow all end users to develop interfaces, it
may be sufficient to foster “local experts” who, with some
initial learning, may be able to help support a community
of users.

Security
Because open protocols permit any client using the protocol
to interact with the controlled objects, they raise the specter
of malicious clients, and security violations. In offering the
flexibility, open protocols do open security risks. For
example, a malicious Registrar Client could easily delete
users from conferences in the GROUPKIT registration
example. We offer several reasons explaining why this may
not be particularly troublesome in practice.

Physical and network security. There will be little need for
security in the software if it is operating in a physically
secure area, for example a computerized meeting room on
its own secure network. As intruders will not be able to
access the server, the only clients available will be those
installed on the local computers by the system
administrators.

Organizational pressures. In many organizations, social and
organizational pressures will tend to prevent such abuses,
because of the sense of community and trust present in
many workgroups, or possibly the ramifications of such
inappropriate actions. Security may be more of a concern in
loose organizations such as the Internet, but even so there
may be channels whereby problems with malicious users
can be resolved.

Implementing security. Finally, nothing actually prevents
security measures from being programmed into the
systems. Security may take the form of restricted access
lists, password protection, or other such authentication and
approval mechanisms. Open protocols do not prevent such

mechanisms from being implemented within client/server
dialogs.

CONCLUSIONS
We have argued that successful groupware should be
flexible enough to accommodate the differences inherent in
groups. Such personalizable groupware must therefore adapt
to a wide variety of different group behaviors, including
behavior not originally expected by the groupware
developer.

Open protocols provide a technique that addresses this
requirement. Implemented as a variation of the client/server
architecture, open protocols specify that access to the
server’s data is controlled by the client, not the server. As a
result, a large number of different clients can potentially
control the server. The diversity of possible clients was
illustrated in the domains of floor control, conference
registration, and brainstorming.

To further aid the groupware developer working with open
protocols, a number of important design issues were
discussed, along with suggestions for dealing with the
issues. These included issues of synchronization and
conflict, predicting the future, end user client development,
and security.

We have found open protocols to be not only a very
powerful technique for building personalizable groupware,
but also one that is very straightforward to use. Its power is
its simplicity—complex operations can be built from
simple primitives. We believe that open protocols can
result in more flexible, easily expandable groupware
systems.

ACKNOWLEDGEMENTS
Thanks to Ted O’Grady, Doug Schaffer and the anonymous
referees for comments on early drafts of this paper. This
research was supported by the National Sciences and
Engineering Research Council of Canada.

REFERENCES
1. Austin, L. C., Liker, J. K. and McLeod, P. L. (1990)

“Determinants and patterns of control over technology
in a computerized meeting room.” In Proceedings of
the Conference on Computer Supported Cooperative
Work (CSCW ‘90), pp. 39-52, Los Angeles,
California, October 7-10, ACM Press.

2. Bair, J. H. and Gale, S. (1988) “An investigation of
the Coordinator as an example of computer supported
cooperative work.” Hewlett Packard Laboratories,
California. Unpublished.

3. Bullen, C. V. and Bennett, J. L. (1990) “Learning from
user experience with groupware.” In Proceedings of the
Conference on Computer Supported Cooperative Work
(CSCW ‘90), Los Angeles, California, October 7-10,
ACM Press.

4. De Cindio, F., De Michelis, F., Simone, C., Vassallo,
R. and Zanaboni, A. (1986) “CHAOS as a coordination
technology.” In Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW ‘86),

pp. 325-342, Austin, Texas, December 3-5, ACM
Press.

5. Dewan, P. and Choudhary, R. (1991) “Flexible user
interface coupling in collaborative systems.” In ACM
SIGCHI Conference on Human Factors in Computing
Systems, pp. 41-48, New Orleans, April 28-May 2,
ACM Press.

6. Greenberg, S. (1990) “Sharing views and interactions
with single-user applications.” In Proceedings of the
ACM/IEEE Conference on Office Information
Systems, pp. 227-237, Cambridge, Massachusets,
April 25-27.

7. Greenberg, S. (1991) “Personalizable groupware:
Accomodating individual roles and group differences.”
In Proceedings of the European Conference of
Computer Supported Cooperative Work (ECSCW ‘91),
pp. 17-32, Amsterdam, September 24-27, Kluwer
Academic Press.

8. Grudin, J. (1988) “Why CSCW applications fail:
Problems in the design and evaluation of organizational
interfaces.” In Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW ‘88)
(CSCW ‘88), pp. 85-93, Portland, Oregon, September
26-28, ACM Press.

9. Johnson-Lenz, P. and Johnson-Lenz, T. (1991) “Post-
mechanistic groupware primitives: rhythms, boundaries
and containers.” Int J Man Machine Studies, 34(3), pp.
385-418, March.

10. Kaplan, S. M., Tolone, W. J., Bogia, D. P. and
Bignoli, C. (1992) “Flexible, active support for
collaborative work with ConversationBuilder.” In
Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW’92), pp. 378-
385, Toronto, Ontario, October 31 - November 4,
ACM Press.

11. Leland, M. D. P., Fish, R. S. and Kraut, R. E. (1988)
“Collaborative document production using Quilt.” In
Proceedings of the Conference on Computer-Supported
Cooperative Work (CSCW ‘88), pp. 206-215,
Portland, Oregon, September 26-28, ACM Press.

12. Linton, M. A., Calder, P. R. and Vlissides, J. M.
(1988) “InterViews: A C++ Graphical Interface
Toolkit.” Research Report CSL-TR-88-358, Stanford
University.

13. Malone, T. W., Grant, K. R., Turbak, F. A., Brobst,
S. A. and Cohen, M. D. (1987) “Intelligent
information-sharing systems.” Comm ACM, 30(5),
pp. 390-402, May.

14. Malone, T. W., Lai, K. Y. and Fry, C. (1992)
“Experiments with Oval: A radically tailorable tool for
cooperative work.” In Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW’92), pp. 289-297, Toronto, Ontario, October
31 - November 4, ACM Press.

15. Markus, M. L. and Connolly, T. (1990) “Why CSCW
applications fail: Problems in the adoption of
interdependent work tools.” In Proceedings of the
Conference on Computer Supported Cooperative Work
(CSCW ‘90), Los Angeles, California, October 7-10,
ACM Press.

16. Nunamaker, J. F., Dennis, A. R., Valacich, J. S.,
Vogel, D. R. and George, J. F. (1991) “Electronic
meeting systems to support group work.” C o m m
ACM, 34(7), pp. 40-61, July.

17. Ousterhout, J. K. (1990) “Tcl: An Embeddable
Command Language.” In Proceedings of the 1990
Winter USENIX Conference.

18. Root, W. R. (1988) “Design of a multi-media vehicle
for social browsing.” In Proceedings of the Conference
on Computer-Supported Cooperative Work (CSCW
‘88), pp. 25-38, Portland, Oregon, September 26-28,
ACM Press.

19. Roseman, M. (1993) “Tcl/TK as a basis for
groupware.” In Proceedings of the Tcl/TK ’93
Workshop, Berkeley, California, June 10-11.

20. Roseman, M. and Greenberg, S. (1992) “GroupKit: A
groupware toolkit for building real-time conferencing
applications.” In ACM Conference on Computer
Supported Cooperative Work (CSCW ‘92), Toronto,
Ontario, November 1-4, ACM Press.

21. Shen, H. and Dewan, P. (1992) “Access Control for
collaborative environments.” In Proceedings of the
ACM Conference on Computer Supported Cooperative
Work (CSCW’92), pp. 51-58, Toronto, Ontario,
October 31 - November 4, ACM Press.

22. Shepherd, A., Mayer, N. and Kuchinsky, A. (1990)
“Strudel -- An extensible electronic conversation
toolkit.” In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW ‘90),
Los Angeles, California, October 7-10, ACM Press.

23. Stefik, M., Bobrow, D. G., Foster, G., Lanning, S.
and Tatar, D. (1987) “WYSIWIS revised: Early
experiences with multiuser interfaces.” ACM Trans
Office Information Systems, 5(2), pp. 147-167, April.
An earlier version appeared in CSCW ‘86.

