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Abstract ciency and effectiveness of meetings. The usual method is

The focus of this paper is on the issues underlying the
concept of gesturing. Gesturing from one human to another
appears to span all cultural boundaries; one could possi-
bly call it a universal means of communication. Studies of
group work have shown that gesturing makes up over 35%
of all interactions. Participants gestured to enact ideas,
to signal turn-taking, to focus the attention of the group,
and to reference objects on the work surface. Specifically,
this paper explores gesturing as applied to users of Group
Support Systems. The definition of gesturing is extended
beyond simple telepointers to include 1) the use of motion
as a means of expression, and 2) movement that expresses
or emphasizes an idea, a sentiment or attitude. We address
such issues as: at what level of interaction should gestur-
ing be supported, how large and what shape should gesture
pointers be, how should they move, what are network and
processor throughput requirements, and what effect group
size may have. Our results show that full motion computer
gesturing can be supported on PC-LAN systems for small
groups. Gesturing for medium and large groups requires
the use of special techniques such as regulating transmis-
sion rates, motion smoothing, and point & quiver cursors.
These techniques can also be applied to wide area network
implementations to reduce network traffic and latency prob-
lems.

1. Introduction

Group Support Systems is an emerging area of research that
spans computer-supported cooperative work (CSCW) and
group decision support systems (GDSS). CSCW is defined
as “the study and theory of how people work t;)fgfether, and
how the computer and related technologies affect group
behavior” [10]. CSCW implementors build “computer-
based systems that support two or more users engaged in
a common task (or goal) and that provide an interface to a
shared environment” [7]. These systems usually facilitate
communication between members of a small group and
provide task-specific tools. The software rarely regulates
the actual meeting process; the designers expect that normal
social protocols between participants will suffice.

On the other hand, a GDSS is “an interactive computer-
based system that facilitates the solution of unstructured
problems by a set of decision-makers working together
as a group” [4]. The design goal is to increase the effi-

to “manage” the interactions between the group members
by enforcing rules of meeting protocol and structure [21].
Existing GDSS tools facilitate both small (3-6 members)
and large (7-30) groups through the various stages of the
decision-making process [3, 33}.

We believe that meetings in most corporate situations
lie somewhere in between CSCW and GDSS; not all meet-
ings result in decisions nor do all group processes center
around a task. Sometimes structured are crucial
at meetings; at others they are debilitating. Rather than split
semantic hairs about where our research resides, we will
use the label Group Support Systems (GSS). This research
entails understanding how groups interact; applying that
understanding to designing systems that help people work
together; and observing people using our systems. The last
point often constrains our implementations to standard de-
livery platforms (such as IBM PCs), and much of our effort
is devoted to overcoming the platform limitations. The fo-
cus of this paper is on gesturing: why it is required, how
it can be implemented on a computer, and what pragmatic
decisions must be made during implementation.

2. Gesturing

gesture: 1) the use of motions of the body as
a means of expression, 2) a movement of the
body that expresses or emphasizes an idea, a
sentiment or attitude [16].

Some sort of gesturing takes place throughout any interac-
tion between human beings. Gesturin% appears to span all
cultural boundaries; one could possibly call it a universal
means of communication. Gesturing not only occurs be-
tween people, but also between people and their artifacts.
In an ethnographic study of eight short-term, small-group
design sessions, Tang built a descriptive framework that
categorized activities over a shared work surface (large
sheets of paper tacked on a table or white board) [28, 29].
Three primitive actions were observed, and were combined
to mediate several essential functions.

o Action:

o listing produces non-spatially located text or al-
phanumeric notes;
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o drawing produces graphical objects, typically a 2-
dimensional sketch with spatially located textual an-
notations;

o gesturing is a purposeful body movement that com-
municates specific information, e.g. pointing to an
existing drawing.

¢ Function:

o storing information refers to preserving group infor-
mation in some form for later recall;

o expressing ideas involves interactively creating rep-
resentations of ideas in some tangible form;

o mediating interaction facilitates the collaboration of
the group and includes tum-taking and focusing at-
tenoon.

Hand gestures played a prominent role in all work sur-
face activities (about 35% of all actions). Participants ges-
tured to enact ideas, to signal turn-taking, to focus the
attention of the group, and to reference objects on the work
surface [28, 29].

Clearly, gesturing is of paramount importance in group
interaction. Tang demonstrated this for small design
groups, and it is our belief that gesturing is essential for
almost all group activities involving a shared work sur-
face. We are exploring hand gesturing over displays in
Group Support Systems. Obviously, as soon as group work
is moved from a “manual” face-to-face environment to a
dispersed “computer-supported” environment, many ques-
tions arise about gesturing. How can hand gestures be
tracked as input? How do we display a gesture on a screen?
If there is to be a gesture icon, how large must it be? How
should it move? What happens as group size increases
(scalability)? What network bandwidth is needed? We
will address these questions in Section 4, after first review-
ing existing implementations of gesturing in Section 3. Our
experiences implementing different gesturing strategies via
multiple pointers on a LAN-supported IBM PC platform
are described in Section 5, which is heavily illustrated by
performance benchmarks.

3. Previous Research

We are concerned with enhancing a group’s real-time in-
teraction when using groupware tools in a computerized
shared visual work surface, where one’s actions are imme-
diately visible to all {7]. The displays are software equiva-
lents to white boards and flip charts; the tools could be text
editors, hypertext, structured drawing tools, and so on.

Many collaborative systems do not support gesturing.
For example, we now see teleconferencing setups that com-
bine voice conferencing with facsimile transmission, elec-
tronic white boards, and even slow scan video. While all
participants can see the same resulting information, ges-
tures referring to an artifact are only visible through indi-
rection or not at all. For example, if one points to a drawing
on adocument at one site, a person at the other site must find
their equivalent document and determine where the refer-
ence is. Similarly, one rarely sees the fine-grained process
of others creating and manipulating artifacts. While peo-
ple can get their job done without gesturing, we argue that

much of the conversation is used as a substitute to ges-
turing, e.g. “I’m pointing to the second line in the third
paragraph”, and that breakdowns are frequent, ¢.g. “which
one do you mean?”,

One of the first systems to support gesturing explicitly
was BoardNoter, a computerized white board used to sup-
port face to face meetings [27]. Gesturing was through a
single large “telepointer”. One person at a time could grab
and control this special cursor, which was then seen on ev-
ery display. All other individual cursors remained invisible
to the group. In addition to tracking the cursor, clicking the
mouse button would cause a static image of the pointer to
be deposited (and remain) on the board [26]. Several com-
mercial view-sharing systems, which allow people to share
standard single-user application through serial interaction
[9], can also support single cursors. Unlike BoardNoter,
there is no difference between the local cursor and tele-
pointer, e.g. Farallon’s Timbuktu [8]. The common cursor
responds to each user’s mouse movement. When several
people move their mice, the result is “cursor wars”,

The first serious works in gesturing, all motivated by
Tang’s work (described above), were implemented using
two different technologies: video fusion, and computa-
tional space. VideoDraw was the original video-based sys-
tem [30]. Each person has a monitor that displays the
image of a camera pointing to the other person’s monitor.
Participants draw directly onto the monitor, and the camera
captures both the other person’s hand and the drawing un-
derneath. Feedback is eliminated through polarizing filters.
The result is that the shared wo contains (from one
person’s point of view) his physical hand, pen marks on
top of the screen, plus the other person’s hand and marks
in the image. TeamWorkStation, on the other hand, uses
hardware to fuse video signals [18]). The advantage here
is that people can perform their activity on any work sur-
face (such as a desktop), with a video camera recording
and fusing its image with the work surface image of the
other participant. Finally, VideoWhiteboard allows each
user to see the drawings and a shadow of the gestures of
collaborators at the remote site [31]. Here, people see their
partners and movements as a silhouette appearing on the
other side of a translucent white board. These video sys-
tems are limited. First, participants cannot manipulate each
others marks, since they only see them as a video image.
Second, these systems are not scalable since serious image
deterioration results when 100 many images are fused.

At the same time, several computational systems were
developed that implemented gestures through multiple cur-
sors. GroupSketch is a computer-based group sketchpad
where one or more people can simultaneously draw, type,
and gesture around the display [11, 13, 12]. Its cursors
were designed specifically for gesturing around the criteria
listed below.

o Since gestures must be seen in order to convey infor-
mation, all cursors within a work surface are always
visible to all participants.

o Cursors must have enough prominence on a multi-
cursor display to attract the attention of other partici-



pants. A large 64x64 bit cursor is used instead of the
traditional 16x16 bit cursor.

o Cursors change their shape to reflect a natural ac-
tion. Four gesture modes are supported (pointing,
writing/drawing, erasing, and directing attention) by
distinct cursor shapes (a pointing hand, pen, eraser,
large arrow respectively).

o Cursors are unique, each identifying the person it
belongs to. While face to face gesturing has natural
cues to help identify who is gesturing, cursors do
not. GroupSketch labels each cursor with its owner’s
name and each new cursor is rotated 90 degrees from
the last (while the idea of rotation was first put in to
reflect different scating orientations of participants
around a drawing, its real value was that it allowed
up to four cursors to touch the same pixel without
overlapping each other).

o Cursor movements appear continuously and with no
apparent delay on all displays, which means that they
remain synchronized with verbal communication.

o Cursors always maintain their same relative location
on every display so that they retain their relation to
the work surface objects.

In parallel with GroupSketch came the very similar Com-
mune [2, 19, 20]. Instead of a mouse and a vertical dis-
play, Commune users were able to write directly on a flat
screen with a pen. This provided them with improved
control/display compatibility and fine motor coordination.
Many second generation sketching packages now support
gesturing, e.g. XGroupSketch [13, 12], a functionallyricher
window based version of GroupSketch; WScrawl by Brian
Wilson [34], GroupScratchPad by Stephen Hayne [14], and
ShDr by Paul Dourish [S]. We are also seeing these ideas
transferred to the domain of structured drawing; Group-
Draw [13, 12], MMM [1] and MUGE [23].

Several computer tools for tasks other than drawing also
support gesturing. In ShrEdit, a shared text editor, all in-
sertion “carets” of participants are visible, as well as the
text that they type [22]. In rIBIS, a hypertext system sup-
porting argumentation, there are two modes of operation:
loosely and tightly cougled. In the latter, a single group
cursor available through turn taking is visible to all, thus
strengthening the feeling of participation [24]. Both the
Multi-User Graphical Editor and the Graphical Issue Ana-
Iyzer by Pendergast and Hayne [15, 23] have implemented
specific gesturing cursors (discussed in the next section).

Finally, several researchers are now investigating “gaze-
awareness”, where a person can see where their partner is
looking at on the work surface [17]. Although we do not
pursue it further in this paper, a person’s gaze is a gesture as
well. By tracking another person’s eye movement over the
work surface, we see their focus of attention, their degree
of interest, obtain cues for topic switching, and so on. The
few computational attempts at supporting gaze-awareness
rely on overlaying the work surface on top of a video image
of a person’s face, and arranging cameras and half-silvered
mirrors in such a way that eye references to the work surface

are consistent across sites. Again, this video configuration
may not be scalable to larger groups.

In summary, existing systems support gesturing through
a handful of strategies. These include a single static pointer
that is placed on the screen but does not track mouse move-
ment, a single dynamic pointer that follows the mouse,
multiple pointers with fine-grained tracking, and video im-
ages of actual hands as well as exploring gaze awareness.
Of course, there are also systems that do not support ges-
tures at all, but we believe these provide an impoverished
work surface for group members [13].

4. A Design Framework for Gesturing

The goal of our research is to focus on a computer-based
mechanism for supporting relepresence in the form of ges-
turing. Telepresence attempts to give meeting participants
the feeling that they are all in the same room [6] by sharing
the explicit and implicit participant dynamics. Paramount
among these actions are gestures and meta-level commu-
nications. As we are not targeting a multi-media envi-
ronment, we have chosen to study the requirements for
gesticulation as implemented by multiple cursors that can
be displayed on every participant station in real-time.

This section describes some of the design considerations
we have encountered in our work on gesturing. It is pre-
sented as a loose framework revolving around four aspects:
the appearance of a gesture cursor; different ways cursors
can express gesturing through motion; the effects of group
size and distribution on cursors; and consequences of re-
laxed “What you sce is what I see” (WYSIWIS) [26]). We
assume a voice channel is available to the group, and that
multiple cursors are preferred over single cursors.

4.1 Cursor appearance

Single cursors are usually presented on a screen as a small
(16x16 pixel) bitmap, usually a left-leaning arrow. A naive
approach to multiple cursors is to simply copy the appear-
ance of single cursors. However, several issues appear
which demand a slightly more sophisticated approach.

Owner identification. Assuming non-anonymous inter-
action, remote cursors must be easily discernible from the
local cursor, and participants should easily be able to dis-
tinguish who is doing what. In the first case, color or slight
shape changes can be useful. For example, the local cur-
sor might be black (or solid) while the remote cursors are
colored (or outlined). In the second, the cursors can be
uniquely labeled by a participant’s name so that partici-
pants can quickly determine who is doing the gesture. In
practice, this may be easy, since user actions are often tied
to voice {13]. Although labeling may be left off if some
degree of anonymity is desired, participants will likely be
able to identify its owner by other clues.

Cursor size. Cursors in most single user graphical user
interfaces are quite small. As screens get larger and the
display busier, the cursor becomes difficult to find. Most
ple just jiggle their mouse (we can easily spot motion).
ome window systems have tricks for focusing a user on



the cursor location. Examples of the latter are ‘Xeyes”
(two graphical eyes track the cursor), and “oneko” (where
a kitten chases the cursor around the screen, eventually to
sleep on top of it when idle). When multiple people are
using a display, the cursor size becomes much more critical.
Since we maintain that cursors are critical to gesturing, a
larger size (say 64x64 pixels) would be more appropriate
for small group interactions [13, 23]. The tradeoff is that
cursors can quickly consume too much screen real estate as
group size increases (described later). While we do not yet
know what the optimum size is, we caution implementors
against choosing the standard 16x16 pixel size just because
they are accustomed to it.

Cursor shape. Since many different and natural actions are
to be expressed, the cursor shape must change depending on
the action—this will add to the quality of the gesture. Both
pointing (e.g. finger) and attracting attention (e.g. flashing
arrow) have been identified as crucial general actions [11,
13, 23). If the application requires drawing or listing, the
cursor should also reflect this by perhaps using a pencil, a
caret, or other sh that indicates the action. Gratuitous
cursor shapes, as implemented in the Aspects groupware
system [32] likely have no positive effect.

Cursor lifetime. While it can be useful to have cursors
displayed at all times (especially to indicate whoiis present),
inactive cursors can become passively intrusive in larger
groups. To address this, remote cursor display can either
be put under individual control or can have a decay function
over activity and time. Two interesting approaches to decay
are to have a gravity function which removes the inactive
cursor to a corner of the screen called a parking area, or to
have the cursor merely dissolve away [14].

4.2 Gesturing through cursor motion

The presence of a cursor on the screen indicates who is
active in the session. It is the motion of the cursor that indi-
cates a pure gesture or a gesture-based activity. We believe
that the best gesturing systems will support real time mo-
tion on all screens. Unfortunately, some platforms may not
allow full motion because of limited network bandwidth,
latency, and slow r speed. The followingstrategies
for supporting low to high bandwidth cursor motions are
presented in order of lowest to highest data and processing
requirements. The implementation model used is that each
workstation sends a m e on its cursor’ status to the
other participants’ workstations.

Point. When the user points and presses a mouse button, a
single message is sent to all the remote users. The gesturing
cursor leaps to the new location from its old one and remains
there until its owner sends a new location message. The
problem is that a user may not see the sudden transition,
thus not noticing the gesture.

Point and quiver. In order to attract the viewers attention,
the above strategy is modified so that the receiving station
jitters the cursor back and forth in its new position for a
period of time.

Limited motion. Only a certain number of gesture mes-
sages per second are sent between stations. As the number

is increased, the cursor motion moves from being stilted
and jerky to a smoother animation. For example, ShDr
[5] allows the user to control the number of transmitted
cursor movements through a slider in the window’s con-
trol panel. The fewer messages sent, the less accurately
the motion reflects the gesture. Also, the jerky cursor is
visually unattractive.

Limited motion with smoothing. After receiving a new
cursor position from the sender, the receiving station com-
putes several points in between the previous and the current
location, and then animates the cursor through these inter-
mediate points. While this eliminates jerkiness, it still does
not guarantee that the path reflects the actual movement
of the sender. Note that smoothing can also be applied to
Point, and to Point and Quiver. This technique is applicable
to slow networks, but does not overcome slow processors.

Full motion. Every time the cursor is locally displayed in
a new location, a gesture message is sent. Every move-
ment of the cursor, no matter how small, is immediately
broadcast. If the network and processor is fast enough,
every receiver will display the cursor exactly as the sender
does. For many years the motion picture industry used 16
frames per second as the standard for smooth animation.
We feel that between 10-20 msg./sec will support full mo-
tion. While sending more messages may be possible, it is
probably not necessary.

Which is the best choice? We believe that full motion
gesturing is the preferred for most situations. However,
there may be special occasions when a user would want
to leave a pointer parked at a specific location, such as
when long network latency (> .5 seconds) is combined
with real-time voice. Full motion may be unacceptable
when gestures do not match the verbal communication.

4.3 Group size and distribution

Clearly, cursors convey meta-level communication infor-
mation, i.e. how many people are in the meeting and how
their activity is balanced. As the tgroup size increases, the
number of cursors appearing on the screen could begin to
intrude on the interaction. One approach to managing this
problem is to reduce the size of the remote cursors using a
step function. As examples:

1. Forone to four people use the “regular” size of 64x64
pixels;

2. For five to six people reduce the cursor size to 32x32;

3. For seven to eight people reduce the size to 16x16,
and so on.

4. For larger groups, each user may be displayed as
a single pixel on the screen—this will still provide
participants with “gestalt” of the activity level.

This step function was implemented in the latest versions
of GroupSketch (as illustrated in [12]), MUGE, and Group-
ScratchPad. Cursor size is altered by the software as people
enter and leave the session. This notwithstanding, we feel



that when groups become very large, the lifetime of cursors
will need to be adjusted.

Decreasing the size of the cursor severely limits the
amount of information it can display. Very small cursors
do not have room for a label, so identification becomes
problematic. Also, as cursor numbers increase, it will be-
come difficult to tell who is doing something important, and
whose voice is tied to which cursor. We believe that the
cursor size should be altered to reflect important actions.
For example, the cursor size in a medium-sized group of
eight people can be quite small (4x4 pixels) [13], but users
can press a mouse button and get a large labeled pointing
arrow, especially designed to attract the group’s attention.
Similarly, whenever someone starts to draw or type, their
cursor grows to 64x64 pixels. Gesturing can be used to get
access to the “floor” or voice channel when individuals are
dispersed geographically, particularly useful for sessions
using conference calls. Perhaps a “hand-raising” cursor is
required?

4.4 Relaxed WYSIWIS

Much of our discussion assumes strict WYSIWIS, where
everyone sees exactly the same view. Since we feel that
most group software will eventually relax WY SIWIS along
congruence of view, transformation of cursor coordinates
between the sending and receiving views must be per-
formed. As well, screens have differing resolutions and if a
windowing environment is used, windows can be placed on
different parts of the screen. This transformation is easily
done by mapping the cursor location to a world coordinate
system at the sender and 1) if that location is outside the
receiver’s view discard the message; or 2) map the world
coordinate to the receiver’s viewport coordinates. It is ex-
tremely important that when one user points at a place in
their window or screen locally, the same logical place is
“gestured” at on the remote stations.

Of course, this leads to a variety of human factors issues.
Consider Figure 1, which shows four users actively working
on a shared canvas. From user A’s perspective, B’s view
completely overlaps, C partially overlaps,and D is disjoint.
First, should A have peripheral awareness of the others in
the virtual canvas, particularly those who are completely
outside A’s viewport (D)? In Shared ARK and MUGE for
example, the display includes a miniature of the entire can-
vas that shows the boundaries of each person’s area of view
[25, 23]. This conveys some of the meta-level information
described earlier. Second, if viewports overlap (A4 and B),
what happens to the gesturing cursors when it moves across
a view boundary? For example, if B moves the cursor to
the lower right of the screen, would it suddenly disappear
from A’s view (as in XGroupSketch), or would it “linger”
in the last visible spot (as in GIA)? What consequence does
this have on gesture interaction? Third, how should views
be linked together? Assuming that users will move from
a loosely coupled mode where they are working more or
less independently to a tightly coupled mode throughout a
session (and back), there should be ways to link views and
gesture spaces together. For example, MUGE and GIA in-
clude the notion of leaders and followers, where users have
the option of making their viewports and scrolling actions

\ Shared Space

Figure 1: Translation between viewports A, B,C, D

slaved with one another [23]. A user can be both a leader
and a follower; leaders take followers along with them as
they move about the work surface (zooming or scrolling).

5. Performance Benchmarks

Successful implementation of full motion gesturing in GSS
applications is dependent on the performance characteris-
tics of the network and host operating system. Many of the
previous systems have been implemented on UNIX hosts,
but we feel that the more realistic corporate environment of
IBM PCs and a Graphical User Interface would represent
a lowest common denominator. Thus, we conducted our
tests in the University of Calgary Norcen Meeting room
that has 34 IBM PS/2 Model 55 (386sx/16) PCs networked
using both a 16MB Token Ring LAN and a 10MB Ethernet
LAN supported by a Novell Netware (V3.21) file server.

Microsoft Windows 3.1! applications were used and
the communication was managed by the Network Inter-
face Object (NIO) as described by Pendergast and Hayne
[23]. The NIO manages application layer communications
(OSI) by providing a “channel” object that facilitates the
creation of GSS applications by providing virtual, multi-
cast connections that parallel the meeting room metaphor
of communications. Multicast connections permit commu-
nication between two or more stations using a single net-
work name or address, thus not requiring multiple separate
session connections with each one. The NIO implements
multicast channels using two transport level protocols: 1)
reliable session connections; 2) broadcast datagrams. De-
pending on the nature of the data, the applications can
dynamically select either the reliable (session connection)
or unreliable (datagram) when sending the message.
Using the reliable channel requires the NIO to transmit the
message to each station individually. Broadcast datagrams
are sent just once, independent of the number of stations
participating. The unreliable path has limited message size

! Microsoft Windows is a trademark of the Microsoft Corporation



Multicast Datagram

Revrs .1IKB 1KB 2KB .1IKB
1 2257 4399 8.739 1.982
2 4729 8628 17.032 1.928
3 6871 13407 25380 2477
4 8463 17.142  33.564 2422
5 10608 21.152  42.408 2.532
6 12.638 25436 50427 2.587
7 14890 29.665  58.611 2.615
8 17032 34004 66904 2.642
9 19.037 38041 75363 2.395
10 21.041 42078  83.821 2.148
11 23.101 46362 92307 2.065
12 25.161 50.646 100.792 1.982

Table 1; iransmission Time in Seconds for 100 Messages

(approximately 500 bytes) and is not acknowledged, while
the reliable path has no size limits and are guaranteed sent
until a time-out occurs.

The NIO is incorporated into several GSS applications,
including MUGE, GIA, Graphical Brainstorming [14], and
GroupScratchPad [14]. Since all Windows (or DOS) based
applications will need to use a network layer (perhaps like
the NIO) we felt it necessary to determine if typical LANs
and PCs could support gesturing.

5.1 Transmission time

This test determined the time required to transmit messages
of various sizes over the unreliable (broadcast datagram)
and reliable (multicast) communication channels. The test
consisted of a station sending 100 messages as fast as possi-
ble and recording the elapsed time. The number of receiv-
ing stations was varied from 1 to 12 for message lengths
of 100, 1000, and 2000 bytes, thus requiring 1, 2 and 4
network packets respectively. Table 1 presents the elapsed
time, in seconds, to transmit 100 messages. Figure 2 illus-
trates the performance differences between the multicast
and broadcast datagram channels.

The transmission times for the datagram channel re-
mained constant while the multicast channel’s rate in-
creased linearly with the number of receiving stations. This
is as expected since the multicast channel transmits a mes-
sage to each receiver separately. The amount of time re-
quired to transmit (multicast) a 100 byte message to 12
stations is .25 seconds and we predict that for 24 stations it
would be .50 seconds. This makes a clear case for the use of
unreliable datagram communications for gesture messages
even though some datagrams may be lost.

5.2 Datagram throughput

This test was conducted in order to determine the maxi-
mum rate that a station could transmit datagram messages
of a size appropriate for gestures. A single station (IBM
PS/2 55) transmitted 100 datagram messages of 100 bytes

100
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Figure 2: Performance Differences between Multicast and
Broadcast

as fast as possible and recorded the elapsed time. Using
the Novell Netware IPXSPX Windows interface, this time
was measured at 2.314 seconds (average), or 23 millisec-
onds per message (43 messages/second). To measure the
overhead of the test program and high level communica-
tions handler (N10), the actual transmission was
then disabled and the test repeated. The resulting overhead
was approximately 5 milliseconds per message, leaving 18
milliseconds for the actual transmission. This seemed to be
slow considering a 16MHz processor and a 16MB Token
Ring LAN. This same test was also performed using the
10MB Ethemnet protocol. The results from this test were
better. It took 14 milliseconds per message, with 5 mil-
liseconds of overhead. However, 9 milliseconds (Ethernet)
and 18 milliseconds (Token Ring) still seemed excessive.

To discover if the Windows operating environment had
an effect on transmission rates, a DOS test program was
created that measured the time required to transmit 100
datagrams (100 bytes each). This program was able to
transmit the 100 messages in less than 300 milliseconds
(Token Ring) and 100 milliseconds (Ethernet), or about 3
and 1 milliseconds per message respectively (1/6 the time
of Windows). Due to the extreme difference between Win-
dows and native DOS, we wanted to pinpoint the problem
in Windows by eliminating the Novell interface to the net-
work and substituting the IBM NETBIOS interface. This
third test gave results identical to the IPXSPX version.
We believe we have verified the existence of a Microsoft
Window’s induced delay in the transmission process. One
source of the delay comes from having to transfer data
packets and command blocks from extended memory to
low DOS memory where the adapter can access it. We also
suspect that the Windows kernel only processes interrupts
after a certain arbi number of clock ticks. Reducing
the NIO’s overhead by 75% would allow transmission of
over 50 datagrams/second - far more than we feel is re-
quired for gesturing. But, discovering the reason for the
delay inside of Window’s kernel and reducing it by just
20% would yield the same results.




Msgs
Sent
in 20s

700F Station D
600 Station C
M station B [ |
500 Station A ]
Msgs
sent 400
in
20s 300} 7
/
200 %
100 %
0 i b b, N “\\‘
5 6 7 10 11 12 13 15 20

Attempts to send (msg/sec)
Figure 3: Network Favoritism Threshold

600

200 -

500

< Total Broadcasts
« Packets Not Recsived
& Max Transmit Difference

400

100

\

25

Attempts to Send (msg/sec)
Figure 4: Datagrams Lost Threshold

5.3 Multiple sender interaction

A third set of tests determined the network interaction ef-
fects that would occur if several stations were gesturing
at the same time. In this test the number of sending sta-
tions was varied from 1 to 4 and the message transmis-
sion rate was varied from 5 to 25 messages per second.
Each message was 100 bytes long and sent using broadcast
datagrams. The results of the test revealed two important
thresholds; one when the network protocol began favoring
one station over another, and a second when datagrams be-
gan to be lost. These thresholds are shown in depicted in
Figures 3 and 4.

Datagram packets are lost whenever there is a transmis-
sion error or if a station does not have an outstanding receive
request. Since real-time gesture messages will probably be
transmitted at a rate greater than 10 per second, we believe
the loss of a few is not a major concern. The favored station
threshold does present a problem. Table 2 presents the data

6 7 10 11 12 13 15 20 2

5

Messages Sent in 20 Seconds

Rate StnA StmB StnC StmmD
5 91 91 91 91
6 91 91 91 91
7 88+ 121 121 21
10 22%* 145 178 179
11 21 139 181 181
12 22 141 181 179
13 22 143 178 179
15 25 138 180 182
20 20 32 261 269
25 22 29 293 265

Table 2: Concurrent Transmitters

from a 20 second run where 4 stations were transmitting
(and receiving) at the same time. Station A was not able
to transmit at the same rate as the other stations once the
send rate was increased to 7 messages per second. Station
B began being penalized at 9 or 10 messages a second,
while Stations C and D were able to transmit at a high rate
for all speeds. At the speeds required for smooth gesturing
(minimum of 10-15 per second), Station A was only able to
transmit 1 message per second. This results in a very jerky
gesture motion. Since a station’s ability to transmit/receive
is based on processor speed and location on the ring, certain
stations will always be at a disadvantage. This indicates
that the software controlling the gesturing should be intel-
ligent enough to govern its transmission rate whenever 2 or
more stations are gesturing at the same time. This test was
repeated on the Ethernet LAN, and yielded similar results.

5.4 Video display

A final performance test was conducted in order to measure
the processor overhead required for displaying different
types of gesture pointers. This test consisted of drawing
and erasing a 24x36 pixel bitmap or a 5 sided filled arrow
polygon, of roughly the same area, 2000 times. We felt
that the overhead of a bitBlt call might be larger than the
overhead of a drawPolygon call. The test was run on four
different CPUs (see Figure 5). For all CPUs, the drawing
of the polygon was 4 to 5 times faster than the bitmap. The
slowest CPU (Model 55) required 14 milliseconds for the
bitmap and 3.8 milliseconds for the polygon, the fastest
CPU (Gateway 486/33) required 4.1 milliseconds for the
bitmap and .89 milliseconds for the polygon. As polygons
are much faster to draw, gesturing programs should use
this technique when running on slower . We
acknowledge that these results are highly dependent on the
video display hardware, but the test represents the current
state of PC technology.

5.5 Summary

The above tests indicated that unreliable datagram commu-
nications are appropriate for gesturing and that a definite
limit exists for transmitting and receiving gestures. This
limit is determined by processor and network speed. To bet-
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ter understand the processor limits, the following equation

was derived from the test data:
Utilizaton: p; = B((n —1)G) + a(G) < 100%
where 8 = Msg Receive Time + Gesture Redraw
: Time
a =Msg Send Overhead + Msg Send Time
+ Application Overhead

G = Gesture rate in msgs per second
n = Number of users gesturing

Table 3 shows equation results for maximum gesture
rates of bitmap and polygon cursors. If a rate of 10 mes-
sages per second is required for smooth gesturing, then
low-end 386sx/16 systems could handle 3 concurrent ges-
turing stations and high-end 486/25 systems could handle
10 stations (using bitmap gestures). These calculations as-
sume that there are no background tasks active. If large
groups are to be supported on PC-based systems, gesturing
needs to be viewed as a separate operation from drawing
and other schemes such as “point and jitter” need to be
explored. It is not required that all stations’ cursors be
displayed at all times, but based on previous research and
our own experience, the richness of the interaction is sig-
nificantly reduced. Whether this becomes and impediment
to successful group interaction is an empirical question.

6. Conclusions and Future Directions

In this paper we have addressed some of the practical con-
siderations for gesturing within Group Support Systems ap-
plications. We have outlined a framework for implement-
ing gesturing that spans low to high network bandwidth
and processing power. The framework also addresses is-
sues relevant to group size and interaction style.

We argue that the appearance of the gesture cursor
should vary based on group size, user activity, and screen
size. For small groups the cursor should be large enough
to find and have some sort of owner identification (name,

386SX/16 486/25
n Bitmap Polygon | n Bitmap Polygon
1 38 381 1 100 100
2 18 21| 2 54 71
3 11 15| 3 37 55
4 8 11| 4 28 45
5 6 91 S5 22 38
6 5 8] 6 19 33
7 4 7{ 7 16 29
8 4 6| 8 14 26
9 3 519 12 23
10 3 4110 11 21

Table 3: Maximum Gesture Rates

initials, etc.). For large groups (6+) and/or small screens
(14" and smaller), cursors should be made smaller (16x16)
and inactive cursors should decay or disappear. Ideally,
the cursor shape will provide information about the cur-
rent actions of the user (drawing, pointing, or requesting
the floor). Finally, cursor update modes can be varied to
accommodate system limitations. Full motion gesturing
should be used whenever possible, with limited motion or
point & quiver techniques reserved for slower networks.

During performance tests on PC networks we discovered
that there is a large penalty for operating in the Windows
GUI environment when transmitting messages. We also
determined that the Ethernet or CSMA/CD protocol to be
somewhat superior in small groups than the Token-Ring
protocol using full motion gesturing; either provides more
than enough bandwidth. As one might expect, the faster
processors were able to transmit and receive more ges-
ture messages per second. More importantly, slower CPUs
will spend most of their time processing incoming gesture
messages and will not be able to transmit messages of their
own. Therefore, if equal participation is required, one must
impose an adaptable governing mechanism that limits the
transmission rates based on the number of stations partici-
pating or else limit the communication via the use of point
and jiiter and some smoothing mechanisms.

One might argue that all these problems can be solved
by using high-performance workstations. However, for
groupware to become commonly used in commercial envi-
ronments, problems of this sort need to be solved. Further,
when groupware applications are distributed geographi-
cally relying on low speed networks, processor problems
will be replaced with transmission latency problems. Per-
haps the solutions we suggest to address slow processors
can be applied to slow networks as well.
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