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Abstract
Groupware designers are now developing multi-user
equivalents of popular paint and draw applications. Their
job is not an easy one. First, human factors issues peculiar
to group interaction appear that, if ignored, seriously limit
the usability of the group tool. Second, implementation is
fraught with considerable hurdles. This paper describes the
issues and experiences we have met and handled in the
design of two systems supporting remote real time group
interaction: GroupSketch, a multi-user sketchpad; and
GroupDraw, an object-based multi-user draw package. On
the human factors side, we summarize empirically-derived
design principles that we believe are critical to building
useful and usable collaborative drawing tools. On the
implementation side, we describe our experiences with
replicated versus centralized architectures, schemes for
participant registration, multiple cursors, network
requirements, and the structure of the drawing primitives.
Keywords :  shared workspace, real time remote
conferencing, computer supported cooperative work.

1: Introduction
Most research efforts in geographically distributed
conferencing have been in the field of tele-presence—a way
of giving distributed participants a feeling that they are in
the same meeting room (Egido 1988; Johansen & Bullen
1984; MIT 1983). The goal of tele-presence is to transmit
both the explicit and subtle dynamics that occur between
participants. These include body language, hand gestures,
eye contact, meta-level communication cues, knowing who
is speaking and who is listening, voice cues, focusing
attention, and so on. Tele-presence facilitates effective
management and orchestration of remote meetings by the
natural and practised techniques used in face to face
meetings. Tele-data, on the other hand, allows participants
at a meeting to present or access physical materials that
would normally be inaccessible to the distributed group
(Greenberg & Chang 1989). These include notes,
documents, plans and drawings, as well as some common
work surface that allows each person to annotate, draw,
brainstorm, record, and convey ideas during the meeting's
progress. Given that an individual’s work is commonly
centered around a computer workstation, the networked

computer can become a valuable medium for people to
share on-line work with each other.

In this document, we will focus on tele-data that provides
small groups (2 to ~4 people) with real-time access to a
shared drawing space via multi-user equivalents of the now-
common paint and draw programs. We describe the issues
encountered and experiences gained in the design of two
systems supporting real time group interaction:
GroupSketch, a multi-user sketchpad; and GroupDraw, a
prototype object-based multi-user drawing program. The
intent is to highlight human factors issues critical to the
design of real time collaborative drawing tools, and to pass
on our own experiences building such systems.

We begin the paper with a literature summary of research
studies of face to face design teams and the resulting design
principles generated from them. We then explain how these
principles were incorporated into our groupware design, and
the early experiences people had using the systems. The
next section then describes our implementation experiences,
concentrating on our choice of a replicated over a centralized
architecture, handling of participant registration, displaying
of multiple cursors, the network requirements, and the
underlying structure of the drawing primitives.

2: Designing for the human factors of
small group design meetings

Almost every group process begins with a set of initial
design meetings, where participants express, discuss, and
develop ideas. It is a creative forum where people are
encouraged to present their thoughts to the group, to build
upon the ideas presented by fellow members, and to
problem-solve. Participants typically use some large
communal work surface—a group drawing area—to
facilitate their interactions. Typical media now used include
whiteboards, flipcharts, large sheets of paper, as well as a
variety of coloured pens for drawing.

Our aim is to apply the human factors knowledge of face to
face design meetings to the design of workstation
conferencing tools supporting remote work surfaces. This
section will describe how people use conventional work



• drawing, gesturing and listing are as modeless as
possible.

Column 3 of Table 1 provides detail of GroupSketch’s user
interface features and how they were designed around Tang’s
criteria.

Figure 1 displays a typical GroupSketch screen with four
participants engaged in a design session. On the left is the
shared work surface where people draw, enter text, or
gesture. Every person has a cursor labelled with their name.
All participants see the same work surface on their display,
and every movement of the cursor and change in the
drawing is immediately visible on all displays. Each
participant is represented by a unique labelled caricature
located outside the work surface on the right of the screen.
While audio is not directly supported, we expect a full
duplex audio channel to be available by other means (eg
speaker phones).

Four action modes are supported: gesturing through
cursors, drawing, textual listing, and erasing (Figure 1).
With no mouse buttons or keyboard keys pressed, the
cursor portrays the image of a pointing hand (Sandy’s
cursor). To draw freestyle, the user depresses the left mouse
button of a three-button mouse, changing the cursor from a
hand to a pen (Saul’s cursor). The pen-shaped cursor also
appears automatically when typing. Pressing the middle
mouse button changes the cursor into a large arrow to draw
participants’ attention (Irene’s cursor). Users can erase
graphics or text in the work surface by holding down the
right mouse button, which changes the shape of the cursor
into an eraser (Wilf’s cursor).

The menu on the right of Figure 1 allows a person to
privately save an image, retrieve a previously stored image
to the group display, clear the public work surface, or leave
the collaboration (leaving other participants in the
meeting). Menu selections and cursor movements outside
the work surface are private and are not broadcast to other
workstations. Loading an image or clearing the work
surface affects all participant’s screens.

We have performed limited usability studies on
GroupSketch  under relatively informal conditions
(Greenberg & Bohnet 1991). In a typical GroupSketch
scenario, participants converse and interact as they would
over a shared piece of paper. Yet it is not identical to a face
to face meeting. People tend to concentrate intently on the
group work surface (they cannot see each other), not only
for tele-data but for the limited sense of tele-presence
provided via gestures. People focus attention to objects in
the display by pointing at them or by circling objects with
the cursor. Drawing and listing are both independent (one
person responsible for a drawing) and cooperative (multiple
people working together on a drawing). People can—and
often do—work simultaneously on any part of the display,
and anyone can be actively gesturing, creating, or editing

the drawing artifact. The specific observations we had made
about GroupSketch are summarized in Table 2. We feel it
fair to say that GroupSketch, in spite of its primitive
functionality, is reasonably effective as a distributed work
surface.

2.4: The GroupDraw interface
 While GroupSketch is a simple paint program where one
can only make and erase marks on a bit-map surface,
GroupDraw is an object-oriented drawing program with
features approaching those of most structured drawing and
drafting packages (such as Claris MacDraw). GroupDraw is
currently under development (a working prototype now
exists). While its design is based upon our experiences with
GroupSketch, we are using it as an experimental platform
to study different interface and architecture features.
GroupDraw  supports the multiple active cursors and
simultaneous activity that we have seen in GroupSketch.
However, users can now create, move, resize, and delete
drawing objects (rectangles, lines, circles, text, etc). Also,
WYSIWIS has been relaxed to provide a scrollable work
surface; this is a concession to the limited screen real estate
available, and also provides users with room to work on
private drawings. Figure 2 illustrates a GroupDraw screen
with three users working on a design. The smaller
registration window lists conference participants, their
physical location, their phone numbers, and buttons that
will dial that number.

The effect of having objects that can be selected and
modified by different people raises a surprising number of
issues in terms of interface design. The most obvious is
what to do when several people try to manipulate a single
object. The simplest strategy is to let only one person at a
time acquire a particular object—others are prevented from
accessing it. Even so, feedback must be supplied to the user
differentiating the act of selection from actually acquiring
the object, for there could be a time lag between these two
states. In the current implementation, users can actively
grab an object and start manipulating it—the system
assumes optimistically that there will be no conflict. If an
acquisition conflict does occur and permission is denied to
manipulate the object, the object will snap back to its
original position. In practice, system response time is so
fast that the selection/acquisition process occurs almost
instantly—a rejected acquisition appears as a momentary
flicker. We are also experimenting with other visual cues,
such as grey-scale coloring, to indicate acquisition status
during this transition period.

Another issue relates to Tang’s fourth design criteria (Table
1) recommending a seamless intermixing of workspace
actions and functions. The fact that users must now select
from a variety of object types and go into a particular
drawing mode makes this recommendation difficult to
fulfil. Selecting an object from a palette or a menu can
detract from the fluidity of group interaction. We do not yet



surfaces, the implications for the design of a workstation-
based work surface, and how our systems instantiated the
design recommendations.

2.1: Understand collaboration.
 In order to design a software-based work surface, we must
have an adequate understanding of how traditional ones are
used in group meetings. Indeed, Grudin has identified a lack
of understanding of group behaviour to be one of the
reasons why groupware has not been generally successful
(Grudin 1989). He asserts that designers rely too heavily
upon their own intuition, which is often based upon
experiences that may not be applicable to the target group
as a whole.

For example, an intuitive “conventional” view of the
communal work surface would consider it merely as a
medium for creating and storing a drawing artifact (Tang
1989). Bly disproves this naive view (Bly 1988). She
studied two designers communicating through three
different media offering different access to a drawing surface:
face to face including a shared sketchpad; over a video link
that included a view of the other person and their personal
drawing surface; and over the telephone. From her
observations, she asserts that the drawing process—the
actions, uses, and interactions on the drawing surface—are
as important to the effectiveness of the collaboration as the
final artifact produced. Bly also noticed that allowing
designers to share drawing space activities increases their
attention and involvement in the design task. When
interaction over the drawing surface is reduced, the quality
of the collaboration decreases.

Tang refined Bly’s findings even further through his
ethnographic study of eight short small-team design
sessions (Tang 1989; Tang 1991; Tang & Leifer 1988).
Each team used large sheets of paper as a shared work
surface and were given problems to solve. Some teams
placed the paper on a table, others tacked it to a whiteboard.
Even this simple difference had a profound effect on how
the group used the shared work surface. When participants
were huddled in close proximity around the table-mounted
paper, the sketchpad played a key role in mediating the
conversation, and simultaneous access to the work surface
was a normal occurrence (45–68% of all activity). This role
was lessened in the whiteboard situation where people were
seated several feet away.

Tang built a descriptive framework to help organize the
study of work surface activity, where every user activity
was categorized according to what action and function it
accomplished, as listed below (Tang 1989).
Actions:

• listing produces alpha-numeric notes that are spatially
independent of the drawing;

• drawing produces graphical objects, typically a 2-
dimensional sketch with textual annotations that are
attached to the graphic;

• gesturing is a purposeful body movement that
communicates specific information eg pointing to an
existing drawing.

Functions:
• storing information refers to preserving group

information in some form for later recall;
• expressing ideas involves interactively creating

representations of ideas in some tangible form, usually
to encourage a group response;

• mediating interaction facilitates the collaboration of the
group, and includes turn-taking and focusing attention.

Tang’s classification of small group activities within this
framework revealed that the “conventional” view of work
surface activity—storing information by listing and
drawing—constitutes only ~25% of all work surface
activities. Expressing ideas and mediating interaction
comprised the additional ~50% and ~25% respectively.
Gesturing, which is often overlooked as a work surface
activity, played a prominent role in all work surface actions
(~35% of all actions). For example, participants enacted
ideas using gestures to express them. Gestures were used to
signal turn-taking and to focus the attention of the group.
Information can be cognitively chunked and preserved
through gestures.

2.2: Implications for design of a work surface
Tang’s observations led him to derive six design criteria
that shared work surface tools should support. He stresses
the importance of allowing people to gesture to each other
over the work surface, and emphasises that the process of
creating a drawing is in itself a gesture that must be shown
to all participants through continuous, fine-grained
feedback. Another key point is that the tool must not only
support simultaneous activity, but also encourage it by
giving participants a common view of the work surface.
The six design criteria plus a summary of the reasons why
each is offered are listed in the first two columns of Table 1
(condensed from Tang, 1989). These form the foundation
for the rest of this paper.

2.3: The GroupSketch interface
 GroupSketch is a simple group sketching tool that allows
an arbitrary number of people to draw on a virtual piece of
paper (the screen) (Greenberg & Bohnet 1991). It is
designed around the criteria listed in Table 1. Its main
features are:
• a what you see is what I see (WYSIWIS) display
• multiple, active cursors that identify their owners are

always visible on all displays
• simultaneous interaction is fully supported; any user can

do anything at any time
• any user action (cursor movement or drawing), no

matter how small, is immediately visible on all screens



Figure 1: A sample GroupSketch session

Figure 2: A sample GroupDraw session, showing the work surface and the registration window



Observat ion D e t a i l s
GroupSketch is very easy to learn. People with even limited computer experience learnt GroupSketch in moments (ie less than a

minute). We attribute this ease to its direct analogy to the paper sketchpad, the modeless
nature of the system, and its simple syntax.

GroupSketch is effective. In spite of its simplicity, GroupSketch worked. Participants were able to pursue their tasks
effectively, using strategies analogous to those observed in face to face design meetings.

The worst part of GroupSketch is
trying to draw with a mouse.

People expressed frustration when drawing with a mouse. A stylus would have been a large
improvement.

Increasing the number of
participants in an open floor policy
increases parallel activity but also
decreases focused attention.

We observed much simultaneous activity. As noted by Tang, this comes at the price of
reduced group attention (Tang 1989). For example, when four participants were
collaborating, one person commented that she found it difficult to listen to another
participant when others were actively writing or drawing in the communal work area. We
expect this problem to be exacerbated as group size increases. Yet most participants agreed
that restricting access to the work surface or introducing turn-taking would be unacceptable.

Movement of the cursor
synchronized with a participant’s
voice provides the greatest sense of
tele-presence.

The presence of even idle cursors in the work surface was considered important by
participants. People did not have serious problems distinguishing who was doing what.
Still, the quality of presence did not match that of a face to face meeting. For example, we
observed two occasions when visually separated but co-located participants involved in an
intense discussion left their computers to speak face to face.

The shared work surface captured
participants’ attention and focused
interaction.

There is a strong focus of attention on the work surface. Participants’ eyes remained fixed on
the shared area for long periods of time, as if they did not want to miss any of the actions
occurring in the work surface. The ease of drawing and talking simultaneously around
artifacts seemed to provide a focused interaction.

 Participants desired greater
functionality.

People familiar to computer systems wanted functionality greater than a simple sketchpad
could provide. These included object-oriented drawing tools over free-hand bit-mapped
sketching, editable text fields, and other features commonly available in single-user
graphical packages. This finding was our main motivation for designing GroupDraw.

Intermixing listing and drawing
(text and graphics) occurred
frequently and naturally.

Resulting artifacts contained a good mixture of graphics and textual lists of points.

Vertical orientation of the work
surface removed the physical
limitations of the table top.

Users had no problem recognizing objects on the display. As people could literally draw on
top of one another, we observed people working together on objects in quite close proximity
(examples include multiple people erasing different parts of a single line and cooperative
construction of a drawing artifact).

Saving only one image is not
enough.

GroupSketch only allowed any one user to save one image at a time. This was not enough to
allow rapid switching between drawings.

The work surface is too small. The work surface quickly becomes cluttered during long design sessions, especially with
larger group sizes. Larger displays, windowing strategies, or better storage and retrieval
facilities are required.

Table 2. Observation of GroupSketch use.

have an acceptable solution. Rather, we are using
GroupDraw as a platform to test methods for minimal
impact mode-switching. These include palettes,  menus,
hot keys, and gesture recognition.

Another issue is private drawings, which Tang had observed
as a positive resource. These drawings are often worked on
and then presented to the group at a later time. GroupDraw
implements privacy in two ways. The first is by providing
a scrollable drawing surface; a user can scroll and work in
their own area of the screen,  and then move the image to
the main view (a split screen may work well here). Second,
an object’s “coupling status” can be specified (Dewan &
Choudhary 1991). Here, a user can indicate whether an
object can be manipulated by all others, can only be viewed
by others, or can be private. One interface issue here is how
to indicate the object status to the group. Although an

obvious scheme includes identifying object status by
colors, it means that it will no longer be available as a
drawing resource.

In summary, our early experience with the GroupDraw
interface raises more questions than it answers. We know
for certain that some of the interaction techniques now
found in conventional drawing programming will not
transfer well to a multi-user domain.

3: Implementation experiences
GroupSketch is implemented on Sun workstations running
Unix connected together via Ethernet. GroupDraw is built
upon the Macintosh/AppleTalk platform. The design of
both systems contain two features unusual in single-user
interface design. First, they are distributed programs—
resulting issues are the tradeoffs between a replicated or



centralized architecture; the network communication
demands; and how users can dynamically register with an
existing electronic meeting. Second, both systems support
multiple cursors and simultaneous activity—issues here are
how multiple cursors are implemented, and how the
graphics primitives are structured to support multiple
synchronized access.

The internal architecture of GroupSketch and GroupDraw
are briefly described in this section, indicating how the
issues listed above were addressed.

3.1: Replicated vs Centralized Architecture
Two architectural alternatives for constructing distributed
groupware are the centralized and replicated approach
(Ahuja, Ensor & Lucco 1990; Lauwers, Joseph, Lantz &
Romanow 1990; Lauwers & Lantz 1990).  In the
centralized approach, a single program called the central
agent mediates all distributed work surfaces. Each person’s
workstation runs a participant process that just collects user
input and passes it to the central agent. After processing
this information, the agent tells each participant process
what to display on their screens. In effect, the central agent
acts as one large program managing users. An example is
WScrawl, a public domain group drawing program that
runs on the X window system. The single WScrawl
program acts as the central agent that decides what to do
with user events and where to display the output. In
WScrawl, the participant process is simply the X window
server. The advantage of a centralized scheme is that
synchronization is easy, as state information is consistent
since it is all located in one place. The disadvantages are
that the complete system is now vulnerable to the failure
(either machine or network) of the central agent, and that
the central agent could be a network bottleneck as all
activity must be channelled through it.

In the replicated approach, there is no central agent. Instead,
the participant processes replicated on every machine are
totally responsible for maintaining the integrity of the
drawing surface. Rather than passing information to a
central agent, the participant processes communicate
directly with each other. The advantages are that network
traffic is reduced because communication does not go
through a central mediary, and that the system is more
robust to network and machine failure. The catch is that it
becomes more difficult to keep the work surfaces and user
requests synchronized.

Hybrid approaches are also possible. For example, the
participant processes may use a central agent only for
synchronization and for mediating conflicting user requests.
All other activities are performed within and between
participant processes.

Both GroupSketch and GroupDraw use fully replicated
architectures, with the participant process running as a

single process on every workstation. Taking GroupSketch
as an example, participant processes communicate via Unix
stream sockets using only eight primitive events, as listed
and explained in Table 3. Since the only actions that can be
done by a process are to either draw/erase on a bit mapped
surface or to move the cursor, there is no need to
synchronize user activities1.

Event Information passed
Registering a
new user

host name, port number, name of
participant, caricature

Unregistering a
user

Id of participant

Moving cursors Id of participant, cursor shape, new
coordinates

Drawing a line Id of participant, start and end
coordinates

Erasing a region Id of participant, coordinates of region
Listing Id of participant, string location, string,

cursor shape, location of cursor
Clearing screen —
Image transfer binary data of the work surface image
Table 3. Communication protocol between processes

The interaction between replicated participant processes in
GroupDraw is more complex. As we have seen, one of the
advantages of an object-based drawing system such as
GroupDraw  is the ability to not merely view, but to
interact with the entities in the shared workspace in a
structured way.  However, we must ensure that the object's
behavior is managed consistently between users, so that
(for instance) two people grabbing and dragging the same
point on a line do not both succeed.  This poses
concurrency problems that are not encountered in the
simpler GroupSketch situation. Central architectures, by
their very nature, can easily resolve this problem.
However, there are effective approaches to dealing with this
under a replicated architecture as well, which we employed
in  GroupDraw. We define an owner for each object drawn,
who has final authority on all operations affecting the
object. The owner of a single object is one of the replicated
participant processes in the GroupDraw conference2, and
each process may be the owner of more than one object.
The responsibility of the owner is to maintain object

1This is not quite true, for it is possible to get out of step. For
example, if a user draws on a surface that is simultaneously
being erased by someone else, the final appearance of the
bitmap could look different depending upon the order in which
these events arrive at each participant process. In practise, this
is not a problem due to the scarcity of this occurring, and the
minimal visual disruption to the drawing.
2Initially, the owner will be the process supporting the
participant who creates the object, whether by drawing it,
restoring it from a file, or copying it from another source.  The
ownership may change during the course of a conference or
between conferences by various means.



consistency across all sessions.  This is best illustrated by
an example.

Suppose three users userA, userB and userC are part of a
conference, each running processA, processB, and processC.
Within the conference's workspace there is a line object
owned by processA.  UserB and userC, simultaneously
select the same end point of the line object—this is a
situation where object consistency could be compromised
as only one person should be allowed to select the object.
Both processB and processC  then send a message to
processA requesting control of the end point. ProcessA then
assigns permission on a first come, first served basis. If
processB's request arrives first, processA will send a
message to processB granting permission to grab the
object, while processC will receive a message denying
permission.

Under this approach, object ownership is distributed
through all participant processes; it is only the GroupDraw
session as whole that maintains full state information for
its objects. The result is a fairly robust system. If a
participant process leaves (eg when the participant leaves or
their node fails), its objects are systematically transferred to
other participant processes. When the last person leaves the
conference, ownership need not be retained—it is relevant
only during a single conference.

3.2: Registration
 We believe that any participant should be able to join and
leave the  conference at any time. Yet how do people
“register” with the shared drawing session, and how is this
managed internally? How does each participant process
know about and adjust to the comings and going of other
participants?

In GroupSketch, a central registrar process performs
dynamic registration functions. The following example
indicates how the registrar incorporates new participants
into a GroupSketch session.
1 An incoming participant or late-comer connects to the

registrar, opens its own communication port  for other
connections, and sends the port address along with the
participant’s name and caricature data to the registrar (see
Table 3).

2 The registrar acknowledges the newcomer and informs
other participants’ GroupSketch  process of the
newcomer’s address in the network.

3 Each GroupSketch process connects to the newcomer,
with the nearest sending it the current state of the work
surface image. The registrar is now out of the loop.

In contrast, GroupDraw uses a distributed registration
scheme. Each workstation’s registrar maintains an
AppleTalk socket listener. Whenever a new GroupDraw
participant enters a session, it announces its arrival over the
network. The announcement is heard by every registrar, and

connections are made directly. The new entrant then asks
one of the other participant processes to send it a display
list of the current work surface.

Both schemes work reasonably well. GroupDraw’s method
has the advantage that it is not tied to a single central
registrar. But what is most important in both schemes is
that the registrar is fairly  independent of the underlying
application. It is a high-level toolkit component that
should be reusable in other groupware applications
requiring registration. In fact, we were able to reuse in part
a registrar that we had originally designed for a completely
different application (Greenberg 1990; Greenberg 1991).

3.3: Multiple Cursors
 Multiple cursors present a significant problem, for current
window systems only support single cursors. As a result,
multiple cursors are usually implemented independently
from the system-supplied cursors.

In GroupSketch we eschewed window systems completely
in favour of a graphical library that allowed us to
manipulate the bit-map display directly (we used Sun’s
Pixrect library). Large multiple cursors are implemented
directly by exclusively OR’ing bitmaps. The general
algorithm for handling multiple cursors follows.  After
initial variable setup and participant registration, the
participant process executes a main loop that acts on events
arriving from four different sources: the keyboard, the
mouse, the registrar, and from other participant processes.
A participant’s activity is detected through keyboard events
for character insertion; and mouse events for specifying
cursor gesture movement, drawing and erasing.
Modifications are then broadcast to the remote processes
where it appears to them as an “other participant event”;
their workspaces are then updated.

As an example of managing cursor movements, assume
two GroupSketch participants: userA and userB.  When
userA moves the cursor, the change is updated immediately
on the local screen the coordinates of the new position
broadcast to userB.  UserB's participant process receives an
‘other participant interrupt’ event, and reads the new mouse
location. From an internal table, it looks up the old
location of userA's cursor, erases it via an XOR operation,
and then redraws it in its new position. The internal table is
then updated.

Reading directly from the mouse device driver and writing
to the screen provided efficient and fast cursor performance
in GroupSketch. However, this approach is costly in terms
of implementation effort, for we had to design a graphical
interface from the ground-up (eg to manage cursors, menus,
simple drawing).  We also made a design error in our choice
of handling local events differently from remote events. For
example, GroupSketch now has a bug that will cause it to
leave a spurious mark on the screen if one cursor is erasing



on top of  another person’s cursor. While we understand
why the problem occurs, it has proven difficult to fix due
to the different ways local and remote cursor events are
handled; a complete overhaul of the code would be required.

In contrast, GroupDraw multiple cursors are built in part
on top of the Macintosh interface toolkit. While we use
standard Macintosh events to determine where the mouse
cursor is, we do not use the toolkit routines to display the
cursor. Instead, the standard cursor is made invisible, and an
XOR scheme similar to the one mentioned above is used in
its place. The other difference is that all local and remote
events are handled in exactly the same way—the same
cursor redrawing function is notified when any cursor is
moved (whether local or remote), and the display is updated
accordingly.

While the standard cursor could have been used to display
the local cursor position, we believe it not worth the effort.
First, the local cursor has to be treated as a special case
from the remote cursors, leading to more complex coding
and debugging problems. Second, there are often
limitations and system dependencies in application cursors
that may conflict with design goals. For example, our
cursors are larger than the cursors provided by some
window systems. Finally, we have found that our scheme
works well in practice—tracking is fairly smooth and
occurs in real time.

3.4:  Communications
 People designing real time groupware systems are
concerned that the communication channel will be the
primary system bottleneck, and often go to great lengths to
minimize the information transmitted over the channel. We
believe it has been used as a reason not to implement
multiple cursors, and for choosing some architectural styles
over others (eg Ahuja, Ensor & Lucco 1990; Lauwers,
Joseph, Lantz et al 1990; Lauwers & Lantz 1990).

Our experiences with GroupSketch and GroupDraw shows
that communication throughput is not a problem over
typical local area networks (Ethernet runs at 10Mbps,
Appletalk at ~250Kbps). Our communication requirements
were modest. Both GroupSketch and GroupDraw use a
standard stream-oriented connection that guarantees in-order,
error free delivery (Unix Stream Sockets and Appletalk Data
Stream Protocol respectively). When we ran profiling tools
on our systems, we were surprised to find that it was the
processor speed that was the performance bottleneck. While
the network comfortably accommodated the events we had
sent over the network, the slower processors had difficulty
interpreting all of them in real time.

To get a feel for the network traffic, we traced the number
of packets sent by three GroupSketch participants on
several short but active design sessions. On average, a total
of 15–25 packets/second were transmitted, with an average

packet length (ignoring packet overhead) of 5–20 bytes
long. This gives a network utilization ranging from 600 to
4000 bits per second. This rate is easily handled by LANs,
but could be demanding for a low-speed telephone link.
About 75% of the packets sent indicated a “cursor moved”
event. Another thing we noted is that each user’s network
demands are unequal, for active users generated many more
events than inactive users.

Because in our situation CPU processing and not network
bandwidth seemed to be the limiting constraint, we adopted
the following philosophy.  Each participant process sends
out as much information as possible to the other processes.
For example, cursor information is broadcast as often as
possible.  On the receiving end, decisions must be made
about what information to process when backlogs in the
event queue occur.  A slower machine, for example, might
ignore all cursor updates received from a particular process
except for the last.  While this can result in jerky cursor
motion, it is far less disconcerting than waiting for the
cursor to “catch up”.

One final point worth mentioning is the relation of
bandwidth to the number of participants. In the current
setup, network demands will increase factorially (worst
case) with every new participant, for each participant
process must broadcast the same message to all others1. If
a multi-cast network were available instead, then the
communication demands would be linear to the number of
participants, for only a single message need be broadcast by
the sender.

3.5: Drawing primitives
 A structured drawing package provides its users with a set
of drawing primitives: lines, circles, rectangles and so on.
While these are familiar to most simple graphics packages,
the property that they are shareable is still fairly novel.
This section shows how object-oriented programming is
used in G r o u p D r a w  to isolate most multi-user
characteristics into a prototypical drawing object. Sub-
classes, which inherit these characteristics, need only
specify the actual graphical properties of  the drawable
object.  This prototypical object will be discussed in terms
of its properties and operations. We will indicate how its
subclasses can be implemented.

All drawable objects have certain properties which we
isolate as much as possible into a root object called
GroupGraphicalObject. Table 3 provides some detail of the
instance variables and methods it contains. Each graphical
object has an ownerProcess, which is by default the creator
of the object. The ownerProcess serves to arbitrate
contention in manipulating the object. Objects also have a

1The factorial relation only occurs if every person is actively
doing something on the work surface. In practise, some people
will be idle.



GroupGraphicalObject, the root object of all graphics primitives
instance  variables

int couplingStatus -indicates if object is private, public, or shareable
int ownerProcess -indicates who the owner of the process is
int id -a unique reference that identifies the object across the whole system
boolean acquired -indicates if the object is currently being manipulated by a participant
point whereGrabbed -a logical point indicating the position where the object was acquired

methods for initializing and destroying an object, and for sending its description to others
initializeGroupObject() -initializes the object, filling in any defaults
destroyObject() -destroys the object and frees its space
makeDescription() -make a complete description of the object suitable for transmission over the network
sendDescription() -send the description to a requestor

methods for changing object attributes
requestChangeStatus() -request the object owner to  change  the coupling status
doChangeStatus() -actually change the status, and broadcast change over network
requestChangeOwner() -request the object to change its owner
doChangeOwner() -actually change the owner, and broadcast change over network

methods for graphically manipulating and drawing the object
draw () -a place holder for a routine that will draw the object on the screen
requestToGrab() -request the object for permission to acquire it
doGrab() -permission is granted or denied
endGrab() -an acquired object is relinquished
saveOriginal() -the original position of a selected object
restoreOriginal() -restore a moved object to its original position
drag() -high level drag handler; checks permission, broadcasts changes, etc
doDrag() -a place holder; this routine will actually drag the object
whereGrabbed() -a place holder; checks to see where object was grabbed

LineObject, a sub-class of GroupGraphicalObject
instance variables

point startPoint -the start point of the line
point endPoint -the end point of the line

methods
initializeGroupObject() -initializes attributes specific to a line, then calls the super-class' initializeGroupObject
makeDescription() -specialized to include line descriptions, then calls the inherited method
saveOriginal() -specialization line-aware form of the inherited method
restoreOriginal() -specialization line-aware form of the inherited method
doDrag() -actually drags the object
draw() -actually draw the object

Table 3. The GroupGraphicalObject and its LineObject sub-class.

couplingStatus (Dewan & Choudhary 1991) that indicates
the extent to which graphical objects are shared. As
mentioned in Section 2.4, GroupDraw  defines three
coupling levels: private, public, and shareable.  Each object
is also referenced by a unique id, which is used in all
network messages to identify the object being manipulated.

To create a new object, whether it be in response to a local
or remote drawing action, we provide a standard
initialization method initalizeGroupObject(),  which will
set the instance variables mentioned above. Subclasses will
specialize this method to initialize any extra properties it
may have eg zeroing out the endpoints of a line (see
LineObject, Table 3). For communication and storage
purposes, each object must be able to construct and
interpret a string representing itself (make / send -
Description() ); this is used to save and restore images and
to send update information to new users in the conference.

The latter is implemented by requesting each object to tell
the new user about itself.

Next, we look at operations dealing with changing the
coupling status of an object.  GroupDraw insists that the
owner approves status changes; processes request
permission by the requestChangeStatus() method.  If the
owner grants permission, the doChangeStatus() method
will actually change the object status and broadcast the
change to all participants. Table 3 lists several other
methods that follow this request/do form of arbitration.

Because multiple users may select and start to drag an
object asynchronously, the object may be in slightly
different places on different screens. Yet each selected object
will want to tell the other processes where it had been
selected. Passing the precise pixel coordinates is often
meaningless, since that point may not match its partner on



the remote object. Instead we define a “logical” point for
each object.  For example, the logical points of a line will
be the two endpoints (start/endPoint). Dragging a point
within an object would then be described in relation to
these logical points (whereGrabbed). Most of the group
interaction algorithms are handled within the
GroupGraphicalObject. The root methods handle arbitration
for object selection (requestToGrab(), doGrab(), drag(),
endGrab()) The doDrag() method, specialized for each
subclass, actually does the dragging— it does not need to
know how other users are manipulating the object. The
actual drawing of the object by draw() will, of course, be
specialized to each sub-class.

What must a sub-classed object such as LineObject be
responsible for?  First, it needs to create or interpret the
description string it defines if it is to send a complete
object description over the network. Second, given a
physical point, it must determine the corresponding logical
point. Third, it must handle the object-specific graphical
activities, including methods to draw and erase itself,  to
drag itself around, and to save enough state information to
undo the dragging operation if the object's owner refuses
dragging permission (save/restoreOriginal() ). Object status,
ownership, contention, and other issues need not be dealt
with by the sub-class.

4: Summary
This paper introduced some human factors issues and
implementation experiences we have had designing two
multi-user systems: GroupSketch and GroupDraw.

On the human factors side,  it may appear that some of the
design principles mentioned in Section 2 are self-evident eg
multiple cursors  for gesturing, allowing simultaneous
activities, and so on. Yet there are many examples of
related groupware systems that have failed to live up to
these seemingly self-evident criteria. Consider Xerox
PARC’s Boardnoter, a computerized whiteboard used to
support face to face meetings (Stefik, Bobrow, Foster,
Lanning & Tatar 1987; Stefik, Foster, Bobrow, Kahn,
Lanning et al 1987). While a single large tele-pointer could
be seen by all, individual cursors were not. Neither did
participants see each others actions as they occurred, for
actions were not broadcast until a complete graphical stroke
was made or a complete text line entered. Xsketch, a recent
object-based group drawing package suffers a similar lack as
its objects are only transmitted after they are created (Lee
1990). WScrawl, a group sketchpad in the public domain,
does not show multiple cursors. Group Technologies’
Aspects does not necessarily show multiple cursors, nor
can the process of creating or manipulating an object be
seen by participants. We have also seen several other
systems now under development that fail in the same
manner to provide the basic necessities of a group drawing
area.

On the positive side, there are several systems (including
GroupSketch and GroupDraw) that do support the kinds of
interactions people expect from a group drawing surface.
All have one thing in common: they were derived from
Tang’s design principles as listed in Table 1. While these
systems are quite diverse, they all share a common feel, and
observations of use are strikingly similar. Two systems,
for example, are video based: VideoDraw  (Tang &
Minneman 1990) and TeamWorkStation (Ishii 1990). Both
are limited by scalability, for serious image deterioration
results when too many video images are fused.  In contrast,
Commune is a workstation-based multi-user sketchpad
built independently but in parallel with GroupSketch (Bly
& Minneman 1990; Minneman & Bly 1990 and 1991).
Although the interface to the two systems are remarkably
similar, there are some minor differences. In Commune,
people use a stylus to write directly on top of the
horizontally-oriented monitor—the resulting artifacts are
superior to the ones generated on our mouse-based system.

We have also shared our implementation experiences,
concentrating on where a multi-user drawing application
would differ from its single-user counterparts. We found
that while there are some tradeoffs between replicated versus
centralized architecture, there is no compelling reason to
choose one style of another. We recommended that
conference registration be managed as independently as
possible from the underlying application, and that it is best
handled as a high-level toolkit component. Multiple cursors
are considered fundamental to these systems; we
recommended that future interface toolkits and window
systems support these directly. We have also found that
communication bandwidth on moderate speed local area
networks is not a problem. While we recognize that slow-
speed telephone lines are still a fact of life, we suggested
that in general the underlying system functionality should
not be compromised for communications problems that
may not exist. Finally, we outlined how a multi-user
graphics library can be created by having most of its
collaborative-aware properties reside within a root
prototypical graphics object. By sub-classing, it should be
fairly straight forward to extend the library via conventional
graphics procedures.

Note and acknowledgements. GroupSketch is available
from the author at no cost through anonymous ftp. This
research is supported by the National Science and
Engineering Research Council of Canada.
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