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Special issue on CSCW: Part 1

Human and technical factors of distributed
group drawing tools

Saul Greenberg, Mark Roseman, Dave Webster and Ralph Bohnet'

Groupware designers are now developing multi-user equivalents of
popular paint and draw applications. Their job is not an easy one.
First, human factors issues peculiar to group interaction appear that, if
ignored, seriously limit the usability of the group tool. Second,
implementation is fraught with considerable technical hurdles. This
paper describes the human and technical factors that have been met
and handled by researchers and implementors of group drawing tools.
We emphasize our own experiences building four systems supporting
remote real time group interaction: GroupSketch and XGroupSketch,
both multi-user sketchpads; GroupDraw, a prototype object-based
multi-user drawing package, and GroupKit, a groupware toolkit. On
the human factors side, we summarize empirically-derived design
principles that we believe are critical to building useful and usable
collaborative drawing tools. On the implementation side, we describe
our experiences with replicated versus centralized architectures,
schemes for participant registration, multiple cursors, network re-
quirements, and the structure of the drawing primitives. A brief
survey of other approaches to group drawing is also included.

Keywords: human-computer interaction, group drawing, shared
workspace, real-time remote conferencing, computer-supported co-
operative work, groupware

Most research efforts in geographically distributed conferencing have been in
the field of tele-presence — a way of giving distributed participants a feeling that
they are in the same meeting room (Egido, 1988; Johansen and Bullen, 1984;
MIT, 1983). The goal of tele-presence is to transmit both the explicit and subtle
dynamics that occur between participants. These include body language, hand
gestures, eye contact, meta-level communication cues, knowing who is speak-
ing and who is listening, voice cues, focusing attention, and so on. Tele-
presence facilitates effective management and orchestration of remote meetings
by the natural and practised techniques used in face to face meetings. Tele-data,
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DESIGNING A BETTER MOUSETRAP

Figure 1. Sample GroupSketch session

on the other hand, allows participants at a meeting to present or access physical
materials that would normally be inaccessible to the distributed group (Green-
berg and Chang, 1989). These include notes, documents, plans and drawings, as
well as some common work surface that allows each person to annotate, draw,
brainstorm, record, and convey ideas during the meeting’s progress. Given that
an individual’s work is commonly centred around a computer workstation, the
networked computer can become a valuable medium for people to share on-line
work with each other.

In this paper, we will focus on tele-data that provides small groups (2to ~8
people) with real-time access to a shared drawing space via multi-user
equivalents of the now-common paint and draw programs (Greenberg ¢t al.,
1992a). We decribe both human and technical factors behind our design and
implementation of four systems supporting real time group interactions.

e GroupSketch is a minimalist multi-user sketchpad that takes over the entire
computer display (see Figure 1) (Greenberg and Bohnet, 1991). Its users all
see exactly the same thing, and anyone can draw, type, erase, move their
cursors around the drawing, and save or restore the image. It is a robust
program that we have made available to the research community via
anonymous FTP.
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Figure 2. Artists Jacqui MacFarland and Colleen Campbell produce a joint drawing
with XGroupSketch. The system runs within an X-window; the upper panel shows
controls for font selection, line thickness, colour choice, and so on

366

XGroupSketch is a re-implementation of GroupSketch (see Figure 2). It
differs in that it runs within a standard re-sizeable X-window, has a
scrollable drawing surface, and includes features such as different pen sizes
and colors, font types and font sizes, and the ability to save and restore
multiple screen images. It too is a moderately robust program.
GroupDraw is an object-oriented drawing program with features similar to
those of most structured drawing packages (see Figure 3) (Greenberg et al.
1992b). unlike the sketchpads, users create objects (such as lines and
squares) that can then be manipulated. GroupDraw is a prototype de-
veloped as a throw-away experimental platform; it still contains bugs and is
fragile, and will not be released to the community.

GroupKit is a toolkit for building distributed real time groupware (Rose-
man and Greenberg, 1992a, 1992b). Even though GroupKit applications can
go far beyond drawing, the toolkit design is based upon many of the
lessons we have learnt from the applications described above. GroupKit is
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Figure 3. Sample of GroupDraw session, showing work surface and registration
window

now under development, and will be released to the community on
completion.

These implementations are not unique. The technological breakthrough of
building computational group drawing spaces was reported many years ago
(Sarin and Greif, 1985), and other researchers are busy constructing their own
group drawing packages and toolkits (see final section). However, we believe
the time is ripe to proceed beyond mere replication and move towards
empiricism, where lessons are drawn from experience and formulated as
empirical design rules (Gaines, 1991). Our intent in this paper is to use our
systems, concentrating on GroupSketch and GroupDraw, to highlight human
factors issues critical to the design of real-time collaborative drawing tools, and
to pass on the important technical factors we have encountered building such
systems.

We begin the paper with a literature summary of human factors studies of
face to face design teams and the resulting design principles generated from
them. We then explain how these principles were incorporated into our
groupware designs, and the early experiences people had using these systems.
The following section describes the technical factors encountered during
implementation, concentrating on the choice of a replicated over a centralized
architecture, handling of participant registration, displaying of multiple cur-
sors, the network requirements, and the underlying structure of the drawing
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primitives. We conclude with a brief survey and perspective of other group
drawing systems.

Designing for the human factors of small group meetings

Almost every group meeting includes a process where participants express,
discuss, and develop ideas. It is a creative forum where people are encouraged
to present their thoughts to the group for feedback, to build upon the ideas
presented by fellow members, and to solve problems. Participants typically use
some large communal work surface — a group drawing area - to facilitate their
interactions. Typical media now used include whiteboards, flipcharts, large
sheets of paper, as well as a variety of coloured pens for drawing.

OQur aim is to apply existing human factors knowledge of face-to-face
meetings to the design of workstation conferencing tools supporting remote
work surfaces. This section will describe how people use conventional work
surfaces, the implications of the design of a workstation-based work surface,
and how our systems instantiated the design recommendations. While most of
the human factors knowledge is derived from studies of small group design
teams brainstorming through initial design ideas, we are convinced that the
findings are generally applicable to most uses of a shared work surface.

Understand collaboration

In order to design a software-based distributed work surface, we must have an
adequate understanding of how traditional ones are used in face-to-face group
meetings. Indeed, Grudin has identified a lack of understanding of group
behaviour to be one of the reasons why groupware has not been generally
successful (Grudin, 1989). He asserts that designers rely too heavily upon their
own intuition, which is often based upon experiences that may not be
applicable to the target group as a whole.

For example, an intuitive ‘conventional’ view of the communal work surface
would consider it merely as a medium for creating and storing a drawing
artifact (Tang, 1989). Bly (1988) disproves this naive view. She studied two
designers communicating through three different media offering different
access to a drawing surface: face-to-face including a shared sketchpad; over a
video link that included a view of the other person and their personal drawing
surface; and over the telephone. From her observations, she asserts that the
drawing process — the actions, uses, and interactions on the drawing surface —
are as important to the effectiveness of the collaboration as the final artifact
produced. Bly also noticed that allowing designers to share drawing space
activities increases their attention and involvement in the design task. When
interaction over the drawing surface is reduced, the quality of the collaboration
decreases.

Tang refined Bly’s findings even further through his ethnographic study of
eight short small-team design sessions (Tang 1989, 1991; Tang and Leifer, 1988;
also see Garner et al., 1991 for further work in this area). Each team used large
sheets of paper as a shared work surface and were given problems to solve,
Some teams placed the paper on a table, others tacked it to a whiteboard. Even
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this simple difference had a profound effect on how the group used the shared
work surface. Several important observations resulted:

e Orientation: when people sat around the table, drawings made on the
table-mounted paper were oriented in different directions. Although peo-
ple had greater difficulty drawing and perceiving the images, orientation
proved a resource for facilitating the meeting. Because drawings faced a
particular person, a context and an audience was established. Marks made
by participants that were aligned to an image conveyed support and focus.
People working on their own image used orientation as a ‘privacy’
boundary until they were ready to call in the group’s attention. The group
using whiteboard mounted paper did not exhibit these behaviours.

® Proximity: Tang noticed that when participants were huddled around the

table-mounted paper, the sketchpad played a key role in mediating the

conversation. This role was lessened in the whiteboard situation where
people were seated several feet away.

e Simultaneous access: given good proximity, a high percentage (45-68%) of
work surface activity around the table-top involved simultaneous access to
the space by more than one person.

Tang (1989) built a descriptive framework to help organize the study of work
surface activity, where every user activity was categorized according to what
action and function it accomplished, as listed below.

Actions:

® listing produces alphanumeric notes that are spatially independent of the
drawing;

® drawing produces graphical objects, typically a 2-dimensional sketch with
textual annotations that are attached to the graphic;

® gesturing is a purposeful body movement that communicates specific
information, e.g. pointing to an existing drawing.

Functions:

® storing information refers to preserving group information in some form for
later recall;

® expressing ideas involves interactively creating representations of ideas in
some tangible form, usually to encourage a group response;

® mediating interaction facilitates the collaboration of the group, and includes
turn-taking and focusing attention.

Tang’s classification of small group activities within this framework revealed
that the ‘conventional’ view of work surface activity — storing information by
listing and drawing — constitutes only around 25% of all work surface activities.
Expressing ideas and mediating interaction comprised the additional ~50%
and ~25% respectively. Gesturing, which is often overlooked as a work surface
activity, played a prominent role in all work surface actions (around 35% of all
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actions). For example. participants enacted ideas by using gestures to express
them, and gestures were used to signal turn-taking and to focus the attention of
the group.

Implications for design of a work surface

Tang’s observations led him to derive six design criteria that shared work
surface tools should support. He stresses the importance of allowing people to
gesture to each other over the work surface, and emphasizes that the process of
creating a drawing is in itself a gesture that must be shown to all participants
through continuous, fine-grained feedback. Another key point is that the tool
must not only support simultaneous activity, but also encourage it by giving
participants a common view of the work surface. The six design criteria plus a
summary of their rationale are listed in detail in the first two columns of Table 1
(condensed from Tang 1989), and deserve special attention of the reader. These
criteria form the foundation for the rest of this paper.

GroupSketch interface

GroupSketch is a simple group sketching tool that allows an arbitrary number
of people to draw on a virtual piece of paper (the screen) using a mouse
(Greenberg and Bohnet, 1991). It is designed around the criteria listed in Table
1. Its main features are:

® it uses a strict ‘what you see is what I see’ (WYSIWIS) display;

e multiple, active cursors that identify their owners are always visible on all
displays; ’

e simultaneous interaction is fully supported, and any user can perform any
action at any time;

® any user action (cursor movement or drawing), no matter how small, is
immediately visible on all screens;

e drawing, gesturing and listing are as modeless as possible.

Column 3 of Table 1 provides detail of the GroupSketch user interface features
and how they were designed around Tang's six criteria.

Figure 1 displays a typical GroupSketch screen with four participants
engaged in a design session. On the left is the shared work surface where
people draw, enter text, or gesture. Every person has a cursor labelled with their
name. All participants see the same work surface on their display, and every
movement of the cursor and change in the drawing is immediately visible on all
displays. Each participant is represented by a unique labelled caricature located
outside the work surface on the right of the screen. While audio is not directly
supported, we expect a full duplex audio channel to be available by other means
(e.g., conference calls).

Four action modes are supported: gesturing through cursors, drawing,
typing, and erasing (Figure 1). With no mouse buttons or keyboard keys
pressed, the cursor portrays the image of a pointing hand (Sandy’s cursor). To
draw free-style, the user depresses the left mouse button of a three-button
mouse, changing the cursor from a hand to a pen (Saul's cursor). The
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Table 1. Six criteria for designing a communal work surface (condensed from Tang, 1989), and how
they were met in GroupSketch

Design criteria Reasons How criteria were met in GroupSketch

1. Provide ways of ® Gestures are a ® Physical gestures are conveyed via
conveying and prominent action. specialized multiple cursors synchronized
supporting gestural ® Gestures are with voice.

communication. typically made in As gestures must be seen if they are to
Gestures should be relation to objects convey information, all cursors within a
clearly visible, and on the work work surface are always visible to all
should maintain their surface. participants. Cursors are also made
relation with objects ® Gestures must be prominent on the display by being larger
within the work seen if they are to than normal size.

surface and with voice be useful. Cursors change their shape to reflect a
communication. ® Gestures are often natural action. Four gesture modes are

accompanied by
verbal explanation.

supported (pointing, writing, erasing, and
directing attention) by distinct cursor
shapes (Figure 1). The default cursor shape
is the pointing hand, while the large arrow
allows users to point at and direct the
group’s attention with greater emphasis
than the normal hand.

Cursors are unique, each identifying the
person it belongs to by labelling it with the
user’s name. In addition (and more subtly)
each cursor is orientated at different angles
(see Figure 1).

Cursor movements appear with no
apparent delay on all displays, which
means that they remain synchronized with
verbal communication.

Cursors always maintain their same
relative location on every display so that
they retain their relation to the work
surface objects.

2. Minimize the
overhead encountered
when storing
information.

Only one person
usually records
information.
Other participants
should not be
blocked

from continuing
private or group
work while
information is
being stored.

Any person may store a snapshot of the
current work surface into their own private
directories at any time. While that
particular workstation display will ‘freeze’
for a short period, other workstations
remain unaffected. Any person may restore
their private images back to the public
work surface at will.

3. Convey the process
of creating artifacts to
express ideas.

The process of
creation is in itself a
gesture that
communicates
information.
Speech is closely
synchronized with
the creation
process.

Artifacts in
themselves are
often meaningless.

In GroupSketch, any work surface action,
no matter how small, is visible with no
apparent delay on all participants’ screens.
Every movement of the cursor, every pixel
that is drawn, and every letter typed is
immediately broadcast to other screens
and are therefore immediately visible.

As with cursors, all details of artifact
creation and manipulation are transmitted
in real time and remain synchronized with
accompanying speech.

continued
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Table 1. continued

Design criteria

Reasons

How criteria were met in GroupSketch

4. Allow seamless
intermixing of work
surface actions and
functions.

® A single action
often combines
aspects of listing,
drawing and
gesturing.

® Writing and
drawing alternates
rapidly.

® Actions often
address several
functions.

e The simplicity of GroupSketch allows it to

have a nearly modeless interface. When no
mouse buttons are depressed, the cursor is
in the pointing gestural state. Drawing
occurs as long as the left button is
depressed, which also turns the cursor into
a pen. Similarly, the right button will
invoke the erase function, and the middle
button the large arrow for focusing
attention. Typing immediately inserts text
at the current cursor location and the
cursor image changes to the pen,
automatically reverting back to the hand-
shaped cursor after a reasonable pause in
typing is detected.

5. Enable all
participants to share a
common view of the
work surface while
providing
simultaneous

access and a sense of
close proximity to it.

e People do not see
the same things
when orientation
differs.

® Simultaneous
activity is
prevalent.

e Close proximity to
the work surface
encourages
simultaneous
activity.

Advantages of a common view were
considered more beneficial than the lesser
advantages of differing orientations. By
using a WYSIWIS display and by having all
cursors present, we believe GroupSketch
promotes a close sense of proximity. As
participants track other cursors, they
naturally associate actions in the work
surface with people who are executing
those actions.

Simultaneity is fully supported. All
participants have free and equal access to
the work surface. Any one can do anything
at any time.

6. Facilitate the
participants’ natural
abilities to coordinate
their collaborations.

® People are skilled at
co-ordination
communication.

e Wedonot
understand the co-
ordinating process
well enough to
mechanize it.

As GroupSketch does not enforce any style
of social protocol and as all participants are
in direct control of their actions, the group
is free to use whatever coordination
method suits them (an argument favouring
this approach is presented by Dykstra and
Carasik (1991)).

pen-shaped cursor also appears automatically when typing. Pressing the
middle mouse button changes the cursor into a large arrow to draw partici-
pants’ attention (Irene’s cursor). Users can erase graphics or text in the work
surface by holding down the right mouse button, which changes the shape of
the cursor into an eraser (Wilf’s cursor).

The menu on the right of Figure 1 allows a person to save an image privately,
retrieve a previously stored image to the group display, clear the public work
surface, or leave the collaboration (leaving other participants in the meeting).
Menu selections and cursor movements outside the work surface are private
and are not broadcast to other workstations (that is the only part of Group-
Sketch that is not WYSIWIS). Loading an image or clearing the work surface
affects all participants’ screens.

372 Interacting with Computers vol 4 no 3 (1992)



XGroupSketch is similar to GroupSketch with several important differences.
First, it runs within a standard X-window (see Figure 2), and users can
manipulate this window in all the usual ways. Second, it is functionally richer.
Through a control panel with pull-down menus, users can choose different line
styles, line colours, and fonts. Multiple images can be saved as pages in files
through the file menu. A user can raise a list of all XGroupSketch participants,
shown in a separate window, through the ‘Users’ button. Feedback is located on
the top right, with a panel specifying the font, line width, the number of users,
and arbitrary system messages. Third, the window is a viewport into a large
drawing area, and users can scroll independently to, and work on, any part of
the drawing they wish.

We have performed limited usability studies on GroupSketch under relative-
ly informal conditions (Greenberg and Bohnet, 1991)" . In a typical GroupSketch
scenario, participants converse and interact as they would over a shared piece of
paper. Yet it is not identical to a face-to-face meeting. People tend to concentrate
intently on the group work surface (they cannot see each other), not only for
tele-data but for the limited sense of tele-presence provided via gestures. People
focus attention to objects in the display by pointing at them or by circling
objects with the cursor. Drawing and listing are both independent (one person
responsible for drawing) and co-operative (multiple people working on a
drawing). People can - and often do — work simultaneously on any part of the
display, and anyone can be actively gesturing, creating, or editing the drawing
artifact. The specific observations we had made about GroupSketch are summa-
rized in Table 2. We feel it fair to say that GroupSketch, in spite of its minimalist
functionality, is reasonably effective as a distributed work surface.

GroupDraw interface
While GroupSketch is a simple paint program where users can only make and
erase marks on a bit-map surface, GroupDraw is an object-oriented drawing
program with features approaching those of most structured drawing and
drafting packages (such as Claris MacDraw). GroupDraw was developed as a
throw-away experimental platform, and the implementation still contains bugs
and is quite fragile. Still, it helped us study and select interface and architecture
features for GroupKit, our toolkit for building groupware. GroupDraw supports
the multiple active cursors and simultaneous activity that we have seen in
GroupSketch. However, users can now create, move, resize, and delete drawing
objects (rectangles, lines, circles, text, etc). Also (and similar to XGroupSketch),
WYSIWIS has been relaxed to provide a scrollable and resizable work surface.
This is a concession to the limited screen area available, and also provides users
with room to work on private drawings. Figure 3 illustrates a GroupDraw
screen with three users working on a design. The smaller registration window
lists conference participants, their physical location, and their phone numbers.
The effect of having objects that can be selected and modified by different
people raises a surprising number of interface design issues. The most obvious

While XGroupSketch use is similar to GroupSketch, some problems accompany its added features.
These will be discussed later in the GroupDraw section.
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Table 2. Observation of GroupSketch use

Observation Details
GroupSketch is very easy People with even limited computer experience learnt GroupSketch in
to learn. moments (less than a minute). We attribute this ease to its direct

analogy to the paper sketchpad, the modeless nature of the system,
and its simple syntax.

GroupSketch is effective.

In spite of its simplicity, GroupSketch worked. Participants were able
to pursue their tasks effectively, using strategies analogous to those
observed in face-to-face design meetings.

The worst part of
GroupSketch is trying to
draw with a mouse.

People expressed frustration when drawing with a mouse. A stylus
would have been an improvement.

Increasing the number of
participants in an open
floor policy increases
parallel activity but also
decreases focused
attention.

We observed much simultanous activity. As noted by Tang (1989),
this comes at the price of reduced group attention. For example, when
four participants were collaborating, one person commented that she
found it difficult to listen to another participant when others were
actively writing or drawing in the communual work area. We expect
this problem to be exacerbated as group size increases. Yet most
participants agreed that restricting access to the work surface or
introducing turn-taking would be unacceptable.

Movement of the cursor
synchronized with a
participant’s voice
provides the greatest
sense of tele-presence.

The presence of even idle cursors in the work surface was considered
important by participants. People did not have serious problems
distinguishing who was doing what. 5till, the quality of presence did
not match that of a face to face meeting. For example, we observed
two occasions when visually separated but co-located participants
involved in an intense discussion left their computers to speak face-
to-face.

The shared work surface
captured participants’
attention and focused
interaction.

There is a strong focus of attention on the work surface. Participants’
eyes remained fixed on the shared area for long periods of time, as if
they did not want to miss any of the actions occurring in the work
surface. The ease of drawing and talking simultaneously around
artifacts seemed to provide a focused interaction.

Participants desired
greater functionality.

People familiar with computer systems wanted functionality greater
than a simple sketchpad could provide. These included object-
oriented drawing tools over free-hand bit-mapped sketching,
editable text fields, and other features commonly available in single-
user graphical packages. This finding was our main motivation for
designing GroupDraw.

Intermixing listing and
drawing (text and
graphics) occurred
frequently and naturally.

Resulting artifacts contained a good mixture of graphics and textual
lists of points.

Vertical orientation of the
work surface removed the
physical limitations of the
table top.

Users had no problem recognizing objects on the display. As people
could literally draw on top of one another, we observed people
working together on objects in quite close proximity (examples
include multiple people erasing different parts of a single line and
cooperative construction of a drawing artifact).

Saving only one image is
not enough.

GroupSketch only allowed any one user to save one image at a time.
This was not enough to allow rapid switching between drawings.
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Table 2. continued

Observation Details

The work surface is too The work surface quickly becomes cluttered during long design

smail. sessions, especially with larger group sizes. Larger displays,
windowing strategies, or better storage and retrieval facilities are
required.

is what to do when several people try to manipulate an object. The simplest
strategy is to let only one person at a time acquire the object — others are
prevented from accessing it. Even so, feedback must be supplied to the user
differentiating the act of selection from actually acquiring the object, for there
could be a time lag between these two states. In GroupDraw, users can actively
grab an object and start manipulating it — the system assumes optimistically
that there will be no conflict. If an acquisition conflict does occur and
permission is denied to manipulate the object, the object will snap back to its
original position. In practice, system response time is rapid enough that the
selection/acquisition process occurs almost instantly — a rejected acquisition
appears as a momentary flicker. Still, other visual cues may be necessary to
indicate acquisition status during this transition period, such as grey-scale
colouring of the object’s handles?.

Another issue relates to Tang’s fourth design criteria (see Table 1) recom-
mending a seamless intermixing of workspace actions and functions. In
GroupSketch this was accomplished by designing a relatively modeless inter-
face. The fact that GroupDraw users must now select from a variety of object
types and go into a particular drawing mode makes this recommendation
difficult to fulfil. While the time taken to switch modes is not critical in
single-user systems, selecting an object from a palette or menu does detract
from the fluidity of a group interaction (this problem is less serious in
XGroupSketch because mode changes are infrequent). We do not yet have an
acceptable solution, and consider this an area for further research.

A further concern arises from private drawings, which Tang had observed as
- a positive resource. These drawings are often worked on and then presented to
the group at a later time. GroupDraw implements privacy in two ways. The first
is by providing a scrollable drawing surface; a user can scroll and work in their
own area of the screen, and then move the image to the main view (a split
screen may work well here, but see below). Second, an object’s ‘coupling status’
can be specified (Dewan and Choudhary, 1991). Here, a user can indicate
whether an object can be manipulated by all others (‘all of us can see and touch
it’), can only be viewed by others (‘I can touch it but you cannot’), or can be
private (‘only I can see it’). While attaching coupling status to drawing artifacts
is a nice technical feature, its actual value (and usability) to real group drawing
situations requires further exploration.

Scrolling deserves special attention, for it can completely disrupt the WYSI-

2GroupDraw actually allows multiple access to a single object. For example, two people can grab
different endpoints of a line and move it. The locking described above is done on the handle level
e.g. when two people try to grab the same endpoint of a line.
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WIS principle. In GroupDraw and in XGroupSketch, views of different partici-
pants can now coincide, overlap partially, or be completely disjoint. The result
is that a participant is no longer certain of what others can see, and comments
such as “Can you see this part of the drawing?” and “Where are you?” occur in
the verbal dialogue. Strategies exist to mitigate this problem. The first is to
supply each user with a separate ‘radar’ window that shows a miniaturized
animated view of the complete drawing space and the location of all partici-
pants’ viewports on it (Smith et al., 1989). The cost is the extra screen area
occupied by the radar window and the cognitive distraction of having to refer to
it. A second strategy is view-slaving, where the view-port of one participant
(called a follower) can be enslaved to the view-port of another participant (called
a leader) (Pendergast and Hayne, 1991). Whenever a leader scrolls the view, the
corresponding views of the followers are scrolled as well. What makes view-
slaving interesting is that all users can choose to be leaders and followers at the
same time, so that anyone can scroll and WYSIWIS is maintained. Of course,
‘scroll wars’ become possible, where people can fight over what part of the
image the group should see. However, we expect social protocol will minimize
these occurrences.

In summary, our early experience with the GroupDraw interface raises more
questions than it answers. We know for certain that some of the interaction
techniques now found in conventional drawing programming will not transfer
well to a multi-user domain.

Other human factors concerns
Three other human factors concerns are critical to the design of group drawing
systems. These are:

e the need for a better sense of tele-presence;

e the ability to have a seamless melding of shared work on the computer and
the desktop;

® consideration of the size of the group.

Does the tele-presence supplied by GroupSketch and GroupDraw’s shared
cursors, activity space, and voice channel suffice for group work? As noted in
Table 2, GroupSketch users did have a strong focus of attention on the work
surface, and we feel that tele-presence was adequately supported as long as
people were directly interested in the drawing surface. Yet what about the times
when the group work surface was not central to the discussion? We conducted
several GroupSketch sessions where all users were co-located in a terminal
room. When the conversation shifted to a meta-level topic not requiring the
drawing surface, we noticed that many of the participants turned away from the
computer screen to look at each other instead, even though the layout of this
particular room made eye contact awkward. Clearly, people prefered face-to-
face contact in these situations.

Smith et al. (1989) made a similar observation in a slightly different group-
ware environment, where two geographically distributed people each had two
monitors. One monitor showed the computerized work surface, the other
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provided a ‘video tunnel’ - a real-time video link that allows eye contact. When
the conversation shifted to meta-level discourse, the participants would turn
away from the workstation and towards the video monitor.

Several other researchers are now examining what happens when the
graphical work surface and the video image of the participant’s faces are
merged via transparent overlays into a single display (eg ClearBoard-1: Ishii
and Arita, 1991; Rococco: Scrivener et al., 1991). They argue that these systems
promote not only eye contact between participants, but also (and perhaps more
importantly) ‘gaze awareness’, where a participant can easily recognize what
their partner is looking at on the work surface (Ishii and Kobayashi, 1992).

A second human factor concern is the barrier that exists between the work we
do on our computers and the work we do on our physical desks. We have not
yet reached the age where all work is computerized, and many physical items
that we wish to share with our geographically-distributed colleagues cannot be
easily converted into computer medium in a fast-paced meeting. One simple
approach towards a seamless work environment is to allow participants to
import static images of documents and other artifcats via paper scanner and
video camera/frame grabber; the images can then be manipulated by the
groupware (IIS Technologies, date unknown). Another approach fuses two or
more live-video images of computer screens and physical desktop surfaces
(Ishii, 1990). Here, participants can combine computer artifacts (eg a single-user
drawing program) with desktop artifacts (e.g., an existing drawing). Partici-
pants can gesture around and interact with these artifacts using their hands and
pencils (by placing them under the video camera and drawing on the surface),
or through the standard computer cursor.

Finally, the size of the group will affect how the group uses a drawing surface.
The studies of work surface activities mentioned in this paper examined group
interactions of two to four people. Yet many face-to-face meeting involve far
larger groups, and much of the technology in the group decision support system
domain accommodates 10 to 40 or more people (e.g., GroupSystems, Nunamak-
er et al., 1991). Will group drawing tools such as GroupSketch scale up? In one
two-hour GroupSketch session, we had eight people working on a design task,
a brainstorming task, and an ideas organization task. While we do not have any
hard data on the session, the general feeling was that the tool remained useful.
However, several issues were noticed. First, eight large cursors cluttered the
screen. As a result, we modified GroupSketch so that the cursor size would
shrink as the number of group members increased, although any explicit
activity (such as drawing or erasing), would restore the active cursor to its full
size for the duration of the action. With eight people, the smaller cursors®
sufficed to provide an uncluttered screen. Participants maintained a group
sense of awareness, and temporarily restoring busy cursors to their full size
focused the group’s attention to the active work. A second issue concerning
group size is screen size — large groups need far more working space in view
than contemporary bit-mapped displays will provide. Finally, larger groups

3Cursor sizes here were 8x8 pixels. With larger group, cursors could be shrunk to occupy only a
single pixel on the screen.
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appeared to spend more time on meta-level discussion. As mentioned pre-
viously, this means that the work surface alone will not suffice, and that a visual
channel will probably be required as well.

Implementation experiences

GroupSketch, XGroupSketch, and GroupKit are implemented on Sun worksta-
tions running Unix and networked via Ethernet. GroupDraw is built upon the
Macintosh/AppleTalk platform. The design of all systems contain two features
unusual in single-user interface design. First, they are distributed programs -
resulting issues are the tradeoffs between a replicated or centralized
architecture; the network communication demands; and how users can dyna-
mically register with an existing electronic meeting. Second, all systems support
multiple cursors and simultaneous activity - issues here are how multiple
cursors are implemented, and how the graphics primitives are structured to
support multiple synchronized access.

The internal architecture of GroupSketch and GroupDraw are briefly de-
scribed in this section, indicating how the issues listed above were addressed.
XGroupSketch and GroupKit are introduced when necessary.

Replicated versus centralized architecture

There are three architectural alternatives for constructing distributed software
(see Figure 4). The centralized architecture contains a single central program that
controls the distributed work of all users, while a replicated architecture executes
a copy of the program at every workstation. A hybrid approach combines
features of both. While these architectures have been contrasted previously in
the design of ‘collaboration-transparent’ view-sharing systems (Ahuja et al.,
1990; Greenberg 1990; Lauwers et al., 1990), many of the technical factors raised
are similar to those we have seen in the collaboration-aware groupware
discussed in this paper.

In the centralized approach, a single program, residing on one machine,
controls all input and output to the distributed work surfaces (see Figure 4a).
Server processes residing on each person’s workstation are responsible only for
passing user input events to the central program (e.g., mouse movements, key
presses, window resizing), and for displaying output sent to it from the central
program. The central program processes these events and then notifies all
workstations of display updates. In effect, each workstation is nothing more
than a graphical terminal/window server (e.g. the X-window server, Sheifler
and Getties, 1986), while the central program is one large application program
that decides what to do with all users’ input and output. The advantage of a
centralized scheme is that synchronization is easy, as state information is
consistent since it is all located in one place. The disadvantages are that the
complete system is now vulnerable to the failure (either machine or network) of
the central agent, and that the central agent could become a network and
processor bottleneck as all activity must be channelled through it.

In the replicated approach, there is no central program. Instead, each
application program is replicated on every machine (see Figure 4(b)), and the
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replicated programs stay synchronized by communicating directly with each
other. Each replicated program is totally responsible for dealing with its local
user’s events, exchanging information with its counterparts on the network,
and maintaining the integrity of the drawing surface. The advantages are that
network and processor traffic is reduced because communication does not go
through a central mediary, and that the system is more robust to network and
machine failure. The drawback is that it becomes more difficult to keep the
work surfaces and user requests synchronized.

Hybrid approaches are also possible. For example, the participant processes
may use a central agent only for synchronization and for mediating potentially
conflicting user requests. All other activities are performed within and between
participant processes.

An example of a centralized architecture is WScrawl 1.0, a public domain
group sketching program developed by Brian Wilson at Hewlett-Packard that
runs within the X-window system. The single WScrawl process collects and
decides what to do with all user events (which it collects from the X-window
server) and where to display the output. Thus it has all the advantages and
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Table 3. Communication protocol between GroupSketch processes

Event Information passed

Registering a new user Host name, port number, name of participant, caricature

Unregistering a user ID of participant

Cursor moved ID of participant, cursor shape, new coordinates

Drawing a line ID of participant, start and end coordinates

Erasing a region ID of participant, coordinates of region

Listing ID of participant, string location, string, cursor shape, location of cursor
Clearing screen -

Image transfer Binary data of the work surface image

disadvantages of centralized architectures noted above. Another disadvantage
arises when the system follows relaxed WYSIWIS. For example, several user
actions in WScrawl 1.0, such as menu and control panel selections, are private
actions that are visible only on that user’s display. The central program must
deal with these selections as special cases. Another example is independent
scrolling (not implemented in WScrawl 1.0). If each user can scroll to different
portions of the group drawing surface, the central manager cannot simply
broadcast the same output directives to all participants. Rather, it must keep
track of each user’s view and decide what portion of that view (if any) requires
updating. While the programming problems introduced by relaxed WYSIWIS
are surmountable, it does add complexity to the code.

In contrast, both GroupSketch and GroupDraw use fully replicated
architectures, where every workstation has its own local copy of the program.
Taking GroupSketch as an example, the replicated GroupSketch processes
communicate via Unix stream sockets, using only the eight primitive events
listed in Table 3. On start-up, the new GroupSketch process asks the registrar
demon (described in the next section) for the location of any other GroupSketch
processes. If any exist, the closest process will send the new one a copy of the
image, received as an ‘image transfer’ event. This is the only time screen output
is ever sent over the communication channel. When any other local user event
occurs, such as a cursor movement or line-drawing action, the process will
update its own display and pass the event on to the other GroupSketch
processes (see Table 3). When a remote event is received, it is interpreted and
handled in essentially the same manner as a local event, e.g. remote cursors are
moved, remote lines are drawn. Since the only actions that can be done by a
GroupSketch process are either draw/erase on a bit-mapped surface or to move
the cursor, there is no need to synchronize user activities®*.

The interaction between replicated processes in GroupDraw is more complex.
As we have seen, one of the advantages of an object-based drawing system such
as GroupDraw is the ability not merely to view, but to manipulate the entities
in the shared workspace. However, we must ensure that the object’s behaviour

“This is not quite true, for it is possible to get out of step. For example, if a user draws on a surface
that is simultaneously being erased by someone else, the final appearance of the bit-map could look
different depending upon the order in which these events arrive at each participant process. In
practice, this is not a problem due to the scarcity of this occurring, and the minimal visual
disruption to drawing.
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is managed consistently between users so that (for instance) two people
grabbing and dragging the same pointon a line do not both succeed. This poses
concurrency problems that are not encountered in the simpler GroupSketch
situation. Central architectures can easily resolve this problem as all state
information is in one place. However, there are effective approaches to dealing
with this under a replicated architecture as well, which we employed in
GroupDraw. We define an owner for each object drawn, who has final authority
on all operations affecting the object. The owner of a single object is one of the
replicated participant processes in the GroupDraw conferences’, and each
process may be the owner or more than one object. The responsibility of the
owner is to maintain object consistency across all sections. This is best
illustrated by an example.

Suppose three users: userA, userB and userC are part of a conference, each
running processA, processB, and processC. Within the conference’s workspace
there is a line object owned by processA. UserB and userC simultaneously select
the same end point of the line object — this is a situation where obiject
consistency could be compromised as only one person should be allowed to
select the object. Both processB and processC then send a message to processA
requesting control of the end point. ProcessA then assigns permission on a first
come, first served basis. If processB’s request arrives first, processA will send a
message to processB granting permission to grab the point, while processC will
receive a message denying permission. The owner is then notified when the
user has released the point, and the point again becomes available for selection.

Under this approach, object ownership is distributed across all participant
processes; it is only the GroupDraw session as a whole that maintains full state
information for its objects. The result is a fairly robust system. If a participant
process leaves (e.g. when the participant leaves or their node fails), its objects
are systematically transferred to other participant processes. When the last
person leaves the conference, ownership need not be retained - it is relevant
only during a single conference.

A variety of hybrid approaches are possible. In XGroupSketch, for example,
we have minimized the need for replicated processes to track each other by
moving the responsibility for registration, communication management, and
even broadcasting into a centralized manager. As in GroupSketch, the repli-
cated portion of XGroupSketch interprets all local and remote actions, and
updates the display accordingly. The difference is that the replicated portion
maintains only a single communication channel to the manager, which is used
to send local events and to receive remote events. The manager acts as a
communication hub, and is responsible for creating and maintaining links to all
processes, and for broadcasting any events received.

In GroupKit, we are considering (but have not yet implemented) a hybrid
approach to the distributed ownership scheme described in GroupDraw. A
central process (provided as a toolkit component) will mediate concurrency,

S[nitially, the owner will be the process supporting the participant who creates the object, whether
by drawing it, restoring it from a file, or copying it from another source. The ownership may change
during the course of a conference or between conferences by various means.
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while the replicated processes will handle all other actions. When a user
performs a possibly contentious action, such as grabbing a line’s endpoint, the
replicated process will ask the central process for permission. If granted, the
central process will disallow other users to access that point until it has been
informed that the point has been released.

There is no real answer to the question of which scheme works best. Rather, it
is a set of trade-offs that revolve around programming complexity, synchroniza-
tion requirements, processor speed, the number of participants expected,
communication capacity and cost, and so on.

Registration
We believe that any participant should be able to join and leave the conference
at any time. Yet how do people ‘register’ with the shared drawing session, and
how is this managed internally? How does each participant process know about
and adjust to the comings and goings of other participants?

In GroupSketch, a central registrar demon performs dynamic registration
functions. The following example indicates how the registrar incorporates new
participants into a GroupSketch session:

(1) An incoming participant or late-comer starts a GroupSketch process, which
connects to the registrar, opens a communication port ready for other
connections, and sends the port address along with the participant’s name
and caricature data to the registrar (see Table 3 for the protocol).

(2) The registrar acknowledges the newcomer and informs all other partici-
pants’ GroupSketch processes (if any) of the newcomer’s address in the
network.

(3) All other GroupSketch processes (if any) connect to the newcomer, with the
nearest sending in the current state of the work surface image as an ‘image
transfer’ event. The registrar is now out of the loop.

In contrast, GroupDraw uses a distributed registration scheme. Each worksta-
tion’s registrar maintains an AppleTalk socket listener. Whenever a new
GroupDraw participant enters a session, it announces its arrival over the
network. The announcement is heard by every registrar, and connections are
made directly. The new entrant then asks one of the other participant processes
to send it a display list of the current work surface.

Both schemes work reasonably well. GroupDraw’s method has the advantage
that it is not tied to a single central registrar. But what is most important in both
schemes is that the registrar is fairly independent of the underlying application.
It is a high-level toolkit component that should be re-usable in other groupware
applications requiring registration. In fact, for GroupSketch we were able to
re-use, in part, a registrar that we had originally designed for a completely
different application (Greenberg, 1990, 1991a). We have included a registrar as a
fundamental toolkit component in GroupKit.

Multiple cursors
Multiple cursors — used for gesturing and tele-presence — present a significant
problem, for current window systems only support single cursors. As a result,
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multiple cursors must be implemented independently from the system-
supplied cursors.

In GroupSketch we avoided window systems completely in favour of a
graphical library allowing us to manipulate the bit-map display directly (we
used Sun Microsystem’s Pixrect library). Large multiple cursors are im-
plemented directly by exclusively OR’ing bitmaps. The general algorithm for
handling multiple cursors follows. After initial set-up and participant registra-
tion, the participant process executes a main loop that acts on events arriving
from four different sources: the keyboard, the mouse, the registrar, and from
other participant processes (via Unix sockets). A participant’s local activity is
signalled by keyboard events for character insertion; and by mouse events for
cursor movement, drawing, and erasing. These events are then broadcast to the
remote processes (see Table 3); their workspaces are then updated.

As an example of managing cursor movements, assume two GroupSketch
participants: userA and userB. When userA moves the cursor, the change is
updated immediately on the local screen, and the cursor moved event along
with the participant id and the co-ordinates of the new position are broadcast to
userB. When userB’s process receives the event, it looks up the old location of
userA’s cursor, erases it via an XOR operation, and then redraws it in its new
position. The internal table is then updated.

Reading directly from the mouse device driver and writing to the screen
provided efficient and fast cursor performance in GroupSketch. However, this
approach is costly in terms of implementation effort, for we had to design a
graphical interface from the ground-up (e.g., to manage cursors, menus and
simple drawing). We also made a design error in our choice of handling local
events differently from remote events. For example, GroupSketch initially had a
bug that would cause it to leave a spurious mark on the screen if one cursor is
erasing on top of another person’s cursor. While we understood why the
problem occurred, the bug took time to remove due to the different ways local
and remote cursor events were handled.

In contrast, GroupDraw’s multiple cursors are built in part on top of the
Macintosh interface toolkit. While we use standard Macintosh events to
determine where the mouse cursor is, we do not use the toolkit routines to
display the cursor. Instead, the standard cursor is made invisible, and an XOR
scheme similar to the one mentioned above is used in its place. The other
difference is that all local and remote events are handled in exactly the same way
- the same cursor redrawing function is notified when any cursor is moved
(whether local or remote), and the display is updated accordingly. While the
standard cursor could have been used to display the local cursor position, we
believe it is not worth the effort. First, the local cursor has to be treated as a
special case from the remote cursors, leading to more complex coding and
debugging problems. Second, there are often limitations and system dependen-
cies in application cursors that may conflict with design goals. For example, our
cursors are larger than the cursors provided by some window systems. Finally,
we have found that our scheme worked well in practice — tracking is fairly
smooth and occurs in real time. The same approach was successfully employed
in XGroupSketch.
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GroupKit uses an entirely different approach by providing multiple cursors
as transparent overlays to any underlying (programmer-defined) application
(Roseman and Greenberg, 1992a; 1992b). GroupKit is built on top of the
InterViews toolkit (Linton et al., 1991), and its overlay facility relies upon the
InterView page glyph. A page contains one background glyph, and one or more
transparent foreground glyphs, each of which may be placed independently
over the background glyph. The background glyph here represents some
application specific graphical component (such as a sketchpad), while the
foreground glyphs contain bitmaps representing cursors. As the system cursor
is tracked, the foreground glyph for the local cursor is moved, and messages are
sent to the other users via the standard mechanisms. The application program-
mer using GroupKit gets multiple cursors for free just by including the
specialized cursor page glyph. Similar to cursor management in conventional
window systems, the glyph handles the basic display and users’ interactions
with their multiple cursors, and then passes on cursor movement events to the
application. These events can be ignored (which still gives users the ability to
gesture around the display) or used by the application for special purposes.

Communications

People designing real time groupware systems are concerned that the com-
munication channel will be the primary system bottleneck, and often go to great
lengths to minimize the information transmitted over the channel. We believe it
has been used as a reason not to implement multiple cursors, and for choosing
some architectural styles over others (e.g., Ahuja et al., 1990; Lauwers et al.,
1990; Lauwers and Lantz, 1990).

Our experiences with GroupSketch, XGroupSketch and GroupDraw show
that communication throughput is not a problem over typical local area
networks (Ethernet runs at 10Mbps, Appletalk at around 250Kbps). Our
communication requirements were modest. All our implementations use a
standard stream-oriented connection that guarantees in-order, error-free deliv-
ery (via Unix Stream Sockets or Appletalk Data Stream Protocol). When we ran
profiling tools on our systems, we were surprised to find that it was the
processor speed that was the performance bottleneck. While the network
comfortably accommodated the events we had sent over the network, the slower
processors had difficulty interpreting all of them in real time.

To get a feel for the network traffic, we traced the number of packets sent by
three GroupSketch participants on several short but active design sessions. On
average, a total of 15-25 packets/second were transmitted, with an average
packet length (ignoring packet overhead) of 5-20 bytes long. This gives a
network utilization ranging from 600 to 4000 bits/second. This rate is easily
handled by LANs, but could be demanding for a low-speed telephone link.
About 75% of the packets sent indicated a ‘cursor moved’ event. We also noted
that each user’s network demands are unequal — active users generated many
more events than inactive users.

Because, in our situation, CPU processing, and not network bandwidth,
seemed to be the limiting constraint, we adopted the following philosophy.
Each participant process sends out as much information as possible to the other
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processes. For example, cursor movement is broadcast as often as possible. On
the receiving end, decisions must be made about what information to process
when backlogs in the event queue occur. A slower machine, for example, might
ignore all cursor updates received from a particular process except for the last.
While this can result in jerky cursor motion, it is far less disconcerting than
waiting for the cursor to ‘catch up’.

Of course, there will still be situations where the network is the bottleneck.
Delays due to latency, for example, can seriously undermine performance. Also,
network software may not be designed to handle the frequent short messages
used to broadcast cursor events. For example, Microsoft Windows has an
induced delay in packet transmission, probably due to the way its kernel only
processes interrupts after a certain arbitrary number of clock ticks (Hayne et al.,
1992). For pragmatic reasons, transmitting all cursor events may not be feasible,
and other cursor transmission and display strategies may be required. Hayne,
Pendergast and Greenberg (1992) offer four low-bandwidth alternatives to full
motion cursors:

e Point — when the user points and presses a mouse button, a single message
is sent to all remote users. The gesturing cursor will jump to the new
location.

® Point and quiver — in order to attract the viewer’s attention, the above
strategy is modified so that the receiving station ‘jitters’ the cursor back and
forth in its new position.

e Limited motion - Only a certain number of gesture messages per second are
allowed between stations; the fewer messages sent, the jerkier the motion
(e.g. the SHDR group sketching system, by Paul Dourish, Rank Xerox
EuroParc).

e Limited motion with smoothing — After receiving a new cursor position
from the sender, the receiving station computes several points in between
the previous and current location, and then animates the cursor through
these intermediate points.

One final point worth mentioning is the relation of bandwidth to n, the number
of participants. In the current replicated architecture, the worst case network
demands is a function of n*(n-1), which occurs only when every participant is
active on the work surface. In this case, each replicated process must broadcast
its local events to all others (see Figure 4(b)). Of course, simultaneous activity
from all members of larger groups is unlikely, and the average performance
demands will be much smaller. It should be noted that if a multi-cast network
were available, then the communication demands would be linear to the
number of participants, for only a single message need be broadcast by the
sender.

Drawing primitives

A structured drawing package provides its users with a set of drawing
primitives: lines, circles, rectangles and so on. While these are familiar to most
simple graphics packages, the property that they can be shared is still fairly
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novel. This section shows how object-oriented programming is used in
GroupDraw to isolate most multi-user characteristics into a prototypical draw-
ing object. Subclasses, which inherit these characteristics, need only specify the
actual graphical properties of the drawable object. This prototypical object will
be discussed in terms of its properties and operations. We will indicate how its
subclasses can be implemented.

All drawable objects have certain properties which we isolate as much as
possible into a root object called GroupGraphicalObject. Table 4 provides some
detail of the instance variables and methods it contains. Each graphical object
has an ‘ownerProcess’, which is the creator of the object by default. The
ownerProcess serves to arbitrate contention in manipulating the object. Objects
also have a couplingStatus (Dewan and Choudhary, 1991) that indicates the
extent to which graphical objects are shared. As mentioned in the section on the
GroupDraw interface, GroupDraw defines three coupling levels: private, pub-
lic, and sharable. Each object is also referenced by a unique id, which is used in
all network messages to identify the object being manipulated.

To create a new object, whether it be in response to a local or remote drawing
action, we provide a standard initialization method: initializeGroupObject(),
which will set the instance variables mentioned above. Subclasses will special-
ize this method to initialize any extra properties it may have e.g. zeroing out the
endpoints of a line (see LineObject, in Table 4). For communication and storage
purposes, each object must be able to construct and interpret a string represent-
ing itself (make/sendDescription()); this is used to save and restore images and to
send update information to new users in the conference. The latter is im-
plemented by requesting each object to tell the new user about itself.

Next, we look at operations dealing with changing the coupling status of an
object. GroupDraw insists that the owner approve status changes; processes
request permission by the requestChangeStatus() method. If the owner grants
permission, the doChangeStatus() method will actually change the object status
and broadcast the change to all participants. Table 4 lists several other methods
that follow this request/do form of arbitration.

Because multiple users may select and start to drag an object asynchronously,
the object may be in slightly different places on different screens. Yet each
selected object will want to tell the other processes where it had been selected.
Passing the precise pixel coordinates is often meaningless, since that point may
not match its partner on the remote object. Instead, we define a ‘logical’ point
for each object. For example, the logical points of a line will be the two
endpoints (start/endPoint). Dragging a point within an object would then be
described in relation to these logical points (whereGrabbed). Most of the group
interaction algorithms are handled within the GroupGraphicalObject. The root
methods handle arbitration for object selection (requestToGrab(), doGrab(),
drag(), endGrab()) The doDrag() method, specialized for each subclass, actually
does the dragging - it does not need to know how other users are manipulating
the object. The actual drawing of the object by draw() will, of course, be
specialized to each subclass.

What must a subclassed object such as LineObject be responsible for? First, it
needs to create or interpret the description string it defines if it is to send a
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Table 4. GroupDraw’s GroupGraphicalObject and its LineObject subclass

GroupGraphicalObject, the root object of all graphics primitives

Instance variables

int couplingStatus Indicates if object is private, public, or can be shared.

int ownerProcess Indicates who is the owner of the process.

intid A unique reference that identifies the object across the whole system.
boolean acquired Indicates if the object is currently being manipulated by a participant.
point whereGrabbed A logical point indicating the position where the object was acquired.

Methods for initializing and destroying an object, and for sending its description to others
initializeGroupObject() Initializes the object, filling in any defaults.

destroyObject() Destroys the object and frees its space.
makeDescription() Make a description of the object suitable for transmission over the network.
sendDescription() Send the description to a requester.

Methods for changing object attributes
requestChangeStatus()  Request the object owner to change the coupling status.

doChangeStatus() Actually change the status, and broadcast change over network.
requestChangeOwner() Request the object to change its owner.
doChangeQwner() Actually change the owner, and broadcast change over network.

Methods for graphically manipulating and drawing the object

draw() A place holder for a routine that will draw the object on the screen.
requestToGrab() Request the object for permission to acquire it.

doGrab() Permission is granted or denied.

endGrab() An acquired object is relinquished.

saveOriginal() The original position of a selected object.

restoreOriginal() Restore a moved object to its original position.

drag() High-level drag-handler; checks permission, broadcasts changes, etc.
doDrag() A place-holder; this routine will actually drag the object.
whereGrabbed() A place-holder; checks to see where object was grabbed.

LineObject, a subclass of GroupGraphicalObject

Instance variables

point startPoint The start point of the line
point endPoint The end point of the line
Methods

initializeGroupObject() Initialize line-specific attributes, then call the super-class
initializeGroupObject

makeDescription() Specialized to include line descriptions, then call the inherited method.
saveOriginal() Specialization line-aware form of the inherited model.

restoreOriginal() Specialization line-aware form of the inherited model.

doDrag() Actually drags the object.

draw() Actually draw the object.

complete object description over the network. Second, given a physical point, it
must determine the corresponding logical point. Third, it must handle the
object-specific graphical activities, including methods to draw and erase itself,
to drag itself around, and to save enough information to undo the dragging
operation if the object’'s owner refuses dragging permission (save/
restoreOriginal()). Object status, ownership, contention, and other issues need
not be dealt with by the subclass.
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Conclusions

This paper introduced both human and technical factors we have experienced
designing four multi-user systems: the GroupSketch and XGroupSketch sketch-
pads, the GroupDraw object-oriented drawing package, and the GroupKit
groupware toolkit.

On the human factors side, it may appear that some of the design principles
mentioned in the second section are self-evident, e.g., multiple cursors for
gesturing, allowing simultaneous activities, and so on. Yet there are many
examples of related groupware systems that have failed to live up to these
seemingly self-evident criteria. Consider Xerox PARC’s Boardnoter, a compute-
rized whiteboard used to support face-to-face meetings (Stefik et al., 1987a;
1987b). While a single large tele-pointer could be seen by all, individual cursors
could not be seen by everyone. Neither did participants see each others’ actions
as they occurred, for actions were not broadcast until a complete graphical
stroke was made or a complete text line entered. XSketch, a recent object-based
group drawing package suffers a similar lack, as its objects are only transmitted
after they are created (Lee, 1990). WScrawl 1.0 mentioned in the third section,
does not show multiple cursors®. Group Technologies’ Aspects does not
necessarily show multiple cursors, nor can the process of creating or manipulat-
ing an object be seen by participants. We have also seen several other system
now under development that fail to meet the basic human factors requirements
of a group drawing tool. '

On the positive side, there are several systems (including X/GroupSketch and
GroupDraw) that do support the kinds of interactions most people expect from
a group drawing surface. All have one thing in common: they were derived
from Tang'’s design principles as listed in Table 1. While these systems are quite
diverse, they all share a common ‘feel’, and observations of use are strikingly
similar. Three systems, for example, are video-based and work by fusing video
images: VideoDraw (Tang and Minneman, 1990), VideoWhiteboard (Tang and
Minneman, 1991) and TeamWorkStation (Ishii, 1990). All are limited by
scalability, for serious image deterioration results when too many video images
are fused. In contrast, Commune is a workstation-based multi-user sketchpad
build independently, but in parallel with GroupSketch (Bly and Minneman,
1990; Minneman and Bly, 1990; 1991). Although the interface to the two systems
are remarkably similar, there are some minor differences. In Commune, people
use a stylus to write directly on top of the horizontally-oriented monitor — the
resulting artifacts are superior to the ones generated on our mouse-based
system. Other workstation-based sketchpads are now coming available, for
example, CaveDraw (Lu and Mantei, 1991); WScrawl 2.0, SHDR from Rank
EuroPark, Rococo Sketchpad (Scrivner et al., 1991); Muge (Pendergast and
Hayne, 1991); GroupTeleconferencing System (IIS Technologies, date un-
known). Some include video-links to promote face-to-face contact. We also
believe that these guidelines can be generalized out beyond group drawing. For

6WScrawl 2.0 has just been released. It is a completely new design and implementation, and now
has multiple cursors and excellent functionality. The creators cite the influence of Bly and Tang on
their new work.
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example, we know of one group brainstorming system (Cognoter) that has been
redesigned to fit these criteria (Tatar et al., 1991).

We have also described our experiences implementing a computational
shared drawing surface, concentrating on where a multi-user drawing applica-
tion would differ from its single-user counterparts. We found that there are
trade-offs in the choice between replicated, centralized, and hybrid
architecture, and that the reason to choose one style or another will often
depend upon the physical requirements of the system. We recommended that
conference registration be managed as independently as possible from the
underlying application, and that it is best handled as a high-level toolkit
component. Multiple cursors are considered fundamental to these systems; we
recommended that future interface toolkits and window systems support these
directly, as we do now in GroupKit. We have also found that communication
bandwidth on moderate speed LANs is not a problem. While we recognize that
slow-speed telephone lines are still a fact of life, we suggested that, in general,
the underlying system functionality should not be compromised for com-
munications problems that may not exist (especially as 14,400 bits/second
modems are now available). Finally, we outlined how a multi-user graphics
library can be created by having most of its collaborative-aware properties
reside within a root prototypical graphics object. By subclassing, it should be
fairly straightforward to extend the library via conventional graphics proce-
dures.
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Software availabiilty

GroupSketch is now available via anonymous ftp from the University of
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Greenberg for further information on the availability of XGroupSketch and
GroupKit.
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